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Preface

The aim of this book is to introduce Brownian motion as central object of probability theory
and discuss its properties, putting particular emphasis onsample path properties. Our hope
is to capture as much as possible the spirit of Paul Lévy’s investigations on Brownian
motion, by moving quickly to the fascinating features of theBrownian motion process,
and filling in more and more details into the picture as we movealong.

Inevitably, while exploring the nature of Brownian paths one encounters a great variety
of other subjects: Hausdorff dimension serves from early onin the book as a tool to quan-
tify subtle features of Brownian paths, stochastic integrals helps us to get to the core of the
invariance properties of Brownian motion, and potential theory is developed to enable us
to control the probability the Brownian motion hits a given set.

An important idea of this book is to make it asinteractiveas possible and therefore
we have included more than 100 exercises collected at the endof each of the ten chapters.
Exercises marked with the symbolS have either a hint, a reference to a solution, or a full
solution given at the end of the book. We have also marked sometheorems with a star to
indicate that the results will not be used in the remainder ofthe book and may be skipped
on first reading. At the end of the book we have given a short list of selected open research
problems dealing with the material of the book.

This book grew out of lectures given by Yuval Peres at the Statistics Department, Uni-
versity of California, Berkeley in Spring 1998. We are grateful to the students who at-
tended the course and wrote the first draft of the notes: DiegoGarcia, Yoram Gat, Diogo
A. Gomes, Charles Holton, Frédéric Latrémolière, Wei Li, Ben Morris, Jason Schweins-
berg, Bálint Virág, Ye Xia and Xiaowen Zhou. The first draft ofthese notes, about 80 pages
in volume, was edited by Bálint Virág and Elchanan Mossel andat this stage corrections
were made by Serban Nacu and Yimin Xiao. The notes were distributed via the internet
and turned out to be very popular — this demand motivated us toexpand these notes to a
full book hopefully retaining the character of the originalnotes.

Peter Mörters lectured on the topics of this book in the Graduate School in Mathemat-
ical Sciences at the University of Bath in Autumn 2003, thanks are due to the audience,
and in particular to Alex Cox and Pascal Vogt, for their contributions. Yuval Peres thanks

viii



Preface ix

Pertti Mattila for the invitation to lecture on this material at the joint summer school in
Jyväskyla, August 1999, and Peter Mörters thanks Michael Scheutzow for the invitation to
lecture at the Berlin graduate school in probability in Stralsund, April 2003.

When it became clear that the new developments around the stochastic Loewner evolu-
tion would open a new chapter in the story of Brownian motion we discussed the inclusion
of a chapter on this topic. Realising that doing this rigorously in detail would go beyond
the scope of this book, we asked Oded Schramm to provide an appendix describing the new
developments in a less formal manner. Oded agreed and immediately started designing the
appendix, but his work was cut short by his tragic and premature death in 2008. We are
very grateful that Wendelin Werner accepted the task of completing this appendix at very
short notice.

Several people read drafts of the book at various stages, supplied us with helpful lists
of corrections, and suggested or tested exercises and references. We thank Anselm Adel-
mann, Tonci Antunovic, Christian Bartsch, Noam Berger, Jian Ding, Uta Freiberg, Nina
Gantert, Subhroshekhar Gosh, Ben Hough, Davar Khoshnevisan, Richard Kiefer, Achim
Klenke, Michael Kochler, Manjunath Krishnapur, David Levin, Nathan Levy, Arjun Mal-
hotra, Jason Miller, Asaf Nachmias, Weiyang Ning, Marcel Ortgiese, Ron Peled, Jim Pit-
man, Michael Scheutzow, Perla Sousi, Jeff Steif, Kamil Szczegot, Ran Tessler, Hermann
Thorisson, and Brigitta Vermesi.

We also thank several people who have contributed pictures,namely Ben Hough, Mar-
cel Ortgiese, Yelena Shvets and David Wilson. The cover shows a planar Brownian motion
with points coloured according to the occupation measure ofa small neighbourhood, we
thank Raissa d’Souza for providing the picture.

Peter Mörters
Yuval Peres



Frequently used notation

Numbers:

dxe the smallest integer bigger or equal tox

bxc the largest integer smaller or equal tox

Re(z),Im(z) the real, resp. imaginary, part of the complex numberz

i the imaginary unit

Topology of Euclidean spaceRd:

Rd Euclidean space consisting of all column vectorsx = (x1, . . . , xd)
T

| · | Euclidean norm|x| =

√√√√
d∑

i=1

x2
i

B(x, r) the open ball of radiusr > 0 centred inx ∈ Rd,
i.e. B(x, r) = {y ∈ Rd : |x− y| < r}

U closure of the setU ⊂ Rd

∂U boundary of the setU ⊂ Rd

B(A) the collection of all Borel subsets ofA ⊂ Rd

Binary relations:

a ∧ b the minimum ofa andb

a ∨ b the maximum ofa andb

X
d
= Y the random variablesX andY have the same distribution

Xn
d→ X the random variablesXn converge toX in distribution,

see Section 12.1 in the appendix

a(n) � b(n) the ratio of the two sides is bounded from above and below
by positive constants that do not depend onn

a(n) ∼ b(n) the ratio of the two sides converges to one

Vectors, functions, and measures:

Id d× d identity matrix

1A indicator function with1A(x) = 1 if x ∈ A and0 otherwise

x



Frequently used notation xi

δx Dirac measure with mass concentrated onx,
i.e. δx(A) = 1 if x ∈ A and0 otherwise

f+ the positive part of the functionf , i.e. f+(x) = f(x) ∨ 0

f− the negative part of the functionf , i.e. f−(x) = −(f(x) ∧ 0)

Ld or L Lebesgue measure onRd

σx,r (d− 1)-dimensional surface measure on∂B(x, r) ⊂ Rd

if x = 0, r = 1 we also writeσ = σ0,1

$x,r uniform distribution on∂B(x, r),$x,r =
σx,r

σx,r(∂B(x,r)) ,

if x = 0, r = 1 we also write$ = $0,1

Function spaces:

C(K) the topological space of all continuous functions on the compactK ⊂ Rd,
equipped with the supremum norm‖f‖ = supx∈K |f(x)|

L
p(µ) the Banach space of equivalence classes of functionsf with finite L

p-norm

‖f‖p =
(∫

fp dµ
)1/p

. If µ = L|K we writeL
p(K).

