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Abstract
We discuss some of the results in [6] and give fully detailed proofs.

1 Introduction

To motivate this mainly technical note, we consider holomorphic twist maps f : (0,7) — (61,71)
of the form

1
0, =0+

SO+ REr). =r+r " Fy(0,r), (1.1)

where a €]0,1] and v € R\ {0}. Such maps occur for instance in the description of the
holomorphic Fermi-Ulam ping-pong [6, 4], and the variable 6 is not assumed to be periodic.
Rather, (1.1) is defined on a set

Q=Rsx{reC:Rer>r,|[Imr| <n|rl}

for some 0,r > 0 and 1 €]0, 1], where R; = {# € C : |Im#| < §} denotes the open strip in the
complex plane about R of width 6. In [4], the main assumptions are:

(i) the smallness of the holomorphic functions F; on Q (supposed to map reals into reals),
in the sense that F;(0,r) = O(r~®), uniformly in 6 € Ry, for j = 1,2;

(ii) B(0,7) = bo(0,r) + O(r'=2*) uniformly in 6 € R;, where 71 df; —r df = db holds for (1.1),
with ho(6,r) = —=L r!~* corresponding to F; = F5 = 0.

In order to investigate the possible boundedness or growth of the (r,),.y, in a forward

complete real orbit (0, 74),,cy, of (1.1), it is convenient to rescale = e'/?r which puts f from
(1.1) into the form P. : G, — C2, given by

P: xz=x +51($,5)7 T = (Q17p1>7 T = (q,p). (1-2)
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Here z1 = (q1,p1) = (61, &1), z = (¢,p) = (6,€) and I(z,2) = (g (V+F1(0, 55)), €' Fa (0, o5)).
It turns out that, for € > 0 small enough, the family of maps { P.} can be defined on a common
domain G,, where G = Rx]1,2[ and

G,={z=(¢,p) € C*:|Imgq| < p, dist(p,I) < p}.

This leads us to study general maps P. : G, — C? of the form (1.2), where [ belongs to a
certain class of maps M, ,, that has to be carefully set up in order to account for singularities
of [ or % at € = 0; recall the definition of [ in the ping-pong example.

Inspired by [3], we call the family of maps {P.} E-symplectic, if p; dg; — pdq = dh(-,¢) for
a function h € M, ,, such that, as e — 0,

hape) = em(a.p) + OE),  Lg.p.e) = mlg,p) +O).

Oe
uniformly in (¢,p) € G, for a bounded function m : G, — C. It turns out (see [4]) that all
these conditions can be verified for the ping-pong after rescaling b from (ii) to k. Furthermore,
it is possible to construct a function E = E(z) satisfying JVE(z) = l(z,0), where J denotes
the standard symplectic matrix. The function E should be thought of as an approximate first
integral (adiabatic invariant) for the family {F.}. This means that the variation of E along

the orbit remains small for an exponentially long time. More precisely, we have the following
result, which should be compared to [6, (2.7), p. 135 and Prop. 3, p. 136].

Theorem 1.1 Suppose that | € M, ,,, and for e € [0,0] consider the family of maps P: :
G, — C* given by
P.: x=x+c¢l(z,e). (1.3)

Let the family {P.} be E-symplectic. Then there ezist & €]0,0] and constants C, D > 0 (de-
pending upon p, o, |||, ,,, the interval I, [|h||, ,, and sup.gp 4 e (22(-,e) —m)]|,) such that
if

(-’ﬂn)ogngzv = (Pgl($0))0§n§N

1s a real forward orbit piece of P. so that x,, € G for all0 < n < N, then

|E(z,) — E(z0)] < Ce, 0<n<min{N,N.}, N.=I[e/"]. (1.4)

It is the purpose of this note to present a fully detailed proof of Theorem 1.1, along the
lines that are indicated in [6]. It is based on realizing P. as the Poincaré map of a periodic
Hamiltonian system. One main difficulty is that the class M, ,, has to allow for a non-smooth
dependence of [ on ¢, since this is what is needed in the applications. Furthermore, the fact
that in G = Rx|1,2[ the first coordinate can be unbounded poses some technical challenges;
this is accounted for by introducing assumptions on the primitive of the 1-form that are not
explicit in [6]. Therefore we need to introduce suitable function classes H,, and H,, for the
relevant Hamiltonians H = H(x,t,¢) in the Hamiltonian normal form theorem (see Section 3).



2 E-symplectic families of maps

An important observation in [6] is the existence of adiabatic invariants for families of analytic
canonical maps close to the identity. Given a convex domain G C RY x RY and a family of
symplectic maps

P.:G—RY xRN 2 =x24c¢l(z,¢),

it is possible to construct a function £ = E(x) satisfying
JVE(x)=I(x,0), (2.1)

0 Iy
—Iy O
numerical integration method for the Hamiltonian system & = JVE(z). This fact suggests
that F(z) should be an adiabatic invariant for P., meaning that

where J = ( . For small ¢ the iteration x,,1 = P.(x,) can be interpreted as a

|E(P"(z)) — E(z)] < Cs, 0<n<A., (2.2)

£

where N, is of the order e?/¢; the constants C, D > 0 should only depend upon an appropriate

norm of [. In essence this is discussed in Remark 5 and Proposition 3 of [6]. Additional details
can be found in [2], in particular in the case of bounded domains.

However, the previous statements must be taken with some caution in the case where the
underlying domain is unbounded. As a counter-example we consider the family of translations

1 =+ eJu+ v,

defined on the whole space G = RY x RY. Here v # 0 is a fixed vector and E(r) = (z,v)
satisfies (2.1), since [(x,¢) = Jv + ev. Due to P*(x) = x + nel(z, ) we obtain

|E(P!(2)) — E(z)| = e*nv]*.
Therefore (2.2) does hold only for n < N. = O(1/¢) many steps.

To overcome this inherent difficulty, Benettin and Giorgilli in [2] considered an unbounded
domain G and a family of maps derived from a symplectic integration algorithm for a Newtonian
system of the type § = —VV(g). Then they impose some growth conditions on V(¢q) as |¢| — oo.
We will follow a different approach and assume that our family { P.} satisfies a condition inspired
by the notion of an exact symplectic map (called E-symplectic), as it was understood in our
previous work [3]. Furthermore, to simplify matters, we will restrict ourselves to the case of
direct interest to us for applications. Throughout we will take

N=1 and G=RxI,

where I C R is an open and bounded interval. Our goal will be to understand the dynamics
of a map on the plane (0,7) — (61,71) when r — oo. For this reason our family of maps {P.},
P.: (q,p) = (q1,p1), will be obtained after a rescaling ¢ = 0, p = er with ¢ € R and p €]1,2].
This procedure will lead to functions [(x,¢) that are analytic in x, but not necessarily smooth
in €; a prototype can be the function I(z,e) = h(z/e?), where h is real analytic in [1, co[ and



h(¢) — 0 as ¢ — oo. Then [ is continuous as a function of the two variables (z,¢), but the
partial derivatives 0*1 do not always exist at ¢ = 0.

