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Abstract. We consider effective models of condensation where the condensation

occurs as time t goes to infinity. We provide natural conditions under which the

build-up of the condensate occurs on a spatial scale of 1/t and has the universal

form of a Gamma density. The exponential parameter of this density is determined

only by the equation and the total mass of the condensate, while the power law

parameter may in addition depend on the decay properties of the initial condition

near the condensation point. We apply our results to some examples, including

simple models of Bose-Einstein condensation.
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1. Motivation and background

Condensation is an important and interesting phenomenon, which is present in many
different physical systems. Loosely speaking, condensation occurs when for a system of
many particles, a given relevant quantity has the same value for a macroscopic fraction
of those particles. The examples that are relevant to this article are natural selection and
mutation, where the particles are individuals, the relevant quantity is the fitness, and the
condensation occurs at the maximal fitness; and Bose-Einstein condensation, where the
particles are Bosons, the relevant quantity is the energy, and the condensation occurs at
the minimal quantum energy level. We are interested in what a condensing system looks
like when it is dynamically close to condensation.

We will not deal with the difficult issue of condensation in many-particle systems it-
self, but will instead investigate effective models and manifestations of condensation in
a scalar variable. These models are then given in the form of non-linear measure-valued
equations in 1+1 dimensions, the first of the variables being time, and the other the scalar
quantity mentioned above. More precisely, for t ∈ R+

0 , the finite measure pt describes the
concentration of particles at relevant quantity x, and (pt)t > 0 solves the equation

∂tpt(dx) = F (x, pt). (1.1)

with some functional F . We will give three concrete examples of such systems below:
Kingman’s model of selection and mutation [11], an approximate model for Bose- Einstein
condensation due to Buffet, de Schmedt and Pulé [1] (henceforth called the BSP-model),
and a model for bosons in a heat bath investigated by Escobedo, Mischler and Velazquez
[7, 8, 9] (referred to als EMV-model below). Another effective model of condensation is the
Boltzmann-Nordheim equation [12, 13, 15, 10], but as we will see below, it is too singular
for our theory to apply.
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In the effective models, condensation is characterized by the behavior of pt as t → t∗,
where t∗ 6∞ is the time at which condensation occurs. Typically, one assumes that the
initial condition p0 is absolutely continuous with respect to the Lebesgue measure, and t∗

is the infimum over all times where pt(dx) is not absolutely continuous with respect to the
Lebesgue measure. If one finds that there exist ρ > 0 and q ∈ L1 so that for suitable test
functions φ,

lim
t↑t∗

∫
pt(dx)φ(x) = ρφ(x∗) +

∫
q(x)φ(x) dx, (1.2)

this is paraphrased by saying that condensation occurs at x = x∗, at time t = t∗. We
then refer to ρ as the mass of the condensate, while q is the bulk density. The approach to
the limit in Equation (1.2) can be interpreted as the formation of an approximate Dirac
distribution around x∗ when t is near t∗. The topic of our paper is to investigate in the case
t∗ =∞ the asymptotic shape of this approximate Dirac distribution in the correct scale.

In cases where t∗ < ∞, much less is known. The best results that we are aware of are
those by Escobedo and Velazquez for the Boltzmann-Nordheim equation [10]. They show
that under suitable assumptions on the mass of the initial condition, the solution pt(dx)
to (1.1) has a Lebesgue density p̃t that explodes in finite time, i.e. there exists a t−∗ <∞
so that

lim inf
t↑t−∗

‖p̃t‖∞ =∞.

They also show that there exists a t+∗ > t−∗ so that the weak solution of (1.1) contains
a Dirac mass at the condensation point x∗ = 0 for some t ∈ [t−∗ , t

+
∗ ]. What they cannot

show is that the infimum over all possible t+∗ equals t−∗ , and so an equation like (1.2) is
currently not known. We are not aware of any natural examples where (1.2) has been
proved for some t∗ <∞ , and therefore stick to the case t∗ =∞.

To our knowledge, the following rigorous results about the asymptotic shape of such
emerging condensates exist: In [5], it is shown that for Kingman’s model of selection and
mutation, the shape is the one of a Gamma-distribution. The same result is found in [9]
for a special case of the EMV-model. They also find the influence of the initial condition,
depending on its behavior near the condensation point, that will appear in our results
below. The results rely on explicit solution formulas for all times, although in [9] a formal
asymptotic expansion is used in order to cover also cases where such a solution formula is
missing.

The contribution of our paper is to provide conditions which are easy to check, do
not require the knowledge of a solution formula, and are sufficient to conclude both the
Gamma shape of the near condensate and the possible dependence of that shape on the
initial condition. Our conditions are natural in that they only require knowledge about
the right hand side of (1.2) when pt is very close to the formal stationary solution ρδx∗+q.
Precise statements follow in the next section.

Acknowledgements: The authors would like to thank Daniel Ueltschi for many fruit-
ful discussions and J.J.L. Velazquez for useful comments on the Boltzmann-Nordheim
equation, and for pointing out reference [9].

2. Assumptions and main result

We treat models where condensation occurs at the boundary of the set of possible values
of the scalar quantity x, and we normalize these models so that this value is x = 0. Further
we restrict attention to the case where t∗ =∞. LetM0 := {ρ δ0+p dx : ρ > 0, p ∈ L1(R+

0 )}
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be the subspace of the space of finite measures on R+
0 that have a density with respect to

Lebesgue measure except possibly at the origin where we allow for a Dirac measure δ0 with
mass ρ. Fix α > 0, and let B :M0 → C(R+

0 ) and C :M0 → C(R+
0 ) be (not necessarily

linear) operators. Consider the equation

∂tpt(dx) = B[pt]pt(dx) + xαC[pt] dx. (2.1)

An element p ∈M0 is called stationary, if

B[p] p(dx) + xαC[p] dx = 0.

In most cases we consider evolutions where pt does not have an atom in 0. In this case
we refer to the Lebesgue density of pt by the same symbol pt. With this convention the
equation reads

∂tpt(x) = B[pt]pt(x) + xαC[pt].

