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1 Universität Köln, Institut für Mathematik, Weyertal 86-90,
D - 50931 Köln, Germany
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Abstract

We consider non-periodic holomorphic twist maps of the form

θ1 = θ +
1

rα
(γ + F1(θ, r)), r1 = r + r1−αF2(θ, r),

for α ∈]0, 1[ and γ ∈ R \ {0}. Under appropriate assumptions on F1, F2 and a primitive h
of r1 dθ1 − r dθ it is shown that rn = O((log n)1/α), if (θn, rn)n∈N0

is a forward complete
real orbit of the map.

1 Introduction

Over the last years we have examined the dynamics of twist maps with non-periodic angles [2, 3,
4, 5]. Motivated by the Fermi-Ulam ping-pong model, and also by the Littlewood boundedness
problem, we have obtained results on the role of the bounded orbits in the general dynamics
[6] and also on the improbability of escaping orbits [7, 11, 12]. However, the first result for this
class of maps is older and due to Neishtadt [9]. He studied the ping-pong model in the analytic
case and proved that for any orbit the velocity vn after the impact n must satisfy

vn = O(log n), n→∞. (1.1)

In this paper we consider more general holomorphic maps f : (θ, r) 7→ (θ1, r1) of the form

θ1 = θ +
1

rα
(γ + F1(θ, r)), r1 = r + r1−αF2(θ, r), (1.2)
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where α ∈]0, 1[ and γ ∈ R \ {0}. They should be viewed as perturbations of

θ1 = θ +
γ

rα
, r1 = r.

The latter map is well-defined on R×]0,∞[ and has a holomorphic extension to the complex
domain C × {r ∈ C : Re r > 0}. Moreover, it is symplectic, due to r1 dθ1 − r dθ = dh0 for
h0(θ, r) = − αγ

1−α r
1−α. We will investigate the dynamics of (1.2), being defined on a set of the

type
Ω = Rδ × {r ∈ C : Re r > r, |Im r| < η|r|}

for some δ, r > 0, η ∈]0, 1[, with Rδ = {θ ∈ C : |Im θ| < δ} denoting the open strip in the
complex plane about R of width δ. Our main assumptions are:

(i) the smallness of the holomorphic functions Fj on Ω (supposed to map reals into reals),
in the sense that Fj(θ, r) = O(r−α), uniformly in θ ∈ Rδ, for j = 1, 2;

(ii) h(θ, r) = h0(θ, r) +O(r1−2α) uniformly in θ ∈ Rδ, where r1 dθ1− r dθ = dh holds for (1.2).

Under these hypotheses we are going to show (Theorem 3.1) that there exists a constant C > 0
such that if (θn, rn)n∈N0

is a forward complete real orbit of (1.2), then there is n0 ∈ N so that

rn ≤ C(log n)1/α, n ≥ n0.

For the proof, we apply a rescaling ξ = ε1/αr to put f from (1.2) into the form

ψε : θ1 = θ + εR1(θ, ξ, ε), ξ1 = ξ + εR2(θ, ξ, ε), (1.3)

where R1(θ, ξ, ε) = 1
ξα

(γ + F1(θ, ξ
ε1/α

)) and R2(θ, ξ, ε) = ξ1−αF2(θ, ξ
ε1/α

). It turns out that the

family of maps {ψε} can be defined on a common domain Gρ, where G = R×]1, 2[ and

Gρ = {x = (q, p) ∈ C2 : |Im q| < ρ, dist(p, I) < ρ}.

This leads us to study (see Section 2, also for more discussion of the subtleties) general maps
Pε : Gρ → C2 given by

Pε : x1 = x+ εl(x, ε), x1 = (q1, p1), x = (q, p),

where l belongs to a certain class of maps M1,ρ,σ that has to be carefully set up in order to
account for singularities of l or ∂l

∂ε
at ε = 0; recall the definition of R1, R2 in terms of F1, F2

above. Inspired by [5], we call the family of maps {Pε} E-symplectic, if p1 dq1 − p dq = dh(·, ε)
for a function h ∈M1,ρ,σ such that, as ε→ 0,

h(q, p, ε) = εm(q, p) +O(ε2),
∂h

∂ε
(q, p, ε) = m(q, p) +O(ε),

uniformly in (q, p) ∈ Gρ for a bounded function m : Gρ → C. It turns out that all these
conditions can be verified for (1.3) after rescaling h from (ii) to h. Furthermore, it is possible
to construct a function E = E(x) satisfying J∇E(x) = l(x, 0), where J denotes the standard
symplectic matrix; in fact E(θ, ξ) = E(ξ) = γ

1−α ξ
1−α for the maps from (1.3). The function E
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should be thought of as an approximate first integral (adiabatic invariant) for the family {Pε}.
This means that the variation of E along the orbit remains small for an exponentially large
time. More precisely, Theorem 2.5 ensures that if

(xn)0≤n≤N = (P n
ε (x0))0≤n≤N

is a real forward orbit piece of Pε so that xn ∈ G for all 0 ≤ n ≤ N , then

|E(xn)− E(x0)| ≤ Ĉε, 0 ≤ n ≤ min{N,Nε}, Nε = [eD̂/ε], (1.4)

for constants Ĉ, D̂ > 0 and if ε > 0 is small enough (all independent of the orbit). Going back
to the original variables (θ, r), it follows that

|sn − sm| ≤ Csβm, m ≤ n ≤ m+ [es
δ
m ],

where sn ∼ r1−α
n (up to a multiplicative constant), β = 1−2α

1−α < 1 and δ = α
1−α > 0. Then to

complete the proof of Theorem 3.1 we need to show that lim supm→∞
sm

(logm)1/δ
≤ C1. This is

accomplished in a clean way by using Lemma 3.4, which is related to upper and lower solutions
to the difference equation xn+1 = xn + Cxβn.

Section 4 concerns the ping-pong map. This important example was analyzed in [9] and
we revisit it to illustrate the applicability of our results. Our proof is substantially different
from the proof in [9], since the change of variables and the adiabatic invariant we are going
to use seem to be new. Note that α = 1/2 for the ping-pong map, but in the notation of the
main theorem (Theorem 3.1) as mentioned above rn = En = v2

n/2 corresponds to energy, not
velocity, and hence we recover (1.1). An important issue here is how to extend the map to the
analytic setup. We also remark that the result comes with some uniformity, in the sense that
it leads to the estimate

lim sup
n→∞

vn
log n

≤ C0

for a constant C0 > 0 that is independent of the chosen orbit.
It remains an open question, if the logarithmic bound, as provided by Theorem 3.1, is

optimal. In Section 5 we will give an example for α = 1/2 such that for every (θ0, r0) ∈ R2 so
that θ0 > 0 and r0 > 0 the forward complete orbit (θn, rn)n∈N0

does exist and satisfies

0 < lim inf
n→∞

rn
(log n)2

≤ lim sup
n→∞

rn
(log n)2

<∞.

However, this example will barely fail one of the assumptions of Theorem 3.1 (the bound (3.4)
does only hold uniformly for θ in bounded sets, but not for θ ∈ Rδ), and hence it does not yield
optimality. This indicates that maybe some assumption of Theorem 3.1 could be relaxed, or in
some examples unbounded orbits could exist. However, given the advanced technical machinery
that is used to establish Theorem 3.1, both points seem to be difficult to address.

2 E-symplectic families of maps

An important observation in [9] is the existence of adiabatic invariants for families of analytic
canonical maps close to the identity. Given a convex domain G ⊂ RN × RN and a family of
symplectic maps

Pε : G→ RN × RN , x1 = x+ εl(x, ε),
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it is possible to construct a function E = E(x) satisfying

J∇E(x) = l(x, 0), (2.1)

where J =

(
0 IN
−IN 0

)
. For small ε the iteration xn+1 = Pε(xn) can be interpreted as a

numerical integration method for the Hamiltonian system ẋ = J∇E(x). This fact suggests
that E(x) should be an adiabatic invariant for Pε, meaning that

|E(P n
ε (x))− E(x)| ≤ Cε, 0 ≤ n ≤ Nε, (2.2)

where Nε is of the order eD/ε; the constants C,D > 0 should only depend upon an appropriate
norm of l. In essence this is discussed in Remark 5 and Proposition 3 of [9]. Additional details
can be found in [1], in particular in the case of bounded domains.

However, the previous statements must be taken with some caution in the case where the
underlying domain is unbounded. As a counter-example we consider the family of translations

x1 = x+ εJv + ε2v,

defined on the whole space G = RN × RN . Here v 6= 0 is a fixed vector and E(x) = 〈x, v〉
satisfies (2.1), since l(x, ε) = Jv + εv. Due to P n

ε (x) = x+ nεl(x, ε) we obtain

|E(P n
ε (x))− E(x)| = ε2n|v|2.

Therefore (2.2) does hold only for n ≤ Nε = O(1/ε) many steps.
To overcome this inherent difficulty, Benettin and Giorgilli in [1] considered an unbounded

domain G and a family of maps derived from a symplectic integration algorithm for a Newtonian
system of the type q̈ = −∇V (q). Then they impose some growth conditions on V (q) as |q| → ∞.
We will follow a different approach and assume that our family {Pε} satisfies a condition inspired
by the notion of an exact symplectic map (called E-symplectic), as it was understood in our
previous work [5]. Furthermore, to simplify matters, we will restrict ourselves to the case of
direct interest to us for applications. Throughout we will take

N = 1 and G = R× I,

where I ⊂ R is an open and bounded interval. Our goal will be to understand the dynamics
of a map on the plane (θ, r) 7→ (θ1, r1) when r →∞. For this reason our family of maps {Pε},
Pε : (q, p) 7→ (q1, p1), will be obtained after a rescaling q = θ, p = εr with q ∈ R and p ∈]1, 2[.
This procedure will lead to functions l(x, ε) that are analytic in x, but not necessarily smooth
in ε; a prototype can be the function l(x, ε) = h(x/ε2), where h is real analytic in [1,∞[ and
h(ζ) → 0 as ζ → ∞. Then l is continuous as a function of the two variables (x, ε), but the
partial derivatives ∂kε l do not always exist at ε = 0.