The following definitions are motivated by the previous discussions. In general, for the
norms on C? and C"*% we will take |z| = maxi<;<q|z;| and |A| = maxi<i<a, 1<j<d, |aijl,

Il R

respectively. Note that for A € C¥4, 2 € C¢, A; € C1*4 and A, € C¥92 this implies
|Az| < d|Al[z|,  [A1As| < dJA;][As].
The points in G = R x I will be denoted by = = (¢, p). For p > 0 we will write
G, ={z = (¢,p) € C*: [lmg| < p, dist(p,I) < p}.
Given ¢ : G, — C holomorphic, let

lell, = sup {lp(2)] - = € G, }-

If 0 < r < p, then by the Cauchy integral formula one has

1
D < —
D], < P ol
where D¢ is the Jacobian.
Definition 2.1 (The classes M,, and M, ,,) Let p >0 and o €]0,1].

(i) The class M, , consists of those continuous mapsl: G, x [0,0] = C?, | = l(z,¢), which
satisfy:

(a) 1 maps real into reals; and
(b) for every e € [0,0] the map l(-,€) is holomorphic on G, and
12, = sup {[l1(- )], - e € [0, 0]} < o0
(ii) The class My ,, consists of those continuous maps | : G, x [0,0] — C?, | = l(z,¢),
satisfying

(a) | maps real into reals;

(b) 1 is C* in G,x]0,0];

(c) for every e € [0,0] the map l(-,€) is holomorphic on G,;
(d) one has

ol
1 = 0l + 500 {52000 | : 2 €l0.01} < o0
Remark 2.2 Note that, for a map [ € M,, or | € My,,, all the derivatives 929I(-,¢) :
G, — C? for € €]0,0] are holomorphic, where o € N3 and k£ € Ny. Similarly, all the 921 :
G, x [0,0] — C? are continuous functions of both variables. This follows from the Cauchy
integral formula and the continuity of /. Furthermore, the derivatives can be interchanged:

8;}85[(,5) = 85851(,5)



Definition 2.3 Suppose that | € M, ,,, and for € € [0,0] consider the family of maps P. :
G, — C* given by

Pe : T1 :x—|—€l(l’,€), Ty = (Q1ap1)7 Tr = (Q7p) (23)
We say that the family {P.} is E-symplectic, if there is a function h € My ,, such that
p1dq —pdg = dh(-,¢) (2.4)

and there exists a bounded function m : G, — C satisfying

hg,p,e) =em(q,p) + O(®) as e—0 (2.5)
and

Ooh

E(q,p, e) =m(q,p) +O(e) as =0 (2.6)

uniformly in (q,p) € G,.

Remark 2.4 (a) m is holomorphic in G,. To see this, note that 2%(-,¢) is holomorphic for
€ > ? by Remark 2.2. Since m is the uniform limit of fol %(q, p,te) dt as e — 0, it is holomorphic
itself.

(b) m satisfies

om . 8[1 om . 011
a—q(q,p) =13, (¢,p,0) + la(q, p, 0), o (¢,p)=0p o (¢,p,0), (2.7)

where [ = (ly,13). For, we observe from (2.5) that e~'h — m uniformly on G,. Therefore also
the derivatives converge, uniformly on compact subsets of G,. From (2.4),

oh ol ol oh ol ol
T =htp—telo, €7} Lpely =2
dq dq

: dq o Pop dp

Thus it remains to pass to the limit ¢ — 0 and use Remark 2.2. Relation (2.7) can also be
stated as

ly(z,0
Vi) = p a0+ (50 ) o=@ 29
(¢) One has o o
1 2
—— 0) + = 0)=0 2.9
aq(q,p, )+ ap(q,p, ) =0, (2.9)
as follows from % = %. Relation (2.9) implies that the Jacobian matrix DI(z,0) is Hamil-

tonian, i.e., it satisfies Di(z,0)*J + JDI(x,0) = 0, or equivalently, JDI(z,0) is symmetric.
Since G, is simply connected, we conclude that there is a holomorphic function £ : G, — C
such that JVE =1(-,0), i.e., (2.1) holds. Actually, (2.8) shows that we can take

E(w) = ll(xa 0)}? - m(x)v T = (Q7p)' (2'10)



(d) The relation JVE = [(-,0) yields

E E
dE:a—dq—l—a—dp:—lgdq—i—lldp.
dq op

Hence E(x) = E(xzo) + fpy(—lg dq + l; dp) for every path ~ that connects a fixed zy € G to x.
This observation makes the connection to the formula for £ given in [6] below (2.7).

(e) Condition (2.6) does not follow from (2.5), as the example

!
h(q,p,€) = em(q,p) + &*sin (g>

shows.

3 A Hamiltonian normal form

In this section we will give fully detailed proofs of some of the results in [6] and we will discuss
the assumptions that are needed for those proofs to work.

Definition 3.1 (The class #H,,) For p > 0 and o €]0,1] let H,, be the class of continuous
functions H : G, x R x [0,0] = C, H = H(z,t,¢), satisfying

(a) H is T-periodic in t;
(b) H maps reals into reals;
(c) for everyt € R and ¢ € [0, 0] the function H(-,t,€) is holomorphic on G,; and

(d) the gradient w.r. to x, VH =V, H(q,p,t,€), is a continuous function from G, xR x [0, 0]
to C? such that

HVHHp,a = Sup{HVH(7 ’7t78)||P te R7€ € [070-}} < 0.

Remark 3.2 Note that for a function H € H,, all partial derivatives 0¢H : G, x R x [0,0] —

C? w.r. to x are again continuous functions of all three variables, where as usual 0*H = %H
q p

for a multi-index o € N2. This is a consequence of the fact that the Cauchy integral formula

can be differentiated w.r. to z.

Definition 3.3 (The class 7-[p70) The class 7-N[p75, consists of those H € H,, with the addi-
tional property that

/TH(x,t,e)dt:O (3.1)

for x € G, and € € [0, 0.



Observe that if H € ’;f[pm then ¢ — fot H(x,s,¢e)ds is T-periodic.

For h € 7:2,)70 consider the (time-dependent) implicit Euler transformation ® : (z,t,¢) — y
with inverse (y,t,¢) — x = U(y,t,¢), x = (¢,p), ¥y = (q1, p1), which is given by

L oh L on
q1 q € 0 8p1 (Q7p1787€) S, b1 p € A aq (Q7p17876) S ( )

Solving the second equation, we obtain p; = pi(q, p,t, €), and the first equation then determines
¢ = q1(q,p,t,€). We will show that the map ¥ is well-defined and it is an admissible change
of variables, in a sense that is made precise in the following definition.

Definition 3.4 Let 0 < py < pand 0 < o1 < 0. A map ¥V : G,, xR x [0,0¢] = C?,
x=V(y,t,e), will be called an admissible change of variables, if it satisfies

(a) W maps reals into reals;
(b) U is T-periodic in t and V(y,0,e) = V(y,T,e) =y;
(c) U is continuous;

(d) for everyt € R and ¢ € [0,01] the map V(-,t,¢) is holomorphic in G,,, and for every
y € G,, and ¢ € (0,01 the map ¥(y,-,e) € C'(R);

(e) all admissible partial derivatives with regard to y and t are continuous functions of all the
arguments (y,t,€); and

(f) for everyt € R and € € [0, 01] the map V(-,t,¢) is a symplectic diffeomorphism from G ,,
onto its image.

Lemma 3.5 For 0 <r < p and 0 > 0 given, let 0y = min{%5",0}. Then, for each h € ﬁpﬁ
with T||Vh|,, <1, the equations (3.2) define a map

U:G. xR x|[0,0] — C?

that is an admissible change of variables and satisfies V(G,,t,e) C G, for every t € R and

e € [0,01]. Moreover,
(- e) = Il < T[|Vh],, (3-3)

for e €0, 04].

