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Abstract

We discuss some of the results in [6] and give fully detailed proofs.

1 Introduction

To motivate this mainly technical note, we consider holomorphic twist maps f : (θ, r) 7→ (θ1, r1)
of the form

θ1 = θ +
1

rα
(γ + F1(θ, r)), r1 = r + r1−αF2(θ, r), (1.1)

where α ∈]0, 1[ and γ ∈ R \ {0}. Such maps occur for instance in the description of the
holomorphic Fermi-Ulam ping-pong [6, 4], and the variable θ is not assumed to be periodic.
Rather, (1.1) is defined on a set

Ω = Rδ × {r ∈ C : Re r > r, |Im r| < η|r|}

for some δ, r > 0 and η ∈]0, 1[, where Rδ = {θ ∈ C : |Im θ| < δ} denotes the open strip in the
complex plane about R of width δ. In [4], the main assumptions are:

(i) the smallness of the holomorphic functions Fj on Ω (supposed to map reals into reals),
in the sense that Fj(θ, r) = O(r−α), uniformly in θ ∈ Rδ, for j = 1, 2;

(ii) h(θ, r) = h0(θ, r) +O(r1−2α) uniformly in θ ∈ Rδ, where r1 dθ1− r dθ = dh holds for (1.1),
with h0(θ, r) = − αγ

1−α r
1−α corresponding to F1 = F2 = 0.

In order to investigate the possible boundedness or growth of the (rn)n∈N0
in a forward

complete real orbit (θn, rn)n∈N0
of (1.1), it is convenient to rescale ξ = ε1/αr, which puts f from

(1.1) into the form Pε : Gρ → C2, given by

Pε : x1 = x+ εl(x, ε), x1 = (q1, p1), x = (q, p). (1.2)
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Here x1 = (q1, p1) = (θ1, ξ1), x = (q, p) = (θ, ξ) and l(x, ε) = ( 1
ξα

(γ+F1(θ, ξ
ε1/α

)), ξ1−αF2(θ, ξ
ε1/α

)).

It turns out that, for ε > 0 small enough, the family of maps {Pε} can be defined on a common
domain Gρ, where G = R×]1, 2[ and

Gρ = {x = (q, p) ∈ C2 : |Im q| < ρ, dist(p, I) < ρ}.

This leads us to study general maps Pε : Gρ → C2 of the form (1.2), where l belongs to a
certain class of mapsM1,ρ,σ that has to be carefully set up in order to account for singularities
of l or ∂l

∂ε
at ε = 0; recall the definition of l in the ping-pong example.

Inspired by [3], we call the family of maps {Pε} E-symplectic, if p1 dq1 − p dq = dh(·, ε) for
a function h ∈M1,ρ,σ such that, as ε→ 0,

h(q, p, ε) = εm(q, p) +O(ε2),
∂h

∂ε
(q, p, ε) = m(q, p) +O(ε),

uniformly in (q, p) ∈ Gρ for a bounded function m : Gρ → C. It turns out (see [4]) that all
these conditions can be verified for the ping-pong after rescaling h from (ii) to h. Furthermore,
it is possible to construct a function E = E(x) satisfying J∇E(x) = l(x, 0), where J denotes
the standard symplectic matrix. The function E should be thought of as an approximate first
integral (adiabatic invariant) for the family {Pε}. This means that the variation of E along
the orbit remains small for an exponentially long time. More precisely, we have the following
result, which should be compared to [6, (2.7), p. 135 and Prop. 3, p. 136].

Theorem 1.1 Suppose that l ∈ M1,ρ,σ, and for ε ∈ [0, σ] consider the family of maps Pε :
Gρ → C2 given by

Pε : x1 = x+ εl(x, ε). (1.3)

Let the family {Pε} be E-symplectic. Then there exist σ̂ ∈]0, σ] and constants Ĉ, D̂ > 0 (de-
pending upon ρ, σ, ‖l‖1,ρ,σ, the interval I, ‖h‖1,ρ,σ and supε∈]0,σ] ‖ε−1(∂h

∂ε
(·, ε)−m)‖ρ) such that

if
(xn)0≤n≤N = (P n

ε (x0))0≤n≤N

is a real forward orbit piece of Pε so that xn ∈ G for all 0 ≤ n ≤ N , then

|E(xn)− E(x0)| ≤ Ĉε, 0 ≤ n ≤ min{N,Nε}, Nε = [eD̂/ε]. (1.4)

It is the purpose of this note to present a fully detailed proof of Theorem 1.1, along the
lines that are indicated in [6]. It is based on realizing Pε as the Poincaré map of a periodic
Hamiltonian system. One main difficulty is that the classM1,ρ,σ has to allow for a non-smooth
dependence of l on ε, since this is what is needed in the applications. Furthermore, the fact
that in G = R×]1, 2[ the first coordinate can be unbounded poses some technical challenges;
this is accounted for by introducing assumptions on the primitive of the 1-form that are not
explicit in [6]. Therefore we need to introduce suitable function classes Hρ,σ and H̃ρ,σ for the
relevant Hamiltonians H = H(x, t, ε) in the Hamiltonian normal form theorem (see Section 3).
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2 E-symplectic families of maps

An important observation in [6] is the existence of adiabatic invariants for families of analytic
canonical maps close to the identity. Given a convex domain G ⊂ RN × RN and a family of
symplectic maps

Pε : G→ RN × RN , x1 = x+ εl(x, ε),

it is possible to construct a function E = E(x) satisfying

J∇E(x) = l(x, 0), (2.1)

where J =

(
0 IN
−IN 0

)
. For small ε the iteration xn+1 = Pε(xn) can be interpreted as a

numerical integration method for the Hamiltonian system ẋ = J∇E(x). This fact suggests
that E(x) should be an adiabatic invariant for Pε, meaning that

|E(P n
ε (x))− E(x)| ≤ Cε, 0 ≤ n ≤ Nε, (2.2)

where Nε is of the order eD/ε; the constants C,D > 0 should only depend upon an appropriate
norm of l. In essence this is discussed in Remark 5 and Proposition 3 of [6]. Additional details
can be found in [2], in particular in the case of bounded domains.

However, the previous statements must be taken with some caution in the case where the
underlying domain is unbounded. As a counter-example we consider the family of translations

x1 = x+ εJv + ε2v,

defined on the whole space G = RN × RN . Here v 6= 0 is a fixed vector and E(x) = 〈x, v〉
satisfies (2.1), since l(x, ε) = Jv + εv. Due to P n

ε (x) = x+ nεl(x, ε) we obtain

|E(P n
ε (x))− E(x)| = ε2n|v|2.

Therefore (2.2) does hold only for n ≤ Nε = O(1/ε) many steps.
To overcome this inherent difficulty, Benettin and Giorgilli in [2] considered an unbounded

domain G and a family of maps derived from a symplectic integration algorithm for a Newtonian
system of the type q̈ = −∇V (q). Then they impose some growth conditions on V (q) as |q| → ∞.
We will follow a different approach and assume that our family {Pε} satisfies a condition inspired
by the notion of an exact symplectic map (called E-symplectic), as it was understood in our
previous work [3]. Furthermore, to simplify matters, we will restrict ourselves to the case of
direct interest to us for applications. Throughout we will take

N = 1 and G = R× I,

where I ⊂ R is an open and bounded interval. Our goal will be to understand the dynamics
of a map on the plane (θ, r) 7→ (θ1, r1) when r →∞. For this reason our family of maps {Pε},
Pε : (q, p) 7→ (q1, p1), will be obtained after a rescaling q = θ, p = εr with q ∈ R and p ∈]1, 2[.
This procedure will lead to functions l(x, ε) that are analytic in x, but not necessarily smooth
in ε; a prototype can be the function l(x, ε) = h(x/ε2), where h is real analytic in [1,∞[ and
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h(ζ) → 0 as ζ → ∞. Then l is continuous as a function of the two variables (x, ε), but the
partial derivatives ∂kε l do not always exist at ε = 0.

The following definitions are motivated by the previous discussions. In general, for the
norms on Cd and Cd1×d2 we will take |x| = max1≤i≤d |xi| and |A| = max1≤i≤d1,1≤j≤d2 |aij|,
respectively. Note that for A ∈ Cd×d, x ∈ Cd, A1 ∈ Cd1×d and A2 ∈ Cd×d2 this implies

|Ax| ≤ d|A||x|, |A1A2| ≤ d|A1||A2|.

The points in G = R× I will be denoted by x = (q, p). For ρ > 0 we will write

Gρ = {x = (q, p) ∈ C2 : |Im q| < ρ, dist(p, I) < ρ}.

Given ϕ : Gρ → C holomorphic, let

‖ϕ‖ρ = sup {|ϕ(x)| : x ∈ Gρ}.

If 0 < r < ρ, then by the Cauchy integral formula one has

‖Dϕ‖r ≤
1

ρ− r
‖ϕ‖ρ,

where Dϕ is the Jacobian.

Definition 2.1 (The classes Mρ,σ and M1,ρ,σ) Let ρ > 0 and σ ∈]0, 1[.

(i) The class Mρ,σ consists of those continuous maps l : Gρ × [0, σ]→ C2, l = l(x, ε), which
satisfy:

(a) l maps real into reals; and

(b) for every ε ∈ [0, σ] the map l(·, ε) is holomorphic on Gρ and

‖l‖ρ,σ = sup {‖l(·, ε)‖ρ : ε ∈ [0, σ]} <∞.

