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1 Introduction

These are the (somewhat extended) lecture notes for four lectures delivered at the spring school
during the thematic programme “Mathematical Perspectives of Gravitation beyond the Vacuum
Regime” at ESI Vienna in February 2022. The main reference for the lectures is [27], which has
some overlap with [18], although we wanted to emphasize the action-angle variables approach and
put a main focus on the Birman-Schwinger principle, as is done in [27]. Since the lectures have
been aimed at newcomers, some parts of them cover basic background material. The author is
indepted to the organizers H. Andréasson, D. Fajman, J. Joudioux and T. Oliynyk for making
the programme happen despite the Corona virus pandemic, and thanks are due to the ESI for
providing a very stimulating working atmosphere. The author is also grateful to the referees for
many suggestions that helped to improve these notes.

2 The Birman-Schwinger principle in quantum mechanics

The Birman-Schwinger principle is a widely used and well-established tool in mathematical quan-
tum mechanics. It was introduced through the independent works of Birman [6] and Schwinger
[44], with the idea of counting, or at least estimating, the number of eigenvalues of Schrödinger
operators on L2(Rn). To be more specific, consider (only formal at this point)

H = −∆ + V ;

to avoid introducing negative parts we will assume that V ≤ 0.

Theorem 2.1 The following assertions hold:

(a) −e is a (negative) eigenvalue of H if and only if 1 is an eigenvalue of the Birman-Schwinger
operator

Be =
√
−V (−∆ + e)−1

√
−V . (2.1)

Furthermore,

(b) if φ is an eigenfunction of H for the eigenvalue −e, then ψ =
√
−V φ is an eigenfunction of

Be for the eigenvalue 1;

(c) if ψ is an eigenfunction of Be for the eigenvalue 1, then φ = (−∆ + e)−1(
√
−V ψ) is an

eigenfunction of H for the eigenvalue −e.
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Proof : See [30, Section 4.3.1]. If Hφ = (−∆+V )φ = (−e)φ, then we define ψ =
√
−V φ to obtain

Beψ =
√
−V (−∆ + e)−1

√
−V
√
−V φ =

√
−V (−∆ + e)−1(−V )φ =

√
−V φ = ψ.

Conversely, if Beψ = ψ holds and if we put φ = (−∆ + e)−1(
√
−V ψ), it follows that

(−∆ + e)φ =
√
−V ψ =

√
−V
√
−V (−∆ + e)−1

√
−V ψ = (−V )φ,

and hence Hφ = (−∆ + V )φ = (−e)φ, which completes the argument. 2

The operators Be enjoy a number of favorable properties. For instance, they are non-negative
Hilbert-Schmidt operators (if V decays sufficiently fast and n ≤ 3), and in particular they are
compact. Furthermore, their eigenvalues can be ordered: λ1(e) ≥ λ2(e) ≥ . . . → 0 and the
eigenvalue curves are decreasing in e, in that ẽ ≥ e implies that λk(e) ≤ λk(ẽ) for all k. Also the
number of eigenvalues of H less than or equal to −e agrees with the number of eigenvalues of Be

greater than or equal to 1, counting multiplicities in both cases; cf. [30, Figure 4.1, p. 78] for an
illustration. Even more ist true: not only the number of eigenvalues of H can be bounded, but
also eigenvalue moments like

∑
j | − ej|γ, where the sum extends over all negative eigenvalues −ej

of H. This fact lies at the heart of many important results in the field. Let us only mention here
the Lieb-Thirring bound ∑

j

| − ej| ≤ L1,3

∫
R3

|V (x)|5/2 dx

in three dimensions for an absolute constant L1,3 > 0 and V ∈ L5/2(R3). It is used in those authors’
proof of the stability of matter [31], which has found many generalizations [30], and which is much
easier to follow than the original argument by Dyson and Lenard [8].

Good general textbooks that cover the Birman-Schwinger principle are [30, Section 4.3], [41,
45, 46] or [47, Section 7.9].

There is also a large number of further applications of the Birman-Schwinger principle, like
to problems including complex-valued potentials; to Dirac operators; to the Bardeen-Cooper-
Schrieffer model of superconductivity; to the linearized 2D Euler equations, to list only a few. See
[27] for more references.

3 Galactic dynamics: The Vlasov-Poisson system

Galactic dynamics generally refers to the modeling of the time evolution of self-gravitating matter
such as galaxies, or on an even larger scale, clusters of galaxies. In mathematical terms, the
resulting system is an N -body problem, with N quite large: N ∼ 106 − 1011 for galaxies and
N ∼ 102 − 103 for clusters of galaxies. This N -body problem consists of coupled Newtonian
equations, one for each individual object (the ‘objects’ in a galaxy are stars, those in a cluster of
galaxies are galaxies), and to study the collective behavior of the system. While results may be
obtainable numerically in this way, the mathematical complexity of even the three-body problem
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prevents one from rigorously addressing deeper questions (concerning for instance galaxy formation
or stability) for such stellar systems. Therefore, from the early days of the field, a statistical
description of the evolution has been proposed, by Vlasov [50] in 1938 for plasmas (in this case
a related equation occurs) and by Jeans [24] in 1915 for gravitational systems; see [19] for an
interesting historical discussion of the origins of the equation. It is also known as the ‘collisionless
Boltzmann equation’, which refers to the fact that collisions among the stars or galaxies are
sufficiently rare to be neglected. A standard source of information on galactic dynamics is [5].

The time evolution of such a system is then governed by a distribution function f = f(t, x, v)
that depends on time t ∈ R, position x ∈ R3 and velocity v ∈ R3. The quantity

∫
X dx

∫
V dv f(t, x, v)

should be thought of as the number of objects (henceforth called ‘particles’) at time t, which are
located at some point x ∈ X ⊂ R3 and which have velocities v ∈ V ⊂ R3. Each individual particle
follows a trajectory (X(s), V (s)) in phase space R3 × R3 such that (X(t), V (t)) = (x, v) at time t
and

Ẋ(s) = V (s), V̇ (s) = −∇xU(s,X(s)), (3.1)

where F = −∇xU denotes the Coulomb-type force field that is collectively generated by all par-
ticles. The requirement that f be constant along the curves defined by (3.1) then leads to the
relation

0 =
d

ds
[f(s,X(s), V (s))]

= ∂tf(s,X(s), V (s)) + V (s) · ∇xf(s,X(s), V (s))−∇xU(s,X(s)) · ∇vf(s,X(s), V (s))

(3.2)

for all s. Evaluated at time t, this yields

∂tf(t, x, v) + v · ∇xf(t, x, v)−∇xU(t, x) · ∇vf(t, x, v) = 0 (3.3)

for all (t, x, v), which is usually called the Vlasov equation (despite the historic inadequacy of this
terminology). The next step is to express the force field F in terms of the distribution function
f . Since we are aiming at describing gravitational binding, we need to have F ∼ −∇xVC for the
Coulomb potential VC(x) = − 1

|x| at large distances. This suggests to use the field F = −∇xUf
induced by the Poisson equation

∆xUf (t, x) = 4πρf (t, x), lim
|x|→∞

Uf (t, x) = 0, where ρf (t, x) =

∫
R3

f(t, x, v) dv (3.4)

denotes the charge density induced by f . Observe that
∫
X dx ρf (t, x) represents the number of

particles at time t, of any velocity, which are located at some point x ∈ X . Then

Uf (t, x) = −
∫
R3

ρf (t, y)

|x− y|
dy (3.5)

is Coulomb-like as |x| → ∞.
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Initial data f(0, x, v) = f0(x, v) at time t = 0 have to be specified for f only, since then (3.5)
determines the initial data Uf (0, x). We will exclusively be interested in classical solutions of (3.3),
(3.4), whose global-in-time existence is ensured, under reasonable assumptions on f0.

Theorem 3.1 ([38, 43] and [32]) Let f0 be continuously differentiable and compactly supported.
Then the Vlasov-Poisson system (3.3), (3.4), (3.5) has a global and unique solution.

For a mathematical overview of the system and more background material the reader may wish
to consult [12, 36, 42]. Throughout the course we will adopt a dynamical systems viewpoint: Given
some initial data f0, we are interested in what happens to the resulting solution f(t) (that lies in
a space of functions depending on (x, v)) as t→∞?

4 Spherically symmetric solutions

Almost exclusively we will be dealing with spherically symmetric solutions of the Vlasov-Poisson
system. A function g = g(x, v) is said to be spherically symmetric, if g(Ax,Av) = g(x, v) for all
A ∈ SO(3) and x, v ∈ R3. Expressed in more sophisticated terms, g needs to be equivariant w.r. to
the group action SO(3)× (R3 × R3) → R3 × R3, (A, x, v) 7→ (Ax,Av). In this case ρg(x) = ρg(r)
and Ug(x) = Ug(r) are radially symmetric; here r = |x|. More explicitly,

Ug(r) = −4π

r

∫ r

0

s2ρg(s) ds− 4π

∫ ∞
r

sρg(s) ds, (4.1)

U ′g(r) =
4π

r2

∫ r

0

s2ρg(s) ds =
1

r2

∫
|x|≤r

ρg(x) dx,

where ′ denotes d
dr

.