The following definitions are motivated by the previous discussions. In general, for the
norms on Cd and Cd1×d2 we will take |x| = max1≤i≤d |xi| and |A| = max1≤i≤d1,1≤j≤d2 |aij|,
respectively. Note that for A ∈ Cd×d, x ∈ Cd, A1 ∈ Cd1×d and A2 ∈ Cd×d2 this implies

|Ax| ≤ d|A||x|, |A1A2| ≤ d|A1||A2|.
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The points in G = R× I will be denoted by x = (q, p). For ρ > 0 we will write

Gρ = {x = (q, p) ∈ C2 : |Im q| < ρ, dist(p, I) < ρ}.

Given ϕ : Gρ → C holomorphic, let

‖ϕ‖ρ = sup {|ϕ(x)| : x ∈ Gρ}.

If 0 < r < ρ, then by the Cauchy integral formula one has

‖Dϕ‖r ≤
1

ρ− r
‖ϕ‖ρ,

where Dϕ is the Jacobian.

Definition 2.1 (The classes Mρ,σ and M1,ρ,σ) Let ρ > 0 and σ ∈]0, 1[.

(i) The class Mρ,σ consists of those continuous maps l : Gρ × [0, σ]→ C2, l = l(x, ε), which
satisfy:

(a) l maps real into reals; and

(b) for every ε ∈ [0, σ] the map l(·, ε) is holomorphic on Gρ and

‖l‖ρ,σ = sup {‖l(·, ε)‖ρ : ε ∈ [0, σ]} <∞.

(ii) The class M1,ρ,σ consists of those continuous maps l : Gρ × [0, σ] → C2, l = l(x, ε),
satisfying

(a) l maps real into reals;

(b) l is C∞ in Gρ×]0, σ];

(c) for every ε ∈ [0, σ] the map l(·, ε) is holomorphic on Gρ;

(d) one has

‖l‖1,ρ,σ = ‖l‖ρ,σ + sup
{∥∥∥ ∂l

∂ε
(·, ε)

∥∥∥
ρ

: ε ∈]0, σ]
}
<∞.

Remark 2.2 Note that, for a map l ∈ Mρ,σ or l ∈ M1,ρ,σ, all the derivatives ∂αx∂
k
ε l(·, ε) :

Gρ → C2 for ε ∈]0, σ] are holomorphic, where α ∈ N2
0 and k ∈ N0. Similarly, all the ∂αx l :

Gρ × [0, σ] → C2 are continuous functions of both variables. This follows from the Cauchy
integral formula and the continuity of l. Furthermore, the derivatives can be interchanged:
∂αx∂

k
ε l(·, ε) = ∂kε ∂

α
x l(·, ε).

Definition 2.3 Suppose that l ∈ M1,ρ,σ, and for ε ∈ [0, σ] consider the family of maps Pε :
Gρ → C2 given by

Pε : x1 = x+ εl(x, ε), x1 = (q1, p1), x = (q, p). (2.3)
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We say that the family {Pε} is E-symplectic, if there is a function h ∈M1,ρ,σ such that

p1 dq1 − p dq = dh(·, ε) (2.4)

and there exists a bounded function m : Gρ → C satisfying

h(q, p, ε) = εm(q, p) +O(ε2) as ε→ 0 (2.5)

and
∂h

∂ε
(q, p, ε) = m(q, p) +O(ε) as ε→ 0 (2.6)

uniformly in (q, p) ∈ Gρ.

Remark 2.4 (a) m is holomorphic in Gρ. To see this, note that ∂h
∂ε

(·, ε) is holomorphic for

ε > 0 by Remark 2.2. Since m is the uniform limit of
∫ 1

0
∂h
∂ε

(q, p, tε) dt as ε→ 0, it is holomorphic
itself.

(b) m satisfies

∂m

∂q
(q, p) = p

∂l1
∂q

(q, p, 0) + l2(q, p, 0),
∂m

∂p
(q, p) = p

∂l1
∂p

(q, p, 0), (2.7)

where l = (l1, l2). For, we observe from (2.5) that ε−1h → m uniformly on Gρ. Therefore also
the derivatives converge, uniformly on compact subsets of Gρ. From (2.4),

ε−1∂h

∂q
= l2 + p

∂l1
∂q

+ ε l2
∂l1
∂q
, ε−1∂h

∂p
= p

∂l1
∂p

+ ε l2
∂l1
∂p
.

Thus it remains to pass to the limit ε → 0 and use Remark 2.2. Relation (2.7) can also be
stated as

∇m(x) = p∇l1(x, 0) +

(
l2(x, 0)

0

)
, x = (q, p). (2.8)

(c) One has
∂l1
∂q

(q, p, 0) +
∂l2
∂p

(q, p, 0) = 0, (2.9)

as follows from ∂2m
∂q∂p

= ∂2m
∂p∂q

. Relation (2.9) implies that the Jacobian matrix Dl(x, 0) is Hamil-

tonian, i.e., it satisfies Dl(x, 0)∗J + JDl(x, 0) = 0, or equivalently, JDl(x, 0) is symmetric.
Since Gρ is simply connected, we conclude that there is a holomorphic function E : Gρ → C
such that J∇E = l(·, 0), i.e., (2.1) holds. Actually, (2.8) shows that we can take

E(x) = l1(x, 0)p−m(x), x = (q, p). (2.10)

(d) The relation J∇E = l(·, 0) yields

dE =
∂E

∂q
dq +

∂E

∂p
dp = −l2 dq + l1 dp.
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Hence E(x) = E(x0) +
∫
γ
(−l2 dq + l1 dp) for every path γ that connects a fixed x0 ∈ G to x.

This observation makes the connection to the formula for E given in [9] below (2.7).

(e) Condition (2.6) does not follow from (2.5), as the example

h(q, p, ε) = εm(q, p) + ε2 sin
(1

ε

)
shows.

The proof of our main result (see Theorem 3.1 below) relies on the following theorem, which
should be compared to [9, (2.7), p. 135 and Prop. 3, p. 136]. It can be established along the
lines as indicated in [9], cf. [8] for more discussion and full details.

Theorem 2.5 Suppose that l ∈ M1,ρ,σ, and for ε ∈ [0, σ] consider the family of maps Pε :
Gρ → C2 given by

Pε : x1 = x+ εl(x, ε). (2.11)

Let the family {Pε} be E-symplectic. Then there exist σ̂ ∈]0, σ] and constants Ĉ, D̂ > 0 (de-
pending upon ρ, σ, ‖l‖1,ρ,σ, the interval I, ‖h‖1,ρ,σ and supε∈]0,σ] ‖ε−1(∂h

∂ε
(·, ε)−m)‖ρ) such that

if
(xn)0≤n≤N = (P n

ε (x0))0≤n≤N

is a real forward orbit piece of Pε so that xn ∈ G for all 0 ≤ n ≤ N , then

|E(xn)− E(x0)| ≤ Ĉε, 0 ≤ n ≤ min{N,Nε}, Nε = [eD̂/ε]. (2.12)

3 Main result

To motivate our main result let α ∈]0, 1[ and γ ∈ R \ {0}. Consider the map (θ, r) 7→ (θ1, r1)
given by

θ1 = θ +
γ

rα
, r1 = r.

It is well-defined on R×]0,∞[ and has a holomorphic extension to the complex domain C×{r ∈
C : Re r > 0}. Moreover, the map is symplectic, since it satisfies

r1 dθ1 − r dθ = dh0

for
h0(θ, r) = − αγ

1− α
r1−α. (3.1)

We will consider perturbations of this map on a sub-domain of C2 of the type

Ω = Rδ × {r ∈ C : Re r > r, |Im r| < η|r|}, (3.2)

where δ, r > 0, η ∈]0, 1[, and Rδ = {θ ∈ C : |Im θ| < δ} denotes the open strip in the complex
plane about R of width δ.
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Theorem 3.1 Consider the map f : (θ, r) 7→ (θ1, r1) given by

θ1 = θ +
1

rα
(γ + F1(θ, r)), r1 = r + r1−αF2(θ, r), (3.3)

under the following hypotheses:

(a) F1 and F2 are holomorphic in Ω from (3.2).

(b) If (θ, r) ∈ Ω ∩ R2, then F1(θ, r), F2(θ, r) ∈ R.

(c) Fj(θ, r) = O(r−α), uniformly in θ ∈ Rδ and for j = 1, 2.

(d) There is a holomorphic function h : Ω → C that maps reals into reals and such that
r1 dθ1 − r dθ = dh as well as

h(θ, r) = h0(θ, r) +O(r1−2α), (3.4)

uniformly in θ ∈ Rδ, where h0 is defined in (3.1).

Then there exists a constant C > 0 such that if (θn, rn)n∈N0
is a forward complete real orbit of

f , then there is n0 ∈ N so that

rn ≤ C(log n)1/α, n ≥ n0.

Remark 3.2 (a) The dependence of C with respect to the parameters will be discussed along
the proof; C will be obtained from a sequence of constants C1, . . . C13.

(b) If the functions F1 and F2 are 2π-periodic in θ, then f can be defined on a cylinder and
the conclusion can be improved to rn = O(1) as n → ∞ for each complete real orbit. This is
a consequence of the Small Twist Theorem, see [13, Chapter III]. In fact, after the rescaling
ρ = εr with ρ ∈ [1, 2], the map f has an expansion of the form

θ1 = θ + εα
γ

ρα
+O(ε2α), ρ1 = ρ+O(ε2α),

as ε → 0, uniformly in θ ∈ Rδ. Taking a sequence εn → 0, we find corresponding invariant
curves r = ψn(θ) such that 1/εn ≤ ψn(θ) ≤ 2/εn for θ ∈ R. These curves are closed in the
cylinder and act as barriers for all real orbits, preventing them to escape. The same conclusion
is valid if then dependence on θ is quasiperiodic and the frequencies satisfy a Diophantine
condition, cf. [14].

(c) Without any further assumptions, for a map f which satisfies (a)-(d), there are infinitely
many forward complete real orbits such that rn = O(1) along the orbit. This is a consequence
of the results in [3]. To establish the claim, we first observe that (c) yields for r ∈ R the bound

∂F1

∂r
(θ, r) = O(r−(1+α)), r →∞, (3.5)

uniformly in θ ∈ R; (3.5) follows from the Cauchy formula, see the proof of Theorem 3.1 below.
According to [5], the latter estimate is sufficient to guarantee the existence of a generating
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function h = h(θ, θ1) associated to f , i.e., r = ∂h
∂θ

and r1 = − ∂h
∂θ1

are verified. Actually one can
take h(θ, θ1) = −h(θ, R(θ, θ1)), where r = R(θ, θ1) is implicitly defined by the first equation in
(3.3). Some computations then show that

R(θ, θ1) ∼ γ1/α(θ1 − θ)−1/α, h(θ, θ1) ∼ αγ1/α

1− α
(θ1 − θ)−

1−α
α ,

as θ1 − θ → 0+, where as usual F (x) ∼ G(x) as x → x0 means that limx→x0 F (x)/G(x) = 1.
Hence we can invoke [3, Thm. 2.5] or [5, Exercise 5.6] to deduce that for each r̂ > 0 the map f
has an orbit (θn, rn)n∈N0

such that rn ≥ r̂ for all n ∈ N0 and furthermore supn rn <∞.