D[0, 1] the Dirichlet space consisting of functionsF ∈ C[0, 1] such that
for somef ∈ L

2[0, 1] and allt ∈ [0, 1] we haveF (t) =
∫ t
0
f(s) ds.

Probability measures andσ-algebras:

Px a probability measure on a measure space(Ω,A) such that
the process{B(t) : t > 0} is a Brownian motion started inx

Ex the expectation associated withPx

p(t, x, y) the transition density of Brownian motion
Px{B(t) ∈ A} =

∫
A

p(t, x, y) dy

F0(t) the smallestσ-algebra that makes{B(s) : 0 6 s 6 t} measurable

F+(t) the right-continuous augmentationF+(t) =
⋂
s>t F0(s).

Stopping times:

For any Borel setsA1, A2, . . . ⊂ Rd and a Brownian motionB : [0,∞) → Rd,

τ(A1) := inf{t > 0: B(t) ∈ A1}, the entry time intoA1,

τ(A1, . . . , An) :=

{
inf{t > τ(A1, . . . , An−1) : B(t) ∈ An}, if τ(A1, . . . , An−1) <∞,

∞, otherwise.

the time to enterA1 and thenA2 and so on untilAn.



xii Frequently used notation

Systems of subsets inRd:

For any fixedd-dimensional unit cubeCube = x+ [0, 1]d we denote:
Dk family of all half-open dyadic subcubesD = x+

∏d
i=1

[
ki2

−k, (ki + 1)2−k
)
⊂ Rd,

ki ∈ {0, . . . , 2k − 1}, of side length2−k

D all half-open dyadic cubesD =
⋃∞
k=0 Dk in Cube

Ck family of all compact dyadic subcubesD = x+
∏d
i=1

[
ki2

−k, (ki + 1)2−k
]
⊂ Rd,

ki ∈ {0, . . . , 2k − 1}, of side length2−k

C all compact dyadic cubesC =
⋃∞
k=0 Ck in Cube.

Potential theory:

For a metric space(E, ρ) and mass distributionµ onE:

φα(x) theα-potential of a pointx ∈ E defined asφα(x) =
∫ dµ(y)
ρ(x,y)α ,

Iα(µ) theα-energy of the measureµ defined asIα(µ) =
∫∫ dµ(x) dµ(y)

ρ(x,y)α ,

Capα(E) theα-capacity ofE defined asCapα(E) = sup{Iα(µ)−1 : µ(E) = 1}.

For a general kernelK : E × E → [0,∞]:

Uµ(x) the potential ofµ atx defined asUµ(x) =
∫
K(x, y) dµ(y),

IK(µ) K-energy ofµ defined asIK(µ) =
∫∫

K(x, y) dµ(x) dµ(y),

CapK(E) K-capacity ofE defined asCapK(E) = sup{IK(µ)−1 : µ(E) = 1}.

If K(x, y) = f(ρ(x, y)) we also write:

If (µ) instead ofIK(µ),

Capf (E) instead ofCapK(E).

Sets and processes associated with Brownian motion:

For a linear Brownian motion{B(t) : t > 0}:

{M(t) : t > 0} the maximum process defined byM(t) = sups6tB(s),

Rec the set of record points{t > 0: B(t) = M(t)},

Zeros the set of zeros{t > 0: B(t) = 0}.

For a Brownian motion{B(t) : t > 0} in Rd for d > 1:

Graph(A) the graph{(t, B(t)) : t ∈ A} ⊂ Rd+1,

Range(A) the range{B(t) : t ∈ A} ⊂ Rd.

Occasionally these notions are used for functionsf : [0,∞) → Rd which are not necessar-
ily Brownian sample paths, which we indicate by appending a subindexf to the notion.



Motivation

Much of probability theory is devoted to describing themacroscopic pictureemerging
in random systems defined by a host ofmicroscopic random effects. Brownian motion
is the macroscopic picture emerging from a particle moving randomly ind-dimensional
space without making very big jumps. On the microscopic level, at any time step, the
particle receives a random displacement, caused for example by other particles hitting it
or by an external force, so that, if its position at time zero is S0, its position at timen is
given asSn = S0 +

∑n
i=1Xi, where the displacementsX1,X2,X3, . . . are assumed to

be independent, identically distributed random variableswith values inRd. The process
{Sn : n > 0} is a random walk, the displacements represent the microscopic inputs. When
we think about the macroscopic picture, what we mean is questions such as:

• DoesSn drift to infinity?

• DoesSn return to the neighbourhood of the origin infinitely often?

• What is the speed of growth ofmax{|S1|, . . . , |Sn|} asn→ ∞?

• What is the asymptotic number of windings of{Sn : n > 0} around the origin?

It turns out that not all the features of the microscopic inputs contribute to the macro-
scopic picture. Indeed, if they exist, only themeanandcovarianceof the displacements
are shaping the picture. In other words, all random walks whose displacements have the
same mean and covariance matrix give rise to the same macroscopic process, and even the
assumption that the displacements have to be independent and identically distributed can
be substantially relaxed. This effect is calleduniversality, and the macroscopic process is
often called auniversal object. It is a common approach in probability to study various
phenomena through the associated universal objects.