(ii) The class M1,ρ,σ consists of those continuous maps l : Gρ × [0, σ] → C2, l = l(x, ε),
satisfying

(a) l maps real into reals;

(b) l is C∞ in Gρ×]0, σ];

(c) for every ε ∈ [0, σ] the map l(·, ε) is holomorphic on Gρ;

(d) one has

‖l‖1,ρ,σ = ‖l‖ρ,σ + sup
{∥∥∥ ∂l

∂ε
(·, ε)

∥∥∥
ρ

: ε ∈]0, σ]
}
<∞.

Remark 2.2 Note that, for a map l ∈ Mρ,σ or l ∈ M1,ρ,σ, all the derivatives ∂αx∂
k
ε l(·, ε) :

Gρ → C2 for ε ∈]0, σ] are holomorphic, where α ∈ N2
0 and k ∈ N0. Similarly, all the ∂αx l :

Gρ × [0, σ] → C2 are continuous functions of both variables. This follows from the Cauchy
integral formula and the continuity of l. Furthermore, the derivatives can be interchanged:
∂αx∂

k
ε l(·, ε) = ∂kε ∂

α
x l(·, ε).
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Definition 2.3 Suppose that l ∈ M1,ρ,σ, and for ε ∈ [0, σ] consider the family of maps Pε :
Gρ → C2 given by

Pε : x1 = x+ εl(x, ε), x1 = (q1, p1), x = (q, p). (2.3)

We say that the family {Pε} is E-symplectic, if there is a function h ∈M1,ρ,σ such that

p1 dq1 − p dq = dh(·, ε) (2.4)

and there exists a bounded function m : Gρ → C satisfying

h(q, p, ε) = εm(q, p) +O(ε2) as ε→ 0 (2.5)

and
∂h

∂ε
(q, p, ε) = m(q, p) +O(ε) as ε→ 0 (2.6)

uniformly in (q, p) ∈ Gρ.

Remark 2.4 (a) m is holomorphic in Gρ. To see this, note that ∂h
∂ε

(·, ε) is holomorphic for

ε > 0 by Remark 2.2. Since m is the uniform limit of
∫ 1

0
∂h
∂ε

(q, p, tε) dt as ε→ 0, it is holomorphic
itself.

(b) m satisfies

∂m

∂q
(q, p) = p

∂l1
∂q

(q, p, 0) + l2(q, p, 0),
∂m

∂p
(q, p) = p

∂l1
∂p

(q, p, 0), (2.7)

where l = (l1, l2). For, we observe from (2.5) that ε−1h → m uniformly on Gρ. Therefore also
the derivatives converge, uniformly on compact subsets of Gρ. From (2.4),

ε−1∂h

∂q
= l2 + p

∂l1
∂q

+ ε l2
∂l1
∂q
, ε−1∂h

∂p
= p

∂l1
∂p

+ ε l2
∂l1
∂p
.

Thus it remains to pass to the limit ε → 0 and use Remark 2.2. Relation (2.7) can also be
stated as

∇m(x) = p∇l1(x, 0) +

(
l2(x, 0)

0

)
, x = (q, p). (2.8)

(c) One has
∂l1
∂q

(q, p, 0) +
∂l2
∂p

(q, p, 0) = 0, (2.9)

as follows from ∂2m
∂q∂p

= ∂2m
∂p∂q

. Relation (2.9) implies that the Jacobian matrix Dl(x, 0) is Hamil-

tonian, i.e., it satisfies Dl(x, 0)∗J + JDl(x, 0) = 0, or equivalently, JDl(x, 0) is symmetric.
Since Gρ is simply connected, we conclude that there is a holomorphic function E : Gρ → C
such that J∇E = l(·, 0), i.e., (2.1) holds. Actually, (2.8) shows that we can take

E(x) = l1(x, 0)p−m(x), x = (q, p). (2.10)
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(d) The relation J∇E = l(·, 0) yields

dE =
∂E

∂q
dq +

∂E

∂p
dp = −l2 dq + l1 dp.

Hence E(x) = E(x0) +
∫
γ
(−l2 dq + l1 dp) for every path γ that connects a fixed x0 ∈ G to x.

This observation makes the connection to the formula for E given in [6] below (2.7).

(e) Condition (2.6) does not follow from (2.5), as the example

h(q, p, ε) = εm(q, p) + ε2 sin
(1

ε

)
shows.

3 A Hamiltonian normal form

In this section we will give fully detailed proofs of some of the results in [6] and we will discuss
the assumptions that are needed for those proofs to work.

Definition 3.1 (The class Hρ,σ) For ρ > 0 and σ ∈]0, 1[ let Hρ,σ be the class of continuous
functions H : Gρ × R× [0, σ]→ C, H = H(x, t, ε), satisfying

(a) H is T -periodic in t;

(b) H maps reals into reals;

(c) for every t ∈ R and ε ∈ [0, σ] the function H(·, t, ε) is holomorphic on Gρ; and

(d) the gradient w.r. to x, ∇H = ∇xH(q, p, t, ε), is a continuous function from Gρ×R× [0, σ]
to C2 such that

‖∇H‖ρ,σ := sup {‖∇H(·, ·, t, ε)‖ρ : t ∈ R, ε ∈ [0, σ]} <∞.

Remark 3.2 Note that for a function H ∈ Hρ,σ all partial derivatives ∂αxH : Gρ×R× [0, σ]→
Cd w.r. to x are again continuous functions of all three variables, where as usual ∂αxH = ∂|α|

∂
α1
q ∂

α2
p
H

for a multi-index α ∈ N2
0. This is a consequence of the fact that the Cauchy integral formula

can be differentiated w.r. to x.

Definition 3.3 (The class H̃ρ,σ) The class H̃ρ,σ consists of those H ∈ Hρ,σ with the addi-
tional property that ∫ T

0

H(x, t, ε) dt = 0 (3.1)

for x ∈ Gρ and ε ∈ [0, σ].
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Observe that if H ∈ H̃ρ,σ, then t 7→
∫ t

0
H(x, s, ε) ds is T -periodic.

For h ∈ H̃ρ,σ consider the (time-dependent) implicit Euler transformation Φ : (x, t, ε) 7→ y
with inverse (y, t, ε) 7→ x = Ψ(y, t, ε), x = (q, p), y = (q1, p1), which is given by

q1 = q − ε
∫ t

0

∂h

∂p1

(q, p1, s, ε) ds, p1 = p+ ε

∫ t

0

∂h

∂q
(q, p1, s, ε) ds. (3.2)

Solving the second equation, we obtain p1 = p1(q, p, t, ε), and the first equation then determines
q1 = q1(q, p, t, ε). We will show that the map Ψ is well-defined and it is an admissible change
of variables, in a sense that is made precise in the following definition.

Definition 3.4 Let 0 < ρ1 ≤ ρ and 0 < σ1 ≤ σ. A map Ψ : Gρ1 × R × [0, σ1] → C2,
x = Ψ(y, t, ε), will be called an admissible change of variables, if it satisfies

(a) Ψ maps reals into reals;

(b) Ψ is T -periodic in t and Ψ(y, 0, ε) = Ψ(y, T, ε) = y;

(c) Ψ is continuous;

(d) for every t ∈ R and ε ∈ [0, σ1] the map Ψ(·, t, ε) is holomorphic in Gρ1, and for every
y ∈ Gρ1 and ε ∈ [0, σ1] the map Ψ(y, ·, ε) ∈ C1(R);

(e) all admissible partial derivatives with regard to y and t are continuous functions of all the
arguments (y, t, ε); and

(f) for every t ∈ R and ε ∈ [0, σ1] the map Ψ(·, t, ε) is a symplectic diffeomorphism from Gρ1

onto its image.

Lemma 3.5 For 0 < r < ρ and σ > 0 given, let σ1 = min{ρ−r
12
, σ}. Then, for each h ∈ H̃ρ,σ

with T‖∇h‖ρ,σ ≤ 1, the equations (3.2) define a map

Ψ : Gr × R× [0, σ1]→ C2

that is an admissible change of variables and satisfies Ψ(Gr, t, ε) ⊂ Gρ for every t ∈ R and
ε ∈ [0, σ1]. Moreover,

‖Ψ(·, ·, ε)− I‖r ≤ εT‖∇h‖ρ,σ (3.3)

for ε ∈ [0, σ1].

Remarks 3.6 (a) The simple geometry of G implies the following useful fact: if (q, p), (q1, p1) ∈
Gρ, then also (q, p1), (q1, p) ∈ Gρ. For this reason the equations (3.2) are well-defined.

(b) The condition T‖∇h‖ρ,σ ≤ 1 is just imposed to get a definitive value for σ1. When we are

going to apply the lemma to an arbitrary h ∈ H̃ρ,σ later, a rescaling argument (in ε) can be
used.
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Proof of Lemma 3.5: To solve the first equation in (3.2) we evenly split the interval [r, ρ]
into r < R1 < R2 < ρ, where R1 − r = R2 −R1 = ρ−R2 = ρ−r

3
. Define

X = {q ∈ C : |Im q| ≤ R2}

as well as σ̂ = min{ρ−r
6
, σ}. For (q1, p1) ∈ GR1 and ε ∈ [0, σ̂] fixed, let

F(q) = q1 + ε

∫ t

0

∂h

∂p1

(q, p1, s, ε) ds.