Exercise 4.1 Prove (4.1) from (3.5).

It can be shown that a spherically symmetric function g = g(x, v) does in fact only depend
upon three variables: g = g̃(|x|, |v|, x · v).

Exercise 4.2 Establish this claim.

In spherical symmetry, the variables

r = |x|, pr =
x · v
r

and L = x ∧ v,

are most useful. Here pr ∈ R denotes the radial momentum and L ∈ R3 is the angular momentum.
Since

|L|2 = |x|2|v|2 − (x · v)2 = r2(|v|2 − p2
r), (4.2)
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we get |v|2 = `2

r2
+ p2

r for ` = |L|. This implies that a function g = g̃(|x|, |v|, x · v) can equally well
be expressed as a function g = ĝ(r, pr, `); of course we are going to identify all versions of g.

If we restrict to spherically symmetric solutions, i.e., f(t) = f(t, ·, ·) is spherically symmetric
for all t, then in the new variables (r, pr, `) the Vlasov-Poisson system can be rewritten as

∂tf(t, r, pr, `
2) + pr ∂rf(t, r, pr, `

2) +
( `2

r3
− ∂rUf (t, r)

)
∂prf(t, r, pr, `

2) = 0

and

U ′′f (t, r) +
2

r
U ′f (t, r) = 4πρf (t, r), lim

r→∞
Uf (t, r) = 0, ρf (t, r) =

2π

r2

∫ ∞
0

d` `

∫
R
dprf(t, r, pr, `

2),

and moreover

Uf (t, r) = −4π

r

∫ r

0

σ2ρf (t, σ) dσ − 4π

∫ ∞
r

σρf (t, σ) dσ (4.3)

due to (4.1). From (4.3) it is plain to see that Uf (t, r) ∼ −M
r

as r →∞, for

M = 4π

∫ ∞
0

σ2ρf (t, σ) dσ =

∫
R3

∫
R3

f(t, x, v) dx dv

denoting the total mass of the system. It should be noted that M is conserved along solutions of
the system, thus in fact M =

∫
R3

∫
R3 f0(x, v) dx dv is independent of t.

5 Steady state solutions

From a dynamical systems perspective, the easiest solutions of dynamical relevance are steady
states, i.e., time-independent solutions. The Vlasov-Poisson system possesses an abundance of such
solutions Q = Q(x, v), which we seek to be spherically symmetric. Let eQ(x, v) = 1

2
|v|2 + UQ(x)

denote the particle energy and let `2 = |L|2 be as in (4.2).

Lemma 5.1 Both eQ and `2 are conserved along solutions of the characteristic equation Ẍ(t) =
−∇UQ(X(t)) from (3.1).

Proof : Let us consider `2 for example. Then for V = Ẋ

d

dt
|X(t) ∧ V (t)|2 = 2(X(t) ∧ V (t)) ·

(
Ẋ(t) ∧ V (t) +X(t) ∧ V̇ (t)

)
= −2(X(t) ∧ V (t)) ·

(
X(t) ∧∇UQ(X(t))

)
.

From UQ(x) = UQ(|x|) = UQ(r) we deduce ∇UQ(x) = U ′Q(r) x
|x| , and thus X(t) ∧ ∇UQ(X(t)) = 0.

Note this argument has nothing to do with Vlasov-Poisson, but only relies on the fact that UQ is
what is called a central potential. The calculation for eQ is similar. 2
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Lemma 5.1 is the key to obtaining steady state solutions: If we seek a solution in the form
Q(x, v) = Q(eQ, `

2) (observe the abuse of notation here), then (3.2), i.e., the Vlasov equation
will automatically be satisfied. Thus finding a steady state comes down to solving the semilinear
equation

1

r2
(r2U ′(r))′ = ∆U(x) = 4π

∫
R3

Q
(1

2
|v|2 + U(x), |x ∧ v|2

)
dv, lim

r→∞
U(r) = 0, (5.1)

for U = UQ, if the profile function Q = Q(eQ, `
2) is given; of course we are only interested

in nontrivial solutions U 6= 0. In fact it is the content of Jeans’s theorem (see [4]) that the
distribution function Q of every spherically symmetric steady state solution has to be of the form
Q = Q(eQ, `

2).
Therefore the question arises for which Q’s (5.1) can be solved, and it turns out that there is a

variety of possible choices, even if we restrict ourselves to the easier case that Q = Q(eQ) does not
depend on `2; such steady state solutions are called isotropic. There is a vast literature concerning
different classes of ansatz functions (called polytropes, King models, ... etc.), see [5, 36, 42], but
for the purpose of this course it will be sufficient to keep in mind the example of the polytropes.
They are given by

Q(eQ) = (e0 − eQ)k+ (5.2)

for a fixed cut-off energy e0 < 0 and k ∈]− 1
2
, 7

2
[; here s+ = max{s, 0}. Then

ρQ(r) = cn(e0 − UQ(r))n+, n = k +
3

2
∈]1, 5[, cn = (2π)3/2 Γ(k + 1)

Γ(k + 5
2
)
, (5.3)

and UQ(0) < e0.

Exercise 5.2 Prove (5.3).

The potential UQ is not known explicitly. All the polytropic steady state solutions do have
finite radius rQ (i.e., the density ρQ is supported in [0, rQ] and rQ < ∞) and finite mass MQ =∫
R3 ρQ(x) dx = 4π

∫ rQ
0
r2ρQ(r) dr =

∫
R3

∫
R3 Q(x, v) dx dv; see [4] or [39]. The limiting case k = 7/2

is called the Plummer sphere, where MQ is still finite, but rQ = ∞. It is also important to note
that Q′(eQ) < 0 inside the support of the polytropes. In general, this property is very much tied
to (linear) stability; also see [5, footnote 10, p. 433].

6 Action angle variables

Action angle variables are particularly well-suited for Hamiltonian systems. We start with a one-
degree-of freedom example, a reliable general source on the topic being [51].
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Example 6.1 (Action-angle variables) We consider n = 1, q, p ∈ R and

H(q, p) =
1

2
p2 + V (q),

where the potential V should be such that the phase portrait of the resulting system q̈ = −V ′(q)
contains a fixed point (which we take to be the origin) that is encircled by a family of periodic
solutions γh, parameterized by their energy h in some interval h ∈]h0, h1[. Then

γh ⊂
{

(q, p) ∈ R× R :
1

2
p2 + V (q) = h

}
,

but not necessarily γh = {. . .}, since the energy level set {. . .} may consist of several components;
for instance this is the case for V (q) = q2(q2−1), or a version thereof shifted appropriately to place
one set of periodic orbits about the origin, where the left and the right interior of the homoclinic
orbits both contain solutions of the same period and energy. Let q±(h) denote the intersections of
γh and the q-axis {p = 0}, i.e., V (q±(h)) = h is required along with q−(h) < 0 < q+(h). If T (h) is
the period of γh, then

T (h) = 2

∫ q+(h)

q−(h)

ds√
2(h− V (s))

. (6.1)

Next denote by 2πI(h) the area encircled by γh. Since the orbit is transversed in the clockwise
direction, the Green-Riemann formula (or Stokes’s theorem) says that

2πI(h) =

∫
γh

p dq

for the action I. Furthermore, elementary calculus tells us that

2πI(h) = 2

∫ q+(h)

q−(h)

√
2(h− V (s)) ds,

noting that the height function at q is just ±p =
√

2(h− V (q)). Recalling that V (q±(h)) = h, we
see that in particular

I ′(h) =
1

2π
T (h) > 0

holds. Thus the function h 7→ I(h) (on ]h0, h1[) admits an inverse function that is denoted by
I 7→ h(I). Differentiating the relation h(I(h)) = h, we get

1 = h′(I(h))I ′(h) =
1

2π
h′(I(h))T (h).

Now we consider the transformation

Φ : (q, p) 7→ (θ, I) (6.2)
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that is obtained from the so–called generating function

S(q, I) =

∫ q

q−(h(I))

√
2(h(I)− V (s)) ds.