If the jumps of a random walk are sufficiently tame to become negligible in the macro-
scopic picture, in particular if it has finite mean and variance, any continuous time stochas-
tic process{B(t) : t > 0} describing the macroscopic features of this random walk should
have the following properties:

(1) for all times0 6 t1 6 t2 6 . . . 6 tn the random variables

B(tn) −B(tn−1), B(tn−1) −B(tn−2), . . . , B(t2) −B(t1)

are independent; we say that the process hasindependent increments,

1



2 Motivation

(2) the distribution of the incrementB(t+h)−B(t) does not depend ont; we say that
the process hasstationary increments,

(3) the process{B(t) : t > 0} has almost surely continuous paths.

It follows (with some work) from the central limit theorem that these features imply that
there exists a vectorµ ∈ Rd and a matrixΣ ∈ Rd×d such that

(4) for everyt > 0 andh > 0 the incrementB(t+ h)−B(t) is multivariate normally
distributed with meanhµ and covariance matrixhΣΣT.

Hence any process with the features (1)-(3) above is characterised by just three parameters,

• the initial distribution, i.e. the law ofB(0),

• thedrift vectorµ,

• thediffusion matrixΣ.

The process{B(t) : t > 0} is called aBrownian motion with driftµ and diffusion matrixΣ.
If the drift vector is zero, and the diffusion matrix is the identity we simply say the process
is aBrownian motion. If B(0) = 0, i.e. the motion is started at the origin, we use the term
standard Brownian motion.

Suppose we have a standard Brownian motion{B(t) : t > 0}. If X is a random
variable with values inRd, µ a vector inRd andΣ ad× d matrix, then it is easy to check
that{B̃(t) : t > 0} given by

B̃(t) = B̃(0) + µt+ ΣB(t), for t > 0,

is a process with the properties (1)-(4) with initial distributionX, drift vectorµ and diffu-
sion matrixΣ. Hence the macroscopic picture emerging from a random walk with finite
variance can be fully described by a standard Brownian motion.

0 50 100 150 200

−140
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−80

−60

−40

−20

0

Fig. 0.1. The range of a planar Brownian motion{B(t) : 0 6 t 6 1}.



Motivation 3

In Chapter 1we start exploring Brownian motion by looking at dimensiond = 1. Here
Brownian motion is a random continuous function and we ask about its regularity, for
example: For which parametersα is the random functionB : [0, 1] → R α-Hölder con-
tinuous? Is the random functionB : [0, 1] → R differentiable? The surprising answer to
the second question was given by Paley, Wiener and Zygmund in1933: Almost surely, the
random functionB : [0, 1] → R is nowheredifferentiable! This is particularly interesting,
as it is not easy to construct a continuous, nowhere differentiable function without the help
of randomness. We give a modern proof of the Paley, Wiener andZygmund theorem, see
Theorem 1.30.

In Chapter 2we move to general dimensiond. We prove and explore the strong Markov
property, which roughly says that at suitable random times Brownian motion starts afresh,
see Theorem 2.16. Among the facts we derive from this property are that the set of all
points visited by a Brownian motion ind > 2 has area zero, but the set of times when
Brownian motion ind = 1 revisits the origin is uncountable. Besides these sample path
properties, the strong Markov property is also the key to some fascinating distributional
identities. It enables us to understand, for example, the process{M(t) : t > 0} of the
running maximaM(t) = max06s6tB(s) of Brownian motion ind = 1, the process
{Ta : a > 0} of the first hitting timesTa = inf{t > 0: B(t) = a} of level a of a
Brownian motion ind = 1, and the process of the vertical first hitting positions of the lines
{(x, y) ∈ R2 : x = a} by a Brownian motion ind = 2, as a function ofa.

In Chapter 3we explore the rich relations of Brownian motion to harmonicanalysis.
In particular we learn how Brownian motion helps solving theclassicalDirichlet problem.

Fig. 0.2. Brownian motion and the Dirichlet problem

For its formulation in the planar case, fix a connected open set U ⊂ R2 with nice boundary,
and letϕ : ∂U → R be continuous. The harmonic functionsf : U → R on the domainU
are characterised by the differential equation

∂2f

∂x2
1

(x) +
∂2f

∂x2
2

(x) = 0 for all x ∈ U.



4 Motivation

The Dirichlet problem is to find, for a given domainU and boundary dataϕ, a continu-
ous functionf : U ∪ ∂U → R, which is harmonic onU and agrees withϕ on ∂U . In
Theorem 3.12 we show that the unique solution of this problemis given as

f(x) = E
[
ϕ(B(T ))

∣∣B(0) = x
]
, for x ∈ U,

where{B(t) : t > 0} is a Brownian motion andT = inf{t > 0: B(t) 6∈ U} is the first
exit time fromU . We exploit this result, for example, to show exactly in which dimensions
a particle following a Brownian motion drifts to infinity, see Theorem 3.20.

In Chapter 4we provide one of the major tools in our study of Brownian motion, the
concept of Hausdorff dimension, and show how it can be applied in the context of Brownian
motion. Indeed, when describing the sample paths of a Brownian motion one frequently
encounters questions of the size of a given set: How big is theset of all points visited by a
Brownian motion in the plane? How big is the set of double-points of a planar Brownian
motion? How big is the set of times where Brownian motion visits a given set, say a
point? For an example, let{B(t) : t > 0} be Brownian motion on the real line and look
at Zeros = {t > 0: B(t) = 0}, the set of its zeros. Althought 7→ B(t) is a continuous
function,Zeros is an infinite set. This set isbig, as it is an uncountable set without isolated
points. However, it is alsosmall in the sense that its Lebesgue measure is zero. Indeed,
Zeros is a fractal set and we show in Theorem 4.24 that its Hausdorffdimension is1/2.