When comparing (2.1) to the most general equation (1.2), we see that we demand a
decomposition of the right hand side into a homogenous part and a remainder. While
such a decomposition can always be achieved (e.g. by setting B = 0), the restriction lies
in the assumed regularity of the images under B and C. In particular, we assume that
when dividing the inhomogenous part by a factor of xα, we still retain a function that is
bounded at x = 0. In all the concrete and relevant examples that we are aware of, the
decomposition is unique and easy to find. In the Boltzmann-Nordheim model, however,
measures with a Dirac mass at the origin are too singular for the equation to make sense
in a classical way [10], and so a decomposition like (2.1) with the corresponding regularity
assumptions fails.

Definition: We say that a solution (pt)t > 0 to (2.1) converges regularly to an element
p∞ ∈M0 if

(i): pt → p∞ weakly as t→∞ as measures;

(ii): the following two equations hold:

lim
t→∞
‖B[pt]−B[p∞]‖C1([0,δ]) = 0, (2.2)

lim
t→∞
‖C[pt]−C[p∞]‖C([0,δ]) = 0. (2.3)

Here, ‖f‖C1([0,δ]) = sup{|f(x)| + |f ′(x)| : 0 6 x 6 δ}, and ‖f‖C([0,δ]) = sup{|f(x)| :
0 6 x 6 δ}.

When p∞ is a measure with positive condensate mass, (i) above is what is usually
proved when condensation is shown, see e.g. [8, 1]. (ii) is more particular to our needs.
Note that (2.2) demands that the difference of B[pt] and B[p∞] is of higher regularity
than each individual term needs to be.

In two of the examples that we will give, the operators B and C are affine integral
operators. In both of those examples, it has been shown that the convergence of pt to p∞
is in L1 away from x = 0. The next proposition states that in such cases, (2.2) and (2.3)
already follow from natural regularity assumptions on the integral kernels of B and C.

Proposition 2.1. Assume that B and C are affine integral operators, i.e.

B[p](x) =

∫ ∞
0

Kb(x, y)p(dy) +Rb(x), C[p](x) =

∫ ∞
0

Kc(x, y)p(dy) +Rc(x),

where Kb, Kc, and ∂xKb are elements of Cb([0, δ]×R+
0 ) for some δ > 0, while Rb and Rc

are arbitrary functions.
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Let (pt) be a solution to (2.1) with initial condition p0(x)dx, i.e. without an atom at zero.
Assume that pt converges weakly to p∞ = ρδ0 + q(x)dx with ρ > 0 and q ∈ L1, and in
addition assume that

lim
t→∞

∫ ∞
δ
|pt(x)− q(x)| dx = 0 (2.4)

for all δ > 0. Finally, assume that there exists δ̃ > 0 such that

lim sup
t→∞

∫ δ̃

0
|pt(x)| dx <∞. (2.5)

Then pt converges regularly to p∞.

The proof consists of standard applications of integral convergence theorems. We give it
in the appendix for the convenience of the reader. Note that since Rb and Rc drop out when
considering differences like B[pt](x) −B[p∞](x), they are indeed arbitrary, although the
regularity requirements preceding (2.1) will usually mean that they need to be continuous
and bounded.

Now we state our main result.

Theorem 2.2. Assume that (pt) solves equation (2.1) with initial condition p0(x) dx, i.e.
without atom at zero. For the density p0, assume that there exists α0 > 0 and a function
η : R+

0 → R+
0 , which is continuous and positive at zero, so that

p0(x) := xα0η(x).

Assume further that (pt) converges regularly to a stationary limit p∞ = ρδ0 + q(x) dx with
ρ > 0 and q ∈ L1. Finally, assume that for this limit,

c1 := C[p∞](0) > 0, (2.6)

and that, for some α > 0,

c2 := lim
x→0

xα−1

q(x)
> 0 exists. (2.7)

Then with γ := c1c2 and β := min{α, α0} we have, uniformly on compact intervals of R+
0 ,

that
lim
t→∞

1
t pt(

x
t ) = C e−γx xβ. (2.8)

Above, C = ργβ/Γ(β), i.e. C is such that the right hand side of (2.8) integrates to ρ.

The main feature of this result is the universal nature of the gamma shape of the
emerging condensate. In all examples that we are aware of, the stationary limit p∞ in
Theorem 2.2 only depends on the mass of the initial condition, but not on its shape. In
these cases, the statement can also be read as the following dichotomy: either α 6 α0, in
which case the initial condition is irrelevant for the shape of the emerging condensate; or,
α0 < α, in which case the exponential decay of the Gamma distribution is still governed
by the constant from (2.7), but the power law near x = 0 is the same as in the initial
condition. From the calculations in our proofs, it is apparent that the second case could
be strengthened in the following way: if the initial condition dominates the inhomogeniety
near x = 0, the emerging condensate will look like the initial condition at an appropriate
scale. In particular, one might think of initial conditions that switch between different
power laws α1 and α2 infinitely often in the approach to zero. In that case, we would
have no convergence in (2.8), but rather an oscillating behavior. Since this case does not
seem very relevant and would need rather careful statements and investigations, we do not
pursue it any further.
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Note that condition (2.7) can alternatively be read as a condition on B[p∞](x) near the
point x = 0. Namely, by stationarity of p∞ we have that

B[p∞](x) = − xα

q(x)
C[p∞](x)

for Lebesgue almost all x > 0 and by continuity this holds for all x > 0. For x = 0
the right hand side equals zero so that B[p∞](0) = 0. Thus, condition (2.7) means that
x 7→ B[p∞](x) is differentiable at x = 0, and that its derivative equals −γ.

3. Examples

3.1. Selection mutation equations. A natural set of examples for our theory arise
from equations describing the fitness distribution of a population evolving by selection and
mutation. We focus on Kingman’s model [11] and briefly mention some generalizations
and variants at the end of this section.