Then F : X → X is a self-map, since εT‖∇h‖ρ,σ ≤ ε ≤ σ̂ < ρ−r
3

= R2 − R1. The condition
(3.1) in Definition 3.3 allows us to restrict to the time interval [0, T ]. From the Cauchy integral
formula we deduce

‖D2h‖R2,σ
≤ 1

ρ−R2

‖∇h‖ρ,σ =
3

ρ− r
‖∇h‖ρ,σ.

This estimate applies in particular to the cross-derivative ∂2h
∂q∂p1

and ensures that F is a con-
traction, due to

εT‖D2h‖R2,σ
≤ εT

3

ρ− r
‖∇h‖ρ,σ ≤

3σ̂

ρ− r
≤ 1

2
. (3.4)

The unique fixed point of F defines a continuous map q = q(q1, p1, t, ε) : GR1 ×R× [0, σ̂]→ X
Then the definition of Ψ is completed by setting

p = p1 − ε
∫ t

0

∂h

∂q
(q(q1, p1, t, ε), p1, s, ε) ds.

Note that
dist(p, I) ≤ dist(p1, I) + εT‖∇h‖ρ,σ ≤ R1 + ε ≤ R1 + σ̂ < R2,

and hence Ψ is defined on GR1 × R× [0, σ̂] and takes values in GR2 ⊂ Gρ. The bound

|Ψ(q1, p1, t, ε)− (q1, p1)| ≤ εT‖∇h‖ρ,σ (3.5)

is a direct consequence of the definition of Ψ, and in particular (3.5) implies (3.3), since r < R1.
To prove the smoothness of Ψ, we observe that q is defined implicitly by the equation F = 0,

where

F (q, q1, p1, t, ε) = q − q1 − ε
∫ t

0

∂h

∂p1

(q, p1, s, ε) ds.

The transversality condition

∂F

∂q
= 1− ε

∫ t

0

∂2h

∂q∂p1

(q, p1, s, ε) ds 6= 0

is satisfied, due to (3.4). Hence the implicit function theorem applies to yield that q (and hence
p) verifies all the smoothness requirements for an admissible change of variables.

It remains to establish that Ψ(·, t, ε) is a symplectic diffeomorphism from Gr onto its image,
for t ∈ [0, T ] and ε ∈ [0, σ1]. Using (3.5), which is valid for y = (q1, p1) ∈ GR1 , we deduce that

|DΨ(q1, p1, t, ε)− I| ≤
ε

R1 − r
T‖∇h‖ρ,σ =

3ε

ρ− r
T‖∇h‖ρ,σ ≤

3σ1

ρ− r
≤ 1

4
, (3.6)
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where DΨ = DyΨ = D(q1,p1)Ψ is the Jacobian. This will allow us to interpret Ψ(·, t, ε) as a
Lipschitz continuous perturbation of the identity. Indeed, if we define Γ = Ψ − I, then owing
to the convexity of Gr and from (3.6) we obtain the bound

|Γ(y, t, ε)− Γ(ỹ, t, ε)| =
∣∣∣ ∫ 1

0

d

ds
[Γ(sy + (1− s)ỹ, t, ε)] ds

∣∣∣
≤ 2 · 1

4
|y − ỹ| = 1

2
|y − ỹ|

for y, ỹ ∈ Gr. Hence the Lipschitz constant of Γ(·, t, ε) is ≤ 1/2. This in turn implies that
Ψ(·, t, ε) is one-to-one on Gr. According to (3.6), i.e., |DΨ(q1, p1, t, ε) − I| ≤ 1/4, the matrix
DΨ has an inverse. Thus the inverse function theorem can be applied at each fixed y ∈ Gr

to deduce that Ψ(·, t, ε) is a diffeomorphism from Gr onto the open set Ψ(Gr, t, ε) ⊂ Gρ. This
diffeomorphism is symplectic, because it has been obtained from the equations (3.2), which can
be derived from the generating function

S(q, p1, t, ε) = qp1 − ε
∫ t

0

h(q, p1, s, ε) ds. (3.7)

This completes the proof of the lemma. 2

Corollary 3.7 Under the assumptions of Lemma 3.5, let 0 < r̂ < r < ρ and denote by
Ψ : y 7→ x the map that is induced by (3.2). Let σ2 = min{σ1,

r−r̂
2
} = min{ρ−r

12
, r−r̂

2
, σ}. If

t ∈ R and ε ∈ [0, σ2], then Ψ(Gr, t, ε) ⊃ Gr̂.

For the proof, the following result will be helpful, which is [?, Prop. I.3, p. 50].

Lemma 3.8 Let X, Y be Banach spaces and suppose that U ⊂ Y is open. If Ψ : U →
Ψ(U) ⊂ X is a homeomorphism, Ψ−1 is Lipschitz continuous with constant Lip(Ψ−1) < λ, and
Br(y) ⊂ U , then

Ψ(Br(y)) ⊃ Br/λ(Ψ(y)).

Proof of Corollary 3.7: We are going to apply Lemma 3.8 with U = Gr, Ψ = Ψ(·, t, ε) and
λ = 2. Inspecting the proof of Lemma 3.5, we have shown in (3.6) that |DΨ(y)− I| ≤ 1/4 for
y ∈ GR1 ⊃ Gr, where we write Ψ(y) = Ψ(y, t, ε). This yields

|DΨ(y)−1| =
∣∣∣ ∞∑
j=0

(−1)j(DΨ(y)− I)j
∣∣∣ ≤ ∞∑

j=0

2j |DΨ(y)− I|j ≤ 2.

Next observe that if y ∈ Gr̂, then Br−r̂(y) ⊂ Gr, as a consequence of the geometry of G and
the choice of the norm. For y ∈ Gr̂ we also have |y − Ψ(y)| ≤ ε by (3.3), which means that
y ∈ Bε(Ψ(y)). Owing to Lemma 3.8 we obtain

y ∈ Bε(Ψ(y)) ⊂ B(r−r̂)/2(Ψ(y)) ⊂ Ψ(Br−r̂(y)) ⊂ Ψ(Gr),

as claimed. 2
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Lemma 3.9 For 0 < r < ρ and σ > 0 given, let H ∈ Hρ,σ and h ∈ H̃ρ,σ be such that
T‖∇h‖ρ,σ ≤ 1. Defining σ1 = min{ρ−r

12
, σ} as before, we consider the admissible change of

variables x = Ψ(y, t, ε) for (y, t, ε) ∈ Gr ×R× [0, σ1] according to Lemma 3.5. Then, for every
ε ∈ [0, σ1], the T -periodic Hamiltonian system

ẋ = εJ∇xH(x, t, ε) (3.8)

is transformed (pulled back via Ψ) into

ẏ = εJ∇yK(y, t, ε), (3.9)

where
K(y, t, ε) = H(Ψ(y, t, ε), t, ε)− h(q(y, t, ε), p1, t, ε); (3.10)

recall that y = (q1, p1), Ψ = (Ψ1,Ψ2) with Ψ1 = q and Ψ2 = p. Moreover, K ∈ Hr,σ1 and

‖∇K‖r,σ1 ≤ 3 ‖∇H‖ρ,σ +
5

2
‖∇h‖ρ,σ. (3.11)

Proof : Given a Hamiltonian system ẋ = J∇xH(x, t) and a change of variables x = Ψ(y, t)
that is induced by a generating function of the type S = S(q, p1, t), the pull-back of the system
is ẏ = J∇yK(y, t), where

K(y, t) = H(Ψ(y, t), t) +
∂S

∂t
(q(y, t), p1, t).

This is part of the classical theory of non-autonomous Hamiltonian systems, cf. [1]. It was
known early on, see [7, pp. 13-16] for an elegant exposition. In our case a generating function
S of Ψ is given in (3.7), and the formula (3.10) follows.

To show that K ∈ Hr,σ1 we differentiate (3.10) to obtain

∇K = (DΨ)∗∇H − ∂h

∂q
∇q − ∂h

∂p1

(0, 1)∗.

From (3.6) we know that |DΨ(y)− I| ≤ 1/4 for y ∈ GR1 ⊃ Gr, which in turn yields |DΨ(y)| ≤
5/4. In particular, also |∇q| ≤ 5/4, dropping the arguments. Therefore

|∇K| ≤ 2|DΨ||∇H|+
∣∣∣∂h
∂q

∣∣∣ |∇q|+ ∣∣∣ ∂h
∂p1

∣∣∣ ≤ 5

2
|∇H|+ 5

4

∣∣∣∂h
∂q

∣∣∣+
∣∣∣ ∂h
∂p1

∣∣∣
leads to (3.11). 2

Given H ∈ Hρ,σ we define the function

H̄(x, ε) =
1

T

∫ T

0

H(x, t, ε) dt and H̃ = H − H̄.

Then H̄ ∈ Hρ,σ is autonomous and H̃ ∈ H̃ρ,σ. Moreover, we have the bounds

‖∇H̄‖ρ,σ ≤ ‖∇H‖ρ,σ and ‖∇H̃‖ρ,σ ≤ 2‖∇H‖ρ,σ. (3.12)
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Lemma 3.10 For 0 < r < ρ and σ > 0 given, let H ∈ Hρ,σ be such that T‖∇H̃‖ρ,σ ≤ 1. We

apply Lemma 3.9 with h = H̃. Then the admissible change of variables Ψ : y 7→ x and the new
Hamiltonian function K satisfy

‖Ψ(·, ·, ε)− I‖r ≤ εT‖∇H̃‖ρ,σ, (3.13)

‖K̄ − H̄‖r,σ1 ≤ 2εT ‖∇H̃‖ρ,σ (‖∇H̄‖ρ,σ + ‖∇H̃‖ρ,σ), (3.14)

‖K̃‖r,σ1 ≤ 4εT ‖∇H̃‖ρ,σ (‖∇H̄‖ρ,σ + ‖∇H̃‖ρ,σ), (3.15)

for ε ∈ [0, σ1].