In general, a generating function depends on one “old” variable (here: q) and one “new” variable
(here: I). This means that p = ∂qS and θ = ∂IS, in the following sense: Given (q, p), where for
instance p ≥ 0, the relation

p = ∂qS(q, I) =
√

2(h(I)− V (q)) (6.3)

has to be solved for I = I(q, p), and then the assignment

θ(q, p) = ∂IS(q, I(q, p))

completes the definition of the transformation (6.2).
A key feature of transformations derived from generating functions in this way is that they

are canonical (i.e., symplectic). To see this, differentiating p = ∂qS(q, I) w.r. to p implies that
1 = (∂2

qIS)(∂pI). Therefore we deduce from θ = ∂IS(q, I) that

dθ ∧ dI =
[
(∂2
qIS) dq + (∂2

IIS) dI
]
∧ dI = (∂2

qIS) dq ∧ dI

= (∂2
qIS) dq ∧

[
(∂qI) dq + (∂pI) dp

]
= (∂2

qIS)(∂pI) dq ∧ dp = dq ∧ dp,

which means that Φ from (6.2) is indeed canonical.
The meaning of the angular variable θ is as follows. Denote by

τ(q, p) =

∫ q

q−(h)

ds√
2(h− V (s))

the time that it takes the solution, if for instance p > 0, to pass from (q−(h), 0) to (q, p) on γh.
Noting that

θ(q, p) = ∂IS(q, I) =

∫ q

q−(h)

ds√
2(h(I)− V (s))

h′(I) = τ(q, p)
2π

T (h)
,

this can be rewritten to read
θ(q, p)

2π
=
τ(q, p)

T (h)
.

Hence θ(q, p) ∈ [0, 2π[ is the angle of clockwise rotation of the line segment [(q−(h), 0), (0, 0)] to the
line segment [(q, p), (0, 0)]. The variables I and θ are called action and angle variables, respectively.

Since the transformation is canonical, it is sufficient to transform the Hamiltonian function to
obtain the equations of motion in the new variables. In this case we obtain

H(θ, I) = H(Φ−1(θ, I)) =
1

2
p2 + V (q) = h(I)
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by (6.3). Here we see the main reason for passing to action-angle variables: the dynamics become
very simple, since in the new variables the Hamiltonian is independent of the angular variable.
The associated equations of motion are

θ̇ = ∂IH = h′(I) =: ω(I), İ = −∂θH = 0,

and the corresponding solutions are

θ(t) = θ0 + ω(I0)t, I(t) = I0,

which is an angular rotation with frequency ω(I0). ♦

Exercise 6.2 Prove the period relation (6.1).

Exercise 6.3 Let V (q) = ω2

2
q2, i.e., we consider the harmonic oscillator q̈ + ωq = 0 with mass

m = 1. Show the following items:

(a) The intersection points of the orbit of energy h with the q-axis are q±(h) = ±
√

2h
ω

.

(b) The period function is T (h) = 2π
ω

, independently of h.

(c) One has I(h) = 1
ω
h and I ′(h) = 1

ω
= 1

2π
T (h). The inverse function to h 7→ I(h) is h(I) = ωI

which yields the constant frequency ω(I) = h′(I) = ω.

(d) The generating function is

S(q, I) = 2I

∫ √ ω
2I
q

−1

√
1− τ 2 dτ

(and there is no need to evaluate the integral explicitly).

(e) Calculate that ∂IS(q, I(q, p)) = θ and

Φ−1(θ, I) =

(
−
√

2I

ω
cos θ,

√
2Iω sin θ

)
.

(f) Establish that

q(t) = −
√

2I0

ω
cos(θ0 + ωt), p(t) =

√
2I0ω sin(θ0 + ωt),

is the solution such that Φ(q0, p0) = (θ0, I0).
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Now we return to the Vlasov-Poisson setting and consider the characteristic equation

Ẍ = −∇UQ(X(t)) (6.4)

for an isotropic steady state solution Q = Q(eQ); it is (an autonomous) Hamiltonian system. By
the spherical symmetry, one can use a canonical change of variables

(x, v) 7→ (pr, L3, `; r, ϕ, χ) (6.5)

on the support K = suppQ of Q as described in [5, Ch. 3.5.2] and [49, § 5.3] to simplify matters
considerably. Let us first have a look at the variables on the right-hand side of (6.5). Since
L = x∧ v, we have L3 = x1v2− x2v1 for the third component. The angles ϕ and χ are determined
by

sinϕ =
L1

(`2 − L2
3)1/2

, cosϕ =
L2

(`2 − L2
3)1/2

,

cosχ =
(e3 ∧ L) · x
r(`2 − L2

3)1/2
, sinχ =

` x3

r(`2 − L2
3)1/2

.

From these relations it can be calculated that indeed (6.5) is canonical. The variable pairs r ↔ pr,
ϕ↔ L3, and χ↔ ` are conjugate, their Poisson brackets can be evaluated explicitly; see [49, § 5.3],
also for an illustration of how the new coordinates can be read off. The Hamiltonian function for
(6.4) is eQ(x, v) = 1

2
|v|2 +UQ(x). Since the transformation is canonical, we only need to transform

the Hamiltonian in order to obtain (6.4) in the new coordinates. Recalling that |v|2 = `2

r2
+ p2

r, it
is found that

eQ(r, pr, `) =
1

2
p2
r + Ueff(r, `), with Ueff(r, `) = UQ(r) +

`2

2r2

being the effective potential. Now

ṙ =
∂eQ
∂pr

= pr, ṗr = −∂eQ
∂r

= −U ′eff(r, `),

thus the resulting equation of motion is

r̈ = −U ′eff(r, `).

This should be viewed as one second order Hamiltonian system in (r, pr) per each fixed `, where
the potential is given by r 7→ Ueff(r, `). The potential has the following shape (where we let β = `2

and identify functions of ` with functions of β):
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Figure 1: The effective potential Ueff(r, `) = Ueff(r, β)

For e < 0 and ` > 0 there are exactly two zeros 0 < r−(e, `) < r+(e, `) of 0 = 2(e− Ueff(r, `)) and
the minimum is attained at a unique point r0(`).

The new variables (pr, L3, `; r, ϕ, χ) in (6.5) are not yet the desired action-angle variables, since
e = e(r, pr, `) depends upon r, which plays the role of an angle; remember from the 1D example
above that the goal is to get the Hamiltonian independent of the angle(s). Therefore a further
canonical transformation

(r, pr)→ (θ, I) at a fixed ` (6.6)

will be made. At such a fixed `, we can do this in a region where the orbits of Ueff(·, `) are periodic;
it is achieved by means of a generating function as above. The angle θ ∈ [0, π] corresponds to one
half-turn of the periodic orbit γ in the potential Ueff(·, `), connecting the ‘pericenter’ r− to the
‘apocenter’ r+; here ṙ = pr > 0 for r ∈]r−, r+[ and pr(r±) = 0. Therefore if θ ∈ [π, 2π], then

r(θ, I, `) = r(2π − θ, I, `) and pr(θ, I, `) = −pr(2π − θ, I, `). (6.7)

In other words, we need to determine the (inverse) transformation (θ, I) 7→ (r, pr) only for θ ∈ [0, π],
where we have pr ≥ 0. Let E = E(I, `) be the solution to

I =
1

2π

∫
γ

pr dr =
1

π

∫ r+(E, `)

r−(E, `)

√
2(E − Ueff(r, `)) dr,

12



where γ is as before. Then consider

S(r, I, `) =

∫ r

r−(E(I, `), `)

√
2(E(I, `)− Ueff(r′, `)) dr′ (6.8)

as a generating function for (6.6). The rules for determining the full transformation from S are
once again given by

θ = ∂IS, pr = ∂rS.

More precisely, the equation
θ = ∂IS(r, I, `) (6.9)

has a solution r = r(θ, I, `). In addition, put

pr = pr(θ, I, `) = ∂rS(r(θ, I, `), I, `).

Thus more explicitly
pr(θ, I, `) =

√
2(E(I, `)− Ueff(r(θ, I, `), `)),

which yields

E(I, `) =
1

2
pr(θ, I, `)

2 + Ueff(r(θ, I, `), `) = e(r(θ, I, `), pr(θ, I, `), `).

Now pr = ∂rS and (6.8) imply that e = p2r
2

+ Ueff(r, `) = E(I, `), so E will only depend upon
action variables after the transformation (6.6), which leads to the overall transformation

(x, v) 7→ (pr, L3, `; r, ϕ, χ) 7→ (I, L3, `; θ, ϕ, χ), (6.10)

cf. (6.5). Hence after applying (6.10) the particle energy does only depend upon I and `, both of
which are actions. The associated frequencies are

ω1(I, `) =
∂E(I, `)

∂I
, ω2(I, `) =

∂E(I, `)

∂L3

= 0, ω3(I, `) =
∂E(I, `)

∂`
, (6.11)

and the period functions are

T1(I, `) =
2π

ω1(I, `)
, T3(I, `) =

2π

ω3(I, `)
.

Also (6.9) yields

θ = ∂IS(r, I, `) = ω1(I, `)

∫ r

r−(E(I, `), `)

dr′√
2(E(I, `)− Ueff(r′, `))

.