Kingman’s model of selection and mutation is originally framed in discrete time, see [11].
We start with an initial fitness distribution p0(dx) of a diffuse population, which is a
probability measure on (0, 1). By pn(dx) we denote the fitness distribution in the n-th
generation. It satisfies the recursion

pn+1(dx) = (1− β)
x

wn
pn(dx) + βr(dx),

where wn =
∫ 1

0 xpn(dx) is the mean fitness at generation n, r is the fitness distribution for
spontaneous mutations, and β ∈ (0, 1) is the frequency of mutation. We assume that r is a
probability measure on (0, 1) with essential supremum at x = 1. Kingman’s idea is that a
proportion 1−β of the population is selected from the previous generation with a selective
advantage proportional to their fitness, and a proportion β of the population experiences
mutation, which destroys the individuals’ biochemical ‘house of cards’ so that the mutant
fitness distrbution r does not depend on their previous fitness. Kingman showed that
condensation at the maximal fitness x = 1 occurs if

β

∫ 1

0

r(dx)

1− x
< 1. (3.1)

To adapt the model to our framework, we switch to a continuous time model and change
variables so that condensation occurs at x = 0. The result is the equation

∂tpt(dx) =
(

(1− β)
1− x
w[pt]

− 1
)
pt(dx) + βu(dx), (3.2)

where w[pt] =
∫ 1

0 (1−x)pt(dx) and u(dx) = r(d(1−x)). Kingman’s arguments show that if

β

∫ 1

0

u(dx)

x
< 1

we have pt → p∞ weakly for the stationary solution pt given by

p∞(dx) =
(

1− β
∫ 1

0

u(dx)

x

)
δ0 + β

u(dx)

x
.

We assume that u(x) = xαu0(x), for some α > 0, and u0(x) continuous and strictly
positive at x = 0. Then,

B[p] = (1− β)
1− x
w[p]

− 1,
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and C[p] = βu0. In particular (2.2) and (2.3) are trivially fulfilled. Moreover,

w[p∞] =
(

1− β
∫ 1

0

u(dx)

x

)
+ β

∫
1− x
x

u(dx) = 1− β,

as u(dx) is a probability measure. Then, B[p∞](x) = −x, and C[p∞](x) = βu0(x),
confirming that p∞ is stationary. Moreover, the bulk density q(x) is given by βu(x)/x =
βxα−1u0(x). Thus, c2 from (2.7) is given by 1/βu0(0), and Theorem 2.2 holds with
γ = 1. We thus obtain the gamma-shape of the emerging condensate under less restrictive
conditions than Dereich and Mörters [5].

Kingman’s model was generalized by Yuan [16] to model the long-term evolution of
Eschrichia.coli in the Lenski experiment. This model can still be fitted to our framework.
Park and Krug [14] generalize Kingman’s model to unbounded fitness distributions, which
leads to a qualitatively different emergence of a condensate (at infinity). They also inves-
tigate the relation of Kingman’s model to a stochastic finite population model. Dereich [4]
identifies the shape of the emergent condensate in a random network model with fitness.

We now discuss in more detail a stochastic particle model based on a branching process
closely related to Kingman’s original model, which is investigated in [6]. In this model
immortal particles produce offspring with a rate given by their fitness. Independently,
each offspring particle is a mutant with probability β and otherwise inherits the parent’s
fitness. Mutants receive their fitness by sampling from the distribution r. The expected
fitness distribution qt of particles alive at time t therefore satisfies

q̇t(dx) = (1− β)xqt(dx) + β

∫
y qt(dy)r(dx).

Taking at =
∫ t

0

∫
y qs(dy) ds the normalized and time-changed quantity

p̃t =
qa−1
t∫

qa−1
t

(dy)

therefore satisfies

˙̃pt(dx) =
(

(1− β)
x∫

y p̃t(dy)
− 1
)
p̃t(dx) + βr(dx).

Moving now the condensation point to the origin we are back in Kingman’s model and
Theorem 2.1 can be applied. If (3.1) holds we have at ∼ (1 − β)t and we observe that
also in the stochastic model the condensate is forming on the scale 1/t in expectation.
The behaviour of this stochastic model in probability is more difficult to investigate and
largely open.

3.2. A model of Bosons in contact with a bath of Fermions. In a series of papers
[7, 8, 9], Escobedo, Mischler and Velazquez study an effective model for Bosons in contact
with a bath of Fermions in thermal equilibrium. Given a function b : R0

+ × R0
+ → R+ of

the form

b(x, y) = eηx eηy σ(x, y)

with η ∈ [0, 1) and 0 6 σ ∈ L∞(R0
+ × R0

+) symmetric, one asks for solutions (Ft)t > 0 of
the equation

∂tFt(x) =

∫ ∞
0

b(x, y)
(
Ft(y)(x2 + Ft(x))e−x − Ft(x)(y2 + Ft(y))e−y

)
dy.
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Note that the right hand side is well defined as long as Ft is in the space L1(R+
0 , eηx dx). To

apply our results we consider the transformed solution (pt)t > 0 given by pt(x) = eηx Ft(x).
It satisfies as L1(R0

+)-valued system the equation

∂tpt(x) = eηx
∫ ∞

0
σ(x, y)

(
pt(y)(x2 eηx +pt(x)) e−x −pt(x)

(
y2 eηy +pt(y)

)
e−y

)
dy. (3.3)

The extension of this equation to elements ofM0 is straightforward, and it fits into the
framework of (2.1) with α = 2,

B[p](x) = eηx
∫ ∞

0
p(dy)σ(x, y)

(
e−x − e−y

)
− eηx

∫ ∞
0

σ(x, y)y2 e(η−1)y dy, (3.4)

and

C[p](x) = e(2η−1)x

∫ ∞
0

σ(x, y)p(dy). (3.5)

Under suitable assumptions on σ and the initial condition, Escobedo and Mischler [7,
8] show existence of solutions for all times, and convergence of the solution as t → ∞
towards the stationary solution. In the case where