To prepare for the proof of the theorem, we are going to discuss some aspects of the method
of upper and lower solutions for the difference equation

xn+1 = g(xn), (3.6)

where g : I → R is an increasing function that is defined on an interval I ⊂ R.
A sequence (γn)0≤n≤N ⊂ I is called a lower solution of (3.6), if γn+1 ≤ g(γn) for n =

0, . . . , N − 1. An upper solution is defined by reversing the previous inequality.

Lemma 3.3 Let (γn) and (Γn) be a lower solution and an upper solution of (3.6). If γ0 ≤ Γ0,
then γn ≤ Γn for all n.

Proof : This follows by induction from the monotonicity of g. 2

Next we will show how to construct lower and upper solutions for an equation that will be
important for the proof of Theorem 3.1. Consider

xn+1 = xn + Cxβn,

where C > 0 and β < 1. The function g(x) = x + Cxβ is increasing in I = [0,∞[, if β ≥ 0,

and it is increasing in I = [(C|β|)
1

1−β ,∞[, if β < 0. Inspired by the general solution of the
differential equation ẋ = Cxβ, we test sequences of the type

γn = (A+Bn)
1

1−β , n ≥ 0,

for some A,B > 0; the condition A ≥ (C|β|)
1

1−β is also assumed, if β < 0, to make sure that
γn ∈ I. From the mean value theorem we obtain

γn+1 − γn =
B

1− β
(A+B(n+ ζn))

β
1−β

for some ζn ∈]0, 1[.
Let us first look at the case where β ∈ [0, 1[. Here we deduce that

B

1− β
γβn ≤ γn+1 − γn ≤

B

1− β
γβn+1. (3.7)
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Hence γn will be an upper solution, as soon as B ≥ C(1 − β). To get a lower solution, we
observe that

γ1−β
n+1

γ1−β
n

= 1 +
B

A+Bn
≤ 1 +

B

A
.

Therefore we get

γβn+1 ≤
(

1 +
B

A

) β
1−β

γβn ,

and thus, due to (3.7), γn will be a lower solution, if B(1 + B
A

)
β

1−β ≤ C(1− β).
For β < 0 the inequality (3.7) is reversed. As a consequence, γn will be a lower solution,

if A ≥ (C|β|)
1

1−β and B ≤ C(1 − β), and it is an upper solution for A ≥ (C|β|)
1

1−β and

B(1 + B
A

)
β

1−β ≥ C(1− β). Thus to summarize:

(a) If β < 1 is fixed and B = 1
2
C(1 − β), then Γn = (A + Bn)

1
1−β will be a lower solution,

if A > 0 is taken sufficiently large (depending on C and β); this fact won’t be needed in
what follows.

(b) If β < 1 is fixed and B = 2C(1− β), then Γn = (A + Bn)
1

1−β will be an upper solution,
if A > 0 is taken sufficiently large (depending on C and β).

Returning to the general setup, let us now assume that the interval I is of the type I =]b,∞[
and let h : N0 → N0 be a given function with the property that

h(n) ≥ n+ 1, n ∈ N0. (3.8)

Let (γn)n∈N0
⊂ I be a sequence such that

γm ≤ g(γn), 0 ≤ n ≤ m ≤ h(n). (3.9)

This sequence is a lower solution of (3.6), but it has additional favorable properties; in this case
it will be possible to sharpen the conclusion of Lemma 3.3 as follows.

Lemma 3.4 Let (γn)n∈N0
⊂ I and (Γn)n∈N0

⊂ I be such that:

(a) (γn) satisfies (3.9),

(b) (Γn) is an upper solution to (3.6),

(c) γ0 ≤ Γ0,

(d) (Γn) is increasing and lim supn→∞ γn =∞.

Then there is a non-decreasing function σ : N0 → N such that

γσ(n) > Γn and γm ≤ Γn, m ∈ {0, . . . , σ(n)− 1}. (3.10)

In addition,
σ(n+ 1) > h(σ(n)− 1), n ∈ N0. (3.11)
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Proof : Define
σ(n) = min{k ∈ N0 : γk > Γn}.

It follows from (d) that σ is well-defined and monotone increasing. Also, thanks to (c), we have
σ(0) ≥ 1 and accordingly σ(n) ≥ 1 for all n ∈ N0; in particular, the statement (3.11) makes
sense. The relations in (3.10) are obtained directly from the definition of σ, and we are going to
prove (3.11) by contradiction. So assume that for some n ∈ N0 we have σ(n+1) ≤ h(σ(n)−1).
Then

h(σ(n)− 1) ≥ σ(n+ 1) ≥ σ(n) > σ(n)− 1

shows that we can use (3.9), with n replaced by σ(n)−1 and m replaced by σ(n+1), to deduce
that γσ(n+1) ≤ g(γσ(n)−1). Since g is increasing and due to (b), this would yield

γσ(n+1) ≤ g(γσ(n)−1) ≤ g(Γn) ≤ Γn+1,

which is impossible by (3.10). 2

Remark 3.5 The previous proof is still valid, if the sequence (γn) does not lie in I, but satisfies
a modified version of (3.9). Assume that there a numbers b∗ > b∗ > b such that Γ0 ≥ b∗ and

γn+1 ≥ b∗ =⇒ γn ≥ b∗. (3.12)

Then γn is required to have the property that

γn ≥ b∗ =⇒ b ≤ γm ≤ g(γn), 0 ≤ n ≤ m ≤ h(n). (3.13)

Proof of Theorem 3.1 : Step 1: Some estimates. We will show that, after restricting the size
of Ω, the functions F1 and F2 will satisfy some additional estimates. From (c) we know that
there are numbers Cj > 0 such that

|Fj(θ, r)| ≤ Cjr
−α, (θ, r) ∈ Ω, j = 1, 2. (3.14)

We consider the smaller region

Ω∗ = Rδ ×
{
r ∈ C : Re r > 2r, |Im r| < η

2
|r|
}

and claim that there are constants C
(1)
j > 0 for j = 1, 2 such that∣∣∣∂Fj

∂r
(θ, r)

∣∣∣ ≤ C
(1)
j r−(α+1), (θ, r) ∈ Ω∗, j = 1, 2, (3.15)

where C
(1)
j only depends upon r, η and Cj. To prove this we first use an elementary geometric

argument to find a constant κ ∈]0, 1[, depending upon r and η, such that if (θ, r) ∈ Ω∗, then
all points (θ, ρ) with θ ∈ Rδ and |ρ − r| ≤ κ|r| will belong to Ω. Now it is possible to use the
Cauchy formula

∂Fj
∂r

(θ, r) =
1

2πi

∫
γ

Fj(θ, ρ)

(ρ− r)2
dρ,

11



where γ is a circle with center r and radius κ|r|. Then (3.14) leads, after a short computation,
to (3.15). The same kind of arguments in conjunction with (d) yields the following bounds for
h:

|h(θ, r)− h0(θ, r)| ≤ C3 r
1−2α, (θ, r) ∈ Ω, (3.16)∣∣∣∂h

∂r
(θ, r)− ∂h0

∂r
(θ, r)

∣∣∣ ≤ C
(1)
3 r−2α, (θ, r) ∈ Ω∗, (3.17)

where C3 > 0 and C
(1)
3 > 0 are suitable constants. From now on the domain Ω will be replaced

by Ω∗. To simplify notation, we will assume that already Ω is a domain on which the estimates
(3.14), (3.15), (3.16) and (3.17) are verified.

Step 2: Rescaling. Under the transformation ξ = ε1/αr the map f becomes

ψε : θ1 = θ + εR1(θ, ξ, ε), ξ1 = ξ + εR2(θ, ξ, ε),

where

R1(θ, ξ, ε) =
1

ξα

(
γ + F1

(
θ,

ξ

ε1/α

))
, R2(θ, ξ, ε) = ξ1−αF2

(
θ,

ξ

ε1/α

)
.

According to (a), ψε is defined on

Σε = Rδ × {ξ ∈ C : |Im ξ| < η|ξ|,Re ξ > ε1/αr}.

We intend to apply Theorem 2.5 to the family of maps {ψε}, and the first task will be to
determine a common domain. Let us fix I =]1, 2[ and define G = R × I. A generic point
in G will be denoted by x = (θ, ξ) and we also recall that |x| = max{|θ|, |ξ|} will be taken
as the norm on C2. Elementary geometric considerations show that it is possible to select
ρ ∈]0,min{1/2, δ}[ and σ > 0 such that Gρ ⊂ Σε for ε ∈ [0, σ]. The next step is to show that
l = (R1, R2) belongs to M1,ρ,σ. Note that we are extending this map to ε = 0 by letting

R1(θ, ξ, 0) =
γ

ξα
, R2(θ, ξ, 0) = 0.

The functions Ri(·, ·, 0) are obviously continuous on Gρ. We are going to show that

R1(θ, ξ, ε)→ γ

ξα
, R2(θ, ξ, ε)→ 0, (3.18)

as ε → 0, uniformly in Gρ. This implies that the extension of Ri to Gρ × [0, σ] is continuous,
and hence the same holds for l. The limits in (3.18) are a consequence of (3.14) and the bounds
1/2 ≤ 1− ρ ≤ |ξ| ≤ 2 + ρ ≤ 5/2 for (θ, ξ) ∈ Gρ.

Now that we know that l is continuous in Gρ× [0, σ], the conditions (a), (b) and (c) from the
definition of the class M1,ρ,σ follow directly from the assumptions on F1 and F2. To establish
(d), we first consider ‖l‖ρ,σ. Here

‖R1(·, ·, ε)‖ρ ≤ 2α(|γ|+ 2αC1 ε), ‖R2(·, ·, ε)‖ρ ≤ mαC2 ε, (3.19)
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for mα = max{(5
2
)1−2α, 22α−1}, is derived from 1/2 ≤ |ξ| ≤ 5/2 and (3.14), so that ‖l‖ρ,σ <∞.