In Chapter 5we explore the relationship of random walk and Brownian motion. We
prove a theorem which justifies our initial point of view thatBrownian motion is the macro-
scopic picture emerging from a large class of random walks: By Donsker’s invariance
principle one can obtain Brownian motion by taking scaled copies of a random walk and
taking a limit in distribution. This result is called an invariance principle because all ran-
dom walks whose increments have mean zero and finite varianceessentially produce the
same limit, a Brownian motion. Donsker’s invariance principle is also a major tool in
deriving results for random walks from those of Brownian motion, and vice versa. Both
directions can be useful: In some cases the fact that Brownian motion is a continuous time
process is an advantage over discrete time random walks. Forexample, as we discuss be-
low, Brownian motion has scaling invariance properties, which can be a powerful tool in
the study of its path properties. In other cases it is a major advantage that (simple) ran-
dom walk is a discrete object and combinatorial arguments can be the right tool to derive
important features. Chapter 5 offers a number of case studies for the mutually beneficial
relationship between Brownian motion and random walks. Beyond Donsker’s invariance
principle, there is a second fascinating aspect of the relationship between random walk and
Brownian motion: Given a Brownian motion ind = 1, we can sample from its path at
certain carefully chosen times, and thus construct every random walk with mean zero and
finite variance. Finding these times is called theSkorokhod embedding problemand we
shall give two different solutions to it. The embedding problem is also the main tool in our
proof of Donsker’s invariance principle.

In Chapter 6we look again at Brownian motion in dimensiond = 1. For a random
walk on the integers running for a finite amount of time, we candefine a ‘local time’ at a



Motivation 5

pointz ∈ Z by simply counting how many times the walk visitsz. Can we define an anal-
ogous quantity for Brownian motion? In Chapter 6 we show thatthis is possible, and offer
an elegant construction of Brownian local time based on a random walk approximation. A
first highlight of this chapter arises when we aim to describethe local times: If a Brownian
path is started at some positive levela > 0 and stopped upon hitting zero, we can describe
the process of local times inx as a function ofx, for 0 6 x 6 a. The resulting process is
distributed like the square of the modulus of a planar Brownian motion. This is the famous
Ray–Knight theorem. The second highlight of this chapter is related to the nature of local
time at a fixed point. The Brownian local time inx is no longer the number of visits to the
point x by a Brownian motion – ifx is visited at all, this number would be infinite – but
we shall see that it can be described as the Hausdorff measureof the set of times at which
the motion visitsx.

Because Brownian motion arises as the scaling limit of a great variety of different
random walks, it naturally has a number of invariance properties. One of the most im-
portant invariance properties of Brownian motion isconformal invariance, which we dis-
cuss inChapter 7. To make this plausible think of an angle-preserving linearmapping
L : Rd → Rd, like a rotation followed by multiplication bya. Take a random walk started
in zero with increments of mean zero and covariance matrix the identity, and look at its
image underL. This image is again a random walk and its increments are distributed
like LX. Appropriately rescaled as in Donsker’s invariance principle, both random walks
converge to a Brownian motion, the second one with a slightlydifferent covariance matrix.
This process can be identified as a time-changed Brownian motion {B(a2t) : t > 0}. This
easy observation has a deeper, local counterpart for planarBrownian motion: Suppose that
φ : U → V is a conformal mapping of a simply connected domainU ⊂ R2 onto a domain
V ⊂ R2. Conformal mappings are locally angle-preserving and the Riemann mapping
theorem of complex analysis tells us that a lot of such domains and mappings exist.

Fig. 0.3. A conformal mapping of Brownian paths

Suppose that{B(t) : t > 0} is a standard Brownian motion started in some pointx ∈ U

andτ = inf{t > 0: B(t) /∈ U} is the first exit time of the path from the domainU . Then
it turns out that the image process{φ(B(t)) : 0 6 t 6 τ} is a time-changedBrownian



6 Motivation

motion in the domainV , stopped when it leavesV , see Theorem 7.20. In order to prove
this we have to develop a little bit of the theory of stochastic integration with respect to a
Brownian motion, and we give a lot of further applications ofthis tool in Chapter 7.

In Chapter 8we develop the potential theory of Brownian motion. The problem which
is the motivation behind this is, given a compact setA ⊂ Rd, to find the probability that a
Brownian motion{B(t) : t > 0} hits the setA, i.e. that there existst > 0 with B(t) ∈ A.
This problem is answered in the best possible way by Theorem 8.24, which is a modern
extension of a classical result of Kakutani: The hitting probability can be approximated by
the capacity ofA with respect to the Martin kernel up to a factor of two.

With a wide range of tools at our hand, inChapter 9we study the self-intersections of
Brownian motion: For example, a pointx ∈ Rd is called a double point of{B(t) : t > 0}
if there exist times0 < t1 < t2 such thatB(t1) = B(t2) = x. In which dimensions
does Brownian motion have double points? How big is the set ofdouble points? We show
that in dimensionsd > 4 no double points exist, in dimensiond = 3 double points exist
and the set of double points has Hausdorff dimension one, andin dimensiond = 2 double
points exist and the set of double points has Hausdorff dimension two. In dimensiond = 2

we find a surprisingly complex situation: While every pointx ∈ R2 is almost surely not
visited by a Brownian motion, there exist (random) points inthe plane, which are visited
infinitely often, even uncountably often. This result, Theorem 9.24, is one of the highlights
of this book.