∫∞
0 F0(x) dx >

∫∞
0

x2

ex−1 dx = 2.40411...
condensation occurs and the limit is of the form

F∞(dx) = ρδ0 +Q(x)dx with Q(x) =
x2

ex − 1

and ρ =
∫∞

0 F0(x) dx−
∫

x2

ex−1 dx. In that case (pt) has as limit

p∞(dx) = ρδ0 + q(x)dx with q(x) =
x2 eηx

ex − 1
. (3.6)

In [9], the authors investigate the shape of the emerging condensate; they show rigorously
(by means of an explicit solution formula) that the emerging condensate is Gamma-shaped
in the special case that b(x, y) ≡ 1. Moreover, they find that the power law parameter
of the Gamma distribution depends on how the initial condition vanishes at x = 0; this
corresponds to Theorem 2.2 of the present paper. Very interestingly, they also obtain
asymptotics for the case where the initial condition already has a Dirac mass at x = 0.
In that case, there is no emerging condensate as t → ∞, instead the Dirac mass itself
grows to its final value (determined by the total mass of the initial condition) as t→∞;
see Theorem 1, part (ii) of [9]. This result shows that we cannot drop the assumption on
absolute continuity of the initial condition in Theorem 2.2.

We will now use our general theory in order to find more general conditions on b so
that the Gamma shape of the emerging condensate still holds. We first assume that
(x, y) 7→ σ(x, y) is continuous, continuously differentiable with respect to x for all y, and
that, for some δ > 0,

sup{|∂xσ(x, y)| : 0 6 x 6 δ, y ∈ R+} <∞. (3.7)

This condition is tailor-made for the assumptions on B and C of Proposition 2.1. In fact
it is slightly more than we really need, since we have

Kb(x, y) = σ(x, y)( e−x − e−y ),

and thus at x = y differentiability of σ is not needed due to the presence of the factor
e−x − e−y . We further assume that∫ ∞

0
σ(0, y)p∞(dy) > 0. (3.8)
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This assumption ensures the validity of conditions (2.6) and (2.7). Indeed, we compute

C[p∞](x) = e(2η−1)x
(
ρσ(x, 0) +

∫ ∞
0

σ(x, y)
y2 eηy

ey − 1
dy
)
,

and thus C[p∞](0) > 0, so (2.6) holds. Since

lim
x→0

xα−1

q(x)
= lim

x→0
eηx

ex − 1

x
= 1,

we also have (2.7), and find that γ =
∫
σ(0, y)p∞(dy). Note that (3.8) is weaker than the

assumption σ(0, 0) > 0 that was made in the appendix of [9], where non-constant b are
treated non-rigorously, using matched asymptotic expansions.

Finally we need to verify (2.4). This is proved by Escobedo and Mischler in Theorem 6
of [8] for the case η = 0 and we believe that the arguments given there allow to prove
(2.4) also for arbitrary values of η > 0. In conclusion, if conditions (3.7) and (3.8) hold
and η = 0, then Theorem 2.2 holds with α = 2 and γ =

∫
σ(0, y)p∞(dy).

3.3. Kinetics of Bose-Einstein condensation. Our final example is a simple model
for the emergence of a condensate in a Bose gas in contact with a heat bath, which was
developed by Buffet, de Smedt and Pulé in [1, 2].

Let Ĉ : R→ R+
0 be a strictly positive, bounded function satisfying the KMS relation

Ĉ(−z) = Ĉ(z) eβz (3.9)

for some β > 0. Physically, Ĉ is the Fourier transform of the heat bath correlation function,
and β > 0 is the inverse temperature of the heat bath. Note also that the assumption
that Ĉ is bounded and (3.9) imply exponential decay of Ĉ(z) as z →∞.

We also define

A(z) = Ĉ(−z)− Ĉ(z) = Ĉ(z)( eβz − 1),

F (x) =
x1/2

√
2π2

.

F is the density of states in the case of a Bose gas in a 3-dimensional box. In order to
model the Bose gas in other environments we would need to modify F ; for example, for
the Bose gas in a 3-dimensional harmonic trap, F would decay like x3/2 near x = 0; see
also the discussion in [3]. In what follows we will consider the more general form

F (x) = f(x)xα, α > 0, f(0) > 0. (3.10)

The energy distribution pt of the Bose gas at time t > 0 then satisfies the equation

∂tpt(x) =

∫ ∞
0
A(y − x)pt(x)pt(y) dy

−
∫ ∞

0
Ĉ(y − x)F (y) pt(x) dy +

∫ ∞
0

Ĉ(x− y)pt(y)F (x) dy.

(3.11)

It is easy to check that (3.11) preserves the total mass
∫∞

0 pt(x) dx for all times t > 0. It
has been shown in [1] that there is a global solution to (3.11) and moreover, there exists
ρc > 0 such that, for all initial energy densities satisfying∫ ∞

0
p0(x) dx > ρc + ρ
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for some ρ > 0, (pt) converges weakly to the stationary solution

p∞(dx) = ρδ0 + q(x) dx

with bulk density

q(x) =
F (x)

eβx − 1
.

Moreover, Theorem 2 of [1] states that

lim
t→∞

∫ ∞
c
|pt(y)− q(y)|dy = 0

for all c > 0. Thus, (2.4) and (2.5) hold.
The decomposition of equation (3.11) according to (2.1) is given by

B[p](x) =

∫ ∞
0

A(y − x)p(y) dy −
∫ ∞

0
Ĉ(y − x)F (y) dy,

C[p](x) = f(x)

∫ ∞
0

Ĉ(x− y)p(y) dy.

So in the context of Proposition 2.1, we have Kb(x, y) = A(y − x), Kc(x, y) = Ĉ(x − y),

R1(x) =
∫∞

0 Ĉ(y − x)F (y) dy and R2(x) = 0.