Remarks 3.6 (a) The simple geometry of G implies the following useful fact: if (¢, p), (¢1,p1) €
G, then also (¢,p1), (¢1,p) € G,. For this reason the equations (3.2) are well-defined.

(b) The condition T'(|VA]|,, <1 is just imposed to get a definitive value for o1. When we are

going to apply the lemma to an arbitrary h € ﬁp,g later, a rescaling argument (in ) can be
used.



Proof of Lemma 3.5: To solve the first equation in (3.2) we evenly split the interval [r, p]
into r < Ry < Ry < p, where Ry —r = Ry — Ry = p — Ry = 55~ Define

X ={qeC:|lmq| < Ry}

as well as 6 = min{%z",c}. For (q1,p1) € Gg, and ¢ € [0, 5] fixed, let

tOn
_ on ds.
F(Q) Q1+8\/0 apl(q7p17$7€) S

Then F : X — X is a self-map, since eT'||Vh||,, < e <& < 5 = Ry — R;. The condition
(3.1) in Definition 3.3 allows us to restrict to the time interval [0, T] From the Cauchy integral

formula we deduce ]
DAl g, 5 <

3
Vh| . =——|Vh
7, VA, = = IV,
This estimate applies in particular to the cross-derivative aanThpl and ensures that F is a con-

traction, due to
36

IVA]]

| A\

eT||D*hl|, , < ng (3.4)

1
2
The unique fixed point of F defines a continuous map ¢ = q(ql,pl, t,e) : Gr, x R x [0,0] = X
Then the definition of ¥ is completed by setting

po =

b

L oh
p=p1—¢ _(q<Q1ap1at7€)7pl7Sa€) ds.
0 9q

Note that
dist(p, [) < dist(p1, 1) +eT||Vh|,, < Ri+e < Ry + 6 < Ry,

and hence W is defined on G, x R x [0,5] and takes values in G, C G,. The bound

’\IJ(QMPDtag) - (qlapl)‘ < gTHVth,U (35)

is a direct consequence of the definition of ¥, and in particular (3.5) implies (3.3), since r < R;.
To prove the smoothness of W, we observe that q is defined implicitly by the equation F' = 0,
where

oh
F(q7917p17t75):q_QI_5/ a_((LphS?g)dS'
o OD1
The transversality condition

oF b 0%h

1= d 0

aq aqa l(qplvsg) S#
is satisfied, due to (3.4). Hence the implicit function theorem applies to yield that ¢ (and hence
p) verifies all the smoothness requirements for an admissible change of variables.

It remains to establish that W(-, ¢, ¢) is a symplectic diffeomorphism from G, onto its image,

for t € [0, 7] and € € [0, 04]. Using (3.5), which is valid for y = (¢1,p1) € Gg,, we deduce that
3€ 30’1 1

T h < -, 3.6
IVhl,, < <30 (39)

e
DV te)—1I| < T|IVh =
| (Q17p17 78) ‘ = Rl —r H Hp,a



where DV = D,V = D, )V is the Jacobian. This will allow us to interpret W(-,¢,¢) as a
Lipschitz continuous perturbation of the identity. Indeed, if we define I' = ¥ — [, then owing
to the convexity of GG, and from (3.6) we obtain the bound

Dl.t.e) =T te)| = | / Dlsy + (1~ 8)3.1,)] ds
< 2-Zly—9yl==lyu—1
< 4|y | 2Iy |

for y,y € G,. Hence the Lipschitz constant of I'(-,¢,¢) is < 1/2. This in turn implies that
U(-,t,¢e) is one-to-one on G,. According to (3.6), i.e., |D¥(q1,p1,t,e) — I| < 1/4, the matrix
DV has an inverse. Thus the inverse function theorem can be applied at each fixed y € G,
to deduce that V(-,t,¢) is a diffeomorphism from G, onto the open set V(G,,t,&) C G,. This
diffeomorphism is symplectic, because it has been obtained from the equations (3.2), which can
be derived from the generating function

t
S(Qaplat7€> =qp1 — 8/ h(qvplasag) ds. (37)
0

This completes the proof of the lemma. O

Corollary 3.7 Under the assumptions of Lemma 3.5, let 0 < 7 < r < p and denote by
U : y — x the map that is induced by (3.2). Let oo = min{oy, 5*} = min{&F, 5" o}. If
t€R and e € [0,09), then V(G,,t,¢) D Gs.

For the proof, the following result will be helpful, which is [?, Prop. 1.3, p. 50].

Lemma 3.8 Let X,Y be Banach spaces and suppose that U C Y is open. If ¥ : U —

U(U) C X is a homeomorphism, W~ is Lipschitz continuous with constant Lip(¥~1) < X, and
B,(y) C U, then

V(B (y)) D Bra(¥(y)).

Proof of Corollary 3.7: We are going to apply Lemma 3.8 with U = G,, ¥ = U(-,¢,¢) and
A = 2. Inspecting the proof of Lemma 3.5, we have shown in (3.6) that |[DV(y) — I| < 1/4 for
y € Gg, D G,, where we write ¥(y) = U(y,t,e). This yields

D) | = | Yo (1Y (Du(y)

Zzﬂ DU (y) — I < 2.

Next observe that if y € G, then B,_;(y) C G,, as a consequence of the geometry of G and
the choice of the norm. For y € G; we also have |y — ¥(y)| < € by (3.3), which means that
y € B.(¥(y)). Owing to Lemma 3.8 we obtain

y € B-(V(y)) C Birp2(¥(y)) C ¥(Br—2(y)) C ¥(Gr),

as claimed. O



Lemma 3.9 For 0 < r < p and 0 > 0 gwen, let H € H,, and h € 7-[p7g be such that
T\Vh|,, < 1. Defining o1 = min{%3", 0} as before, we consider the admissible change of
variables x = V(y,t,e) for (y,t,e) € G x R x [0, 01] according to Lemma 3.5. Then, for every
e € [0,04], the T-periodic Hamiltonian system

& =eJV H(z,t,e) (3.8)
is transformed (pulled back via V) into
y=¢eJV,K(y,t,e), (3.9)
where
K(y.t,e) = H(¥(y,t,€),t,e) — hlq(y,t,€), p1,t.€); (3.10)
recall that y = (q1,p1), ¥ = (¥, Uy) with ¥y = q and Uy = p. Moreover, K € H,,, and

IVE]|

r,01

)
S 3||VH||p,o'+§||Vh||p7o' (3]‘1)

Proof: Given a Hamiltonian system & = JV,H(x,t) and a change of variables z = U(y, t)
that is induced by a generating function of the type S = S(q, p1,t), the pull-back of the system
is y = JV,K(y,t), where

K(y,t) = H(V(y,t),t) + E(Q(

This is part of the classical theory of non-autonomous Hamiltonian systems, cf. [1]. It was
known early on, see [7, pp. 13-16] for an elegant exposition. In our case a generating function
S of WU is given in (3.7), and the formula (3.10) follows.

To show that K € H,,, we differentiate (3.10) to obtain

oh oh
K = (DV)*VH — Vg —
VK = (DV)'VH - 5 Va - 5

From (3.6) we know that |[DVU(y) — I| < 1/4 for y € Gg, D G,, which in turn yields |[D¥(y)| <
5/4. In particular, also |Vq| < 5/4, dropping the arguments. Therefore

Ui
410q op1

leads to (3.11). O

yat)aplat)'

(0,1)".