Since θ = 0 at r− and θ = π at r+ (recall that ṙ = pr > 0 along this part of the orbit), we obtain

π =
2π

T1(I, `)

∫ r+(E(I, `), `)

r−(E(I, `), `)

dr√
2(E(I, `)− Ueff(r, `))

,

13



or explicitly

T1(I, `) = 2

∫ r+(E(I, `), `)

r−(E(I, `), `)

dr√
2(E(I, `)− Ueff(r, `))

(6.12)

for the period function. In particular, T1(I, `) = T1(E, `) by abuse of notation.

To summarize, spherically symmetric functions g = g(x, v) = g(|x|, |v|, x · v) may also be
expressed as g = g(r, pr, `) = g(θ, I, `).

7 Function spaces

Next we consider the question of how K = suppQ can be expressed in terms of the variables
β = `2 and e = eQ. We will stick to the example of the polytropes (5.2), where

K = {e0 − eQ ≥ 0}.

More precisely, since always θ ∈ [0, 2π] on K for the angular variable θ, we have to exhibit a set
D in (e, β) such that

K = [0, 2π]×D. (7.1)

On this domain D we need to have

e0 ≥ e ≥ Ueff(r, β) ≥ Ueff(r0(β), β) = UQ(r0(β)) +
β

2r0(β)2
, (7.2)

with r0(β) denoting the unique point where the effective potential Ueff(r, β) = UQ(r) + β
2r2

attains
its minimum value emin(β) = Ueff(r0(β), β). From (7.2) we get

2r0(β)2 (e0 − UQ(r0(β)) ≥ β.

Let
J = {β ≥ 0 : 2r0(β)2 (e0 − UQ(r0(β)) ≥ β}.

Exercise 7.1 Prove that J is an interval. You may use the general fact that β 7→ emin(β) is
increasing.

Solution : To see this, note that

2r2(e0 − Ueff(r, β)) + β = 2r2
(
e0 − UQ(r)− β

2r2

)
+ β = 2r2(e0 − UQ(r)).

Therefore
2r2(e0 − UQ(r)) ≥ β ⇐⇒ Ueff(r, β) ≤ e0,

which implies that
J = {β ≥ 0 : emin(β) ≤ e0}. (7.3)

Now β 7→ emin(β) is increasing by [27, Lemma A.7(c)], and thus J has to be an interval. 2

14



Exercise 7.2 Prove that [0, ε] ⊂ J for some ε > 0 small enough. You may use the general fact
that r0(β)4 = 1

A(0)
β +O(β2) for A(0) = U ′′Q(0) and emin(β) = UQ(0) +O(β1/2) as β → 0+.

Solution : Due to [27, Lemma A.7(f)] one has

r0(β)4 =
1

A(0)
β +O(β2) and emin(β) = UQ(0) +O(β1/2)

as β → 0+. Since UQ(0) < e0 (the cut-off energy), the condition emin(β) ≤ e0 from the characteri-
zation of J in (7.3) is satisfied with strict inequality at β = 0. It follows that [0, ε] ⊂ J , if ε > 0 is
sufficiently small. 2

Exercise 7.3 Prove that J is bounded.

Solution : First, if β ∈ J , then r0(β) ≤ rQ, where supp ρQ = [0, rQ]. Otherwise we would
have r0(β) > rQ for some β ∈ J \ {0}. Since rQ is characterized by UQ(rQ) = e0, this gives
UQ(r0(β)) > e0, and consequently β ≤ 2r0(β)2 (e0−UQ(r0(β)) ≤ 0, which is a contradiction. Then
r0(β) ≤ rQ for β ∈ J in turn leads to the boundedness of J , owing to

β ≤ 2r0(β)2 (e0 − UQ(r0(β)) ≤ 2r2
Q (e0 − UQ(r0(β)) ≤ 2r2

Q (e0 − UQ(0))

uniformly for β ∈ J . 2

Exercise 7.4 Prove that β∗ = max J satisfies emin(β∗) = e0.

Solution : In fact, at β∗ we must have 2r0(β∗)
2 (e0 − UQ(r0(β∗)) = β∗. Thus

emin(β∗) = Ueff(r0(β∗), β∗) = UQ(r0(β∗)) +
β∗

2r0(β∗)2
= e0,

which is the claim. 2

To summarize, since the condition on e is e0 ≥ e ≥ emin(β), we have shown that

D = {(β, e) : β ∈ [0, β∗], e ∈ [emin(β), e0]} (7.4)

and K = [0, 2π] ×D for the support K of Q in terms of e and β, and the lower boundary curve
[0, β∗] 3 β 7→ emin(β) strictly increases from UQ(0) to e0.
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Figure 2: The domain D in coordinates (e, β) = (E, β)

Observe that the reasoning in this section did not depend on the specific form of the polytropic
ansatz function (5.2), but only on the general properties of the functions r0(β) and emin(β). It
should also be mentioned that r0(β∗) ∈]0, rQ[ is verified, see [27, Section 1.7.1].

Going back to (7.1) and using ` instead of β, we thus have

K = {(θ, E, `) : θ ∈ [0, 2π], ` ∈ [0, l∗], E ∈ [emin(`), e0]}

in the variables (θ, E, `). Since I = I(E, `) is the inverse function to E = E(I, `) at fixed `, the
set K can be equally expressed in the variables (θ, I, `), which is the main observation here. As θ
is 2π-periodic, therefore spherically symmetric functions g(x, v) = g(r, pr, `) = g(θ, I, `) of (θ, I, `)
that are defined on K, the support of Q, can be expanded into a Fourier series

g(θ, I, `) =
∑
k∈Z

gk(I, `) e
ikθ, (7.5)

where (I, `) ' (E, `) ' (E, β) ∈ D. The Fourier coefficients are

gk(I, `) =
1

2π

∫ 2π

0

g(θ, I, `) e−ikθ dθ.

The series expansion (7.5) is most convenient, since one can easily do calculations on such
series, or define Sobolev-type function space.

This motivates the following
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Definition 7.5 (Xα-spaces) For α ≥ 0 denote

Xα =
{
g =

∑
k∈Z

gk(I, `) e
ikθ : ‖g‖2

Xα = 16π3
∑
k∈Z

(1 + k2)
α ‖gk‖2

L2
1
|Q′|

(D) <∞
}
,

where
D = {(E, `) : ` ∈ [0, `∗], E ∈ [emin(`), e0]}

is from (7.4) and expressed in (I, `), and correspondingly

(φ, ψ)L2
1
|Q′|

(D) =

∫∫
D

dI d` `
1

|Q′(e)|
φ(I, `)ψ(I, `)

is a weighted L2-inner product for suitable functions φ, ψ on D; note e = e(I, `). The associated
scalar product on the Hilbert space Xα is given by

(g, h)Xα = 16π3
∑
k∈Z

(1 + k2)
α

(gk, hk)L2
1
|Q′|

(D)

for g =
∑

k∈Z gk e
ikθ and h =

∑
k∈Z hk e

ikθ.

8 Linearization

Now that we have introduced some nice Hilbert spaces, we also need to have a suitable self-adjoint
operator in order to come close to a possible Birman-Schwinger setting. Since we are interested in
dynamical properties of the system close to an isotropic steady state solution Q, it is natural to
consider the linearization about such a steady state.

For, we write f(t) = Q+ g(t) with g ‘small’. First note that

v · ∇xf −∇xUf · ∇vf = {f, ef}

for ef (x, v) = 1
2
|v|2 + Uf (x), where

{g, h} = ∇xg · ∇vh−∇vg · ∇xh

denotes the standard Poisson bracket of two functions g = g(x, v) and h = h(x, v).

Exercise 8.1 Prove that if φ : R→ R is a function and g = g(x, v), h = h(x, v), then {φ(g), h} =
φ′(g){g, h}.

Therefore we may write the Vlasov equation (3.3) as

0 = ∂tf + {f, ef} = ∂tg +
{
Q+ g,

1

2
|v|2 + UQ + Ug

}
= ∂tg −∇vQ · ∇xUg + v · ∇xg −∇vg · ∇xUQ −∇vg · ∇xUg,
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which is equivalent to
∂tg + T g +Kg = ∇vg · ∇xUg, (8.1)

where we have introduced the linear operators

T g = v · ∇xg −∇vg · ∇xUQ = {g, eQ}, (8.2)

Kg = −∇vQ · ∇xUg = {Q,Ug}; (8.3)

recall that Ug = Ug(r), whence ∇vUg = 0. Since the term on the right-hand side of (8.1) is
(formally) quadratic in g, the linearization is found to be

∂tg + T g +Kg = 0. (8.4)

The next step is to linearize not only the equation itself, but also a suitable Lyapunov-type
functional. For this we will closely follow [15] and once again write f(t) = Q + g(t). The total
energy

H(f(t)) =
1

2

∫
R3

∫
R3

|v|2 f(t, x, v) dx dv − 1

8π

∫
R3

|∇Uf(t)(t, x)|2 dx

is conserved along solutions, so it could be suspected to be a Lyapunov function.