Chapter 10deals with exceptional points for Brownian motion and Hausdorff dimen-
sion spectra of families of exceptional points. To explain an example, we look at a Brow-
nian motion in the plane run for one time unit, which is a continuous curve{B(t) : t ∈
[0, 1]}. In Chapter 7 we see that, for any point on the curve, almost surely, the Brow-
nian motion performs an infinite number of full windings in both directions around this
point. Still, there exist random points on the curve, which are exceptional in the sense
that Brownian motion performs no windings around them at all. This follows from an
easy geometric argument: Take a point inR2 with coordinates(x1, x2) such thatx1 =

min{x : (x, x2) ∈ B[0, 1]}, i.e. a point which is the leftmost on the intersection of the
Brownian curve and the line{(z, y) : z ∈ R}, for somex2 ∈ R. Then Brownian motion
does not perform any full windings around(x1, x2), as this would necessarily imply that it
crosses the half-line{(x, x2) : x < x2}, contradicting the minimality ofx1. One can ask
for a more extreme deviation from typical behaviour: A pointx = B(t) is anα-cone point
if the Brownian curve is contained in an open cone with tip inx = (x1, x2), central axis
{(x1, x) : x > x2} and opening angleα. Note that the points described in the previous
paragraph are2π-cone points in this sense. In Theorem 10.38 we show thatα-cone points
exist exactly ifα ∈ [π, 2π], and prove that for every suchα, almost surely,

dim
{
x ∈ R2 : x is anα-cone point

}
= 2 − 2π

α
.

This is an example of a Hausdorff dimension spectrum, a topicwhich has been at the centre
of some research activity at the beginning of the current millennium.



1

Brownian motion as a random function

In this chapter we focus on one-dimensional, or linear, Brownian motion. We start with
Paul Lévy’s construction of Brownian motion and discuss twofundamental sample path
properties, continuity and differentiability. We then discuss the Cameron–Martin theorem,
which shows that sample path properties for Brownian motionwith drift can be obtained
from the corresponding results for driftless Brownian motion.

1.1 Paul Lévy’s construction of Brownian motion

1.1.1 Definition of Brownian motion

Brownian motion is closely linked to the normal distribution. Recall that a random variable
X is normally distributed with meanµ and varianceσ2 if

P{X > x} =
1√

2πσ2

∫ ∞

x

e−
(u−µ)2

2σ2 du, for all x ∈ R.

Definition 1.1. A real-valued stochastic process{B(t) : t > 0} is called a(linear)
Brownian motion with start inx ∈ R if the following holds:
• B(0) = x,
• the process hasindependent increments, i.e. for all times0 6 t1 6 t2 6 . . . 6 tn the

incrementsB(tn)−B(tn−1), B(tn−1)−B(tn−2), . . . , B(t2)−B(t1) are independent
random variables,

• for all t > 0 andh > 0, the incrementsB(t + h) − B(t) are normally distributed with
expectation zero and varianceh,

• almost surely, the functiont 7→ B(t) is continuous.

We say that{B(t) : t > 0} is astandard Brownian motion if x = 0. �

We will address the nontrivial question of theexistenceof a Brownian motion in Sec-
tion 1.1.2. For the moment let us step back and look at some technical points. We have
defined Brownian motion as astochastic process{B(t) : t > 0} which is just a family
of (uncountably many) random variablesω 7→ B(t, ω) defined on a single probability
space(Ω,A,P). At the same time, a stochastic process can also be interpreted as arandom
functionwith the sample functions defined byt 7→ B(t, ω). Thesample path propertiesof
a stochastic process are the properties of these random functions, and it is these properties
we will be most interested in in this book.

7
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Fig. 1.1. Graphs of five sampled Brownian motions

By thefinite-dimensional distributions of a stochastic process{B(t) : t > 0} we mean
the laws of all the finite dimensional random vectors

(
B(t1), B(t2), . . . , B(tn)

)
, for all 0 6 t1 6 t2 6 . . . 6 tn.

To describe these joint laws it suffices to describe the jointlaw ofB(0) and the increments

(
B(t1) −B(0), B(t2) −B(t1), . . . , B(tn) −B(tn−1)

)
, for all 0 6 t1 6 t2 6 . . . 6 tn.

This is what we have done in the first three items of the definition, which specify the
finite-dimensional distributions of Brownian motion. However, the last item, almost sure
continuity, is also crucial, and this is information which goes beyond the finite-dimensional
distributions of the process in the sense above, technically because the set{ω ∈ Ω: t 7→
B(t, ω) continuous} is in general not in theσ-algebra generated by the random vectors
(B(t1), B(t2), . . . , B(tn)), n ∈ N.

Example 1.2Suppose that{B(t) : t > 0} is a Brownian motion andU is an independent
random variable, which is uniformly distributed on[0, 1]. Then the process{B̃(t) : t > 0}
defined by

B̃(t) =

{
B(t) if t 6= U,

0 if t = U,

has the same finite-dimensional distributions as a Brownianmotion, but is discontinuous if
B(U) 6= 0, i.e. with probability one, and hence this process is not a Brownian motion. �

We see that, if we are interested in the sample path properties of a stochastic process, we
may need to specify more than just its finite-dimensional distributions. SupposeX is a
property a function might or might not have, like continuity, differentiability, etc. We say
that a process{X(t) : t > 0} has property X almost surely if there existsA ∈ A such
thatP(A) = 1 andA ⊂

{
ω ∈ Ω: t 7→ X(t, ω) has propertyX

}
. Note that the set on the

right need not lie inA.
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1.1.2 Paul Lévy’s construction of Brownian motion

It is a substantial issue whether the conditions imposed on the finite-dimensional distribu-
tions in the definition of Brownian motion allow the process to have continuous sample
paths, or whether there is a contradiction. In this section we show that there is no contra-
diction and, fortunately, Brownian motion exists.

Theorem 1.3 (Wiener 1923)Standard Brownian motion exists.