K| < 2|DW||VH |
VK| < 20UV H|+| 50| 1Vl + | 5

<2 IVH|+

Given H € H,, we define the function
e - _
= —/ H(z,t,e)dt and H=H —H.
T Jo

Then H € H,.» is autonomous and H e ﬁp,c,. Moreover, we have the bounds

IVAHl,, <|VH],, and [VH|,, <2|VH],,. (3.12)

10



Lemma 3.10 For 0 <r < p and 0 > 0 given, let H € H,, be such that T||V}~I||W <1. We

apply Lemma 3.9 with h = H. Then the admissible change of variables W : y — = and the new
Hamiltonian function K satisfy

1W(,e) =1l < eT|VH],,, (3.13)
IK = H|,, < 2T|VH|,,(IVH],,+[VH],,), (3.14)
1Ky, < 4TIVH],, (IVH|,, +IVHI,,), (3.15)

for e € [0,0q].

Proof: The first estimate (3.13) is a direct consequence of (3.3). To derive (3.14), we rewrite
(3.10) in the form

K(y,t,e)—H(y,e) = HW(y,t,e),e)—H(y,e)+ H(V(y, t,e), t,e)— H(q(y,t,€), p1.t,). (3.16)
Since ¢ = ¥, is just a coordinate of W,
W (y.t,e) = (a(y. 1), p)l = [p(y, t,€) = pi| < [W(y,t,e) —yl,
and hence it follows from (3.16) and (3.13) that

1K~ Hll,, < 2VH|,, 1V~ Il +2IVH]|,, ¥~ ]

< 2T|\VH|,,(IVH],, +IVH],,) (3.17)

T70-1 r701

Observing that

_ 1 [T _
K —Hl,, = Sup{‘f/ [K(y,t,e) — H(y,e)] dt :yeGr,ee[O,od}
0

< sup{|K(y,t,e) —H(y,e)| :y € G,,t € Re € [0,01]}

|K - A (3.18)

r,o1’

(3.14) is a consequence of (3.17). Concerning (3.15), it suffices to write K = (K — H)+ (H — K)
and to use (3.18) as well as (3.17). O

For the next result we are going to apply Lemma 3.10 N times.

Lemma 3.11 Let 0 < r < p and o > 0 be given. For every integer N > 1 and H € H,, so
that T||VH||,, < 1/2 there exists an admissible change of variables v = Uy (y,t,€), which is

defined on G, x R x [0,0n] for
oN = min {p—?‘ },

N
and which satisfies V(G,,t,e) C G, fort € R and € € [0,0y]. Furthermore,

&t =¢eJV,H(z,t,¢) (3.19)
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is transformed (pulled back via ¥y ) into
y=¢eJVyHn(y,t,e) (3.20)

for Hy € H, 5y, and moreover we have

||\I;N('7'75) _IHr S 257 (321)
~ 1
< (=)27¥ .
IVHN], . < (T)2 : (3.22)
= 3
H < — 2
HV NHT,UN — 2T7 (3 3)
= — 24 _ _

fory e G, and e € [0,0y].
First we are going to state an auxiliary result that will be useful in the proof of this lemma.
Lemma 3.12 Let (b)ocp<re and (cr)ocp<c for some K € N U {oo} be sequences of positive

numbers such that
b < abp_1(by_1 +cr—1) and o < bp+ 1

for 1 <k < K, where o > 0 is such that 4a(by + o) < 1. Then

1
bkgﬁbo and Ckgbo—i‘CO
for0<k<K.

Proof: We check that b, < 27%by and ¢, < b Zle 279 + ¢y by induction. Clearly this holds
for k£ = 0. For the induction step, by hypothesis we have

b1 < aby(by + ) < abp2 7 (bo27% + b + o) < 2abp27F (b + cp) < o2~ * Y,

and hence in particular

k k+1
Crar < brrr + cp < bp2” D 4 by Z 277 + ¢y = by Z 277 + ¢y,
J=1 j=1
which completes the argument. O

Proof of Lemma 3.11: We introduce a uniform partition of the interval [r, p| by

PN =T < pn-1 <...<p1 <po=Pp,

where pp — ppy1 = &+ for k= 0,..., N — 1. The midpoint of [py41, pi] will be denoted by 7441,
so that pr — Trp1 = Trg1 — Pry1 = S

12



Set Hy = H and observe that T||Vﬁg||p7g = T||V}~I||p,a <2T|VH]|,, < 1by (3.12) and
by assumption. Hence we can apply Lemma 3.10 for r replaced by r; to obtain an admissible
change of variables W(!) that is defined on G,, x R x [0,6;] and takes values in G,, where
o1 = min{’*, 22 o}. The transformed Hamiltonian is denoted by H; E Hrio1

and from (3.13)- (3.15) we have the bounds

1O e) = 1N, < eTIVH,,. (3.25)
V= Hol, oy < 22TVl (Il + IV oll,,), (3.26)
||H1||r1,61 S 4€T||VH0Hp,a'(||VH0“p,a'+||VH0Hp,cf)7 (327)

for € € [0, 1]. Since oy < &1, we may replace 61 by oy in all of the above. Next we are going
to derive some preliminary estimates on Hy and H;. Let

bo = [IVHol,, and co=|VHo,,

as well as ) B . B
by =|[VH, = VHol, , tIIVHil, ,, and ca =|[VH, , .
Note that by (3.12),
b < 2|VH],, < % and < |VH||,, < o (3.28)
Furthermore,
b < 12pN+J:T be_1(bg—1 +cx—1) and ¢ < b+ g (3.29)

are verified for k = 1. To establish this claim, note that by the Cauchy integral formula, (3.26)
and (3.27),

b= IV = Vol g+ 1Vl 0 € = (1 = Tl + 1)
< inV QoxT +4oxT) [VE |, (IVHoll,, + IV Aol ) = P by 4 co).
(3.30)
Concerning the bound on ¢, we have
o =||VH,, . <IVH = VH, ,. +VHl, ., <bi+co (3.31)

We are going to prove that this process can be repeated N times, if we consider the sequence
of nested domains

G, =G,y CG,, CG ...CcG,, CG, CG, CGp =G,

PN—1

We will find a sequence U*) k = 1,... N, of admissible changes of variables sending the
set G,, x R x [0,0x] into G, _,. These changes of variable W) and Hamiltonian functions
Hy € Hepon C Hp,on Will be constructed by finite induction w.r. to k € {1,..., N}. Suppose

13



that UMW ... W® and Hy,..., H; have already been obtained, with the additional property
that (3.29) holds, where
b, = [VHy, — VH;,_||

+ | VH,|| and ¢, = | VHy|

Pk,ON Pk,ON Pk>ON
for k> 1. With o = 12JPV+TNT we note that
40&(1)0 + Co) < 1,
since by (3.12) and our hypotheses
A8NonT _ 144NoNT T2Noy
Ey— (IVHoll,,, + IV Holl,,) < —— IVHl, < —— = <1

Hence Lemma 3.12 applies to yield b, < 27%by and ¢, < by + cy. In particular, it follows from
(3.28) that )
THVHk“pk,aN <Tb, <Thy <1,

and Lemma 3.10 is applicable, for r replaced by ry;; and o replaced by on. The resulting

admissible change of variables W(*+1 is deﬁned on Gy, X R x [0,6441] and takes values in

G, where 031 = min{#—* oy} = min{£5, on} = on. The transformed Hamiltonian is
denoted by Hy,1 € H and from (3.13)—(3.15) we deduce the bounds

Tk+1,0N?

o) = I, < TIVH, ., (3.32)
Vs = il g S 25T IVl 0 IV, 0 + IV, 00),  (3:33)
||Hk+1||7‘k+1,a'1\7 S 4€T ||VHk||pk7a'N (HV‘H’CHpk,o'N + ||VHk||pk’o'N)7 (334)

for e € [0, 0n]. Analogously to (3.30) and (3.31), it follows from the Cauchy integral formula in
conjunction with (3 33) and (3.34) that (3.29) holds for k + 1. Therefore the inductive process
to obtain the W) and Hj can be completed up to k = N.
For the estimate (3.22), note that by (3.29) and (3.28)
IV Hyll

- 1
= |[VHy| <by <27V < :szN.