For the derivatives w.r. to ε, we have

∂R1

∂ε
(θ, ξ, ε) = − 1

α

ξ1−α

ε1+1/α

∂F1

∂r

(
θ,

ξ

ε1/α

)
,

∂R2

∂ε
(θ, ξ, ε) = − 1

α

ξ2−α

ε1+1/α

∂F2

∂r

(
θ,

ξ

ε1/α

)
,

for ε ∈]0, σ]. Using (3.15), we deduce that∥∥∥∂R1

∂ε
(·, ·, ε)

∥∥∥
ρ
≤ 22α

α
C

(1)
1 ,

∥∥∥∂R2

∂ε
(·, ·, ε)

∥∥∥
ρ
≤ mα

α
C

(1)
2 ,

so that ‖l‖1,ρ,σ <∞ and therefore l ∈M1,ρ,σ.

Step 3: The symplectic condition. We apply assumption (d) to observe that

h(θ, ξ, ε) = ε1/α h
(
θ,

ξ

ε1/α

)
(3.20)

is a potential for ψε on Gρ, i.e., ξ1 dθ1 − ξ dθ = dh(·, ε) is satisfied. Moreover, from (3.16), we
obtain that

h(θ, ξ, ε) = εm(θ, ξ) +O(ε2) as ε→ 0, (3.21)

uniformly in (θ, ξ) ∈ Gρ, where m(θ, ξ) = h0(θ, ξ); for this note that m is homogeneous in ξ of
degree 1−α. The function m is bounded on Gρ. Next, condition (2.6) follows from (3.17), and it

should be observed that the bound on ‖ε−1(∂h
∂ε
−m)‖

ρ
then only depends upon C3, C

(1)
3 and α.

It remains to prove that h ∈M1,ρ,σ in order to conclude that the family {ψε} is E-symplectic;
note that h is extended to ε = 0 by h(θ, ξ, 0) = 0. From (3.21) we get the continuity of h
on Gρ × [0, σ]. Next we are going to show that condition (d) in the definition of M1,ρ,σ (see
Definition 2.1(ii)) also holds. The definition of h0 and (3.16), (3.17) imply that

h(θ, r) = O(r1−α) and
∂h

∂r
(θ, r) = O(r−α)

uniformly in θ ∈ Rδ. Thus using these estimates, we obtain a uniform (in ε ∈]0, σ]) bound on
‖h(·, ε)‖ρ and ‖∂h

∂ε
(·, ε)‖

ρ
.

Step 4: Application of Theorem 2.5. Since

l(x, 0) =

(
R1(θ, ξ, 0)
R2(θ, ξ, 0)

)
=

(
γξ−α

0

)
,

we deduce from (2.1) that

E(θ, ξ) =
γ

1− α
ξ1−α,

and thus in fact E = E(ξ). Then Theorem 2.5 yields the existence of σ̂ ∈]0, σ] and constants
Ĉ, D̂ > 0 such that if ε ∈ [0, σ̂] and

(xn)0≤n≤N = (θn, ξn)0≤n≤N

is a real forward orbit piece of ψε so that 1 < ξn < 2 for all 0 ≤ n ≤ N , then

|E(ξn)− E(ξ0)| ≤ Ĉε, 0 ≤ n ≤ min{N,Nε}, Nε = [eD̂/ε]. (3.22)
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Step 5: Going back to the original system. First we fix two numbers 1 < a < 3/2 < b < 2. Let
(θn, rn)n1≤n≤n2

be a real forward orbit piece of f such that ε = (2rn1/3)−α < σ̂, where σ̂ is from
the previous step; by decreasing σ̂ further, we may assume that in addition

σ̂ ≤ γ

(1− α)Ĉ
min

{(3

2

)1−α
− a1−α, b1−α −

(3

2

)1−α}
(3.23)

as well as

σ̂ ≤ min
{ 2− b
mαC2

,
a− 1

mαC2

}
(3.24)

are verified. Then we have ξn1 = ε1/αrn1 = 3/2 ∈]1, 2[, where in general we let ξn = ε1/αrn.
Denote by

Nω = max {m ≥ n1 : 1 < ξn < 2 for n with n1 ≤ n ≤ m}

the longest time such that along the orbit (θn, ξn)n1≤n≤n2
of ψε it holds that 1 < ξn < 2. From

Step 4 and (3.22) it follows that∣∣∣ξ1−α
n −

(3

2

)1−α∣∣∣ ≤ 1− α
γ

Ĉ ε, n1 ≤ n ≤ min{Nω, n1 +Nε}, Nε = [eD̂/ε].

Thus for n1 ≤ n ≤ min{Nω, n1 +Nε} we deduce from ε < σ̂ and (3.23) that

a1−α <
(3

2

)1−α
− 1− α

γ
Ĉ ε < ξ1−α

n ≤
(3

2

)1−α
+

1− α
γ

Ĉ ε < b1−α. (3.25)

We claim that Nω ≥ n1 + Nε. Otherwise (3.25) would be applicable n = Nω to imply that
ξNω ∈ [a, b]. We do also know that ξNω+1 6∈]1, 2[. But then

ξNω+1 = ξNω + εR2(θNω , ξNω , ε)

together with (3.19) and ε ≤ 1 would lead to |ξNω+1 − ξNω | ≤ mαC2 ε
2 ≤ mαC2 ε. This in

turn would yield ξNω+1 ∈]1, 2[ by (3.24), which is impossible. This completes the argument for
Nω ≥ n1 +Nε, and the previous discussion can be summarized as follows: If rn1 > (3/2) σ̂−1/α,
then

|r1−α
n − r1−α

n1
| ≤ C4 r

1−2α
n1

, n1 ≤ n ≤ n1 + [eC5 rαn1 ], (3.26)

where C4 = (2
3
)1−2α(1−α

γ
)Ĉ and C5 = (2/3)αD̂.

Step 6: Conclusion. In terms of sn = C
1−α
α

5 r1−α
n and writing m = n1, (3.26) reads as follows: If

sm > C6, then
|sn − sm| ≤ C7 s

β
m, m ≤ n ≤ m+ [es

δ
m ], (3.27)

where β = 1−2α
1−α < 1, δ = α

1−α > 0, C6 = (3/2)1−α (C5/σ̂)1/δ and C7 = C4C5. We need
to prove that lim supm→∞

sm
(logm)1/δ

≤ C∗ for an appropriate constant C∗ > 0 that will be

independent of the initial condition s0. Suppose now that lim supn→∞ sn =∞, or equivalently
lim supn→∞ rn =∞.
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We intend to adapt (3.27) to the framework described in Lemma 3.4 and Remark 3.5. The
function g(x) = x + C7 x

β is increasing in I =]b,∞[, where we take b = 0 for β ≥ 0 and

b = (C7|β|)
1

1−β for β < 0. In addition,

h(n) = n+ [es
δ
n ]

satisfies (3.8), since all the sn are positive. The numbers b∗ and b∗ are defined as follows. First
we take

b∗ = max{C6 + 1, 2b, (2C7)
1

1−β }.

To obtain b∗ so that (3.12) is satisfied for γn = sn we need an estimate of the type sn ≥
C9 sn+1 − 1, which is valid for all n ∈ N. By the definition of the map and by (3.14):

rn+1 = rn + r1−α
n F2(θn, rn) ≤ rn + C2 r

1−2α
n ,

which translates into

sn+1 ≤ C
1−α
α

5 (rn + C2 r
1−2α
n )1−α ≤ C

1−α
α

5 (r1−α
n + C2 r

(1−2α)(1−α)
n )

= sn + C8 s
1−2α
n ≤ (C8 + 1)(sn + 1)

for a suitable constant C8 > 0. Expressed differently, we have the bound

sn ≥ C9 sn+1 − 1 for C9 = (C8 + 1)−1. (3.28)

Therefore an appropriate choice for b∗ > b∗ > b is b∗ = (C8 + 1)(b∗ + 1). Finally we take

Γn = (A + Bn)
1

1−β with B = 2C7(1 − β) and A
1

1−β ≥ max{s0, b
∗}. From the discussion prior

to this proof we know that (Γn) will be an upper solution to xn+1 = xn + C7 x
β
n, if A is fixed

to be sufficiently large (depending on s0, β, C6, C7). Clearly Γ0 ≥ max{s0, b
∗} and (Γn) is

increasing. Lastly, (sn) satisfies (3.13), the latter due to (3.27): if sm ≥ b∗, then sm > C6 and
(3.27) applies. It follows that sm − C7s

β
m ≤ sn ≤ g(sm) for 0 ≤ m ≤ n ≤ h(m). The lower

bound also yields

sn ≥ sm(1− C7s
β−1
m ) ≥ 1

2
sm ≥ b

for such n. Hence Lemma 3.4 provides us with a non-decreasing function σ : N0 → N such that
sσ(n) > Γn, sm ≤ Γn for m ∈ {0, . . . , σ(n)− 1} and furthermore

σ(n+ 1) > σ(n)− 1 + [es
δ
σ(n)−1 ], n ∈ N0. (3.29)

Thus from (3.29), (3.28) and sσ(n) > Γn we deduce

σ(n+ 1) > σ(n) + es
δ
σ(n)−1 − 2 ≥ σ(n) + e(C9 sσ(n)−1)δ − 2 ≥ σ(n) + e(C9Γn−1)δ − 2.

After some straightforward manipulations using the definition of Γn and δ
1−β = 1, this yields

σ(n+ 1) ≥ σ(n) + C10 e
c11n − 2
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for constants C10, c11 > 0 depending upon C9, δ, A and B. Therefore

σ(n) = σ(0) +
n−1∑
k=0

(σ(k + 1)− σ(k)) ≥ 1 + C10

n−1∑
k=0

ec11k − 2n ≥ C10
ec11n − 1

ec11 − 1
− 2n. (3.30)

Thus σ has at least exponential growth, which means that its ‘inverse’ will remain below a
logarithm. More precisely, let

ψ(m) = min{n ∈ N0 : m < σ(n)}.