Exercise 8.2 Prove that d
dt
H(f(t)) = 0 for solutions f(t) of the Vlasov-Poisson system.

The expansion about Q then yields

H(f(t)) = H(Q) +

∫
R3

∫
R3

eQ g(t) dx dv − 1

8π

∫
R3

|∇Ug(t)|2 dx+O(g3); (8.5)

note that f 7→ Uf is linear.

Exercise 8.3 Prove that (8.5) holds (formally).

The linear term on the right-hand side of (8.5) does not vanish, i.e., Q is not a critical point of
H. However, this defect can be remedied by making use of the fact that every ‘Casimir functional’

CΦ(f(t)) =

∫
R3

∫
R3

Φ(f(t, x, v)) dx dv

is also conserved along solutions, provided that Φ is sufficiently well-behaved. Passing from H to

HΦ = H + CΦ

and repeating the expansion, one arrives at

HΦ(f(t)) = HΦ(Q) +

∫
R3

∫
R3

(eQ + Φ′(Q)) g(t) dx dv

+
1

2

∫
R3

∫
R3

Φ′′(Q) g(t)2 dx dv − 1

8π

∫
R3

|∇Ug(t)|2 dx+O(g3). (8.6)
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Writing e = eQ, since Q = Q(e), the equation e+ Φ′(Q(e)) = 0 can be (formally) solved by taking
Φ′(ξ) = −Q−1(ξ), at least if for instance Q′(e) < 0 is verified for the relevant e in the support of
Q.

Exercise 8.4 For the polytropes (5.2), show that Φ(ξ) = k
k+1

ξ
k+1
k − e0 ξ, ξ ∈ [0,∞[, is a possible

choice.

Then Q becomes a critical point of this HΦ, and due to 1 + Φ′′(Q(e))Q′(e) = 0 and Q′(e) < 0 the
expansion (8.6) simplifies to

HΦ(f(t)) = HΦ(Q) +
1

2
A(g(t), g(t)) +O(g3),

A(g, g) =

∫
R3

∫
R3

dx dv

|Q′(eQ)|
|g|2 − 1

4π

∫
R3

|∇xUg|2 dx.

Thus one can expect that the stability of Q will be determined by the properties of the quadratic
(second variation) part A = 2D2HΦ(Q), which we will call the Antonov functional.

Exercise 8.5 Prove that d
dt
A(g(t), g(t)) = 0 along solutions g(t) of the linearized equation (8.4).

Ideally, to infer stability of Q it would be helpful if A had some kind of coercivity property.
Here one hopes to transfer to our infinite-dimensional problem the following one-degree-of freedom
analogue: for H(q, p) = 1

2
p2 + V (q) the equation of motion is q̈ = −V ′(q), and if for instance

V ′(0) = 0 and V ′′(0) > 0, then the equilibrium q = 0 is stable.

Now it is the content of the celebrated Antonov stability estimate [2, 3], that

A(T u, T u) ≥ c‖u‖2
Q (8.7)

holds for all functions u = u(x, v) that are spherically symmetric and odd in v, i.e., they satisfy
u(x,−v) = −u(x, v); the constant c > 0 does only depends upon Q. The weighted L2-inner
product is defined as

(g, h)Q =

∫∫
K

1

|Q′(eQ)|
g(x, v)h(x, v) dx dv (8.8)

and it induces the norm ‖ · ‖Q. Perturbations of the form g = T u are called ‘dynamically ac-
cessible’, for reasons explained in [35], also see [37]. Antonov [2, 3] could prove that the positive
definiteness (8.7) is equivalent to the linear stability of Q. Many works followed these pioneering
observations, and until to date almost all stability proofs, linear or nonlinear, use the Antonov
stability estimate in one way or another. The bound (8.7), or variations thereof, is applied in a
number of papers, both in the physics and in the mathematics community, to address a variety of
stability issues; see [7, 11, 14, 15, 25, 26, 28, 29, 33, 48] and many further.

In view of (8.7), we first need to obtain a better understanding of spherically symmetric func-
tions g that are odd in v.
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Exercise 8.6 Prove the following facts:

(a) If (x, v) 7→ (pr, L3, `; r, ϕ, χ) under the above transformation (6.5), then we have (x,−v) 7→
(−pr,−L3, `; r, ϕ+ π, π − χ).

(b) If
(x, v) 7→ (pr, L3, `; r, ϕ, χ) 7→ (I, L3, `; θ, ϕ, χ)

under the transformation (6.10), then

(x,−v) 7→ (−pr,−L3, `; r, ϕ+ π, π − χ) 7→ (I,−L3, `; 2π − θ, ϕ+ π, π − χ).

(c) g is even in v if and only if g(r,−pr, `) = g(r, pr, `) if and only if g(2π − θ, I, `) = g(θ, I, `).

(d) g is odd in v if and only if g(r,−pr, `) = −g(r, pr, `) if and only if g(2π−θ, I, `) = −g(θ, I, `).

(e) g(θ, I, `) =
∑

k∈Z gk(I, `) e
ikθ is even in v if and only if g−k = gk for all k ∈ Z. If g is

real-valued, then gk(I, `) ∈ R.

(f) g(θ, I, `) =
∑

k∈Z gk(I, `) e
ikθ is odd in v if and only if g−k = −gk for all k ∈ Z, and in

particular g0 = 0. If g is real-valued, then gk(I, `) ∈ iR.

Definition 8.7 (Xα
odd-spaces) For α ≥ 0 denote

Xα
odd = {g ∈ Xα : g−k = −gk for k ∈ Z}.

Now we are in a position to introduce one of our main objects of interest, namely the operator

Lu = −T 2u−KT u. (8.9)

The connection to the stability problem outlined above is made in

Lemma 8.8 L is self-adjoint on the domain D(L) = X2
odd in X0

odd. In addition,

(Lu, u)Q = A(T u, T u)

holds for u ∈ X2
odd.

See [27, Lemma 1.1] for the proof. Here we only give a somewhat rough argument, why

(−T 2u, u)Q =

∫
R3

∫
R3

dx dv

|Q′(eQ)|
|T u|2 (8.10)

can be expected to hold; think of (−∆u, u)L2 = ‖∇u‖2
L2 under appropriate hypotheses on u. First

we observe that T from (8.2) can be written as

T g = v · ∇xg −∇vg · ∇xUQ = divx(vg)− divv(g∇xU),
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since UQ is independent of v. Therefore∫
R3

∫
R3

(T g)h dx dv = −
∫
R3

∫
R3

g(T h) dx dv

through integration by parts, if there are no boundary terms. Thus if u is real-valued and has its
support in K, then we have by (8.8)

(−T 2u, u)Q = −
∫∫
K

1

|Q′(eQ)|
(T 2u)u dx dv =

∫
R3

∫
R3

(T u) T
( 1

|Q′(eQ)|
u
)
dx dv.

Clearly T satisfies the product rule T (gh) = (T g)h+ g(T h). Now if we use (8.2) and Exercise 8.1
for φ(s) = 1

|Q′(s)| , then we obtain

T
( 1

|Q′(eQ)|

)
= {φ(eQ), eQ} = φ′(eQ){eQ, eQ} = 0,

and (8.10) follows, if we proceed in the same way with the second T . Then in order to establish
Lemma 8.8, one also needs some further properties of −T 2 and KT that are stated in Lemma
9.1(a), (b) below.

Due to the Antonov bound (8.7) and Lemma 8.8, the spectrum of the second variation (in
dynamically accessible directions) is expected to play a major role in all kinds of stability questions.

9 The Birman-Schwinger approach

Therefore the task is to extract as much information on the spectrum of L as possible. To begin
with, we recall that the discrete spectrum of a self-adjoint operator L in a Hilbert space, called
σd(L), consists of all eigenvalues of L of finite multiplicity that are isolated points of the spectrum
σ(L). Its complement σess(A) = σ(A) \ σd(L) is the essential spectrum.

Let us first consider this part of the spectrum for Lu = −T 2u−KT u from (8.9) on D(L) = X2
odd

in the Hilbert space X0
odd.

Lemma 9.1 The following assertions hold:

(a) −T 2 : X2
odd → X0

odd is a self-adjoint operator.

(b) The operator KT : X0
odd → X0

odd is given by

KT g = 4π |Q′(eQ)| pr
∫
R3

pr g dv

and it is linear, bounded, symmetric and positive:

(KT g, g)X0 =
1

4π

∫
R3

|U ′T g(r)|2 dx ≥ 0 for g ∈ X0. (9.1)
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(c) KT is relatively L-compact, in that D(KT ) = X0 ⊃ X2
odd = D(L) for the domains and

KT (L+ i)−1 : X0
odd → X0

odd is a compact operator.