TON PN,ON

The bound (3.23) is also a consequence of (3.29) and (3.28), since

3
CN<bo+Co<—

||V[_{N|| PNON = 9T

= [VHy]

TON
The desired admissible change of variables W is defined as the composition
Uy =TDo0@ o, oW

which is defined on G, x R x [0, on] and takes values in G,. To obtain (3.21), we are going to
use the formula

=z

Uy(e)— 1 = _1[(\1;0?) —DoTF o o U™( . e) + (TW(-, . e) —1).  (3.35)

1

i
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For k > 1 the composition W +D o ... o UV maps G, into G,, C G,, in y. Therefore due to
(3.32), with k + 1 replaced by k, and using (3.28),

[@® =D o w™* Vo 0 UM, o), < [[OW(,-e) = I||,, <eT|VH |

< eThyy < T2 Dy, < g2k,

Pk—1,0N

Analogously,

[N e = 1)), = [T () = 1)), < U e) — I, < e27 VD,

PN —
Using (3.35), the foregoing estimates in turn lead to
N-1

H\IJN('a '7€> - [H < Z H[(‘Ij(k) - [) © ‘Ij(kJrl) ©...0 ‘I](N)](v '7€>||r + ||\IJ(N)(7 '7€> - IHr

r —

i
I

=2

< g2~ (k=1 4 g0~ (N=1) < 9
1

b
Il

which is (3.21). To prove (3.24), we first note that by (3.33) and (3.28),

[Hipr — Hill, oy < NHior = Hill,,, o0
< 26T|VHl,, ., IVHl, 0y + IV Hll,, )
S 2€Tbk(bk + Ck)
< 2eT27%bo (27 by + by + co)
6
< 27F (=) e
< 24(7)e
For y € G, and € € [0, 0] it hence follows that
|ﬁN(y7€) - ﬁN(yv 0)|
N-1 ) N-1 ) ) )
| (Har0.9) = i) = 3 (s (0.0) = Ai(9.0)) + (Fo(y. ) — Fo(0.0))
k=0 k=0
N-1 ) ) )
< 2 Z ”Hk-l-l - HanaN + |H<y7€) - H(y7 0)|
k=0

12 = 24
< = 27k + |H - H <= H —H ,
< TZ +|H(y,e) = H(y,0)| < = e + | Hy.<) - H(y.0)

This completes the proof of Lemma 3.11. O

Now we are in a position to derive the “Hamiltonian normal form” with exponentially small
remainder. For our particular domain G = R x I, this is essentially the result that is announced
in [6, Remark 2, p. 134]. To prepare for the statement, we need to introduce a more relaxed
class of transformations, as compared to Definition 3.4.

15



Definition 3.13 Let 0 < p1 < p and 0 < 0y < 0. A map ¥ : G,, x R x [0,0¢] — C?,
x = V(y,t,e), will be called a change of variables, if it satisfies

(a) U maps reals into reals;
(b) U is T-periodic in t and V(y,0,e) = V(y,T,¢e) = y;

(c) for every € € [0,01] the map V(-,-,¢) is C' in the real sense, and for every t € R and
e €[0,04] the map V(-,t,¢) is holomorphic in G,,; and

(d) for everyt € R and e € [0,01] the map V(-,t,¢) is a symplectic diffeomorphism from G ,,
onto its image.

Note that we are not assuming any property of continuous dependence w.r. to the parameter
€. This is in contrast to the previous notion of an admissible change of variables, introduced
in Definition 3.4.

Theorem 3.14 For 0 < r < p and o > 0 given, let H € H,,. Then there exist C, D > 0
(depending upon T, r, p, HVHHp,U) with the following properties. There is a change of variables
x = V(y,t,e), which is defined on G, x R x [0, o] and which satisfies V(G,,t,e) C G, fort € R
and € € [0, 0], such that

& =eJV, H(x,t¢) (3.36)

is transformed (pulled back via V) into
j=e(JVN(y,e) + JV,R(y,t ¢€)), (3.37)

for functions N' € H,., and R € ﬁr,g. Furthermore,

V(- e) =1, < Ce, (3.38)
IV,N (e, < G, (3.39)
IVyR(,e)ll, < CePrs, (3.40)
N(y,e) =N(y,0) < Ce+|H(e)—H(,0),, (3.41)
fory € G, and € € [0,0]. In addition,
N(y,0) = H(y,0). (3.42)
Proof: We are going to show that
C= maX{Z)\, % £A2} and D = /i4_4;

have the asserted properties, where A = 2T[|VH||, ;. The cases H = 0 or ¢ = 0 are trivial,

so in particular we may assume that A > 0. We rewrite (3.36) as & = éJVxﬁ(x, t,€), where
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¢ =X €0,6] for 6 = Ao and H(z,t,&) = A" H (x,t, \"'&). Tt follows that H € H, satisfies
2T||VH||,, = 2TA\"Y|VH]|,, = 1. Thus we may apply Lemma 3.11 to H and with

p—r
N= |22
T2)\e
Hence there exists an admissible change of variables © = \if(y,t,é), which is defined on G, x
R x [0, 0] for

o = min {70}

Oy =min 7o, G g
and which satisfies U(G,,t,e) C G, for t € R and € € [0, 5y]. Furthermore, & = éJV,H (,t,£)
is transformed into §y = £JV K (y,t,é) for K € H,5,, and in addition we have

3
T‘O'N _— 2T

N R . 1 B
19 2) = 1, <26, VK., < ()27 VK]
_ R _ 24 - R —
[K(y.€) — K(y,0)] < == &+ [H(y.€) — H(y,0)],
for y € G, and € €]0,6y]. Define
U(y,t,e) = U(y,t,he), N(y,e) =AK(y,\e) and R(y,t,e) = AK(y,t, \e)

fory € G,,t € Rand ¢ €]0,0]. Wealso put W =TI fore =0. If ¢ €]0,0], thené = e < Ao =07
and moreover

:—A5N<—>\< ’”):p_r

72)\e 72N’

so that ¢ €]0,0x]. Accordingly, the first few claims are straightforwardly verified; this includes
(3.38), (3.39) and (3.41). Concerning (3.40), we use the above estimate on VK to get for
e €]0, 0]

IV,R(, o), = )\IIVf((-,-,é)HT,S(%) 2N = (2;)2 N“)S(Q;)Q‘;m?
_ (?) 4t < @) .

which completes the proof of (3.38)—(3.41).

Finally, with regard to (3.42), we observe that in all the previous lemmas we have ¥ = [
for e = 0. Then we can define N'(y,0) = H(y,0), since Hy(-,0) = H(-,0) for each k throughout
the iteration. O

Corollary 3.15 Under the assumptions of Theorem 3.14 let 0 < 7 < r < p and denote by
U : y — x the change of variables that has been constructed there. Let o, = min{ 120,0}
t€R and e € [0,0,], then V(G,,t,e) D Gy.