Then m ≤ σ(ψ(m)) − 1 and hence sm ≤ Γψ(m). In addition, from (3.30) it follows that
ψ(m) ≤ log(m+ C12) + C13 for suitable constants C12, C13 > 0. This in turn leads to

sm ≤ (A+Bψ(m))
1

1−β ≤ (A+B log(m+ C12) +BC13)1/δ

and therefore also
lim sup
m→∞

sm
(logm)1/δ

≤ C∗

for C∗ = B1/δ, which completes the proof. Note that C∗ is independent of the initial condition
s0, but in general the n0 from the statement of Theorem 3.1 will depend on s0. 2

4 Application to the ping-pong map

The Fermi-Ulam ping-pong map (see [3]) for the forcing function p is usually expressed in terms
of the variables time and velocity at the impacts with one of the rackets. Assuming that this
racket is fixed, the equations for the map (t0, v0) 7→ (t1, v1) are

t1 = t̃+
p(t̃)

v1

, v1 = v0 − 2ṗ(t̃),

where t̃ = t̃(t0, v0) denotes the hitting time to the other racket, which is obtained from the
relation (t̃ − t0)v0 = p(t̃). A computation shows that v1 dt1 ∧ dv1 = v0 dt0 ∧ dv0, and this
formula suggests the energy E = 1

2
v2 to be used as the conjugate variable of time. In this way

we obtain the symplectic map Ψ : (t0, E0) 7→ (t1, E1),

t1 = t̃+
p(t̃)√

2(
√
E0 −

√
2 ṗ(t̃))

, E1 = (
√
E0 −

√
2 ṗ(t̃))2,

where t̃ = t̃(t0, v0) is implicitly defined by means of

t̃ = t0 +
p(t̃)√
2E0

.

The real domain of the map Ψ contains a half-plane of the type t0 ∈ R, E > R∗ (see [3]).

As an application of Theorem 3.1 we will obtain the following result, which is an upper
bound for the velocities in the analytic case; also see [9, Example 5].
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Theorem 4.1 Let δ > 0 and p : Rδ → C be holomorphic and such that p maps reals into reals,
|p(z)| ≤ C for z ∈ Rδ, and 0 < a ≤ p(t) ≤ b for t ∈ R. Then there exist constants C∗, E∗ > 0,
depending only upon the parameters, such that if (tn, En)n∈N0

is a forward complete real orbit
of Ψ with lim infn→∞En ≥ E∗, then there is n0 ∈ N so that

|En| ≤ C∗(log n)2, n ≥ n0,

and for the velocities vn =
√

2En this means |vn| ≤
√

2C∗ log n for n ≥ n0.

The idea of the proof is to use Theorem 3.1, not in the coordinates (t, E), but in (w,W ) given
by w =

∫ t
0

ds
p(s)2

and W = p(t)2E. Thus we need to verify that the map (w0,W0) 7→ (w1,W1)
satisfies the assumptions of Theorem 3.1. This will be accomplished in three steps. First we
are going to show that Ψ has a well-defined holomorphic extension. In the second step we will
prove that the map (w0,W0) 7→ (w1,W1) is exact symplectic, and the function h = h(w0,W0)
satisfying

W1 dw1 −W0 dw0 = dh

will be computed. Finally, after applying Theorem 3.1 to this new map, we will go back to
the original to obtain the conclusion. Incidentally, we would like to mention that the quantity
W 1/2 appears in [9, Example 5], where it is considered as an adiabatic invariant.

4.1 The complexified map

We start with two lemmas on holomorphic functions.

Lemma 4.2 Let g : Rδ → C be holomorphic and such that Re g′(z) > 0 for z ∈ Rδ. Then g is
one-to-one.

Proof : This is a particular case of [10, Prop. 1.10]. 2

Remark 4.3 Under the assumptions of Lemma 4.2, as g is non-constant and holomorphic,
the image g(Rδ) ⊂ C is open. Thus g−1 : g(Rδ) → Rδ is well-defined and holomorphic by the
inverse function theorem.

Lemma 4.4 Let g : Rδ → C be holomorphic such that g maps reals into reals and there exists
α > 0 so that Re g′(z) > α for z ∈ Rδ. Then Rαδ ⊂ g(Rδ).

Proof : Fix w = a + ib ∈ Rαδ, i.e., we have |b| < αδ. In particular, we can choose σ ∈]0, δ[
such that |b| < ασ holds. To find a solution z ∈ Rδ of g(z) = w, note first that g(R) = R
by assumption. Hence there is x ∈ R satisfying g(x) = a. We consider the functions f1(z) =
g(z) − a and f2(z) = −ib and our intention is to apply Rouché’s Theorem on the rectangular
region bounded by

Γ = {ξ : Re ξ ∈ [x−∆, x+ ∆], Im ξ = ±σ} ∪ {ξ : Re ξ = x±∆, Im ξ ∈ [−σ, σ]},

where ∆ > 0 will be taken to be large enough (see below). Once we have established that

|f1(ξ)| > |f2(ξ)|, ξ ∈ Γ, (4.1)
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the proof will be complete, since then f1(z) = g(z) − a and f1(z) + f2(z) = g(z) − w will
have the same numbers of zeros inside of Γ; this number is one, by the choice of x and as g is
one-to-one by Lemma 4.2. To check (4.1) on the horizontal parts of Γ take ξ = t ± iσ, where
t ∈ [x−∆, x+ ∆]. Then g(x) ∈ R yields

|f1(ξ)| = |g(t± iσ)− g(x)| ≥ |Im g(t± iσ)|.

As g′ is real on R, one has, using the hypothesis,

|Im g(t± iσ)| =
∣∣∣Im ∫ t±iσ

x

g′(z) dz
∣∣∣ =

∣∣∣Im ∫ t±iσ

t

g′(z) dz
∣∣∣ =

∣∣∣Re

∫ σ

0

g′(t± is) ds
∣∣∣ ≥ α|σ|.

It follows that |f1(ξ)| ≥ α|σ| > |b| = |f2(ξ)|. It remains to verify (4.1) on the vertical parts of
Γ. For, take ξ = (x ±∆) + is, where s ∈ [−σ, σ]. Define K = max {|g(x + iv)| : v ∈ [−σ, σ]}.
Now observe that, for t ∈ R,

|Re g(t+ is)| =
∣∣∣Re g(x+ is) + Re

∫ t+is

x+is

g′(z) dz
∣∣∣ ≥ ∣∣∣Re

∫ t

x

g′(u+ is) du
∣∣∣−K

≥ α|t− x| −K

due to the hypothesis. As a consequence,

|f1(ξ)| = |g(x±∆ + is)− a| ≥ α∆−K − |a| > |b| = |f2(ξ)|,

provided that we fix ∆ > α−1(|a|+ |b|+K). 2

Now we return to the ping-pong map and define ϕ(z) = p(z)2 for z ∈ Rδ. From the
assumptions on p we may assume that a ≤ b ≤ C. Then

δ1 =
a2δ

4C2

satisfies δ1 ≤ δ
4
. The expression Arg z ∈]− π, π] for z ∈ C \ {0} will denote the argument of z.

Lemma 4.5 The function ϕ satisfies

Reϕ(z) ≥ 1

2
a2 and |ϕ(z)| ≤ 2b2, z ∈ Rδ1 ,

and moreover
|Argϕ(z)| < π

4
, z ∈ Rδ1/2.

Proof : From the Cauchy integral formula we deduce that

|ϕ′(z)| ≤ 2C2

δ
for z ∈ Rδ/2.

Take z = t+ is ∈ Rδ/2. Then ϕ(z) = ϕ(t) +
∫ t+is
t

ϕ′(ξ) dξ implies that

Reϕ(z) ≥ a2 + Re

∫ t+is

t

ϕ′(ξ) dξ ≥ a2 − 2C2

δ
|s|
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as well as

|ϕ(z)| ≤ b2 +
∣∣∣ ∫ t+is

t

ϕ′(ξ) dξ
∣∣∣ ≤ b2 +

2C2

δ
|s|

and

|Imϕ(z)| ≤ 2C2

δ
|s|.

Thus if z ∈ Rδ1 , then Reϕ(z) ≥ a2/2 and |ϕ(z)| ≤ b2 + 2C
2

δ
a2δ
4C2 ≤ 3b2/2. In addition, if

z ∈ Rδ1/2, then |Imϕ(z)| ≤ a2/4 < Reϕ(z), which yields the claim on the argument. 2

Lemma 4.6 The function τ : Rδ1 → C, τ(z) =
∫ z

0
dζ
p(ζ)2

=
∫ z

0
dζ
ϕ(ζ)

, is holomorphic, one-to-one
with holomorphic inverse, and satisfies

Rσ(∆) ⊂ τ(R∆) for ∆ ∈]0, δ1], (4.2)

where σ(∆) = a2

2C4 ∆.

Proof : By Lemma 4.5 the function ϕ(z) does not vanish on the simply connected domain Rδ1 ,
and hence 1

ϕ(z)
has a holomorphic primitive τ(z). Lemma 4.2 in conjunction with Lemma 4.5

implies that τ is one-to-one. Also τ maps reals into reals and satisfies

Re τ ′(z) = Re
( 1

ϕ(z)

)
=

1

|ϕ(z)|2
Reϕ(z) ≥ a2

2C4
.

Thus Lemma 4.4 applies with α = a2

2C4 to prove that (4.2) holds. Concerning the fact that
τ−1 : τ(Rδ1)→ C is holomorphic, cf. Remark 4.3. 2

To extend the ping-pong map Ψ as a holomorphic map, we take the complex square root to
be
√
z = |z|1/2 exp((i/2)Arg z), where the complex plane is cut along ]−∞, 0]. In particular,

√
z

is holomorphic on C\] −∞, 0] and extends the positive square root. Note that
√
ϕ(z) = p(z)

holds for all z ∈ Rδ1/2. To establish this identity, it is sufficient to adapt the proof of Lemma
4.5 to the function p to conclude that |Arg p(z)| < π

4
for z ∈ Rδ1/2.

Lemma 4.7 Let e = 8C2

δ2
. Then for every z ∈ Rδ/4 and E ∈ C\]−∞, 0] such that |E| > e the

equation

z̃ = z +
p(z̃)√

2E
(4.3)

has a unique solution z̃ = z̃(z, E) lying in Rδ/2. Moreover, (z, E) 7→ z̃(z, E) is holomorphic as
a function of two variables. In addition, ∆ ∈]0, δ/4] and z ∈ R∆ implies that z̃(z, E) ∈ R2∆.