(d) We have
σess(L) = σess(−T 2).

Proof : See [27, Cor. B.10] for (a), [27, Cor. B.15] for (b) and the proof of [27, Cor. B.19] for (c).
Essentially this is due to the fact that K : X0 → X0 is compact, [27, Cor. C.6]. To establish the
latter property, one uses that Kg = |Q′(eQ)|prU ′g(r) (see below) and

‖∇(∇Ug)‖L2(R3) ≤ C‖∇(∇∆−1ρg)‖L2(R3) ≤ C‖ρg‖L2(R3)

together with the Sobolev embedding theorem; the regularizing property of ∆Ug = 4πρg is central
to many stability results for Vlasov-Poisson. (d) This is a consequence of Weyl’s Theorem, cf. [20,
Thm. 14.6]. 2

Thus we need to determine the essential spectrum of −T 2. For this, the variables (θ, I, `) are
most convenient, and we are going to use the fact that canonical transformations leave Poisson
brackets unaltered. Hence if we write Φ = (r, ϕ, χ), A = (pr, L3, `), Θ = (θ, ϕ, χ) and I = (I, L3, `)
for the coordinates, see (6.10), then

{g, h}xv = {g, h}ΦA = {g, h}ΘI.

But the functions do depend only upon (r, pr, `) and (θ, I, `), respectively. Thus

{g, h}ΦA = (∂rg)(∂prh)− (∂rh)(∂prg),

{g∗, h∗}ΘI = (∂θg)(∂Ih)− (∂θh)(∂Ig).

Next we recall that eQ = e = E(I, `). Hence due to ω1 = ∂E
∂I

and ∂θE = 0 we get

T g = {g, eQ} = (∂θg)(∂IE)− (∂θE)(∂Ig) = ω1∂θg,

which is appealingly simple in the coordinates (θ, I, `). Since ω1 is independent of θ, see (6.11), it
also follows that

−T 2g = −ω1∂θ(ω1∂θg) = −ω2
1 ∂

2
θg.

This relation makes it clear that the properties of the function ω1 = ω1(e, `) = ω1(e, β), or equiva-
lently of the period function T1 = 2π

ω1
, on D will be important.

Lemma 9.2 The following assertions hold:

(a) We have ω1 ∈ C1(D̊) ∩ C(D).

(b) It holds that
inf ω1 = δ1 > 0 and supω1 = ∆1 <∞.
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Proof : See [27, Thm. 3.6 & Thm. 3.13] for (a) and [27, Thm. 3.2 & Thm. 3.5] for (b). Since ω1

is continuous on the compact set D and T1 is non-zero, certainly (b) follows from (a), but it is
also possible to give a proof using the explicit period relation (6.12). Similar results have been
obtained in [18]. 2

There is a result in the spectral theory of self-adjoint operators that asserts that the spectrum
of the multiplication operator M : D(M) = {u ∈ L2(Rn) : χu ∈ L2(Rn)} → L2(Rn), Mu = χu,
for a given real-valued and continuous function χ has the spectrum ranχ, with ranχ denoting
the range of χ. If we also take into account that on a function g =

∑
k∈Z gk e

ikθ with coefficient
gk = gk(I, `) we have

−T 2 : g ∼= (gk) 7→ (ω2
1 k

2gk),

then the following characterization of the essential spectrum of −T 2, and thus of the one of L, is
not a big surprise, since ranω1 = [δ1,∆1].

Theorem 9.3 For the essential spectrum we have

σess(L) = σess(−T 2) =
∞⋃
k=1

k2[δ2
1,∆

2
1] and δ2

1 = minσess(L) > 0.

If ω1 is not constant, then there exists λc > δ2
1 such that [λc,∞[⊂ σess(L).

Proof : See [27, Cor. B.19]. 2

Exercise 9.4 Prove the last statement of Theorem 9.3.

Note that due to σ(−T 2) = σess(−T 2), in particular σ(−T 2) =
⋃∞
k=1 k

2[δ2
1,∆

2
1] holds.

What we have done so far is more or less standard, but now we are getting closer to the heart of the
matter. As before, we are trying to understand the spectrum of L, but this time, more specifically,
possible eigenvalues below the essential spectrum; the following calculation is motivated by [34].
Let λ < δ2

1 and suppose that Lu = λu for some u ∈ X2
odd and u 6= 0. Then (−T 2 − λ)u = KT u.

Defining ψ = (−T 2 − λ)u ∈ X0
odd, we get

ψ = KT (−T 2 − λ)−1ψ. (9.2)

Now
Kg = −∇vQ · ∇xUg = −Q′(eQ)v · U ′g(r)

x

r
= |Q′(eQ)| pr U ′g(r)

by the definition of K in (8.3) and since Q′(eQ) < 0. Thus the image of the operator K is special.
Apart from the factor |Q′(eQ)|, it consists of function h = h(r, pr, `) that factorize as prh̃(r). In
particular, due to (9.2), also ψ can be written in this way and we obtain

ψ = KT u = |Q′(eQ)| pr U ′T u(r). (9.3)

To make sense of the following definition, we need to mention that in general for spherically
symmetric functions g one has U ′T g(r) = 4π

∫
R3 pr g dv.
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Exercise 9.5 Prove this, using that ρT g(x) = divx
∫
R3 v g dv and Gauss’s Theorem in U ′h(r) =

1
r2

∫
|x|≤r ρh(x) dx.

Definition 9.6 (The Birman-Schwinger operators) Let

QλΨ = U ′T (−T 2−λ)−1ψ = 4π

∫
R3

pr (−T 2 − λ)−1ψ dv (9.4)

for functions Ψ = Ψ(r), where we put ψ(r, pr, `) = |Q′(eQ)| pr Ψ(r) in terms of a given Ψ.

Since
∫
dv is integrated out in (9.4), it turns out that QλΨ = (QλΨ)(r) is also a function of r

only. Coming back to the spectral problem for L, we started out with an eigenfunction u of L,
thereafter put ψ = (−T 2 − λ)u, and now let

Ψ(r) = U ′T (−T 2−λ)−1ψ(r) = U ′T u(r)

to deduce
|Q′(eQ)| pr Ψ(r) = |Q′(eQ)| pr U ′T u(r) = ψ

from (9.3). Therefore we obtain

QλΨ = U ′T (−T 2−λ)−1ψ = Ψ.

In other words, 1 is an eigenvalue of Qλ with eigenfunction Ψ. Since a converse statement can be
verified similarly, we arrive at

Theorem 9.7 Let λ < δ2
1. Then λ is an eigenvalue of L if and only if 1 is an eigenvalue of Qλ.

More precisely,

(a) if u ∈ X2
odd is an eigenfunction of L for the eigenvalue λ, then Ψ = U ′T u ∈ L2

r is an
eigenfunction of Qλ for the eigenvalue 1;

(b) if Ψ ∈ L2
r is an eigenfunction of Qλ for the eigenvalue 1, then u = (−T 2−λ)−1(|Q′(eQ)| prΨ) ∈

X2
odd is an eigenfunction of L for the eigenvalue λ.

Proof : See [27, Thm. 4.5]. 2

Here L2
r denotes the L2-Lebesgue space of radially symmetric functions Ψ(x) = Ψ(r) on R3,

where we take

〈Ψ,Φ〉 =

∫
R3

Ψ(x) Φ(x) dx = 4π

∫ ∞
0

r2 Ψ(r) Φ(r) dr

as the inner product of Ψ,Φ ∈ L2
r.

Exercise 9.8 Prove part (b) of Theorem 9.7.
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If we compare Theorem 9.7 to the quantum mechanics result Theorem 2.1, then we see that also
in galactic dynamics there is a Birman-Schwinger principle. Furthermore, it is nice to observe that
both are formally identical, if we associate pr ∼

√
−V and −∆ ∼ −T 2, and furthermore disregard

the velocity average
∫
R3 dv; the appearance of |Q′(eQ)| in |Q′(eQ)| prΨ is due to the (·, ·)Q that is

used. There is yet another fact that supports the analogy of both approaches. The operator Qλ
from (9.4) can be expressed as

QλΨ = 4π

∫
R3

pr (−T 2 − λ)−1 (|Q′(eQ)| prΨ) dv.

Comparing this relation to (2.1), it turns out that both relations do agree, if we apply the same
identifications as before.

Theorem 9.7 could only be useful if we are able to gain a better understanding of the operators
Qλ, which turn out to have a couple of nice properties. One also notices that Qz can not only be
defined for z = λ < δ2

1, but for all z ∈ Ω = C \ [δ2
1,∞[ (or even for all z ∈ C \ σess(−T 2)).

Lemma 9.9 (Properties of Qz) The following assertions hold.