Proof: The argument is similar to the one for Corollary 3.7. |
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4 Application to maps

Here we will prove Theorem 1.1, following the approach outlined in [6]. First we realize the
map P. as the Poincaré map of a periodic Hamiltonian system and then we are going to apply
the previous results from Section 3; see [8, p. 13/14] for general information and additional
references in a more abstract context.

We start with an auxiliary result on the construction of a Hamiltonian function from an
exact symplectic isotopy.

Lemma 4.1 Assume that ® : G x [0,1] — R? is C™ and that ®(-,t) : G — G(t) = (G, 1) is
a diffeomorphism for every t € [0,1]. The inverse map is denoted by V(-,t) and we will also
write

X:(D(Jf,t), x:\II(X,t), ZL’Z((],p), X:(Q7P)7 (D:(,F,g)

Assume that

PdQ —pdq = dn(-,t) (4.1)
for a C*™-function n: G x [0,1] — R. Then
TV e (X, 1) = f;f(<p()( 1.1, (4.2)
where 9F 9
Pau(X, ) = - (W(X,),0) GU(X, ),1) — ZHW(X, 1), 1) (4.3)

ot

18 defined on

D={(X,t):t€[0,1,X € G®)}.

Remark 4.2 (a) Note that G(t) C R? is open and D is diffeomorphic to G x [0, 1] via the map
(z,t) — (®(x,t),t). Moreover, X(t) = ®(x,t) is a solution to X (t) = JVhau (X (t),1).

(b) Lemma 4.1 remains valid, if ® and n are C*', and the cross-derivatives
e 90 o’n 9
otor Oz dt’ Otdx  Oxot’

exist, coincide and are continuous functions of (x,t).

(c) If ®(-,t), U(-,t) and n(-, t) have holomorphic extensions, then also the identity (4.2) can be
extended.

(d) We refer to [5, Thm. 6.2.1] for a similar result.

Proof of Lemma 4.1 : The identity (4.1) holds in the space of one-forms on G. Differentiating
w.r. to t, we obtain

aF () =)
It follows that
(o) g (o) T an
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on GG. To pull back this identity under the map V(-,¢) : G(t) 2 X — x € G, denote h(x,t) =

W (2, 1) G(w,t) — G 91 (x,t). From (4.4) we thus deduce

dhaux (1) = d(ho V) =d(¥"h) = ¥*(dh) =
_ (%T o\I/)dP— (%_g o\I/)dQ

which is equivalent to (4.2). O

dg - Zar

v (G 49~ 5 )

Lemma 4.3 Let G = R x I C R? for an open and bounded interval I C R. Suppose that
l e Mi,., and for e € [0,0] consider the family of maps P. : G, — C? given by

P.: xy=x+c¢l(z,e). (4.5)

Let the family {P.} be E-symplectic and fit 0 < r < 7 < p. Then there exist 6 €0,0]
and a Hamiltonian Hu.. € Hps such that for e € [0,6] the Poincaré map (time-1-map) of
t = eJVHu(x,t,€) is P-, restricted to G,. Furthermore, there exists a constant Cyux > 0
such that

’Haux(x7 t? 8) - Haux(a;” t? 0)‘ S CauX€ (4'6)
for x € Gy, t € [0,1] and € € [0,6]. The constant Caux will depend upon p, o, v, 7, ||ll|, ,,,
the interval I, [|h|, ,, and sup.qj le"1(%2(-,e) — m)||, (cf. the notion of E-symplecticity,
Definition 2.3).

Proof: Let x : [0,1] — [0, 1] be a strictly increasing C*°-function such that x(0) =0, x(1) =1
and x(0) = x(1) = 0. Define

O(z,t,¢) =z + ex(t) Uz, ex(t)) (4.7)

and

n(x,t,e) = h(x,ex(t)).
For fixed e we intend to apply the relaxed version of Lemma 4.1, as outlined in Remark 4.2(b),
(¢). The condition (4.1) holds, due to (2.4) in Definition 2.3.

Our first aim will be to construct the inverse W. Define 71 = 1(p + 7) and fix oy €]0, 0] so

that
1 1

ol pe < 5o —m1) = glo—7). (4.8)
We are going to prove that ®(-,t,¢) is a diffeomorphism from G,, onto its image, if ¢ € [0, 1]
and € € [0,01]. For ¢ = 0 we have ®(x,t,e) = z, so we can assume that ¢ > 0. Using the
Cauchy integral formula, one gets

8l 01 1
. l < [ < -
|, < T e, < ST, <
Hence the matrix 5% 51
M = =1 — 4.
S @,,) = I+ ex(t) 5 (@, ex(t) (49)

19



satisfies [M — I| < 1. As a consequence, M has an inverse and therefore ®(-,t,¢) is a local
diffeomorphism from G, onto its image, which is contained in G's the latter by (4.8). If
T1,T2 € Gm; then

r+p7

Lol
(D21, t,2) — D, t,2)| = xy—m+fﬂﬂ</1a#Mq+ﬂ—Aﬂ%mﬁ»d0@q—@)
0
> | 1
= $1—€E2|—§|$1—$2|
- 2 1 210

note that here the convexity of G (and hence G,,) has been used. It follows that ®(-,¢,¢) is
one-to-one on G,, and its inverse ¥(-,¢,¢) has Lipschitz constant 2. Observe that (4.8) also
implies that
1 . 1 .
ol ,. < Z('O —7) = 5(7“1 — 7).
Arguing analogously to Corollary 3.7, it follows that

CI)(G”, t, 8) D G;

for t € [0,1] and € € [0, 01]. The Hamiltonian function A,y from Lemma 4.1 will be defined on
the domain

D={(X,t,e) : t €[0,1], X € B(G,,,t,),e € [0,01]} D Gz x [0,1] x [0, 1]. (4.10)

Next we choose the number ¢ €]0, 04] so that

~

é—HlHl,p,U <r-=r,

which in turn implies that
d(G,,t,e) C Gy (4.11)

for ¢t € [0,1] and € € [0, 6], and moreover we have ®(z,t,¢) = P. ) (x) by definition.

From now on we consider ® on G,, x [0,1] x [0,6] and the inverse W(-,¢,&) = ®(-,t,¢)"!
has domain ®(G,,,t,¢). Since ® is continuous in its three arguments, the same can be said
about V. In addition, by the inverse function theorem, ¥ is holomorphic in the first variable.
Let € € [0,6] be fixed. We will prove that ®(-,-,¢) is C' in G,, x [0,1]. Moreover, the cross
derivatives do exist, they are continuous and coincide. To see this, we can once again restrict
our attention to ¢ > 0. Since | € My, the functions I(,£) and 2.(-,¢) are holomorphic.
Hence, by Cauchy’s integral formula,

H@_ . Spjr (4.12)
H£1 . Spjr (4.13)
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Note that in (4.12) the case € = 0 is admissible. By definition, ®(-,-,¢) is C* in G,x]0, 1]. For
t =0, ®(2,0,¢) = z and %2(z,0,¢) = I. From (4.12) and (4.9) we conclude that Z2(-,-, ) is
continuous in G,, x [0, 1]. To analyze the derivative w.r. to ¢, we observe that

20 o 2ate) —®(,0e) @l(:c,ex(t)) =0,

ot t50+ t t—0+

where we used that x(0) = x(0) =0 and [|{|| ,, < co. For t >0,

0P ol

o (@ te) = ex(t) Uz, ex(t)) +ex(t) - (@, ex(t) |- (4.14)

Thus the continuity of S2(-,-,¢) is a consequence of ||l 1,0 < oo. To summarize, so far we
have shown that ®(-,-, ) is C' in G,, x [0, 1]. For the cross derivatives, from %—‘f(m, 0,e) =0 we
deduce that 22 (z,0,¢) = 0. Also, using (4.9) and (4.12),

Ox0t
azq) ; a_i(x’t’g) B a_i(xv Oa 5) . X(t) @l
519, (& 0-€) = lim 2 — =¢ lim == o (2, ex(t)) = 0.