Proof : The first estimate (3.13) is a direct consequence of (3.3). To derive (3.14), we rewrite
(3.10) in the form

K(y, t, ε)−H̄(y, ε) = H̄(Ψ(y, t, ε), ε)−H̄(y, ε)+H̃(Ψ(y, t, ε), t, ε)−H̃(q(y, t, ε), p1, t, ε). (3.16)

Since q = Ψ1 is just a coordinate of Ψ,

|Ψ(y, t, ε)− (q(y, t, ε), p1)| = |p(y, t, ε)− p1| ≤ |Ψ(y, t, ε)− y|,

and hence it follows from (3.16) and (3.13) that

‖K − H̄‖r,σ1 ≤ 2‖∇H̄‖ρ,σ ‖Ψ− I‖r,σ1 + 2‖∇H̃‖ρ,σ ‖Ψ− I‖r,σ1
≤ 2εT‖∇H̃‖ρ,σ(‖∇H̄‖ρ,σ + ‖∇H̃‖ρ,σ). (3.17)

Observing that

‖K̄ − H̄‖r,σ1 = sup
{∣∣∣ 1

T

∫ T

0

[K(y, t, ε)− H̄(y, ε)] dt
∣∣∣ : y ∈ Gr, ε ∈ [0, σ1]

}
≤ sup {|K(y, t, ε)− H̄(y, ε)| : y ∈ Gr, t ∈ R, ε ∈ [0, σ1]}
= ‖K − H̄‖r,σ1 , (3.18)

(3.14) is a consequence of (3.17). Concerning (3.15), it suffices to write K̃ = (K−H̄)+(H̄−K̄)
and to use (3.18) as well as (3.17). 2

For the next result we are going to apply Lemma 3.10 N times.

Lemma 3.11 Let 0 < r < ρ and σ > 0 be given. For every integer N ≥ 1 and H ∈ Hρ,σ so
that T‖∇H‖ρ,σ ≤ 1/2 there exists an admissible change of variables x = ΨN(y, t, ε), which is
defined on Gr × R× [0, σN ] for

σN = min
{ρ− r

72N
, σ
}
,

and which satisfies Ψ(Gr, t, ε) ⊂ Gρ for t ∈ R and ε ∈ [0, σN ]. Furthermore,

ẋ = εJ∇xH(x, t, ε) (3.19)

11



is transformed (pulled back via ΨN) into

ẏ = εJ∇yHN(y, t, ε) (3.20)

for HN ∈ Hr,σN , and moreover we have

‖ΨN(·, ·, ε)− I‖r ≤ 2ε, (3.21)

‖∇H̃N‖r,σN ≤
( 1

T

)
2−N , (3.22)

‖∇H̄N‖r,σN ≤ 3

2T
, (3.23)

|H̄N(y, ε)− H̄N(y, 0)| ≤ 24

T
ε+ |H̄(y, ε)− H̄(y, 0)|, (3.24)

for y ∈ Gr and ε ∈ [0, σN ].

First we are going to state an auxiliary result that will be useful in the proof of this lemma.

Lemma 3.12 Let (bk)0≤k≤K and (ck)0≤k≤K for some K ∈ N ∪ {∞} be sequences of positive
numbers such that

bk ≤ αbk−1(bk−1 + ck−1) and ck ≤ bk + ck−1

for 1 ≤ k ≤ K, where α > 0 is such that 4α(b0 + c0) ≤ 1. Then

bk ≤
1

2k
b0 and ck ≤ b0 + c0

for 0 ≤ k ≤ K.

Proof : We check that bk ≤ 2−kb0 and ck ≤ b0

∑k
j=1 2−j + c0 by induction. Clearly this holds

for k = 0. For the induction step, by hypothesis we have

bk+1 ≤ αbk(bk + ck) ≤ αb02−k(b02−k + b0 + c0) ≤ 2αb02−k(b0 + c0) ≤ b02−(k+1),

and hence in particular

ck+1 ≤ bk+1 + ck ≤ b02−(k+1) + b0

k∑
j=1

2−j + c0 = b0

k+1∑
j=1

2−j + c0,

which completes the argument. 2

Proof of Lemma 3.11: We introduce a uniform partition of the interval [r, ρ] by

ρN = r < ρN−1 < . . . < ρ1 < ρ0 = ρ,

where ρk− ρk+1 = ρ−r
N

for k = 0, . . . , N − 1. The midpoint of [ρk+1, ρk] will be denoted by rk+1,
so that ρk − rk+1 = rk+1 − ρk+1 = ρ−r

2N
.
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Set H0 = H and observe that T‖∇H̃0‖ρ,σ = T‖∇H̃‖ρ,σ ≤ 2T‖∇H‖ρ,σ ≤ 1 by (3.12) and
by assumption. Hence we can apply Lemma 3.10 for r replaced by r1 to obtain an admissible
change of variables Ψ(1) that is defined on Gr1 × R × [0, σ̂1] and takes values in Gρ, where
σ̂1 = min{ρ−r1

12
, σ} = min{ ρ−r

24N
, σ}. The transformed Hamiltonian is denoted by H1 ∈ Hr1,σ̂1 ,

and from (3.13)–(3.15) we have the bounds

‖Ψ(1)(·, ·, ε)− I‖r1 ≤ εT‖∇H̃0‖ρ,σ, (3.25)

‖H̄1 − H̄0‖r1,σ̂1 ≤ 2εT ‖∇H̃0‖ρ,σ (‖∇H̄0‖ρ,σ + ‖∇H̃0‖ρ,σ), (3.26)

‖H̃1‖r1,σ̂1 ≤ 4εT ‖∇H̃0‖ρ,σ (‖∇H̄0‖ρ,σ + ‖∇H̃0‖ρ,σ), (3.27)

for ε ∈ [0, σ̂1]. Since σN ≤ σ̂1, we may replace σ̂1 by σN in all of the above. Next we are going
to derive some preliminary estimates on H0 and H1. Let

b0 = ‖∇H̃0‖ρ,σ and c0 = ‖∇H̄0‖ρ,σ

as well as
b1 = ‖∇H̄1 −∇H̄0‖ρ1,σN + ‖∇H̃1‖ρ1,σN and c1 = ‖∇H̄1‖ρ1,σN .

Note that by (3.12),

b0 ≤ 2‖∇H‖ρ,σ ≤
1

T
and c0 ≤ ‖∇H‖ρ,σ ≤

1

2T
. (3.28)

Furthermore,

bk ≤
12NσNT

ρ− r
bk−1(bk−1 + ck−1) and ck ≤ bk + ck−1 (3.29)

are verified for k = 1. To establish this claim, note that by the Cauchy integral formula, (3.26)
and (3.27),

b1 = ‖∇H̄1 −∇H̄0‖ρ1,σN + ‖∇H̃1‖ρ1,σN ≤
1

r1 − ρ1

(
‖H̄1 − H̄0‖r1,σN + ‖H̃1‖r1,σN

)
≤ 2N

ρ− r
(2σNT + 4σNT ) ‖∇H̃0‖ρ,σ (‖∇H̄0‖ρ,σ + ‖∇H̃0‖ρ,σ) =

12NσNT

ρ− r
b0(b0 + c0).

(3.30)

Concerning the bound on c1, we have

c1 = ‖∇H̄1‖ρ1,σN ≤ ‖∇H̄1 −∇H̄0‖ρ1,σN + ‖∇H̄0‖ρ1,σN ≤ b1 + c0. (3.31)

We are going to prove that this process can be repeated N times, if we consider the sequence
of nested domains

Gr = GρN ⊂ GrN ⊂ GρN−1
⊂ . . . ⊂ Gr2 ⊂ Gρ1 ⊂ Gr1 ⊂ Gρ0 = Gρ.

We will find a sequence Ψ(k), k = 1, . . . , N , of admissible changes of variables sending the
set Grk × R × [0, σN ] into Gρk−1

. These changes of variable Ψ(k) and Hamiltonian functions
Hk ∈ Hrk,σN ⊂ Hρk,σN will be constructed by finite induction w.r. to k ∈ {1, . . . , N}. Suppose
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that Ψ(1), . . . ,Ψ(k) and H1, . . . , Hk have already been obtained, with the additional property
that (3.29) holds, where

bk = ‖∇H̄k −∇H̄k−1‖ρk,σN + ‖∇H̃k‖ρk,σN and ck = ‖∇H̄k‖ρk,σN

for k ≥ 1. With α = 12NσNT
ρ−r we note that

4α(b0 + c0) ≤ 1,

since by (3.12) and our hypotheses

48NσNT

ρ− r
(‖∇H̃0‖ρ,σ + ‖∇H̄0‖ρ,σ) ≤ 144NσNT

ρ− r
‖∇H‖ρ,σ ≤

72NσN
ρ− r

≤ 1.