Proof : Consider the function g(z̃, E) = z̃ − p(z̃)√
2E

, so that we need to solve g(z̃, E) = z. For
z̃ ∈ Rδ/2 one has

|p′(z̃)| ≤ 2C

δ
(4.4)
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by the Cauchy integral formula. It follows that

Re
∂g

∂z̃
(z̃, E) = 1− Re

p′(z̃)√
2E
≥ 1− |p′(z̃)|√

2|E|1/2
≥ 1− 2C√

2δe1/2
=

1

2

for z̃ ∈ Rδ/2. Thus from Lemma 4.2 we infer that g(z̃, E) = z can have at most one solution

z̃ ∈ Rδ/2. Next let ∆ ∈]0, δ/4]. Then Re ∂g
∂z̃

(z̃, E) ≥ 1/2 for z̃ ∈ R2∆. Therefore we can invoke
Lemma 4.4 with α = 1/2 to obtain R∆ ⊂ g(·, E)(R2∆). Finally we can apply the implicit
function theorem to deduce that z̃ = z̃(z, E) is holomorphic on the domain Rδ/4 × {E ∈
C\]−∞, 0] : |E| > e}. 2

Now we are in a position to define the holomorphic extension of the ping-pong map,

Ψ : U0 ⊂ C2 → C2, (z, E) 7→ (z1, E1),

given by

z1 = z̃ +
p(z̃)√

2(
√
E −

√
2 p′(z̃))

, E1 = (
√
E −

√
2 p′(z̃))2, (4.5)

where z̃ = z̃(z, E) is from Lemma 4.7 and

U0 = {(z, E) ∈ Rδ/4 × (C\]−∞, 0]) : |E| > e}.

To see that this map is well-defined, we first observe that, according to Lemma 4.7, z̃ ∈ Rδ/2.
Thus both p and p′ can be evaluated at z̃. Moreover, using (4.4) it follows that the denominator
in the equation defining z1 never vanishes: we have

|E|1/2 > e1/2 =
2
√

2C

δ
≥
√

2 |p′(z̃)|.

4.2 The change of variables and the new map

The map Ψ is exact symplectic on the domain

Û0 = {(z, E) ∈ U0 : z ∈ Rδ1/2}.

More precisely, it satisfies the identity

E1 dz1 − E dz = dh (4.6)

for

h(z, E) = −1

2
p(z̃)2

( 1

z1 − z̃
+

1

z̃ − z

)
. (4.7)

The new restriction on the size of |Im z| guarantees that h is holomorphic on Û0. In fact, both
denominators z1− z̃ and z̃− z do not vanish. This is a consequence of the definitions of z1 and
z̃, together with the inequality

|p(z̃)| ≥ 1√
2
a > 0, z ∈ Rδ1/2,
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which in turn follows from Lemmas 4.5 and 4.7.

The generating function for the ping-pong map was computed in [3]. This computation,
together with the relationship between the function h and the generating function (see [5]),
imply that (4.6), (4.7) holds. Note that all computations in [3] were done on the real domain
of Ψ, but once again we rely on the uniqueness of holomorphic extensions.

Later we will need to reformulate (4.6), (4.7) in the new variables (w,W ), where w =
τ(z) and W = p(z)2E. This can be achieved from general principles, without any further
computation. For this reason we include a short digression into general maps.

Consider the space C2 endowed with the 1-form

σ = p dq,

where q, p ∈ C are the coordinates of a point. Assume that D,D ⊂ C2 are two domains with
sub-domains D1 ⊂ D and D1 ⊂ D. Let χ : D → D be a holomorphic diffeomorphism such that
χ(D1) ⊂ D1 and

χ∗σ = σ + dm

for some holomorphic function m : D → C. In addition, let T : D1 → C2 be a holomorphic
map with T (D1) ⊂ D and

T ∗σ = σ + dh

for some holomorphic function h : D1 → C. Then T̃ = χ−1 ◦ T ◦ χ : D1 → D is well-defined
and a short calculation reveals that

T̃ ∗σ = σ + dh (4.8)

for
h = h ◦ χ+m−m ◦ T̃ . (4.9)

In fact, the standard properties of pullbacks of differential forms yield

d(h ◦ χ) = χ∗(dh) = χ∗(T ∗σ − σ) = (T ◦ χ)∗σ − χ∗σ = (χ ◦ T̃ )∗σ − χ∗σ
= T̃ ∗(χ∗σ)− χ∗σ = T̃ ∗(σ + dm)− σ − dm = T̃ ∗σ − σ + d(m ◦ T̃ −m),

which proves (4.8).

Now we go back to the ping-pong and introduce the full change of variables Γ : (z, E) 7→
(w,W ).

Lemma 4.8 The map
Γ : Rδ1 × C→ C2, (z, E) 7→ (w,W ),

where w = τ(z) and W = p(z)2E, is a holomorphic diffeomorphism between Rδ1 × C and
Γ(Rδ1 × C) that verifies Γ∗σ = σ. Moreover, if ∆ ∈]0, δ1], then Rσ(∆) × C ⊂ Γ(R∆ × C).

Proof : According to Lemma 4.6, Γ is holomorphic and satisfies Rσ(∆) × C ⊂ Γ(R∆ × C) for
∆ ∈]0, δ1], due to (4.2) and the fact that its inverse Γ−1 is given by (w,W ) 7→ (z, p(z)−2W ),
where z = τ−1(w). This inverse is also holomorphic. To prove that Γ∗σ = σ, observe that
dw = 1

p(z)2
dz, and hence W dw = E dz as desired. 2
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To adjust our situation to the general framework as outlined above, we define

D = Γ(Rδ1 × C), D = Rδ1 × C, χ = Γ−1, T = Ψ.

Furthermore, we take m = 0 and h from (4.7). To introduce D1 and D1, let ∆ = δ1
4

and take
ρ ≥ 4 so large that 2∆ + δ

2
√
ρ
< δ1. Then we define

D1 =
{

(w,W ) ∈ Rσ(∆) × C : |ArgW | < π

4
, |W | > ρC2e

}
,

D1 = {(z, E) ∈ R∆ × C : E ∈ C\]−∞, 0], |E| > ρe},

and check all the conditions set out before. First of all, D1 ⊂ D and D1 ⊂ D are immediate,
using Lemma 4.8 for the latter. Also χ : D → D is a holomorphic diffeomorphism by definition,
and moreover χ(D1) ⊂ D1. For, let (z, E) = Γ−1(w,W ) ∈ χ(D1). Then w ∈ Rσ(∆) implies
z ∈ R∆ by Lemma 4.8. Furthermore, since |p(z)| ≤ C,

|E| = |W |
|p(z)|2

>
ρC2e

C2
= ρe

and due to Lemma 4.5,

|ArgE| ≤ |ArgW |+
∣∣∣Arg

1

ϕ(z)

∣∣∣ < π

4
+
π

4
=
π

2
,

so that in particular E 6∈]−∞, 0] and accordingly (z, E) ∈ D1. Next, to see that T (D1) ⊂ D,
we have to make sure that (z1, E1) = T (z, E) has |Im z1| < δ1 for (z, E) ∈ D1. As z ∈ R∆ and
|E| > ρe > e, we have z̃ ∈ R2∆ by Lemma 4.7. In addition, (4.4) yields |p′(z̃)| ≤ 2C

δ
and thus

by the definition of E1:

|E1|1/2 = |
√
E −

√
2 p′(z̃)| ≥ |E|1/2 − 2

√
2C

δ
≥ 1

2
|E|1/2;

recall that e = 8C2

δ2
and ρ ≥ 4. Thus by the definition of z1:

|Im z1| ≤ |Im z̃|+ |p(z̃)|√
2 |E1|1/2

≤ 2∆ +

√
2C

|E|1/2
≤ 2∆ +

δ

2
√
ρ
< δ1,

which completes the argument for T (D1) ⊂ D. Since D1 ⊂ Û0, h from (4.7) is well-defined and
holomorphic on D1 and we have T ∗σ = σ + dh due to (4.6).

Now that we have verified the conditions of the general argument, we can conclude from
(4.8) and (4.9) that Φ = Γ◦Ψ◦Γ−1 : D1 → C2, (w,W ) 7→ (w1,W1), is well-defined and satisfies

W1 dw1 −W dw = dh, h = h ◦ Γ−1. (4.10)
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4.3 Application of the main theorem and proof of Theorem 4.1

To summarize, so far we have established that the map Φ : D1 → C2 is well-defined and
holomorphic. We are going to apply Theorem 3.1 with f = Φ, r = ρC2e, η = 1

2
, α = 1

2
and

γ =
√

2. For the width of the strip we take δ to be σ(∆), and in order to write Φ in the required
form (3.3), we introduce F1 = F and F2 = G for

F (w,W ) =
√
W (w1 − w)−

√
2, G(w,W ) =

W1 −W√
W

. (4.11)

We also define F̃ (w,W ) = w1−w−
√

2√
W

, so that F (w,W ) =
√
W F̃ (w,W ). Then the assump-

tions (a) and (b) of Theorem 3.1 are satisfied. For, recall from (3.2) that Φ needs to be defined
on

Ω = {(w,W ) ∈ Rδ × C : ReW > r, |ImW | < η|W |},
which is the case due to Ω ⊂ D1.

To derive the needed bounds |F | = O(|W |−1/2) and |G| = O(|W |−1/2) as required by (c),
we need to make some preliminary observations. From Lemma 4.7 we know that z̃ ∈ Rδ/2, so
that |p′(z̃)| ≤ 2C/δ by (4.4). In general, if ξ ∈ C satisfies Re ξ > 0, then Re

√
ξ > 1√

2
|ξ|1/2.