Hence the cross derivatives exist at t = 0 and they coincide. The continuity of these derivatives
is obtained after differentiating (4.9) w.r. to ¢ in G,, x]0, 1]; again the bounds (4.12) and (4.13)
need to be used here. Both functions [ and h belong to the class M, ,,. Thus the previous
discussions also apply to the function n(-, -, €).

Altogether, we see that the relaxed version of Lemma 4.1 can be used to deduce the existence
of a function haux = haux(X, ¢, €), which is defined on D from (4.10), with the stated properties.
In particular, hau(-,t,¢) is well-defined on G;. Moreover, if € G,., then X(t) = ®(x,t,¢)
solves

X(t) = IVhaux (X (2),t,€) (4.15)
by Remark 4.2(a), and also € € [0, 6] yields X (¢) € G; for t € [0, 1] due to (4.11). The Poincaré
map of (4.15) is G, 3 z +— ®(x,1,e) = x +¢el(x,¢) = P.(x), i.e., the original map restricted to
Gr.

To express ha.x more explicitly, we recall from the previous computations that

L { (O oxO) +xO) @) <t tedos]
ot 0 : t=0ore=0
and similarly
on _J ex(@) Ih(z,ex(t)) : te€)0,1],e €]0,6]
E(x,t,s)— { 0 . t=0o0re=0 (4.17)

In the notation of Lemma 4.1 we have

Fla,t,e) = q+ex(t) iz, ex(t)), G(x,t,8) =p+ex(t) la(w,ex(t)),
where x = (¢,p), and | = (I3, [3) are the components. Also observe that by (4.3)

haux (X, t,€) = aa;j(\lf(X,t,s),t, )GV (X, t,e),t,e)— %(\D(X,t,e),t,z—:).
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From x(0) = x(0) = x(1) = 0 and (4.17) it follows that h..(X,t,e) =0fort =0ort =1 or
€ = 0. Moreover, if t # 0 and € > 0,

éhaux(X,t,a) = x(t)(n(ex(t) +ax(t)%(x,ex(t))) (p+ ex(t) o, 2x(1)))

oh
X0 9 ex(0), (1.18)
and we write X = (Q, P) as well as x = W(X, ¢,¢). To pass to the limit ¢ — 0 in (4.18), we first
recall that W is continuous on G; x [0,1] x [0,6] and ¥(X,¢,0) = X. From (2.6) in Definition
2.3 of an E-symplectic family we know that oh oe(r,e) — (:U) as ¢ — 0 uniformly in z € G,.

Thus (4.18) yields
1
hH(l) g haux(Xa t> 5) = X(t) [ll(Xa O)P - m(X)]

and this limit is uniform in X € Gy, t € [0, 1].
Now we define
L haux (X, t,€) . € €]0,6]
Haox (X, t,e) = . : (4.19)
XO) (X, 0P —m(X)] : e=0
for X € G; and t € [0, 1], and we are going to verify that H,,, has the desired properties. From
the above discussions we know that H,, 1s continuous and

Hax(X,0,6) = Haux (X, 1,6) = 0. (4.20)

As a consequence, H,,, can be extended to G; x R x [0,6] in a T" = 1 periodic fashion.
First we need to prove that Hay € Hs s, cf. Definition 3.1. Here (a)-(c) in this definition are
straightforward to check. Concerning (d), for € > 0 we know from (4.2) that

18<I>

JVH,w(X,t,e) = 5

= (WX, 1,8),1,¢).

Thus, by (4.16),
lir% JV Hoo( X, t,e) = x(t) 1(X,0),
E—

and this limit is uniform in G; x R. On the other hand, the definition of H,,, and (2.8) implies
that

IV Hp(X,1,0) = X(t)J [PWl(X’ 0) = Vm(X) + ( zl()g, 0) )]

= w0 () ) = oo,

This shows that V x H,.x is continuous in all of its arguments. Then the bound on ||V XHauXHﬂ 5
is not difficult to derive from (4.14).

Lastly, we have to establish (4.6). In view of the definition of H,,, and (4.20), it suffices to
consider X € Gy, t €]0,1] and ¢ €]0, 7). From (4.18) we deduce

| Haux (X, 1, €) — Haux (X, 1,0)| < ”XHoo (R1+ Ry + Rg),
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where

Ri = I ex(0)p — b(X,0)F,
Re = [m(x) = Zeex)]

ol

Ry = ex(t) [z, ex(O)] la(z, ex ()] + ex(?) | 5 (2, ex(t)) | Ip]

+e2x(1)? %(m, 5)((75))‘ [la(z, ex(t))]-

For Ry, we observe that by definition of X = ®(z,t,¢), see (4.7),

[ X — x| = ex(@) [Il{z,ex(®)] < e U],
Also note that = = U(X,t,¢) € G,, by construction. Therefore

2¢e 2¢e 2
= X[ < a6 1120 40 < 1110

1,6 p—T p—T
(4.21)

%
Oz

i, ex(8) = L (X, ex ()] < 2|

Since | € M, also
(X, ex(t) = UX,0) < U],
is verified. At this point we need to invoke the geometry of G = R x I. If I is contained in

[—R, R], then |P| < R+7 < R+paswellas |p| < R+r < R+p,dueto X € Gy and z € G,,.
Thus altogether, using the foregoing estimates,

[Baf < [l ex(d)] [p = Pl (@, ex(t) = (X, ex (@) [P] + [L(X, ex(t) — L (X, 0)| [P

2(R+ p)e

2 2
< ey, + 12110 + (B4 p) U] 50 €5

which is acceptable. For R, we can argue as follows. Since also h € M ,,, we obtain as in
(4.21) that

Ooh

o ex(®) — S ex(0)] < -2

pP—"

oh 2e
SO Ml € ==l 1]

r1 p—T

observe that ex(t) €0, 0] for € €]0,6] and ¢ €]0,1]. If we combine this estimate with (2.6),
then Ry < C¢ is found. Finally, from [ € M, ,, and |p| < R+ p, also R3 < Ce¢ is obtained.
This completes the argument for (4.6), and hence the proof of the lemma. O

Now we are in a position to complete the

Y

Proof of Theorem 1.1: Let r; = £ and 7, = 2

0 <ry <ry <p. We deduce that there exist o,
that for € € [0, 4] the Poincaré map of

. Then Lemma 4.3 can be applied to [ and
0,0 and a Hamiltonian H,,x € #,, 5, such

MM e

T =eJVHux(z,t ) (4.22)
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is P., restricted to G,,. In addition, one can find a constant Cy,x > 0 so that
’Haux(x’t7€) - Haux(xata 0)‘ S Caux5 (423)

forz € G,,,t €[0,1] and € € [0, 01]. The constant Cy,uy depends upon p, o, HlHLp,U, the interval
L, 1Al and sup,cio, e (2 (-, ) — m),.