Hence Lemma 3.12 applies to yield bk ≤ 2−kb0 and ck ≤ b0 + c0. In particular, it follows from
(3.28) that

T‖∇H̃k‖ρk,σN ≤ Tbk ≤ Tb0 ≤ 1,

and Lemma 3.10 is applicable, for r replaced by rk+1 and σ replaced by σN . The resulting
admissible change of variables Ψ(k+1) is defined on Grk+1

× R × [0, σ̂k+1] and takes values in

Gρk , where σ̂k+1 = min{ρk−rk+1

12
, σN} = min{ ρ−r

24N
, σN} = σN . The transformed Hamiltonian is

denoted by Hk+1 ∈ Hrk+1,σN , and from (3.13)–(3.15) we deduce the bounds

‖Ψ(k+1)(·, ·, ε)− I‖rk+1
≤ εT‖∇H̃k‖ρk,σN , (3.32)

‖H̄k+1 − H̄k‖rk+1,σN
≤ 2εT ‖∇H̃k‖ρk,σN (‖∇H̄k‖ρk,σN + ‖∇H̃k‖ρk,σN ), (3.33)

‖H̃k+1‖rk+1,σN
≤ 4εT ‖∇H̃k‖ρk,σN (‖∇H̄k‖ρk,σN + ‖∇H̃k‖ρk,σN ), (3.34)

for ε ∈ [0, σN ]. Analogously to (3.30) and (3.31), it follows from the Cauchy integral formula in
conjunction with (3.33) and (3.34) that (3.29) holds for k + 1. Therefore the inductive process
to obtain the Ψ(k) and Hk can be completed up to k = N .

For the estimate (3.22), note that by (3.29) and (3.28)

‖∇H̃N‖r,σN = ‖∇H̃N‖ρN ,σN ≤ bN ≤ 2−Nb0 ≤
1

T
2−N .

The bound (3.23) is also a consequence of (3.29) and (3.28), since

‖∇H̄N‖r,σN = ‖∇H̄N‖ρN ,σN = cN ≤ b0 + c0 ≤
3

2T
.

The desired admissible change of variables ΨN is defined as the composition

ΨN = Ψ(1) ◦Ψ(2) ◦ . . . ◦Ψ(N),

which is defined on Gr × R× [0, σN ] and takes values in Gρ. To obtain (3.21), we are going to
use the formula

ΨN(·, ·, ε)− I =
N−1∑
k=1

[(Ψ(k) − I) ◦Ψ(k+1) ◦ . . . ◦Ψ(N)](·, ·, ε) + (Ψ(N)(·, ·, ε)− I). (3.35)
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For k ≥ 1 the composition Ψ(k+1) ◦ . . . ◦ Ψ(N) maps Gr into Gρk ⊂ Grk in y. Therefore due to
(3.32), with k + 1 replaced by k, and using (3.28),

‖[(Ψ(k) − I) ◦Ψ(k+1) ◦ . . . ◦Ψ(N)](·, ·, ε)‖r ≤ ‖Ψ(k)(·, ·, ε)− I‖rk ≤ εT‖∇H̃k−1‖ρk−1,σN

≤ εTbk−1 ≤ εT2−(k−1)b0 ≤ ε2−(k−1).

Analogously,

‖Ψ(N)(·, ·, ε)− I‖r = ‖Ψ(N)(·, ·, ε)− I‖ρN ≤ ‖Ψ
(N)(·, ·, ε)− I‖rN ≤ ε2−(N−1).

Using (3.35), the foregoing estimates in turn lead to

‖ΨN(·, ·, ε)− I‖r ≤
N−1∑
k=1

‖[(Ψ(k) − I) ◦Ψ(k+1) ◦ . . . ◦Ψ(N)](·, ·, ε)‖r + ‖Ψ(N)(·, ·, ε)− I‖r

≤
N−1∑
k=1

ε2−(k−1) + ε2−(N−1) ≤ 2ε,

which is (3.21). To prove (3.24), we first note that by (3.33) and (3.28),

‖H̄k+1 − H̄k‖r,σN ≤ ‖H̄k+1 − H̄k‖rk+1,σN

≤ 2εT ‖∇H̃k‖ρk,σN (‖∇H̄k‖ρk,σN + ‖∇H̃k‖ρk,σN )

≤ 2εTbk(bk + ck)

≤ 2εT2−kb0(2−kb0 + b0 + c0)

≤ 2−k
( 6

T

)
ε.

For y ∈ Gr and ε ∈ [0, σN ] it hence follows that

|H̄N(y, ε)− H̄N(y, 0)|

=
∣∣∣N−1∑
k=0

(H̄k+1(y, ε)− H̄k(y, ε))−
N−1∑
k=0

(H̄k+1(y, 0)− H̄k(y, 0)) + (H̄0(y, ε)− H̄0(y, 0))
∣∣∣

≤ 2
N−1∑
k=0

‖H̄k+1 − H̄k‖r,σN + |H̄(y, ε)− H̄(y, 0)|

≤ 12

T
ε
N−1∑
k=0

2−k + |H̄(y, ε)− H̄(y, 0)| ≤ 24

T
ε+ |H̄(y, ε)− H̄(y, 0)|.

This completes the proof of Lemma 3.11. 2

Now we are in a position to derive the “Hamiltonian normal form” with exponentially small
remainder. For our particular domain G = R×I, this is essentially the result that is announced
in [6, Remark 2, p. 134]. To prepare for the statement, we need to introduce a more relaxed
class of transformations, as compared to Definition 3.4.
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Definition 3.13 Let 0 < ρ1 ≤ ρ and 0 < σ1 ≤ σ. A map Ψ : Gρ1 × R × [0, σ1] → C2,
x = Ψ(y, t, ε), will be called a change of variables, if it satisfies

(a) Ψ maps reals into reals;

(b) Ψ is T -periodic in t and Ψ(y, 0, ε) = Ψ(y, T, ε) = y;

(c) for every ε ∈ [0, σ1] the map Ψ(·, ·, ε) is C1 in the real sense, and for every t ∈ R and
ε ∈ [0, σ1] the map Ψ(·, t, ε) is holomorphic in Gρ1; and

(d) for every t ∈ R and ε ∈ [0, σ1] the map Ψ(·, t, ε) is a symplectic diffeomorphism from Gρ1

onto its image.

Note that we are not assuming any property of continuous dependence w.r. to the parameter
ε. This is in contrast to the previous notion of an admissible change of variables, introduced
in Definition 3.4.

Theorem 3.14 For 0 < r < ρ and σ > 0 given, let H ∈ Hρ,σ. Then there exist C,D > 0
(depending upon T, r, ρ, ‖∇H‖ρ,σ) with the following properties. There is a change of variables
x = Ψ(y, t, ε), which is defined on Gr×R× [0, σ] and which satisfies Ψ(Gr, t, ε) ⊂ Gρ for t ∈ R
and ε ∈ [0, σ], such that

ẋ = εJ∇xH(x, t, ε) (3.36)

is transformed (pulled back via Ψ) into

ẏ = ε(J∇yN (y, ε) + J∇yR(y, t, ε)), (3.37)

for functions N ∈ Hr,σ and R ∈ H̃r,σ. Furthermore,

‖Ψ(·, ·, ε)− I‖r ≤ Cε, (3.38)

‖∇yN (·, ε)‖r ≤ C, (3.39)

‖∇yR(·, ·, ε)‖r ≤ Ce−D/ε, (3.40)

|N (y, ε)−N (y, 0)| ≤ Cε+ ‖H̄(·, ε)− H̄(·, 0)‖ρ, (3.41)

for y ∈ Gr and ε ∈ [0, σ]. In addition,

N (y, 0) = H̄(y, 0). (3.42)

Proof : We are going to show that

C = max
{

2λ,
2λ

T
,
24λ2

T

}
and D =

ρ− r
144λ

have the asserted properties, where λ = 2T‖∇H‖ρ,σ. The cases H = 0 or ε = 0 are trivial,

so in particular we may assume that λ > 0. We rewrite (3.36) as ẋ = ε̂J∇xĤ(x, t, ε̂), where
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ε̂ = λε ∈ [0, σ̂] for σ̂ = λσ and Ĥ(x, t, ε̂) = λ−1H(x, t, λ−1ε̂). It follows that Ĥ ∈ Hρ,σ̂ satisfies

2T‖∇Ĥ‖ρ,σ̂ = 2Tλ−1‖∇H‖ρ,σ = 1. Thus we may apply Lemma 3.11 to Ĥ and with

N =
[ρ− r

72λε

]
.