Therefore if |E| > 2e and ReE > 0, then

Re (
√
E −

√
2 p′(z̃)) >

1√
2

√
2e−

√
2

2C

δ
= 0,

and hence E1 ∈ C\] − ∞, 0]. As a consequence,
√
E1 can be understood as a single-valued

expression and we can write the first equation in (4.5) as

z1 = z̃ +
p(z̃)√
2E1

. (4.12)

Lastly, if even z ∈ R∆, |E| > ρe and ReE > 0 holds, then one also has

|
√
E −

√
2 p′(z̃)| ≥

√
|E| −

√
2

2C

δ
≥ 1

2

√
|E|,

and hence

|E1| ≥
1

4
|E|. (4.13)

We also have z ∈ R∆ ⊂ Rδ1 , and therefore |ϕ(z)| ≤ 2b2 by Lemma 4.5. It follows that
|E| = | W

ϕ(z)
| ≥ 1

2b2
|W |, and thus |E1| ≥ 1

8b2
|W | due to (4.13). Then from the definitions of z̃

and z1, cf. (4.3) and (4.12),

|z − z̃| ≤ C√
2|E|1/2

≤ Cb |W |−1/2, |z1 − z̃| ≤
C√

2|E1|1/2
≤ 2Cb |W |−1/2. (4.14)

In particular, |z − z1| ≤ 3Cb |W |−1/2. To bound F̃ , we first observe that

z1 − z = z̃ +
p(z̃)√
2E1

− z =
[ 1√

2E
+

1√
2E1

]
p(z̃). (4.15)
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Since |ArgW | < π
4

and |Arg 1
ϕ(z)
| < π

4
, we have

√
W =

√
ϕ(z)
√
E = p(z)

√
E. Now the

expression for F̃ is split up according to

F̃ (w,W ) = w1 − w −
√

2√
W

= w1 − w −
√

2√
E

1

p(z)
= F̃1 + F̃2,

where

F̃1 = w1 − w −
[ 1√

2E
+

1√
2E1

] 1

p(z)

= τ(z1)− τ(z)− z1 − z
p(z)p(z̃)

by (4.15), and

F̃2 =
[ 1√

2E1

− 1√
2E

] 1

p(z)
.

For the first term,

|F̃1| =
∣∣∣ ∫ z1

z

( 1

p(ζ)2
− 1

p(z)p(z̃)

)
dζ
∣∣∣. (4.16)

From geometric considerations we deduce that

|ζ − z| ≤ |z1 − z| ≤ 3Cb |W |−1/2,

|ζ − z̃| ≤ max{|z̃ − z|, |z̃ − z1|} ≤ 2Cb |W |−1/2,

for any point ζ on the segment [z, z1]. The upper and lower bounds for p provided by Lemma
4.5 together with the estimate for |p′| allow us to find a constant K1 > 0 such that for each
ζ ∈ [z, z1]: ∣∣∣ 1

p(ζ)2
− 1

p(z)p(z̃)

∣∣∣ ≤ K1 max{|ζ − z|, |ζ − z̃|} ≤ 3CK1b |W |−1/2.

As a consequence, (4.16) yields

|F̃1| ≤ 3CK1b |W |−1/2 |z1 − z| ≤ 9C2K1b
2 |W |−1.

To bound F̃2, we note that by (4.5) and (4.4)

|
√
E1 −

√
E| ≤

√
2 |p′(z̃)| ≤ 2

√
2C

δ
.

Therefore, due to (4.13),

|F̃2| =
|
√
E1 −

√
E|√

2
√
|E1|

√
|E|

1

|p(z)|
≤ 2C

δ
√
|E1|

√
|W |
≤ 4C|p(z)|

δ|W |
≤ 4C2

δ
|W |−1,

and thus we deduce that altogether

|F (w,W )| =
√
|W | |F̃ (w,W )| ≤

√
|W | (|F̃1|+ |F̃2|) ≤ C1|W |−1/2
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holds for an appropriate constant C1 > 0 depending only upon δ, C, a, b. Concerning the
bound on |G|, according to [7, (5.10)] one has

W1 −W =
1

2
ϕ(z̃)

∫ 1

0

(1− λ)
[
ϕ′′((1− λ)z̃ + λz)− ϕ′′((1− λ)z̃ + λz1)

]
dλ , (4.17)

where once again ϕ(z) = p(z)2. In the paper just mentioned this relation was used for a
real-valued p, but as all functions involved are holomorphic, it extends to the complex-valued
case due to the uniqueness theorem in complex analysis. Now ∆ ≤ δ1/4 and δ1 ≤ δ/4 yields
|Im ((1 − λ)z̃ + λz)| ≤ |Im z̃| + |Im z| < 2∆ + ∆ = 3∆ < δ/2 and similarly |Im ((1 − λ)z̃ +
λz1)| ≤ |Im z̃| + |Im z1| < 2∆ + δ1 < δ/2. Owing to the Cauchy integral formula one has
|ϕ′′′(z)| ≤ (2/δ)3C2 for z ∈ Rδ/2. Therefore (4.17) implies that

|W1 −W | ≤ 4C4δ−3|z1 − z| ≤ 12C5b δ−3 |W |−1/2,

and hence
|G(w,W )| ≤ 12C5b δ−3 |W |−1,

which is in fact better than G = O(|W |−1/2) what we would have needed in assumption (c) of
Theorem 3.1.

Lastly we are going to verify the hypothesis (d) of Theorem 3.1, the function h being given
by (4.10) with h from (4.7). We also note that h0(w,W ) = −

√
2W for our choice of parameters

and we need to establish that |h − h0| = O(1). To simplify the estimates, it is convenient to
express h and h is a different way, which is based on the definition of the maps Ψ and Φ. More
precisely, using the various definitions we write

h(z, E) = −1

2
p(z̃)2

( 1

z1 − z̃
+

1

z̃ − z

)
= −1

2
p(z̃)2

(√2E1

p(z̃)
+

√
2E

p(z̃)

)
= −1

2
p(z̃)

(√
2 (
√
E −

√
2 p′(z̃)) +

√
2E
)

= −
√

2E p(z̃) + p(z̃)p′(z̃)

and

h(w,W ) = −
√

2W
p(z̃)

p(z)
+ p(z̃)p′(z̃),

where (z, E) = Γ−1(w,W ). As a consequence,

h(w,W )− h0(w,W ) =
√

2W
(

1− p(z̃)

p(z)

)
+ p(z̃)p′(z̃).

Similarly as before, the lower bound on |p(z)| and the upper bound on |p′| together with (4.14)
lead to ∣∣∣1− p(z̃)

p(z)

∣∣∣ ≤ K2 |z − z̃| ≤ CK2 b |W |−1/2,
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which proves that
|h(w,W )− h0(w,W )| ≤ C2.

Let us now fix E∗ >
1
a2
r, where r appears in the definition of the domain Ω. Suppose that

(tn, En)n∈N0
is a forward complete real orbit of Ψ with lim infn→∞En ≥ E∗. By assumption

there exists N ∈ N0 such that En >
1
a2
r for n ≥ N . Then Wn = p(tn)2En ≥ a2En > r for

n ≥ N shows that (wn,Wn)n≥N is a forward complete real orbit for Φ, and hence Theorem 3.1
is applicable. 2

5 An example

Consider the map f : (θ, r) 7→ (θ1, r1) defined as

θ1 = θ +

√
2

r1

, r1 = r − q(θ), (5.1)

where q is a given function. This map is symplectic, because it can be expressed in the form
r = ∂g

∂θ
, r1 = − ∂g

∂θ1
, for the generating function

g(θ, θ1) =
2

θ1 − θ
+Q(θ)

with Q denoting a primitive of q. This is possibly the simplest family of maps in the framework
of Section 3. We will analyze the dynamics for the particular case where q(θ) = − 2θ

1+θ2
.

Assuming that (θ0, r0) ∈ R2 is such that θ0 > 0 and r0 > 0, we observe that a forward
complete orbit (θn, rn)n∈N0

can be produced; the sequences θn and rn are positive and increasing.
We are going to prove by direct analysis that

0 < lim inf
n→∞

rn
(log n)2

≤ lim sup
n→∞

rn
(log n)2

<∞.

However, as we will see, Theorem 3.1 is not applicable in this case, since the bound (3.4) does
only hold uniformly for θ in bounded sets, but not for θ ∈ Rδ. This could mean that some
assumption of Theorem 3.1 can be relaxed, or for particular examples unbounded orbits could
exist.

5.1 Applicability of Theorem 3.1

First note that the map (5.1) can be written in the form (3.3), with α = 1/2, γ =
√

2,

F1(θ, r) =
√

2

(
1√

1− q(θ)
r

− 1

)
, F2(θ, r) = − 1√

r
q(θ), (5.2)

where in the following the complex square root will be understood as before.
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The function q is bounded and holomorphic on any strip Rδ with δ < 1; we fix δ = 1/2 for
definiteness. It follows that |q(θ)| ≤ C for θ ∈ R1/2, where C = 16. To prove this, consider
θ ∈ R1/2 and |θ| ≥ 2 first. Here we have

|q(θ)| ≤ 2|θ|
||θ|2 − 1|

≤ 2|θ|
(|θ|2/2)

≤ 2.

If θ ∈ R1/2 and |θ| ≤ 2, then |1 + θ2| = |θ + i||θ − i| ≥ 1/4 yields

|q(θ)| = 2|θ|
|1 + θ2|

≤ 2 · 4|θ| ≤ 16.

We now proceed as in the previous section to find an appropriate domain of holomorphy
Ω ⊂ C2. Clearly the hypotheses (a)-(c) of Theorem 3.1 are satisfied. The validity of (d) is
more delicate. As has been used before, in general the primitive of the form r1 dθ1 − r dθ is
computed from the generating function g via h(θ, r) = −g(θ, θ1(θ, r)). Thus for the map from
(5.1) we get

h(θ, r) = −
√

2(r − q(θ))−Q(θ).

We also note that
h0(θ, r) = −

√
2r,

cf. (3.1), and (3.4) says that we should have |h(θ, r)−h0(θ, r)| bounded, uniformly in (θ, r) ∈ Ω,
in order that Theorem 3.1 is applicable. The primitive is Q(θ) = − log(1 + θ2), and the best
estimate one can get is |h(θ, r) − h0(θ, r)| = O(1) for each θ ∈ R1/2, but the bound is not
uniform.

5.2 The real dynamics

We start with a useful notion of equivalence for sequences.

Definition 5.1 Let (an)n∈N and (bn)n∈N be two sequences of eventually positive numbers. We
say that (an) is equivalent to (bn), if there exist constants C > c > 0 and n0 ∈ N such that
can ≤ bn ≤ Can is verified for n ≥ n0; this will be written as (an) ' (bn).

Lemma 5.2 Let (ρn)n∈N be an increasing sequence of positive numbers such that

(ρn) '
( n−1∑
k=2

1

Rσ
k

)
(5.3)

for some σ ≥ 1, where Rk =
∑k−1

j=1
1

ρ
1/2
j

. If σ > 1, then (ρn) is bounded. If σ = 1, then

(ρn) ' ((log n)2).

The proof is given in the next subsection.
Going back to the map f from (5.1), we consider (θ0, r0) ∈ R2 such that θ0 > 0 and r0 > 0.