We construct Brownian motion as a uniform limit of continuous functions, to ensure that it
automatically has continuous paths. Recall that we need only construct astandardBrow-
nian motion{B(t) : t > 0}, asX(t) = x + B(t) is a Brownian motion with starting
point x. The proof exploits properties of Gaussian random vectors,which are the higher-
dimensional analogue of the normal distribution.

Definition 1.4. A random vectorX = (X1, . . . ,Xn) is called aGaussian random vector
if there exists ann×m matrixA, and ann-dimensional vectorb such thatXT = AY + b,
whereY is anm-dimensional vector with independent standard normal entries. �

Basic facts about Gaussian random variables are collected in Appendix 12.2.

Proof of Wiener’s theorem. We first construct Brownian motion on the interval[0, 1]

as a random element on the spaceC[0, 1] of continuous functions on[0, 1]. The idea is to
construct the right joint distribution of Brownian motion step by step on the finite sets

Dn =
{
k
2n : 0 6 k 6 2n

}

of dyadic points. We then interpolate the values onDn linearly and check that the uniform
limit of these continuous functions exists and is a Brownianmotion.

To do this letD =
⋃∞
n=0 Dn and let(Ω,A,P) be a probability space on which a collec-

tion {Zt : t ∈ D} of independent, standard normally distributed random variables can be
defined. LetB(0) := 0 andB(1) := Z1. For eachn ∈ N we define the random variables
B(d), d ∈ Dn such that

(1) for all r < s < t in Dn the random variableB(t) − B(s) is normally distributed
with mean zero and variancet− s, and is independent ofB(s) −B(r),

(2) the vectors(B(d) : d ∈ Dn) and(Zt : t ∈ D \ Dn) are independent.

Note that we have already done this forD0 = {0, 1}. Proceeding inductively we may
assume that we have succeeded in doing it for somen − 1. We then defineB(d) for
d ∈ Dn \ Dn−1 by

B(d) =
B(d− 2−n) +B(d+ 2−n)

2
+

Zd
2(n+1)/2

.

Note that the first summand is the linear interpolation of thevalues ofB at the neighbouring
points ofd in Dn−1. ThereforeB(d) is independent of(Zt : t ∈ D \ Dn) and the second
property is fulfilled.
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Moreover, as12 [B(d+2−n)−B(d−2−n)] depends only on(Zt : t ∈ Dn−1), it is indepen-
dent ofZd/2(n+1)/2. By our induction assumptions both terms are normally distributed
with mean zero and variance2−(n+1). Hence their sumB(d) − B(d − 2−n) and their
differenceB(d + 2−n) − B(d) are independent and normally distributed with mean zero
and variance2−n by Corollary 12.12.

Indeed, all incrementsB(d) − B(d − 2−n), for d ∈ Dn \ {0}, are independent. To see
this it suffices to show that they are pairwise independent, as the vector of these increments
is Gaussian. We have seen in the previous paragraph that pairs B(d) − B(d − 2−n),
B(d + 2−n) − B(d) with d ∈ Dn \ Dn−1 are independent. The other possibility is
that the increments are over intervals separated by somed ∈ Dn−1. Choosed ∈ Dj
with this property and minimalj, so that the two intervals are contained in[d − 2−j , d],
respectively[d, d + 2−j ]. By induction the increments over these two intervals of length
2−j are independent, and the increments over the intervals of length2−n are constructed
from the independent incrementsB(d) − B(d − 2−j), respectivelyB(d + 2−j) − B(d),
using a disjoint set of variables(Zt : t ∈ Dn). Hence they are independent and this implies
the first property, and completes the induction step.

t

F0(t)
F0(t) + F1(t) + F2(t)

Z1

F0(t) + F1(t)

1
2Z 1

2

0 1 0 0

1
√

8
Z 3

4

1 1
t t

1
√

8
Z 1

4

Fig. 1.2. The first three steps in the construction of Brownian motion

Having thus chosen the values of the process on all dyadic points, we interpolate between
them. Formally, define

F0(t) =





Z1 for t = 1,

0 for t = 0,

linear in between,

and, for eachn > 1,

Fn(t) =





2−(n+1)/2Zt for t ∈ Dn \ Dn−1

0 for t ∈ Dn−1

linear between consecutive points inDn.

These functions are continuous on[0, 1] and, for alln andd ∈ Dn,

B(d) =

n∑

i=0

Fi(d) =

∞∑

i=0

Fi(d), (1.1)
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see Figure 1.2 for an illustration. This can be seen by induction. It holds forn = 0.
Suppose that it holds forn− 1. Let d ∈ Dn \ Dn−1. Since for0 6 i 6 n− 1 the function
Fi is linear on[d− 2−n, d+ 2−n], we get

n−1∑

i=0

Fi(d) =

n−1∑

i=1

Fi(d− 2−n) + Fi(d+ 2−n)

2
=
B(d− 2−n) +B(d+ 2−n)

2
.

SinceFn(d) = 2−(n+1)/2Zd, this gives (1.1).

On the other hand, we have, by definition ofZd and by Lemma 12.9 of the appendix, for
c > 1 and largen,

P{|Zd| > c
√
n} 6 exp

(−c2n
2

)
,

so that the series
∞∑

n=0

P{ there existsd ∈ Dn with |Zd| > c
√
n} 6

∞∑

n=0

∑

d∈Dn

P{|Zd| > c
√
n}

6

∞∑

n=0

(2n + 1) exp
(−c2n

2

)
,

converges as soon asc >
√

2 log 2. Fix such ac. By the Borel–Cantelli lemma there
exists a random (but almost surely finite)N such that for alln > N andd ∈ Dn we have
|Zd| < c

√
n. Hence, for alln > N ,

‖Fn‖∞ < c
√
n2−n/2 . (1.2)

This upper bound implies that, almost surely, the series

B(t) =

∞∑

n=0

Fn(t)

is uniformly convergent on[0, 1]. We denote the continuous limit by{B(t) : t ∈ [0, 1]}.
It remains to check that the increments of this process have the right finite-dimensional
distributions. This follows directly from the properties of B on the dense setD ⊂ [0, 1]

and the continuity of the paths. Indeed, suppose thatt1 < t2 < · · · < tn are in[0, 1]. We
find t1,k 6 t2,k 6 · · · 6 tn,k in D with limk↑∞ ti,k = ti and infer from the continuity of
B that, for1 6 i 6 n− 1,

B(ti+1) −B(ti) = lim
k↑∞

B(ti+1,k) −B(ti,k) .