Hence there exists an admissible change of variables x = Ψ̂(y, t, ε̂), which is defined on Gr ×
R× [0, σ̂N ] for

σ̂N = min
{ρ− r

72N
, σ̂
}
,

and which satisfies Ψ̂(Gr, t, ε) ⊂ Gρ for t ∈ R and ε ∈ [0, σ̂N ]. Furthermore, ẋ = ε̂J∇xĤ(x, t, ε̂)
is transformed into ẏ = ε̂J∇yK(y, t, ε̂) for K ∈ Hr,σ̂N , and in addition we have

‖Ψ̂(·, ·, ε̂)− I‖r ≤ 2ε̂, ‖∇K̃‖r,σ̂N ≤
( 1

T

)
2−N , ‖∇K̄‖r,σ̂N ≤

3

2T
,

|K̄(y, ε̂)− K̄(y, 0)| ≤ 24

T
ε̂+ |Ĥ(y, ε̂)− Ĥ(y, 0)|,

for y ∈ Gr and ε̂ ∈]0, σ̂N ]. Define

Ψ(y, t, ε) = Ψ̂(y, t, λε), N (y, ε) = λK̄(y, λε) and R(y, t, ε) = λK̃(y, t, λε)

for y ∈ Gr, t ∈ R and ε ∈]0, σ]. We also put Ψ = I for ε = 0. If ε ∈]0, σ], then ε̂ = λε ≤ λσ = σ̂
and moreover

ε̂ =
1

N
λεN ≤ 1

N
λε
(ρ− r

72λε

)
=
ρ− r
72N

,

so that ε̂ ∈]0, σN ]. Accordingly, the first few claims are straightforwardly verified; this includes
(3.38), (3.39) and (3.41). Concerning (3.40), we use the above estimate on ∇K̃ to get for
ε ∈]0, σ]

‖∇yR(·, ·, ε)‖r = λ‖∇K̃(·, ·, ε̂)‖r ≤
(λ
T

)
2−N =

(2λ

T

)
2−(N+1) ≤

(2λ

T

)
2−

ρ−r
72λε

=
(2λ

T

)
4−

ρ−r
144λε ≤

(2λ

T

)
e−

ρ−r
144λε ,

which completes the proof of (3.38)–(3.41).
Finally, with regard to (3.42), we observe that in all the previous lemmas we have Ψ = I

for ε = 0. Then we can define N (y, 0) = H̄(y, 0), since H̄k(·, 0) = H̄(·, 0) for each k throughout
the iteration. 2

Corollary 3.15 Under the assumptions of Theorem 3.14 let 0 < r̂ < r < ρ and denote by
Ψ : y 7→ x the change of variables that has been constructed there. Let σ∗ = min{ r−r̂

12C
, σ}. If

t ∈ R and ε ∈ [0, σ∗], then Ψ(Gr, t, ε) ⊃ Gr̂.

Proof : The argument is similar to the one for Corollary 3.7. 2
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4 Application to maps

Here we will prove Theorem 1.1, following the approach outlined in [6]. First we realize the
map Pε as the Poincaré map of a periodic Hamiltonian system and then we are going to apply
the previous results from Section 3; see [8, p. 13/14] for general information and additional
references in a more abstract context.

We start with an auxiliary result on the construction of a Hamiltonian function from an
exact symplectic isotopy.

Lemma 4.1 Assume that Φ : G × [0, 1] → R2 is C∞ and that Φ(·, t) : G → G(t) = Φ(G, t) is
a diffeomorphism for every t ∈ [0, 1]. The inverse map is denoted by Ψ(·, t) and we will also
write

X = Φ(x, t), x = Ψ(X, t), x = (q, p), X = (Q,P ), Φ = (F ,G).

Assume that
P dQ− p dq = dη(·, t) (4.1)

for a C∞-function η : G× [0, 1]→ R. Then

J∇haux(X, t) =
∂Φ

∂t
(Ψ(X, t), t), (4.2)

where

haux(X, t) =
∂F
∂t

(Ψ(X, t), t)G(Ψ(X, t), t)− ∂η

∂t
(Ψ(X, t), t) (4.3)

is defined on
D = {(X, t) : t ∈ [0, 1], X ∈ G(t)}.

Remark 4.2 (a) Note that G(t) ⊂ R2 is open and D is diffeomorphic to G× [0, 1] via the map
(x, t) 7→ (Φ(x, t), t). Moreover, X(t) = Φ(x, t) is a solution to Ẋ(t) = J∇haux(X(t), t).

(b) Lemma 4.1 remains valid, if Φ and η are C1, and the cross-derivatives

∂2Φ

∂t ∂x
=

∂2Φ

∂x ∂t
,

∂2η

∂t ∂x
=

∂2η

∂x ∂t
,

exist, coincide and are continuous functions of (x, t).

(c) If Φ(·, t), Ψ(·, t) and η(·, t) have holomorphic extensions, then also the identity (4.2) can be
extended.

(d) We refer to [5, Thm. 6.2.1] for a similar result.

Proof of Lemma 4.1 : The identity (4.1) holds in the space of one-forms on G. Differentiating
w.r. to t, we obtain

∂G
∂t

dF + G d
(∂F
∂t

)
= d
(∂η
∂t

)
.

It follows that

d
(∂F
∂t
G − ∂η

∂t

)
=
∂F
∂t

dG + d
(∂F
∂t

)
G − d

(∂η
∂t

)
=
∂F
∂t

dG − ∂G
∂t

dF (4.4)
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on G. To pull back this identity under the map Ψ(·, t) : G(t) 3 X 7→ x ∈ G, denote h(x, t) =
∂F
∂t

(x, t)G(x, t)− ∂η
∂t

(x, t). From (4.4) we thus deduce

dhaux(·, t) = d(h ◦Ψ) = d(Ψ∗h) = Ψ∗(dh) = Ψ∗
(∂F
∂t

dG − ∂G
∂t

dF
)

=
(∂F
∂t
◦Ψ
)
dP −

(∂G
∂t
◦Ψ
)
dQ,

which is equivalent to (4.2). 2

Lemma 4.3 Let G = R × I ⊂ R2 for an open and bounded interval I ⊂ R. Suppose that
l ∈M1,ρ,σ, and for ε ∈ [0, σ] consider the family of maps Pε : Gρ → C2 given by

Pε : x1 = x+ εl(x, ε). (4.5)

Let the family {Pε} be E-symplectic and fix 0 < r < r̂ < ρ. Then there exist σ̂ ∈]0, σ[
and a Hamiltonian Haux ∈ Hr̂,σ̂ such that for ε ∈ [0, σ̂] the Poincaré map (time-1-map) of
ẋ = εJ∇Haux(x, t, ε) is Pε, restricted to Gr. Furthermore, there exists a constant Caux > 0
such that

|Haux(x, t, ε)−Haux(x, t, 0)| ≤ Caux ε (4.6)

for x ∈ Gr̂, t ∈ [0, 1] and ε ∈ [0, σ̂]. The constant Caux will depend upon ρ, σ, r, r̂, ‖l‖1,ρ,σ,

the interval I, ‖h‖1,ρ,σ and supε∈]0,σ] ‖ε−1(∂h
∂ε

(·, ε) − m)‖ρ (cf. the notion of E-symplecticity,
Definition 2.3).

Proof : Let χ : [0, 1]→ [0, 1] be a strictly increasing C∞-function such that χ(0) = 0, χ(1) = 1
and χ̇(0) = χ̇(1) = 0. Define

Φ(x, t, ε) = x+ εχ(t) l(x, εχ(t)) (4.7)

and
η(x, t, ε) = h(x, εχ(t)).

For fixed ε we intend to apply the relaxed version of Lemma 4.1, as outlined in Remark 4.2(b),
(c). The condition (4.1) holds, due to (2.4) in Definition 2.3.

Our first aim will be to construct the inverse Ψ. Define r1 = 1
2
(ρ + r̂) and fix σ1 ∈]0, σ] so

that

σ1‖l‖1,ρ,σ ≤
1

4
(ρ− r1) =

1

8
(ρ− r̂). (4.8)

We are going to prove that Φ(·, t, ε) is a diffeomorphism from Gr1 onto its image, if t ∈ [0, 1]
and ε ∈ [0, σ1]. For ε = 0 we have Φ(x, t, ε) = x, so we can assume that ε > 0. Using the
Cauchy integral formula, one gets

ε
∥∥∥ ∂l
∂x

(·, ε)
∥∥∥
r1
≤ σ1

ρ− r1

‖l(·, ε)‖ρ ≤
σ1

ρ− r1

‖l‖1,ρ,σ ≤
1

4
.

Hence the matrix

M =
∂Φ

∂x
(x, t, ε) = I + εχ(t)

∂l

∂x
(x, εχ(t)) (4.9)
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satisfies |M − I| ≤ 1
4
. As a consequence, M has an inverse and therefore Φ(·, t, ε) is a local

diffeomorphism from Gr1 onto its image, which is contained in G 3
4
r1+ 1

4
ρ, the latter by (4.8). If

x1, x2 ∈ Gr1 , then

|Φ(x1, t, ε)− Φ(x2, t, ε)| =
∣∣∣x1 − x2 + εχ(t)

(∫ 1

0

∂l

∂x
(λx1 + (1− λ)x2, εχ(t)) dλ

)
(x1 − x2)

∣∣∣
≥ |x1 − x2| −

1

2
|x1 − x2|

=
1

2
|x1 − x2|;

note that here the convexity of G (and hence Gr1) has been used. It follows that Φ(·, t, ε) is
one-to-one on Gr1 and its inverse Ψ(·, t, ε) has Lipschitz constant 2. Observe that (4.8) also
implies that

σ1‖l‖1,ρ,σ ≤
1

4
(ρ− r̂) =

1

2
(r1 − r̂).

Arguing analogously to Corollary 3.7, it follows that

Φ(Gr1 , t, ε) ⊃ Gr̂

for t ∈ [0, 1] and ε ∈ [0, σ1]. The Hamiltonian function haux from Lemma 4.1 will be defined on
the domain

D = {(X, t, ε) : t ∈ [0, 1], X ∈ Φ(Gr1 , t, ε), ε ∈ [0, σ1]} ⊃ Gr̂ × [0, 1]× [0, σ1]. (4.10)

Next we choose the number σ̂ ∈]0, σ1] so that

σ̂‖l‖1,ρ,σ < r̂ − r,

which in turn implies that
Φ(Gr, t, ε) ⊂ Gr̂ (4.11)

for t ∈ [0, 1] and ε ∈ [0, σ̂], and moreover we have Φ(x, t, ε) = Pεχ(t)(x) by definition.
From now on we consider Φ on Gr1 × [0, 1] × [0, σ̂] and the inverse Ψ(·, t, ε) = Φ(·, t, ε)−1

has domain Φ(Gr1 , t, ε). Since Φ is continuous in its three arguments, the same can be said
about Ψ. In addition, by the inverse function theorem, Ψ is holomorphic in the first variable.
Let ε ∈ [0, σ̂] be fixed. We will prove that Φ(·, ·, ε) is C1 in Gr1 × [0, 1]. Moreover, the cross
derivatives do exist, they are continuous and coincide. To see this, we can once again restrict
our attention to ε > 0. Since l ∈ M1,ρ,σ, the functions l(·, ε) and ∂l

∂ε
(·, ε) are holomorphic.