Let (θn, rn)n∈N0
denote the resulting forward complete orbit; we already noted above that θn
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and rn are positive and increasing. As a first step we are going to show that limn→∞ θn = ∞.
Otherwise we would have 0 < θ0 ≤ θn ≤ C for n ∈ N. Then rn+1 − rn = −q(θn) = |q(θn)|
implies that

0 < m ≤ rn+1 − rn ≤M <∞, n ∈ N,

where m = infn∈N |q(θn)| and M = supn∈N |q(θn)|. Then (rn) ' (n) and consequently

θn = θ0 +
n∑
j=1

√
2

rj
→∞, (5.4)

which is a contradiction.
In terms of Rn =

∑n−1
j=1

1√
rj

the relation (5.4) can be written as θn = θ0 +
√

2Rn+1, which

implies that also limn→∞Rn =∞ holds, and furthermore (θn) ' (Rn+1). Since Rn+1−Rn → 0,
we deduce that (θn) ' (Rn) is verified. Due to limn→∞ θn =∞ and

|q(θ)| θ =
2θ2

1 + θ2
,

there are constants K > k > 0 such that

k

θn
≤ |q(θn)| ≤ K

θn
, n ≥ 0.

If follows that for suitable n0 ∈ N and constants K∗ > k∗ > 0 one has

k∗

Rn

≤ |q(θn)| ≤ K∗

Rn

, n ≥ n0.

As a consequence, for n ≥ n0 we obtain from rn = rn0−1 +
∑n

j=n0
|q(θj)| that

rn0−1 + k∗
n∑

j=n0

1

Rj

≤ rn ≤ rn0−1 +K∗
n∑

j=n0

1

Rj

.

From this it is easily deduced that (rn) ∼ (
∑n−1

j=2
1
Rj

), and hence Lemma 5.2 applies with σ = 1.

Its conclusion is that (rn) ' ((log n)2).

5.3 Some auxiliary results

Lemma 5.3 For some a, b > 0 consider the differential equation y′ = ae−by
1/2

, y > 0. Then
every solution satisfies

lim
x→∞

y(x)

(lnx)2
=

1

b2
. (5.5)

Proof : First we observe that y is increasing and y′(x) < a. Thus y is well-defined for x→∞
and satisfies y(x) → ∞ as x → ∞, since the equation has no equilibrium. By separation of
variables, (

y(x)1/2 − 1

b

)
eby(x)1/2 =

ab

2
x+ C,
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where C is a constant. Taking any b1 < b < b2 we deduce that, for large x,

eb1y(x)1/2 <
ab

2
x < eb2y(x)1/2 ,

which yields the claim upon taking the logarithm. 2

Lemma 5.4 Let ρ : [1,∞[→ [1,∞[ be continuous. Furthermore, suppose that there are con-
stants 0 < γ < Γ and x0 > 1 so that

γ ρ(x) ≤
∫ x

1

dy

R(y)σ
≤ Γ ρ(x), x ≥ x0, (5.6)

for some σ ≥ 1, where R(y) =
∫ y

1
dξ

ρ(ξ)1/2
for y ≥ 1. If σ > 1, then ρ is bounded. If σ = 1, then

there are constants 0 < c < C such that

c ≤ ρ(x)

(log x)2
≤ C (5.7)

for x sufficiently large.

Proof : Let φ(x) =
∫ x

1
dy

R(y)σ
. Then φ′ = R−σ and φ′′ = −σR−(σ+1)R′ together with R′ = ρ−1/2

leads to the differential equation φ′′ = −σ(φ′)
σ+1
σ ρ−1/2. Then (5.6) yields

γσ2 φ
′(x)

2(σ+1)
σ

φ′′(x)2
≤ φ(x) ≤ Γσ2 φ

′(x)
2(σ+1)
σ

φ′′(x)2
, x ≥ x0.

Owing to φ′′ < 0, this can be rewritten as

−Γ1/2σ
φ′(x)

φ(x)1/2
≤ φ′′(x)

φ′(x)
1
σ

≤ −γ1/2σ
φ′(x)

φ(x)1/2
, x ≥ x0. (5.8)

First we consider the case where σ = 1. Here we obtain

d

dx

(
log φ′(x) + 2Γ1/2φ(x)1/2

)
≥ 0,

d

dx

(
log φ′(x) + 2γ1/2φ(x)1/2

)
≤ 0,

for x ≥ x0. Upon integration and exponentiation one gets

φ′(x) e2γ1/2φ(x)1/2 ≤ eb0 , φ′(x) e2Γ1/2φ(x)1/2 ≥ eB0 ,

for x ≥ x0, where b0 = log φ′(x0)+2γ1/2φ(x0)1/2 and B0 = log φ′(x0)+2Γ1/2φ(x0)1/2. Therefore

φ is a lower solution of y′ = ae−by
1/2

for a = eb0 , b = 2γ1/2 and an upper solution for a = eB0 ,
b = 2Γ1/2. Let y and y denote the corresponding solutions with common initial values y(x0) =
y(x0) = φ(x0). Then

y(x) ≤ φ(x) ≤ y(x), x ≥ x0.
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According to Lemma 5.3 one has limx→∞
y(x)

(lnx)2
= 1

4γ
and limx→∞

y(x)
(lnx)2

= 1
4Γ

. Recalling (5.6),

this leads to (5.7), where we can take for instance c = 1
8γΓ

and C = 1
2γΓ

.

In the second case σ > 1, (5.8) can be expressed as

−Γ1/2σ
φ′(x)

φ(x)1/2
≤ φ′′(x)

φ′(x)
1
σ

≤ −γ1/2σ
φ′(x)

φ(x)1/2
.

Upon integration of the inequality on the right-hand side, it is found that

d

dx

( σ

σ − 1
φ′(x)

σ−1
σ + 2γ1/2σ φ(x)1/2

)
≤ 0.

Therefore it follows from φ′ ≥ 0 that

2γ1/2σ φ(x)1/2 ≤ σ

σ − 1
φ′(x)

σ−1
σ + 2γ1/2σ φ(x)1/2 ≤ σ

σ − 1
φ′(x0)

σ−1
σ + 2γ1/2σ φ(x0)1/2,

which shows that φ is bounded. Since 1 ≤ ρ(x) ≤ γ−1φ(x), also ρ is bounded. 2

Proof of Lemma 5.2 : First we consider the case where σ = 1.

Step 1: ρn → ∞ as n → ∞. Otherwise we would have ρn → ρ∞ ∈]0,∞[ as n → ∞. But then

(Rn) ' (n), and consequently the series
∑

1
Rn

is divergent. However, this contradicts (5.3).

Step 2: Rn → ∞ as n → ∞. Otherwise we would have Rn → R∞ ∈]0,∞[ as n → ∞. Then
(5.3) yields

(ρn) '
( n−1∑
k=2

1

Rk

)
' (n),

but this in turn leads to (Rn) ' (
∑n−1

j=1
1

j1/2
), which is divergent as n→∞.

Step 3: (ρn+1)n≥1 ' (ρn)n≥1 and (Rn+1)n≥1 ' (Rn)n≥1. To establish these assertions, we first
introduce a convenient notion. A sequence (an) will be said to have the bounded difference
property (BD property, for short), if an → ∞ as n → ∞ and the sequence of progressive
differences (an+1 − an) is bounded. If (an) has the BD property, then (an+1)n≥1 ' (an)n≥1,
since |an+1/an − 1| ≤ C/|an| ≤ 1/2 for n large enough. The BD property is not invariant
under the equivalence of sequences, but if (an) has the BD property and (bn) ' (an), then
(bn+1) ' (bn).

Returning to (ρn) and (Rn), owing to (5.3) and Step 1 we know that
∑n−1

k=2
1
Rk
→ ∞ as

n→∞. Since the differences are bounded (even converging to zero) by Step 2, (
∑n−1

k=2
1
Rk

) has

the BD property. Invoking (5.3) once more, it follows that (ρn+1) ' (ρn). Similarly, (Rn) has
the BD property, and thus (Rn+1) ' (Rn).

Step 4: To prove that (ρn) ' ((log n)2), we may assume that ρn ≥ 1 for n ∈ N. Then the
function ρ : [1,∞[→ [1,∞[ obtained by piecewise linear interpolation from ρ(n) = ρn is contin-
uous, increasing and such that limx→∞ ρ(x) =∞. Let R(y) =

∫ y
1

dξ
ρ(ξ)1/2

for y ≥ 1. According to

Lemma 5.4 it is sufficient to establish the estimate (5.6). If j ≤ ξ ≤ j+1, then ρj ≤ ρ(ξ) ≤ ρj+1.
Since

R(n) =

∫ n

1

dξ

ρ(ξ)1/2
=

n−1∑
j=1

∫ j+1

j

dξ

ρ(ξ)1/2
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for n ∈ N, we deduce that Rn+1 − ρ−1/2
1 ≤ R(n) ≤ Rn. Hence we may employ Step 3 to obtain

(R(n)) ' (Rn). Finally we observe that if y ∈ [j, j + 1], then R(j) ≤ R(y) ≤ R(j + 1). For
x ∈ [N,N + 1] then ∫ x

1

dy

R(y)
=

N−1∑
j=1

∫ j+1

j

dy

R(y)
+

∫ x

N

dy

R(y)

yields
N−1∑
j=1

1

R(j + 1)
≤
∫ x

1

dy

R(y)
≤

N∑
j=1

1

R(j)
.

If we now use (5.3) in conjunction with ρN ≤ ρ(x) ≤ ρN+1 and (ρn+1) ' (ρn), the relation (5.6)
follows easily.

In the case where σ > 1 we need to prove that (ρn) is bounded. Assume on the contrary that
we would have ρn → ∞ as n → ∞ (recall that the sequence is increasing). This would imply
Rn → ∞ as n → ∞, as otherwise Rn → R∞ ∈]0,∞[ as n → ∞ for an appropriate R∞. Then
(5.3) yields

(ρn) '
( n−1∑
k=2

1

Rσ
k

)
' (n),

but this in turn leads to (Rn) ' (
∑n−1

j=1
1

j1/2
), which is divergent as n → ∞. Thus we are in

the same position as after Steps 1 and 2 in the above argument. An inspection of Steps 3 and
4 shows that they can be straightforwardly adapted to the current setting. In other words, we
can apply the case σ > 1 of Lemma 5.4, and hence the function ρ(x) is found to be bounded.
Since ρn = ρ(n), the sequence (ρn) must be bounded which is a contradiction and completes
the proof of Lemma 5.2. 2
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