We now assume that the restriction of Ĉ to the interval (−∞, 0) is continuously differ-
entiable with a bounded derivative, and that f is continuous. Then the integral kernels
Kb(x, y) = A(y−x) and Kc(x, y) = Ĉ(x−y) are bounded and continuous. In particular, B

and C mapM0 to C(R+
0 ). Moreover, x 7→ A(y−x) = Ĉ(x−y)− Ĉ(y−x) is continuously

differentiable with bounded derivative whenever x 6= y. For the case x = y, note that
A(z) = Ĉ(z)( eβz − 1), and thus x 7→ A(x− y) is differentiable also at x = y with deriva-

tive βĈ(0). Altogether, we get that ∂xKb(x, y) is in Cb([0, δ] × R+
0 ), and Proposition 2.1

implies that pt converges regularly to p∞.
It remains to check assumptions (2.6) and (2.7). Clearly,

C[p∞](0) = f(0)

∫
Ĉ(y)p∞(y)dy > 0,

which shows that α is determined by the choice in (3.10). Furthermore,

lim
x→0

xα−1

q(x)
= lim

x→0

eβx − 1

xf(x)
=

β

f(0)
,

which shows that

γ = β

∫ ∞
0

Ĉ(y)p∞(y) dy.

By Theorem 2.2, we conclude again that the emerging condensate is described by a Gamma
distribution on the relevant scale.

4. Proof of the theorem

Let (pt) be a solution to (2.1). We define, for x > 0,

bt(x) := B[pt](x),

and, for x > 0,

ct(x) = C[pt](x).
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Then pt solves the time-inhomogenous linear equation

∂tpt(x) = bt(x)pt(x) + xαct(x)

with initial condition p0, and thus has the representation

pt(x) =

∫ t

0
e
∫ t
s bu(x) du xαcs(x) ds+ e

∫ t
0 bs(x) ds p0(x). (4.1)

We will re-write this representation in a form that will be convenient later on, using the
following definitions:

Wt := e
∫ t
0 bs(0) ds ,

γt(x) := −1

x
(bt(x)− bt(0)) for x > 0,

γ̄s,t(x) :=

{
1
t−s
∫ t
s γr(x) dr if t > s

γt(x) if t = s.

Then we have

pt(x) =

∫ t

0

Wt

Ws
xαcs(x) e−(t−s)xγ̄s,t(x) ds+Wt e−txγ̄0,t(x) p0(x), (4.2)

Next, we use our assumptions in order to prove some properties of the quantities ct and γt.

Proposition 4.1. Let the assumptions of Theorem 2.2 be fulfilled. Then

(1) limt→∞ bt(0) = 0.
(2) For sufficiently large t, x 7→ γt(x) can be continuously extended to all x > 0.

Further, there exists δ > 0 and a strictly positive function γ∞ : [0, δ] → R+ with
the property that

lim
t→∞

sup
x∈[0,δ]

|γt(x)− γ∞(x)| = 0.

Moreover, we have that γ∞(0) = γ, the latter being defined in (2.7).
(3) There exists δ > 0 and a continuous function c∞ : [0, δ]→ R such that c∞(0) > 0,

and

lim
t→∞

sup
x∈[0,δ]

|ct(x)− c∞(x)| = 0.

Proof. By the comments at the end of Section 2 we have B[p∞](0) = 0 so that by (2.2)

lim
t→∞

bt(0) = lim
t→∞

B[pt](0) = B[p∞](0) = 0,

and (1) is shown. For (2), we define

γ∞(x) := −1

x
B[p∞](x) for x > 0.

Since B[p∞](x)q(x) = −xαC[p∞](x) for all x > 0, we find that

lim
x→0

γ∞(x) = lim
x→0

xα

xq(x)
C[p∞](x) = γ

by Assumption (2.7) and the definition of γ. In particular, γ∞ can be continuously ex-
tended to the whole half line. We write b∞ for B[p∞], and put

st(x) := b∞(x)− bt(x).
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Then by (2.2), x 7→ st(x) is an element of C1[0, δ] for some δ > 0 and all sufficiently large
t, and limt→∞ ‖st‖C1([0,δ]) = 0. Furthermore,

γt(x)− γ∞(x) =
1

x
(st(x)− st(0)) =

∫ 1

0
s′t(rx) dr,

and thus (2) follows. (3) follows directly from Assumption (2.3). �

Recall our assumption on the initial condition p0: there exists α0 > 0 and η ∈ L1 so
that η is continuous at x = 0, η(0) > 0, and

p0(x) = xα0η(x) (4.3)

for all x ∈ [0, δ]. Let us also define, for β > 0,

Qt(β) := W−1
t (t+ 1)1+β. (4.4)

A direct calculation then gives an expression for pt/t at arguments of the order 1/t, namely

Qt(β)
t pt(

x
t ) =

(
t+1
t

)1+β
e−xγ∞(0)

(
tβ−αxαJ(x, t) + tβ−α0xα0 ex(γ∞(0)−γ̄0,t(x/t)) η(xt )

)
, (4.5)

with

J(x, t) =

∫ t

0

Qs(β)

(s+ 1)β+1
cs(x/t) ex(γ∞(0)− t−s

t
γ̄s,t(x/t)) ds.

Now it is easy to prove the following

Proposition 4.2. Assume that the quantities (bt) and (ct) have the properties (1) - (3)
from Proposition 4.1, and assume in addition that for β := min{α, α0}, the limit Q∞ =
limt→∞Qt(β) exists in (0,∞). Then

lim
t→∞

1

t
pt(

x
t ) =

1

Q∞
e−xγ∞(0)

(
1{β=α}x

α

∫ ∞
0

Qs(β)

(s+ 1)β
cs(0) ds+ 1{β=α0}x

α0η(0)
)
, (4.6)

and the limit is uniform in x on compact intervals in (0,∞).

Proof. First we analyse the first summand on the right hand side of (4.5). We show that
J(x, t) converges uniformly to ∫ ∞

0

Qs(β)

(s+ 1)β
cs(0) ds.