Hence, by Cauchy’s integral formula,∥∥∥ ∂l
∂x

(·, ε)
∥∥∥
r1
≤ 1

ρ− r1

‖l‖1,ρ,σ, (4.12)∥∥∥ ∂2l

∂x∂ε
(·, ε)

∥∥∥
r1
≤ 1

ρ− r1

‖l‖1,ρ,σ. (4.13)
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Note that in (4.12) the case ε = 0 is admissible. By definition, Φ(·, ·, ε) is C∞ in Gρ×]0, 1]. For
t = 0, Φ(x, 0, ε) = x and ∂Φ

∂x
(x, 0, ε) = I. From (4.12) and (4.9) we conclude that ∂Φ

∂x
(·, ·, ε) is

continuous in Gr1 × [0, 1]. To analyze the derivative w.r. to t, we observe that

∂Φ

∂t
(x, 0, ε) = lim

t→0+

Φ(x, t, ε)− Φ(x, 0, ε)

t
= ε lim

t→0+

χ(t)

t
l(x, εχ(t)) = 0,

where we used that χ(0) = χ̇(0) = 0 and ‖l‖ρ,σ <∞. For t > 0,

∂Φ

∂t
(x, t, ε) = εχ̇(t)

[
l(x, εχ(t)) + εχ(t)

∂l

∂ε
(x, εχ(t))

]
. (4.14)

Thus the continuity of ∂Φ
∂t

(·, ·, ε) is a consequence of ‖l‖1,ρ,σ < ∞. To summarize, so far we

have shown that Φ(·, ·, ε) is C1 in Gr1 × [0, 1]. For the cross derivatives, from ∂Φ
∂t

(x, 0, ε) = 0 we

deduce that ∂2Φ
∂x∂t

(x, 0, ε) = 0. Also, using (4.9) and (4.12),

∂2Φ

∂t∂x
(x, 0, ε) = lim

t→0+

∂Φ
∂x

(x, t, ε)− ∂Φ
∂x

(x, 0, ε)

t
= ε lim

t→0+

χ(t)

t

∂l

∂x
(x, εχ(t)) = 0.

Hence the cross derivatives exist at t = 0 and they coincide. The continuity of these derivatives
is obtained after differentiating (4.9) w.r. to t in Gr1×]0, 1]; again the bounds (4.12) and (4.13)
need to be used here. Both functions l and h belong to the class M1,ρ,σ. Thus the previous
discussions also apply to the function η(·, ·, ε).

Altogether, we see that the relaxed version of Lemma 4.1 can be used to deduce the existence
of a function haux = haux(X, t, ε), which is defined on D from (4.10), with the stated properties.
In particular, haux(·, t, ε) is well-defined on Gr̂. Moreover, if x ∈ Gr, then X(t) = Φ(x, t, ε)
solves

Ẋ(t) = J∇haux(X(t), t, ε) (4.15)

by Remark 4.2(a), and also ε ∈ [0, σ̂] yields X(t) ∈ Gr̂ for t ∈ [0, 1] due to (4.11). The Poincaré
map of (4.15) is Gr 3 x 7→ Φ(x, 1, ε) = x+ εl(x, ε) = Pε(x), i.e., the original map restricted to
Gr.

To express haux more explicitly, we recall from the previous computations that

∂Φ

∂t
(x, t, ε) =

{
εχ̇(t) [l(x, εχ(t)) + εχ(t) ∂l

∂ε
(x, εχ(t))] : t ∈]0, 1], ε ∈]0, σ̂]

0 : t = 0 or ε = 0
(4.16)

and similarly

∂η

∂t
(x, t, ε) =

{
εχ̇(t) ∂h

∂ε
(x, εχ(t)) : t ∈]0, 1], ε ∈]0, σ̂]

0 : t = 0 or ε = 0
. (4.17)

In the notation of Lemma 4.1 we have

F(x, t, ε) = q + εχ(t) l1(x, εχ(t)), G(x, t, ε) = p+ εχ(t) l2(x, εχ(t)),

where x = (q, p), and l = (l1, l2) are the components. Also observe that by (4.3)

haux(X, t, ε) =
∂F
∂t

(Ψ(X, t, ε), t, ε)G(Ψ(X, t, ε), t, ε)− ∂η

∂t
(Ψ(X, t, ε), t, ε).
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From χ(0) = χ̇(0) = χ̇(1) = 0 and (4.17) it follows that haux(X, t, ε) = 0 for t = 0 or t = 1 or
ε = 0. Moreover, if t 6= 0 and ε > 0,

1

ε
haux(X, t, ε) = χ̇(t)

(
l1(x, εχ(t)) + εχ(t)

∂l1
∂ε

(x, εχ(t))
)(
p+ εχ(t) l2(x, εχ(t))

)
− χ̇(t)

∂h

∂ε
(x, εχ(t)), (4.18)

and we write X = (Q,P ) as well as x = Ψ(X, t, ε). To pass to the limit ε→ 0 in (4.18), we first
recall that Ψ is continuous on Gr̂ × [0, 1]× [0, σ̂] and Ψ(X, t, 0) = X. From (2.6) in Definition
2.3 of an E-symplectic family we know that ∂h

∂ε
(x, ε) → m(x) as ε → 0 uniformly in x ∈ Gρ.

Thus (4.18) yields

lim
ε→0

1

ε
haux(X, t, ε) = χ̇(t) [l1(X, 0)P −m(X)]

and this limit is uniform in X ∈ Gr̂, t ∈ [0, 1].
Now we define

Haux(X, t, ε) =

{
1
ε
haux(X, t, ε) : ε ∈]0, σ̂]

χ̇(t) [l1(X, 0)P −m(X)] : ε = 0
. (4.19)

for X ∈ Gr̂ and t ∈ [0, 1], and we are going to verify that Haux has the desired properties. From
the above discussions we know that Haux is continuous and

Haux(X, 0, ε) = Haux(X, 1, ε) = 0. (4.20)

As a consequence, Haux can be extended to Gr̂ × R × [0, σ̂] in a T = 1 periodic fashion.
First we need to prove that Haux ∈ Hr̂,σ̂, cf. Definition 3.1. Here (a)-(c) in this definition are
straightforward to check. Concerning (d), for ε > 0 we know from (4.2) that

J∇Haux(X, t, ε) =
1

ε

∂Φ

∂t
(Ψ(X, t, ε), t, ε).

Thus, by (4.16),
lim
ε→0

J∇Haux(X, t, ε) = χ̇(t) l(X, 0),

and this limit is uniform in Gr̂×R. On the other hand, the definition of Haux and (2.8) implies
that

J∇Haux(X, t, 0) = χ̇(t) J
[
P ∇l1(X, 0)−∇m(X) +

(
0

l1(X, 0)

)]
= χ̇(t) J

(
−l2(X, 0)
l1(X, 0)

)
= χ̇(t) l(X, 0).

This shows that ∇XHaux is continuous in all of its arguments. Then the bound on ‖∇XHaux‖r̂,σ̂
is not difficult to derive from (4.14).

Lastly, we have to establish (4.6). In view of the definition of Haux and (4.20), it suffices to
consider X ∈ Gr̂, t ∈]0, 1] and ε ∈]0, σ̂]. From (4.18) we deduce

|Haux(X, t, ε)−Haux(X, t, 0)| ≤ ‖χ̇‖∞ (R1 +R2 +R3),
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where

R1 = |l1(x, εχ(t))p− l1(X, 0)P |,

R2 =
∣∣∣m(X)− ∂h

∂ε
(x, εχ(t))

∣∣∣,
R3 = εχ(t) |l1(x, εχ(t))| |l2(x, εχ(t))|+ εχ(t)

∣∣∣∂l1
∂ε

(x, εχ(t))
∣∣∣ |p|

+ ε2χ(t)2
∣∣∣∂l1
∂ε

(x, εχ(t))
∣∣∣ |l2(x, εχ(t))|.

For R1, we observe that by definition of X = Φ(x, t, ε), see (4.7),

|X − x| = ε χ(t) |l(x, εχ(t))| ≤ ε ‖l‖1,ρ,σ.

Also note that x = Ψ(X, t, ε) ∈ Gr1 by construction. Therefore

|l1(x, εχ(t))− l1(X, εχ(t))| ≤ 2
∥∥∥∂l1
∂x

∥∥∥
r1,σ̂
|x−X| ≤ 2ε

ρ− r1

‖l1‖r1,σ̂ ‖l‖1,ρ,σ ≤
2ε

ρ− r1

‖l‖2
1,ρ,σ.