As limk↑∞ E[B(ti+1,k) −B(ti,k)] = 0 and

lim
k↑∞

Cov
(
B(ti+1,k) −B(ti,k), B(tj+1,k) −B(tj,k))

)

= lim
k↑∞

1{i=j}
(
ti+1,k − ti,k

)
= 1{i=j}

(
ti+1 − ti) ,

the incrementsB(ti+1) − B(ti) are, by Proposition 12.15 of the appendix, independent
Gaussian random variables with mean0 and varianceti+1 − ti, as required.
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We have thus constructed a continuous processB : [0, 1] → R with the same finite-
dimensional distributions as Brownian motion. Take a sequenceB0, B1, . . . of indepen-
dent C[0, 1]-valued random variables with the distribution of this process, and define
{B(t) : t > 0} by gluing together the parts, more precisely by

B(t) = Bbtc(t− btc) +

btc−1∑

i=0

Bi(1) , for all t > 0 .

This defines a continuous random functionB : [0,∞) → R and one can see easily from
what we have shown so far that it is a standard Brownian motion.

Remark 1.5 If Brownian motion is constructed as a family{B(t) : t > 0} of random
variables on some probability spaceΩ, it is sometimes useful to know that the mapping
(t, ω) 7→ B(t, ω) is measurable on the product space[0,∞) × Ω. Exercise 1.2 shows that
this can be achieved by Lévy’s construction. �

Remark 1.6 A stochastic process{Y (t) : t > 0} is called aGaussian process, if for all
t1 < t2 < . . . < tn the vector(Y (t1), . . . , Y (tn)) is a Gaussian random vector. It is
shown in Exercise 1.3 that Brownian motion with start inx ∈ R is a Gaussian process.�

1.1.3 Simple invariance properties of Brownian motion

One of the themes of this book is that many natural sets that can be derived from the sample
paths of Brownian motion are in some senserandom fractals. An intuitive approach to
fractals is that they are sets which have an interesting geometric structure at all scales.
A key rôle in this behaviour is played by the very simplescaling invarianceproperty of
Brownian motion, which we now formulate. It identifies a transformation on the space
of functions, which changes the individual Brownian randomfunctions but leaves their
distribution unchanged.

Lemma 1.7 (Scaling invariance)Suppose{B(t) : t > 0} is a standard Brownian motion
and leta > 0. Then the process{X(t) : t > 0} defined byX(t) = 1

aB(a2t) is also a
standard Brownian motion.

Proof. Continuity of the paths, independence and stationarity of the increments remain un-
changed under the scaling. It remains to observe thatX(t)−X(s) = 1

a (B(a2t)−B(a2s))

is normally distributed with expectation0 and variance(1/a2)(a2t− a2s) = t− s.

Remark 1.8 Scaling invariance has many useful consequences. As an example, leta <
0 < b, and look atT (a, b) = inf{t > 0: B(t) = a or B(t) = b}, the first exit time of
a one-dimensional standard Brownian motion from the interval [a, b]. Then, withX(t) =
1
aB(a2t) we have

ET (a, b) = a2 E inf
{
t > 0: X(t) = 1 orX(t) = b/a

}
= a2 ET (1, b/a) ,
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which implies thatET (−b, b) is a constant multiple ofb2. Also

P
{
{B(t) : t > 0} exits [a, b] ata

}
= P

{
{X(t) : t > 0} exits [1, b/a] at1

}

is only a function of the ratiob/a. The scaling invariance property will be used exten-
sively in all the following chapters, and we shall often use the phrase that a fact holds ‘by
Brownian scaling’ to indicate this. �

We shall discuss a very powerful extension of the scaling invariance property, theconfor-
mal invariance property, in Chapter 7 of the book. A further useful invariance property of
Brownian motion, invariance under time inversion, can be identified easily. As above, the
transformation on the space of functions changes the individual Brownian random func-
tions without changing the distribution.

Theorem 1.9 (Time inversion)Suppose{B(t) : t > 0} is a standard Brownian motion.
Then the process{X(t) : t > 0} defined by

X(t) =

{
0 for t = 0,

tB(1/t) for t > 0,

is also a standard Brownian motion.

Proof. Recall that the finite-dimensional distributions(B(t1), . . . , B(tn)) of Brownian
motion are Gaussian random vectors and are therefore characterised byE[B(ti)] = 0 and
Cov(B(ti), B(tj)) = ti for 0 6 ti 6 tj .

Obviously,{X(t) : t > 0} is also a Gaussian process and the Gaussian random vectors
(X(t1), . . . ,X(tn)) have expectation zero. The covariances, fort > 0, h > 0, are given
by

Cov(X(t+ h),X(t)) = (t+ h)tCov(B(1/(t+ h)), B(1/t))

= t(t+ h)
1

t+ h
= t .

Hence the law of all the finite-dimensional distributions
(
X(t1),X(t2), . . . ,X(tn)

)
, for 0 6 t1 6 · · · 6 tn,

are the same as for Brownian motion. The paths oft 7→ X(t) are clearly continuous for
all t > 0 and int = 0 we use the following two facts: First, as the setQ of rationals is
countable, the distribution of{X(t) : t > 0, t ∈ Q} is the same as for a Brownian motion,
and hence

lim
t↓0
t∈Q

X(t) = 0 almost surely.