To see this, note that by Proposition 4.1, γ̄0,t converges uniformly on [0, δ] to γ∞ and by
continuity of γ∞ in zero we get local uniform convergence of γ̄0,t(x/t) to γ∞(0). Hence for
each fixed s, the quantity

D(s, t) := sup
0 6 x 6 K

∣∣∣cs(x/t) ex(γ∞(0)− t−s
t
γ̄s,t(x/t)) − c∞(0)

∣∣∣
converges to zero as t → ∞. The integrand in J(x, t) and Qs(β)

(s+1)β
cs(0) are both bounded

by a constant multiple of the integrable function (s+ 1)−1−β, uniformly in x, on compact
intervals. Thus for M > 0,

sup
0 6 x 6 K

∣∣∣J(x, t)−
∫ ∞

0

Qs(β)

(s+ 1)β
cs(0) ds

∣∣∣ 6 ∫ M

0

Qs(β)

(s+ 1)β
D(s, t) ds+C

∫ ∞
M

(s+ 1)−1−β ds.

The first term above converges to zero by dominated convergence, as t → ∞. By taking
M → ∞ afterwards, the asymptotic of the first term follows. Using that, uniformly on
compact intervals, ex(γ∞(0)−γ̄0,t(x/t)) η(xt )→ η(0) we get convergence of the second term.
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�

We have just proved Theorem 2.2 under the additional assumption that limt→∞Qt(β)
exists and is strictly positive. Since the definition of Qt(β) involves the function bt(0) =
B[pt](0) and thus the solution itself, such a condition is not desirable. The main step of our
proof consists in showing that existence of limt→∞Qt(β) already follows from the presence
of a condensate, and that its positivity follows from the finiteness of the condensate mass.
Actually, we will show a bit more. Note that weak convergence of pt to ρδ0 + q dx implies
that

lim
ε↓0

lim
t→∞

∫ ε

0
pt(x) dx = ρ. (4.7)

Proposition 4.3.
(i): Assume that (1)-(3) from Proposition 4.1 hold, and that the initial condition p0 is
given by (4.3). Define Qt(β) as in (4.4), with β = min{α, α0}. Then the following two
statements are equivalent:

(a) limt→∞Qt(β) exists and is finite.
(b) (pt) exhibits condensation, i.e. (4.7) holds with ρ > 0.

(ii): If (a) holds with limt→∞Qt(β) = 0, and if there exist δ > 0 and T > 0 so that
pt(x) > 0 for all x < δ and all t > T , then we have ρ =∞ in (b).

(iii): If (a) holds with limt→∞Qt(β) > 0, then for 0 < ε < δ,

lim
t→∞

∫ ε

0
pt(x) dx =

∫ ∞
0

κ(x) dx+

∫ ε

0

xα−1c∞(x)

γ∞(x)
dx, (4.8)

where κ(x) stands for the right hand side of (4.6). Moreover,

ρ = lim
K→∞

lim
t→∞

∫ K/t

0
pt(x) dx =

∫ ∞
0

κ(x) dx. (4.9)

Proof. We start by proving parts (ii) and (iii), which also shows that (a) implies (b) in
part (i). For part (ii), note that the proof of Proposition 4.2 actually shows that

lim
t→∞

Qt(β)

t
pt(

x
t ) = e−γ∞(0)x

(
1{β=α}x

α

∫ ∞
0

Qs(β)

(s+ 1)β
cs(0) ds+ 1{β=α0}x

α0η(0)
)

under the condition that (Qs(β)) is bounded. If limt→∞Qt(β) = 0, this implies that
limt→∞

1
t pt(x/t) = ∞ for all x > 0, and Fatou’s lemma together with our positivity

assumption gives

lim inf
t→∞

∫ δ/t

0
pt(x) dx = lim inf

t→∞

1

t

∫ δ

0
pt(x/t) dx >

∫ δ

0
lim inf
t→∞

1

t
pt(x/t) dx =∞.

This shows (ii). Now assume that Q∞ > 0.
Then the rightmost equality in (4.9) is proved by observing that∫ K/t

0
pt(x) dx =

1

t

∫ K

0
pt(x/t)dx→

∫ K

0
κ(x) dx

as t→∞, by Proposition 4.2, and then taking K →∞. Let us now write

p̃t(x) := Wt e−txγ̄0,t(x) p0(x)
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for the second term in (4.2). Then for t large enough, we have that∫ ε

K/t
p̃t(x) dx = ( t+1

t )βtβ−α0Qt(β)−1

∫ tε

K
e−xγ̄0,t(x/t) xα0η(x/t) dx.

Since γ̄0,t(x/t) converges uniformly for x ∈ [0, tε] to γ∞(x/t) (provided ε < δ), and since
γ∞(x) > γ− > 0 for x < δ, we find that

lim
t→∞

∫ tε

K
e−xγ̄0,t(x/t) xα0η(x/t) dx 6 Q−1

∞

∫ ∞
K

e−xγ−/2 xα0 sup
z 6 ε
|η(z)| dx→ 0

as K →∞. We have shown

lim
t→∞

∫ ε

0
p̃t(x) dx = lim

K→∞
lim
t→∞

∫ K/t

0
p̃t(x) dx. (4.10)

Now we turn to the first term of (4.2). We have∫ t

0

∫ ε

0

Wt

Ws
xαcs(x) e−(t−s)xγ̄s,t(x) dx ds

=
1

Qt(β)

∫ t/2

0

∫ (t−s)ε

0

(t+ 1)1+β

(t− s)1+α

Qs(β)

(s+ 1)1+β
zα cs(

z
t−s) e

−zγ̄s,t( z
t−s )

dz ds

+

∫ t/2

0

∫ ε

0

Qt−s(β)

Qt(β)

(t+ 1)1+α

(t− s+ 1)1+α
xαct−s(x) e−sxγ̄t−s,t(x) dx ds.

(4.11)

For the first integral in (4.11), we dominate the integrand uniformly by a constant multiple
of the integrable function

1

(s+ 1)1+β
zα e−γ−z.