(4.21)
Since l ∈M1,ρ,σ, also

|l(X, εχ(t))− l(X, 0)| ≤ ‖l‖1,ρ,σ ε

is verified. At this point we need to invoke the geometry of G = R × I. If I is contained in
[−R,R], then |P | ≤ R+ r̂ ≤ R+ρ as well as |p| ≤ R+ r1 ≤ R+ρ, due to X ∈ Gr̂ and x ∈ Gr1 .
Thus altogether, using the foregoing estimates,

|R1| ≤ |l1(x, εχ(t))| |p− P |+ |l1(x, εχ(t))− l1(X, εχ(t))| |P |+ |l1(X, εχ(t))− l1(X, 0)| |P |

≤ ε ‖l‖2
1,ρ,σ +

2(R + ρ)ε

ρ− r1

‖l‖2
1,ρ,σ + (R + ρ) ‖l‖1,ρ,σ ε,

which is acceptable. For R2 we can argue as follows. Since also h ∈ M1,ρ,σ, we obtain as in
(4.21) that∣∣∣∂h

∂ε
(x, εχ(t))− ∂h

∂ε
(X, εχ(t))

∣∣∣ ≤ 2ε

ρ− r1

∥∥∥∂h
∂ε

(·, εχ(t))
∥∥∥
r1
‖l‖1,ρ,σ ≤

2ε

ρ− r1

‖h‖1,ρ,σ ‖l‖1,ρ,σ ;

observe that εχ(t) ∈]0, σ] for ε ∈]0, σ̂] and t ∈]0, 1]. If we combine this estimate with (2.6),
then R2 ≤ Cε is found. Finally, from l ∈ M1,ρ,σ and |p| ≤ R + ρ, also R3 ≤ Cε is obtained.
This completes the argument for (4.6), and hence the proof of the lemma. 2

Now we are in a position to complete the

Proof of Theorem 1.1 : Let r2 = ρ
3

and r1 = 2ρ
3

. Then Lemma 4.3 can be applied to l and
0 < r2 < r1 < ρ. We deduce that there exist σ1 ∈]0, σ[ and a Hamiltonian Haux ∈ Hr1,σ1 such
that for ε ∈ [0, σ1] the Poincaré map of

ẋ = εJ∇Haux(x, t, ε) (4.22)
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is Pε, restricted to Gr2 . In addition, one can find a constant Caux > 0 so that

|Haux(x, t, ε)−Haux(x, t, 0)| ≤ Caux ε (4.23)

for x ∈ Gr1 , t ∈ [0, 1] and ε ∈ [0, σ1]. The constant Caux depends upon ρ, σ, ‖l‖1,ρ,σ, the interval

I, ‖h‖1,ρ,σ and supε∈]0,σ] ‖ε−1(∂h
∂ε

(·, ε)−m)‖ρ.
Next we are going to invoke Theorem 3.14 to Haux for the parameters r = r2, ρ = r1,

σ = σ1 and T = 1. By this result, we can find C,D > 0 (depending upon ρ and ‖∇Haux‖r1,σ1)
with the following properties. There is a change of variables x = Γ(y, t, ε), which is defined on
Gr2 ×R× [0, σ1] and which satisfies Γ(Gr2 , t, ε) ⊂ Gr1 for t ∈ R and ε ∈ [0, σ1], such that (4.22)
is transformed into

ẏ = ε(J∇yN (y, ε) + J∇yR(y, t, ε)), (4.24)

for functions N ∈ Hr2,σ1 and R ∈ H̃r2,σ1 . Furthermore,

‖∇yN (·, ε)‖r2 ≤ C, (4.25)

‖∇yR(·, ·, ε)‖r2 ≤ Ce−D/ε, (4.26)

|N (y, ε)−N (y, 0)| ≤ Cε+ ‖Haux(·, ε)−Haux(·, 0)‖r1 , (4.27)

for y ∈ Gr2 and ε ∈ [0, σ1]. In addition,

N (y, 0) = Haux(y, 0) (4.28)

is verified. According to the definition of Haux in (4.19) and by (4.18), one sees that it is possible
to bound ‖∇Haux‖r1,σ1 in terms of ‖l‖1,ρ,σ, the interval I and ‖h‖1,ρ,σ.

For later reference we first discuss the connection between N and the function E from
Theorem 1.1, cf. (2.10), and we also consider the variation of N w.r. to ε. From (4.28), the
definition of Haux(y, 0) in (4.19) and (2.10),

N (y, 0) = Haux(y, 0) =

∫ 1

0

χ̇(t) [l1(y, 0)P −m(y)] dt = l1(y, 0)P −m(y) = E(y), (4.29)

where y = (Q,P ). Using (4.27) and (4.23), we moreover find for y ∈ Gr2 and ε ∈ [0, σ1] that

|N (y, ε)−N (y, 0)| ≤ Cε+ ‖Haux(·, ε)−Haux(·, 0)‖r1 ≤ C1ε, (4.30)

where the constant C1 = C + Caux depends upon ρ, σ, ‖l‖1,ρ,σ, the interval I, ‖h‖1,ρ,σ and

supε∈]0,σ] ‖ε−1(∂h
∂ε

(·, ε) − m)‖ρ ; henceforth all constants are allowed to depend upon those pa-
rameters.

Now we define r3 = 2r2
3

= 2ρ
9

and r4 = r2
3

= ρ
9

to obtain 0 < r4 < r3 < r2 < r1 < ρ.
According to Corollary 3.15 there is σ2 ∈]0, σ1] such that

Gr3 ⊂ Γ(Gr2 , t, ε)

for t ∈ R and ε ∈ [0, σ2]; in particular, Γ(·, t, ε)−1 : Gr3 → Gr2 is well-defined.
Let Φ(x, t, ε) denote the solution to (4.22) satisfying Φ(x, 0, ε) = x. Similarly, φ(y, t, ε) will

be used for the solution to (4.24) so that φ(y, 0, ε) = y. Now we select σ3 ∈]0, σ2] such that
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Φ(x, t, ε) is well-defined on Gr4 × [0, 1] × [0, σ2] and takes values in Gr3 . The solutions of the
two systems are connected by the formula

φ(y, t, ε) = Γ−1(Φ(Γ(y, 0, ε), t, ε), t, ε) = Γ−1(Φ(y, t, ε), t, ε)

for y ∈ Gr4 , t ∈ [0, 1] and ε ∈ [0, σ3]. Letting t = 1 and taking into account condition (b) in
Definition 3.13, it follows that

φ(y, 1, ε) = Γ−1(Φ(y, 1, ε), 1, ε) = Φ(y, 1, ε) = Pε(y).

In other words, Pε is also the Poincaré map of (4.24), at least in the domain Gr4 .
Now we are going to consider the autonomous system

ẏ = εJ∇yN (y, ε), (4.31)

denoting by φ̂(y, t, ε) the associated flow. Using (4.25), we deduce that there is σ̂ ∈]0, σ3] with
the property that φ̂(y, t, ε) is well-defined on Gr4 × [0, 1]× [0, σ̂] and moreover

φ̂(Gr4 × [0, 1]× [0, σ̂]) ⊂ Gr3 .

The system (4.31) is Hamiltonian, with Hamiltonian function εN (·, ε). In particular, if P̂ε =
φ̂(·, y, 1) denotes the Poincaré map of (4.31), then

N (P̂ε(y), ε) = N (y, ε), y ∈ Gr4 , ε ∈ [0, σ̂]. (4.32)

To estimate the difference between φ and φ̂, we first observe that for ε ∈ [0, σ̂],

‖D2N (·, ε)‖r3 ≤
1

r3 − r2

‖∇N (·, ε)‖r2 ≤
1

r3 − r2

C = C2,

where we have once again resorted to (4.25). If (y, t, ε) ∈ Gr4 × [0, 1]× [0, σ̂], then the systems
(4.24), (4.31) in conjunction with (4.26) yield

|φ(y, t, ε)− φ̂(y, t, ε)| = ε
∣∣∣ ∫ t

0

[J∇yN (φ(y, s, ε), ε) + J∇yR(φ(y, s, ε), s, ε)

− J∇yN (φ̂(y, s, ε), ε)] ds
∣∣∣

≤ C2 ε

∫ t

0

|φ(y, s, ε)− φ̂(y, s, ε)| ds+ Cεe−D/ε.

Hence from Gronwall’s inequality,

|φ(y, t, ε)− φ̂(y, t, ε)| ≤ Cεe−D/ε eC2εt.

For the Poincaré maps, i.e., at t = 1, we deduce

|Pε(y)− P̂ε(y)| ≤ C3 ε e
−D/ε, y ∈ Gr4 , ε ∈ [0, σ̂], (4.33)

where C3 = CeC2σ̂.
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Now we are ready to complete the proof. Let (xn)0≤n≤N = (P n
ε (x0))0≤n≤N be a real forward

orbit piece of Pε so that xn ∈ G for all 0 ≤ n ≤ N . Since G ⊂ Gr4 , all the previous properties
can be used along the orbit. From (4.29) and (4.30) we get

|E(xn)− E(x0)| ≤ |E(xn)−N (xn, ε)|+ |N (xn, ε)−N (x0, ε)|+ |N (x0, ε)− E(x0)|
= |N (xn, 0)−N (xn, ε)|+ |N (xn, ε)−N (x0, ε)|+ |N (x0, ε)−N (x0, 0)|
≤ 2C1ε+ |N (xn, ε)−N (x0, ε)|.

In addition, (4.32), (4.25) and (4.33) lead to

|N (xn, ε)−N (x0, ε)| ≤
n−1∑
j=0

|N (Pε(xj), ε)−N (x0, ε)|

=
n−1∑
j=0

|N (Pε(xj), ε)−N (P̂ε(x0), ε)|

≤ CC3 n ε e
−D/ε.

Thus the claim follows if we define Ĉ = 2C1 + CC3 and D̂ = D. 2
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