Next we are going to invoke Theorem 3.14 to H,, for the parameters r = ry, p = ry,
o =0y and T = 1. By this result, we can find C, D > 0 (depending upon p and ||V Hayl|,, ,,)
with the following properties. There is a change of variables © = I'(y, ¢, &), which is defined on
Gy, X R x [0, 01] and which satisfies I'(G,,,t,¢) C G,, for t € R and ¢ € [0, 0], such that (4.22)
is transformed into

y=¢e(JV,N(y,e) + IV, R(y,t,€)), (4.24)
for functions N € H,,,, and R € H,,,,. Furthermore,
IV, NG, < C, (4.25)
IV,R(. o), < Ce P, (4.26)
N(y,e) =N(y,0)] < Ce+ [[Huux("€) = Haux( 0)]l,,. (4.27)
for y € G,, and € € [0, 04]. In addition,
N(y,0) = Haux(y, 0) (4.28)

is verified. According to the definition of H,, in (4.19) and by (4.18), one sees that it is possible
to bound ||V Haux,, ,, in terms of [/I[, , . the interval I and |[A]; , -

For later reference we first discuss the connection between N and the function E from
Theorem 1.1, cf. (2.10), and we also consider the variation of N' w.r. to e. From (4.28), the
definition of H,u(y,0) in (4.19) and (2.10),

N (y,0) = Haux(y,0) = /0 X(#) [L(y,0)P —m(y)]dt = 1(y,0)P —m(y) = E(y),  (4.29)

where y = (Q, P). Using (4.27) and (4.23), we moreover find for y € G,, and ¢ € [0, 0y] that
N (y:€) = N(y,0) < Ce + [[Hanx (-, 8) = Haux (-, 0)[,,, < Che, (4.30)

where the constant € = C' + Cuux depends upon p, o, ||, ,,, the interval I, [|h], ,, and
SUD.¢)0,0] le"1(%:(-,e) — m)||, ; henceforth all constants are allowed to depend upon those pa-
rameters.

Nowwedeﬁnerg,:2%:%andm:%:gtoobtain0<r4<7“3<r2<r1 < p.
According to Corollary 3.15 there is o9 €]0, 0] such that

G, CI(G,,, t,¢)

for t € R and € € [0, 05]; in particular, T'(-, ¢,€)"! : G, = G,, is well-defined.
Let ®(x,t,¢) denote the solution to (4.22) satisfying ®(z,0,e) = x. Similarly, ¢(y,t,¢) will
be used for the solution to (4.24) so that ¢(y,0,¢) = y. Now we select o3 €]0, 05] such that
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O (xz,t,¢) is well-defined on G,, x [0,1] x [0, 0] and takes values in G,,. The solutions of the
two systems are connected by the formula

d(y,t,e) =YD (y,0,¢),t,¢),t,e) =T H®(y,t,¢),t,¢)

fory € G,,, t € [0,1] and € € [0,03]. Letting ¢ = 1 and taking into account condition (b) in
Definition 3.13, it follows that

o(y,1,e) = IH(®(y, lLe),l,e) = ®(y,1,¢) = P.(y).

In other words, P. is also the Poincaré map of (4.24), at least in the domain G,,.
Now we are going to consider the autonomous system

y=eJV,N(y,e), (4.31)

denoting by é(y, t,e) the associated flow. Using (4.25), we deduce that there is & €0, 03] with
the property that ¢(y,t,¢) is well-defined on G,, x [0,1] x [0, 6] and moreover

~

o(Gr, x 10,1] x [0,0]) C G,,.

The system (4.31) is Hamiltonian, with Hamiltonian function eN(-,¢€). In particular, if P =
¢(+,y,1) denotes the Poincaré map of (4.31), then

N(P.(y),e) =N(y.e), y€G,, c€(0,6]. (4.32)

To estimate the difference between ¢ and <;A5, we first observe that for ¢ € [0, 5],

1 1
IVN(,e)ll,, <

ro —

ID*N (o), < C = Ch,

r3 — T2 rs — T2

where we have once again resorted to (4.25). If (y,t,e) € G,, x [0,1] x [0, 5], then the systems
(4.24), (4.31) in conjunction with (4.26) yield

‘gb(ya tv 8) - &(?ﬁ t? €)| = £ ‘ /0 [vaN(¢(y7 37 5)7 5) + vaR(¢(y> S? 5)7 87 5)

~

— IV N(9(y,s,€),¢)] ds
< C’gs/t lo(y, s,€) — quS(y, s,€)|ds + Cee P/=.
0
Hence from Gronwall’s inequality,
|6y, t,6) — By, t, )| < Cee /= e,
For the Poincaré maps, i.e., at t = 1, we deduce
P-(y) = B(y)] < Csee™P, ye Gy, e€0,0], (4.33)

where C5 = Ce®?9.
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Now we are ready to complete the proof. Let (z,,)i<,<n = (P(20))o<n<n Pe a real forward
orbit piece of P. so that z, € G for all 0 < n < N. Since G C G,,, all the previous properties
can be used along the orbit. From (4.29) and (4.30) we get

|E(zn) — E(@o)| < [E(zn) = N(zn, )| + [N (2, €) — N (20, €)| + [N (20, 8) — E(20)]
= |N(xn’ ) - (xm )| + |N(xn7 ) (x07 )| + |N(‘T07 ) N(‘T070)’
< 2Cie+ [N (xp,e) — N(x0,2)|.

In addition, (4.32), (4.25) and (4.33) lead to

N (zn,€) = N(zo,€)| < i: N (Pe(x),€) = N(zo, €)]

= S IN(P(w),) ~ N(Paw0). o)

< C’anee’D/E.

Thus the claim follows if we define €' = 2C; + CCy and D = D. O

References

[1] ArRNOLD V.I.: Mathematical Methods of Classical Mechanics, 2nd edition, Springer,
Berlin-New York 1989

[2] BENETTIN G.& GIORGILLI A.: On the Hamiltonian interpolation of near-to-the-
identity symplectic mappings with application to symplectic integration algorithms,
J. Statist. Phys. T4, 1117-1143 (1994)

[3] KuNzE M. & ORTEGA R.: Non-periodic twist maps, in Stability and Bifurcation Theory
for Non-Autonomous Differential Equations, Eds. Johnson R. & Pera M.P., Lecture Notes
in Mathematics Vol. 2065, Springer, Berlin-New York 2013, pp. 265-300

[4] Kunze M. & ORTEGA R.: Growth rates of orbits in non-periodic twist maps and a
theorem by Neishtadt, preprint 2020

[5] MEYER K. & OFFIN D.: Introduction to Hamiltonian Dynamical Systems and the N -Body
Problem, 3rd edition, Springer, Berlin-New York 2017

[6] NEISHTADT A.I.: The separation of motions in systems with rapidly rotating phase,
J. Appl. Math. Mech. 48, 133-139 (1985); translated from Prikl. Mat. Mekh. 48, 197-204
(1984)

[7] POINCARE H.: Legons de Mécanique Céleste, t. I, Gauthier-Villars, Paris 1905

[8] TRESCHEV D. & ZUBELEVICH O.: Introduction to the Perturbation Theory of Hamilto-
nian Systems, Springer, Berlin-New York 2010

26