(Note that β 6 α). If β < α, then this term converges to zero. In the other case, we apply
dominated convergence. In total, we obtain that the first term of (4.11) converges to

1{β=α}
1

Q∞(β)

∫ ∞
0

∫ ∞
0

Qs(β)

(s+ 1)1+α
zα cs(0) e−zγ∞(0) dz ds.

Since we assumed Qt(β) to converge to a strictly positive limit, the integrand of the second
integral in (4.11) is bounded by a constant multiple of the integrable function

1{x 6 ε} x
αe−γ−sx.

It therefore converges, by dominated convergence, to∫ ∞
0

∫ ε

0
xα c∞(x) e−sxγ∞(x) dx ds =

∫ ε

0

xα−1c∞(x)

γ∞(x)
dx.

If we put this together with (4.10), we have completed the proof of (4.8). The first claimed
equality of (4.9) now follows by letting ε ↓ 0 in (4.11).
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Now we prove that (b) implies (a) in (i). Let µt(ε) :=
∫ ε

0 pt(x) dx. Then, (4.2) and the
definition of Qt(β) give

Qt(β)µt(ε) =

∫ t

0
ds

∫ ε

0
dx (t+ 1)1+βxαcs(x)

Qs(β)

(s+ 1)1+β
e−(t−s)xγ̄s,t(x)

+

∫ ε

0
dx (t+ 1)1+β e−txγ̄0,t(x) xα0η(x)

=

∫ t

0
dsQs

(t+ 1)1+β

(s+ 1)1+β(t− s)1+α

∫ ε(t−s)

0
dz zαcs(

z
t−s) e−zγ̄s,t(z/(t−s)) +

+

∫ tε

0
dz

(t+ 1)1+β

t1+α0
zα0 e−zγ̄0,t(z/t) η(z/t).

(4.12)

Let now ε < δ, where δ is as in Proposition 4.1. Let us also assume that t′ is sufficiently
large so that γ̄0,t′(x) > γ−/2 for all 0 6 x 6 δ and all t > t′. This is possible since we
assumed that γ̄0,t converges uniformly to γ∞ > γ− on [0, δ]. Let us furthermore write
η̄ := sup0 6 x 6 δ η(x). Since β 6 α0, the second line of (4.12) is then bounded by

2η̄

∫ ∞
0

dz zα0 e−zγ−/2 =: D1 <∞, (4.13)

for all t sufficiently large.
For the first line of (4.12), we fix q > 1, and for t > 2q we divide the integration range

[0, t] of the first integral into [0, q] ∪ [q, t− q] ∪ [t− q, t]. We write

Mt := sup
s 6 t

Qt(β), c̄ := sup{cs(x) : 0 6 x 6 δ, 0 6 s <∞}.

Note that β 6 α and thus (t − s)−1−α 6 (t − s)−1−β when s 6 t − q, q > 1 and t > 2q.
Thus the integral over [0, q] is bounded by

Mq c̄

∫ q

0
ds

(t+ 1)1+β

(q + 1)1+β(t− q)1+β

∫ ∞
0

dz zα e−zγ−/2 =: MqC1(q), (4.14)

for all t sufficiently large. An elementary estimate shows that∫ t−q

q

(t+ 1)1+β

(s+ 1)1+β(t− s)1+β
ds 6 2

(t+ 1)1+β

(t/2)1+β

∫ t/2

q
s−(1+β) ds 6 25+2ββ−1q−β,

and thus the integral from q to t− q is bounded by

Mt c̄

∫ ∞
0

dz zα e−zγ−/2
∫ t−q

q
ds

(t+ 1)1+β

(s+ 1)1+β(t− s)1+β
=: MtC2q

−β (4.15)

for a suitable constant C2 that is independent of t and q. Finally, for the integral from
q − t to t, we undo the change of variable that transformed x into z = x/(t − s). Then
this integral is bounded by

Mt

∫ t

t−q
ds

(t+ 1)1+β

(s+ 1)1+β
c̄

∫ ε

0
xα dx 6Mt q

(t+ 1)1+β

(t− q + 1)1+β
c̄

∫ ε

0
xαdx =: MtC3(q)ε1+α,

(4.16)
where C3(q) can be chosen independently of t. We now use that we assumed condensation.
Let ρ > 0 be the mass of the condensate, let ρ1 < ρ, and let εt be the smallest (unique, if
pt > 0) solution of the equation ∫ εt

0
pt(x) dx = ρ1.
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Then µt(εt) = ρ1 by definition, and limt→∞ εt = 0 by condensation. Now we choose q = q̄
large enough so that the right hand side of (4.15) is less than Mtρ1/3. Then we choose t̄
large enough so that for all t > t̄, we have C3(q̄)ε1+α

t 6 ρ1/3. Thus for these t, the right
hand side of (4.16) is less than Mtρ1/3. Writing D2 = Mq̄C1(q̄) for the right hand side of
(4.14), an plugging all the parts back into (4.12), we obtain the inequality

Qt(β)ρ1 6 D1 +D2 + 2
3Mtρ1,

valid for all t > t̄. Then, for all t > t̄, we get

Mt 6Mt̄ + sup
t̄ 6 s 6 t

Qs(β) 6Mt̄ +
D1 +D2

ρ1
+

2

3
sup

t̄ 6 s 6 t
Ms = Mt̄ +

D1 +D2

ρ1
+

2

3
Mt.

We conclude that Mt 6 3(Mt̄ + (D1 +D2)/ρ1) and thus t 7→ Qt(β) is bounded.
Next we show convergence of (Qt(β)). We have

Qt(β)µt(ε) =

∫ t/2

0

∫ (t−s)ε

0
Qs(β)

(
t+1
s+1

)1+β 1
(t−s)1+α z

αcs(
z
t−s) e−zγ̄s,t(

z
t−s ) dz ds

+

∫ t/2

0

∫ ε

0
Qt−s(β)

(
t+1
t−s+1

)1+α
xαct−s(x) e−sxγ̄t−s,t(x) dx ds

+

∫ tε

0
dz

(t+ 1)1+β

t1+α0
zα e−zγ̄0,t(z/t) η(z/t).