(a) For every z ∈ Ω we have Qz ∈ B(L2
r), the space of linear and bounded operators on L2

r. In
addition, the map

Ω 3 z 7→ Qz ∈ B(L2
r)

is analytic, and we have the representation

(QzΨ)(r) =
16π

r2

∑
k 6=0

∫ ∞
0

dr̃Ψ(r̃)

∫∫
D

d` ` de1{r−(e, `)≤r, r̃≤r+(e, `)}
ω1(e, `) |Q′(e)|
(k2ω2

1(e, `)− z)

× sin(kθ(r, e, `)) sin(kθ(r̃, e, `)) (9.5)

for Ψ ∈ L2
r.

(b) If z ∈ Ω, then
(QzΨ)(r) = 〈Kz̄(r, ·),Ψ〉

for Ψ ∈ L2
r. The integral kernel Kz is given by

Kz(r, r̃)

=
4

r2r̃2

∑
k 6=0

∫∫
D

d` ` de1{r−(e, `)≤r, r̃≤r+(e, `)}
ω1(e, `) |Q′(e)|
k2ω2

1(e, `)− z
sin(kθ(r, e, `)) sin(kθ(r̃, e, `)).

(c) If z ∈ Ω, then Qz is a Hilbert-Schmidt operator on L2
r.
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(d) If λ ∈]−∞, δ2
1[, then Qλ is symmetric and positive. Its spectrum consists of µ1(λ) ≥ µ2(λ) ≥

. . .→ 0 (the eigenvalues are listed according to their multiplicities). In addition,

µ1(λ) = ‖Qλ‖ = sup {〈QλΨ,Ψ〉 : ‖Ψ‖L2
r
≤ 1}

for the largest eigenvalue of Qλ, where ‖ · ‖ = ‖ · ‖B(L2
r)

.

Proof : See [27, Lemma 4.3]. The representation formula (9.5) is very convenient and obtained
from (9.4) by Fourier expanding the functions involved and using the fact that ψ(r, pr, `) =
|Q′(eQ)| pr Ψ(r) has

ψk(I, `) = − i
π
|Q′(e)|ω1(e, `)

∫ r+(e,`)

r−(e,`)

dr̃Ψ(r̃) sin(kθ(r̃, e, `)) (9.6)

as its Fourier coefficients. 2

Exercise 9.10 Prove (9.6) from (6.7).

According to Theorem 9.7, in order to find eigenvalues λ̂ < δ2
1, we have to locate such a λ̂ that

additionally satisfies µ1(λ̂) = 1. Therefore we have to study the function µ1 :]−∞, δ2
1[→]0,∞[ in

more detail.

Lemma 9.11 We have 0 < µ1(0) < 1, and µ is monotone increasing, convex and locally Lipschitz
continuous. The limit

µ∗ = lim
λ→δ21−

µ1(λ) = sup {µ1(λ) : λ ∈ [0, δ2
1[} ∈ [µ1(0),∞] (9.7)

does exist.

Proof : See [27, Lemma 4.3 & Lemma 4.7(a), (d)]. 2

10 An application

It is to be expected that a good understanding of the Birman-Schwinger operators Qz and their
spectra will lead to new insights into stability-related properties of solutions close to a static
solution of the Vlasov-Poisson system.

As an example application, we consider

λ∗ = inf {(Lu, u)Q : u ∈ X2
odd, ‖u‖Q = 1} > 0,
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which is the ‘best constant’ in the Antonov stability estimate (8.7); recall Lemma 8.8. In [27] we
derived many results related to λ∗, and in particular we were able to characterize the cases where
λ∗ is attained, in the sense that λ∗ = (Lu∗, u∗)Q for some minimizing function u∗ ∈ X2

odd such that
‖u∗‖Q = 1. It turns out that then u∗ will be an eigenfunction of L corresponding to the eigenvalue
λ∗, so that Lu∗ = λ∗u∗. Both u∗ and the quantity λ∗ will be of fundamental importance for the
dynamics of the gravitational Vlasov-Poisson system.

Lemma 10.1 Let u∗ ∈ X2
odd be a minimizer and define

g∗(t, x, v) = cos(
√
λ∗t)u∗(x, v)− 1√

λ∗
sin(
√
λ∗t) (T u∗)(x, v).

Then g∗ is a 2π√
λ∗

-periodic solution of the equation (8.4) that is obtained by linearizing Vlasov-
Poisson about Q.

Proof : Observe that u∗ is odd in v. Hence ρu∗(x) =
∫
R3 u∗(x, v) dv = 0 implies that Uu∗ =

4π∆−1ρu∗ = 0 and therefore Ku∗ = 0 by (8.3). Consequently,

∂tg∗ + T g∗ +Kg∗
= −

√
λ∗ sin(

√
λ∗t)u∗ − cos(

√
λ∗t) T u∗ + cos(

√
λ∗t) T u∗ −

1√
λ∗

sin(
√
λ∗t) T 2u∗

+ cos(
√
λ∗t)Ku∗ −

1√
λ∗

sin(
√
λ∗t)KT u∗

= −
√
λ∗ sin(

√
λ∗t)u∗ +

1√
λ∗

sin(
√
λ∗t)Lu∗

= 0,

as claimed. 2

Next we will clarify where λ∗ is located as compared to δ2
1, which is the minimum of the essential

spectrum of L; recall Theorem 9.3.

Lemma 10.2 We have λ∗ ≤ δ2
1.

Proof : According to [41, Thm. XIII.1] applied to n = 1, either

(a) λ∗ is an eigenvalue below σess(L), i.e., λ∗ < inf σess(L), and λ∗ is the first eigenvalue, or

(b) λ∗ = inf σess(L) and there are no eigenvalues below λ∗.

Since inf σess(L) = δ2
1, the claim follows. It is also possible to deduce the estimate by direct

calculation, see [27, Lemma 3.18]. Here it should only be noted that the result is at least conceivable
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from the following observation: since Lu = −T 2u−KT u, using (8.10) and (9.1) we get

(Lu, u)Q = (−T 2u, u)Q − (KT u, u)Q

=

∫
R3

∫
R3

dx dv

|Q′(eQ)|
|T u|2 − 1

4π

∫
R3

|∇xUT u|2 dx

≤
∫
R3

∫
R3

dx dv

|Q′(eQ)|
|T u|2.

The latter expression equals (−T 2u, u)Q, and it is just the quadratic form associated to −T 2. One

can construct suitable uj ∈ X2
odd such that ‖uj‖Q = 1 and (−T 2uj, uj)Q → δ2

1 as j →∞. 2

For the remaining part of these lectures, we will deal with the following result that illustrates
the usefulness of the Birman-Schwinger operators.

Theorem 10.3 We have
µ∗ > 1 ⇐⇒ λ∗ < δ2

1.

In this case µ1(λ∗) = 1 and λ∗ is an eigenvalue of L.

Proof : See [27, Thm. 4.13]. 2

It is not too hard to show that if µ∗ > 1, then λ∗ = δ2
1 is impossible, so that we must have

λ∗ < δ2
1. The converse statement is more interesting to prove. Thus let us suppose that λ∗ < δ2

1

holds, and assume that we already knew that λ∗ is an eigenvalue of L. Let u∗ ∈ X2
odd denote an

associated eigenfunction. Using Theorem 9.7(a), it follows that Ψ∗ = U ′T u∗ ∈ L
2
r is an eigenfunction

of Qλ∗ for the eigenvalue 1. Since µ1(λ∗) is the largest eigenvalue of Qλ∗ , we get µ1(λ∗) ≥ 1. From
the Antonov stability estimate (Lg, g)Q ≥ λ∗‖g‖2

Q it can be moreover deduced that µ1(λ∗) ≤ 1 is
verified; see [27, Lemma 4.7(b)]. Hence we obtain µ1(λ∗) = 1 and it remains to show that µ∗ > 1.
Suppose that on the contrary µ∗ ≤ 1 is satisfied. For λ ∈ [λ∗, δ

2
1[ the monotonicity of µ1 then yields

1 = µ1(λ∗) ≤ µ1(λ) ≤ µ∗ ≤ 1, which means that µ1(λ) = 1 is constant for λ ∈ [λ∗, δ
2
1[. Fixing

normalized eigenfunctions Ψλ̃ for µ1(λ̃), where λ∗ ≤ λ̃ < λ < δ2
1, we find

1 = µ1(λ̃) = 〈Qλ̃Ψλ̃,Ψλ̃〉 ≤ 〈QλΨλ̃,Ψλ̃〉 ≤ ‖Qλ‖ ‖Ψλ̃‖
2
L2
r

= µ1(λ) = 1

from the general monotonicity of λ 7→ 〈QλΨ,Ψ〉, and therefore

〈QλΨλ̃,Ψλ̃〉 = 1, λ∗ ≤ λ̃ < λ < δ2
1.