(4.17)

For the first integral on the right hand side above, we dominate the integrand uniformly
by a constant multiple of

1
(s+1)1+α

zα e−γ−z

using that γ̄s,t(x) > γ− for all x ∈ [0, ε] as long as t is sufficiently large. Hence this integral
converges to∫ ∞

0

∫ ∞
0

Qs(β)
(s+1)1+α

zαcs(0) e−zγ∞(0) dz ds =

∫ ∞
0

∫ ∞
0

W−1
s zαcs(0) e−zγ∞(0) dz ds

if α = β, and to zero if α > β. Further the second term in (4.17) is for t > t0 bounded by

U(ε) = C1C4 21+α

∫ ∞
0

∫ ε

0
xα e−sxγ̄−(x) dx ds

which converges to zero as ε ↓ 0. By similar arguments, the third term converges to∫ ∞
0

zα e−zγ∞(0) η(0) dz

if β = α0, and to zero if β < α0. Defining

R := 1{β=α}

∫ ∞
0

∫ ∞
0

W−1
s zαcs(0) e−zγ∞(0) dz ds+ 1{β=α0}

∫ ∞
0

zα e−zγ∞(0) η(0) dz,

we see from (4.17) and the assumption that limε↓0 lim inft→∞ µt(ε) = ρ > 0 that

lim sup
t→∞

Qt(β) 6 lim
ε↓0

1

lim inft→∞ µt(ε)

(
R+ U(ε)

)
=

1

ρ0
R.

Analogously, using that limε↓0 lim supt→∞ µt(ε) = ρ > 0 we get that

lim inf
t→∞

Qt(β) >
1

ρ0
R.

Hence (Qt(β)) converges to R/ρ. �
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The proof of Theorem 2.2 is thus finished. Under its assumptions, Proposition 4.1
guarantees that the solution to (2.1) fulfills equation (4.1) with suitable properties of b,
c and γ. Since a finite, nonnegative condensation at x = 0 is assumed, Proposition 4.3
guarantees that Q∞ exists, is finite and strictly positive. Then, Proposition 4.2 shows the
claim of the proof. Note that equation (4.8) confirms that the shape of the bulk density
needs to be

q(x) =
xα−1c∞(x)

γ∞(x)
=
xαC[p∞](x)

B[p∞](x)
,

for x > 0, a fact that already follows from the stationarity of p∞ for equation (2.1). Also,
equation (4.9) shows that all of the condensate forms on a scale of 1/t as t→∞.

5. Appendix: proof of proposition 2.1

Fix t > 0. Then by our assumptions on Kb,∫ ∞
0

sup
x∈[0,δ]

|∂xKb(x, y)| |pt(y)− q(y)|dy <∞.

Thus Lebesgue’s theorem allows us to differentiate under the integral sign and obtain

∂x(B[pt](x)−B[p∞](x)) =

∫ ∞
0

∂xKb(x, y)(pt(y)− q(y)) dy − ρ∂xKb(x, 0)

=

∫ ∞
0

∂xKb(x, y)(pt(dx)− p∞(dx)).

Furthermore,

C[pt](x)−C[p∞](x) =

∫ ∞
0

Kc(x, y)(pt(dx)− p∞(dx),

with a similar equation for B[pt](x) −B[p∞](x). Thus the claim will be shown once we
prove the following lemma:

Lemma 5.1. Let (pt) and p∞ = ρδ0 + q(x)dx fulfill the assumptions of Proposition 2.1.
Then we have

lim
t→∞

sup
0 6 x 6 δ

∣∣∣ ∫ ∞
0

h(x, y)
(
pt(dy)− p∞(dy)

)∣∣∣ = 0

for all δ > 0 and all h ∈ Cb([0, δ]× R+
0 ).

Proof. First we rewrite∫ ∞
0

h(x, y)
(
pt(y)− q(y)

)
dy − ρh(x, 0) =

∫ ∞
0

(
h(x, y)− h(x, 0)

)(
pt(y)− q(y)

)
dy

+ h(x, 0)
(∫ ∞

0
(pt(y)− q(y)) dy − ρ

) (5.1)

By the weak convergence of ptdx to q dx+ ρδ0, the second line of (5.1) converges to zero
uniformly in x ∈ [0, δ]. For the first line, we fix ε > 0. Since h is continuous, it is uniformly

continuous on compact intervals. Therefore there exists δ̃ > 0 so that for all x ∈ [0, δ] and

all y ∈ [0, δ̃], we have |h(x, y)− h(x, 0)| < ε. Thus∣∣∣ ∫ δ̃

0

(
h(x, y)− h(x, 0)

)(
pt(y)− q(y)

)
dy
∣∣∣ 6 ε∫ δ̃

0
|pt(y)|+ |q(y)|dy. (5.2)
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By decreasing δ̃ if necessary and using condition (2.5), we find that the latter integral is
bounded by a constant C, and hence (5.2) is bounded by Cε uniformly in x ∈ [0, δ]. Note
that for sufficiently large t this would follow already from weak convergence of pt if we
had assumed that pt is nonnegative. For the remaining part of the first line of (5.1), we
estimate∫ ∞

δ̃

(
h(x, y)− h(x, 0)

)(
pt(y)− q(y)

)
dy 6 2‖h‖∞

∫ ∞
δ̃
|pt(y)− q(y)|dy. (5.3)

By assumption (2.4), this integral tends to zero uniformly in x. Putting (5.2) and (5.3)
together, we finally get that

lim sup
t→∞

sup
0 6 x 6 δ

∣∣∣ ∫ ∞
0

(
h(x, y)− h(x, 0)

)(
pt(y)− q(y)

)
dy
∣∣∣ 6 Cε

and the claim follows since ε > 0 was arbitrary. �
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