This can be shown to lead to a contradiction upon differentiation w.r. to λ.

To summarize the preceding argument, to establish “⇐=” in Theorem 10.3, we need to prove
that λ∗ < δ2

1 implies that λ∗ is an eigenvalue of L. Since inf σess(L) = δ2
1, this follows from the

abstract result mentioned in the proof of Lemma 10.2, as now the stated case (b) does not hold.
We also want to indicate a direct ‘dynamic’ proof of the fact that λ∗ is an eigenvalue of L by means
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of a gradient-flow type argument [27, Appendix C], since this might be useful in future work on
the subject. Let

Φ(u) = (Lu, u)Q = ‖T u‖2
Q − (KT u, u)Q

be the functional in question. Strictly speaking, one considers Φ to be defined by the expression
on the right-hand side, which makes sense for u ∈ X1

odd only, but we will ignore this fact in
what follows. For a given time interval J = [0, a] or J = [0,∞[ and a given continuous function
h : J → X1

odd we introduce the family of operators

W(t, s) : g 7→ W(t, s)g, (W(t, s)g)k =Wk(t, s)gk (k ∈ Z),

Wk(t, s)(I, `) = exp
(
−
∫ t

s

[k2ω2
1(I, `)− Φ(h(τ))] dτ

)
, (10.1)

for t, s ∈ J , t ≥ s; to emphasize the dependence on h, we will at times also write W(t, s;h). Note
the evolution system property

W(t, s) ◦W(s, τ) =W(t, τ), t, s, τ ∈ J, t ≥ s ≥ τ.

We will consider the evolution equation

g(t) =W(t, 0)ψ +

∫ t

0

W(t, s)KT g(s) ds (10.2)

for t ≥ 0 and initial data ψ, where W(t, s) = W(t, s; g). For this evolution equation one can
establish that if ψ ∈ X2

odd is such that ‖ψ‖Q = 1 and Φ(ψ) ≤ λ∗ + ε∗ (for ε∗ > 0 small enough),

then there exists a global continuous solution g : [0,∞[→ X1
odd of (10.2) that satisfies ‖g(t)‖X0 = 1

for t ∈ [0,∞[. This result does not rely on λ∗ < δ2
1, the condition λ∗ ≤ δ2

1 is enough. The point
about (10.2) is the following. Differentiating (10.1) for h = g w.r. to t, we get

∂tWk(t, s)(I, `) = −[k2ω2
1(I, `)− Φ(g(t))]Wk(t, s)(I, `)

and hence, at least formally,

∂t(W(t, s)g) ∼= (∂tWk(t, s)gk) = (−[k2ω2
1 − Φ(g(t))]Wk(t, s)gk) ∼= T 2W(t, s)g + Φ(g(t))W(t, s)g.

Applying this relation to (10.2), it follows that

g′(t) = T 2W(t, s)ψ + Φ(g(t))ψ +

∫ t

0

[T 2W(t, s)KT g(s) + Φ(g(t))W(t, s)KT g(s)] ds

+KT g(t)

= T 2g(t) + Φ(g(t)) g(t) +KT g(t)

= −Lg(t) + Φ(g(t)) g(t). (10.3)
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This implies that the ‖ · ‖Q-norm is preserved along the solution flow. Since Φ(u) = (Lu, u)Q for

u ∈ X2
odd and as the solution g(t) is regular enough, we also deduce from (10.3) that

d

dt
Φ(g(t)) =

d

dt
(Lg(t), g(t))Q = 2 (Lg(t), g′(t))Q

= 2 (Lg(t),−Lg(t) + Φ(g(t)) g(t))Q = −2 (‖Lg(t)‖2
Q − Φ(g(t))2).

Now if ‖g(0)‖Q = 1 initially, then

‖g′(t)‖2
Q = ‖ − Lg(t) + Φ(g(t))g(t)‖2

Q

= ‖Lg(t)‖2
Q − 2Φ(g(t)) (Lg(t), g(t))Q + Φ(g(t))2 ‖g(t)‖2

Q

= ‖Lg(t)‖2
Q − Φ(g(t))2,

which in turn yields
d

dt
Φ(g(t)) = −2 ‖g′(t)‖2

Q ≤ 0.

Therefore we see that Φ is a Lyapunov function for the evolution. Since ‖g(t)‖Q = 1, we also
have Φ(g(t)) = (Lg(t), g(t))Q ≥ λ∗, and it is a natural question to ask, if we can construct a

minimizer of Φ in the following way. Consider a sequence of initial data (ψj) ⊂ X2
odd such that

Φ(ψj) ≤ λ∗ + 1/j and let gj denote the corresponding solution to (10.2) so that gj(0) = ψj. Then
λ∗ ≤ Φ(gj(t)) ≤ Φ(ψj) ≤ λ∗ + 1/j for all t ∈ [0,∞[ and j ∈ N. Hence the key point is to find
a sequence of times (tj) with the properties that tj → ∞ and {gj(tj) : j ∈ N} ⊂ X0 is relatively
compact. It can be shown that this goal can be accomplished, if the condition λ∗ < δ2

1 is imposed;
the limiting function u∗ will then be the desired eigenfunction of L for the eigenvalue λ∗.

11 Open questions and further topics

In this last section we will outline a few topics for further research.

1. Certainly some more numerical results would provide important insights. For instance, it will
be helpful to know the shape of the surface P = {T1(β, e) : β ∈ [0, β∗], e ∈ [emin(β), e0]} for
the period function T1 and for different steady states. It can be expected that the properties
of P will also play a major role for the non-linear dynamics close to steady states; see [40]
for some numerically obtained results showing the possible behaviors of such solutions.

2. It should be clarified if it could happen, for some static solution, that λ∗ = δ2
1.

3. It should be determined where ω1 attains its minimum on D. Is it the same point for all
“reasonable” static solutions Q?

4. Also it would be interesting to determine the limit µ∗ from (9.7) solely in terms of Q.
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5. When it comes to relativistic galactic dynamics, the appropriate model is the Einstein-
Vlasov system [1]. In the present lectures we have not been dealing with this more general
system, but of course it will be tempting to investigate which results could be transferred to
Einstein-Vlasov; see [21, 22, 23, 9, 10, 16, 17] for work in this context that is related to the
Antonov bound, and the recent paper [13] for some results on a Birman-Schwinger principle
for Einstein-Vlasov.
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[6] Birman M.Š.: On the spectrum of singular boundary-value problems, (in Russian),
Mat. Sb. (N.S.) 55 (97), 125-174 (1961); translated in Amer. Math. Soc. Transl. 53, 23-
80 (1966)

[7] Doremus J.P., Baumann G. & Feix M.R.: Stability of a self gravitating system with
phase space density function of energy and angular momentum, Astronom. and Astrophys. 29,
401-407 (1973)

[8] Dyson F.J. & Lenard A.: Stability of matter. I and II, J. Math. Phys. 8, 423-434 (1967);
ibid. 9, 698-711 (1968)

[9] Fackerell E.D.: Relativistic, spherically symmetric star clusters. IV. A sufficient condition
for instability of isotropic clusters against radial perturbations, Astrophys. J. 160, 859-874
(1970)

[10] Fackerell E.D.: Relativistic, spherically symmetric star clusters. V. A relativistic version
of Plummer’s model, Astrophys. J. 165, 489-493 (1971)

31



[11] Gillon D., Cantus M., Doremus J.P. & Baumann G.: Stability of self-gravitating
spherical systems in which phase space density is a function of energy and angular momentum,
for spherical perturbations, Astronom. and Astrophys. 50, 467-470 (1976)

[12] Glassey R.T.: The Cauchy Problem in Kinetic Theory, SIAM, Philadelphia 1996

[13] Günther S., Rein G. & Straub C.: A Birman-Schwinger principle in general relativity:
linearly stable shells of collisionless matter surrounding a black hole, arXiv:2204.10620

[14] Guo Y.: On the generalized Antonov stability criterion, in Nonlinear Wave Equations (Prov-
idence, RI, 1998), Contemp. Math. 263, American Mathematical Society, Providence, 85-107
(2000)

[15] Guo Y. & Rein G.: A non-variational approach to nonlinear stability in stellar dynamics
applied to the King model, Comm. Math. Phys. 271, 489-509 (2007)
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[33] Maréchal L. & Perez J.: Radial orbit instability as a dissipation-induced phenomenon,
Monthly Notices Roy. Astronom. Soc. 405, 2785-2790 (2010)

[34] Mathur S.D.: Existence of oscillation modes in collisionless gravitating systems, Monthly
Notices Roy. Astronom. Soc. 243, 529-536 (1990)

[35] Morrison P.J.: Hamiltonian description of the ideal fluid, Rev. Modern Phys. 70, 467-521
(1998)
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