And second,Q∩ (0,∞) is dense in(0,∞) and{X(t) : t > 0} is almost surely continuous
on (0,∞), so that

0 = lim
t↓0
t∈Q

X(t) = lim
t↓0

X(t) almost surely.

Hence{X(t) : t > 0} has almost surely continuous paths, and is a Brownian motion.
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Remark 1.10 The symmetry inherent in the time inversion property becomes more ap-
parent if one considers theOrnstein–Uhlenbeck diffusion{X(t) : t ∈ R}, which is given
by

X(t) = e−tB(e2t) for all t ∈ R.

This is a Markov process (this will be explained properly in Chapter 2.2.3), such that
X(t) is standard normally distributed for allt. It is a diffusion with a drift towards
the origin proportional to the distance from the origin. Unlike Brownian motion, the
Ornstein–Uhlenbeck diffusion is time reversible: The timeinversion formula gives that
{X(t) : t > 0} and{X(−t) : t > 0} have the same law. Fort near−∞, X(t) relates to
the Brownian motion near time 0, and fort near∞, X(t) relates to the Brownian motion
near∞. �

Time inversion is a useful tool to relate the properties of Brownian motion in a neighbour-
hood of timet = 0 to properties at infinity. To illustrate the use of time inversion we
exploit Theorem 1.9 to get an interesting statement about the long-term behaviour from an
easy statement at the origin.

Corollary 1.11 (Law of large numbers)Almost surely,lim
t→∞

B(t)

t
= 0.

Proof. Let {X(t) : t > 0} be as defined in Theorem 1.9. Using this theorem, we see
that limt→∞B(t)/t = limt→∞X(1/t) = X(0) = 0 almost surely.

In the next two chapters we discuss the two basic analytic properties of Brownian motion
as a random function, itscontinuityanddifferentiabilityproperties.

1.2 Continuity properties of Brownian motion

The definition of Brownian motion already requires that the sample functions are contin-
uous almost surely. This implies that on the interval[0, 1] (or any other compact interval)
the sample functions are uniformly continuous, i.e. there exists some (random) function
ϕ with limh↓0 ϕ(h) = 0 called amodulus of continuity of the functionB : [0, 1] → R,
such that

lim sup
h↓0

sup
06t61−h

|B(t+ h) −B(t)|
ϕ(h)

6 1. (1.3)

Can we achieve such a bound with a deterministic functionϕ, i.e. is there a nonrandom
modulus of continuity for the Brownian motion? The answer isyes, as the following
theorem shows.

Theorem 1.12There exists a constantC > 0 such that, almost surely, for every sufficiently
smallh > 0 and all0 6 t 6 1 − h,

∣∣B(t+ h) −B(t)
∣∣ 6 C

√
h log(1/h).
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Proof. This follows quite elegantly from Lévy’s construction of Brownian motion.
Recall the notation introduced there and that we have represented Brownian motion as a
series

B(t) =

∞∑

n=0

Fn(t) ,

where eachFn is a piecewise linear function. The derivative ofFn exists almost every-
where, and by definition and (1.2), for anyc >

√
2 log 2 there exists a (random)N ∈ N

such that, for alln > N ,

‖F ′
n‖∞ 6

2‖Fn‖∞
2−n

6 2c
√
n2n/2 .

Now for eacht, t+ h ∈ [0, 1], using the mean-value theorem,

|B(t+ h) −B(t)| 6

∞∑

n=0

|Fn(t+ h) − Fn(t)| 6
∑̀

n=0

h‖F ′
n‖∞ +

∞∑

n=`+1

2‖Fn‖∞ .

Hence, using (1.2) again, we get for all` > N , that this is bounded by

h

N∑

n=0

‖F ′
n‖∞ + 2ch

∑̀

n=N

√
n2n/2 + 2c

∞∑

n=`+1

√
n2−n/2.

We now suppose thath is (again random and) small enough that the first summand is
smaller than

√
h log(1/h) and that̀ defined by2−` < h 6 2−`+1 exceedsN . For this

choice of` the second and third summands are also bounded by constant multiples of√
h log(1/h) as both sums are dominated by their largest element. Hence weget (1.3)

with a deterministic functionϕ(h) = C
√
h log(1/h).

This upper bound is pretty close to the optimal result. The following lower bound confirms
that the only missing bit is the precise value of the constant.

Theorem 1.13For every constantc <
√

2, almost surely, for everyε > 0 there exist
0 < h < ε andt ∈ [0, 1 − h] with

∣∣B(t+ h) −B(t)
∣∣ > c

√
h log(1/h).

Proof. Let c <
√

2 and define, for integersk, n > 0, the events

Ak,n =
{
B((k + 1)e−n) −B(ke−n) > c

√
ne−n/2

}
.

Then, using Lemma 12.9, for anyk > 0,

P(Ak,n) = P{B(e−n) > c
√
ne−n/2} = P{B(1) > c

√
n} >

c
√
n

c2n+ 1

1√
2π

e−c
2n/2 .

By our assumption onc, we haveenP(Ak,n) → ∞ asn ↑ ∞. Therefore, using1−x 6 e−x

for all x,

P
( ben−1c⋂

k=0

Ack,n

)
= (1 − P(A0,n))

en

6 exp(−enP(A0,n)) → 0 .
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By consideringh = e−n one can now see that, for anyε > 0,

P
{
|B(t+ h) −B(t)| 6 c

√
h log(1/h) ∀h ∈ (0, ε), t ∈ [0, 1 − h]

}
= 0 .

One can determine the constantc in the best possible modulus of continuityϕ(h) =

c
√
h log(1/h) precisely. Indeed, our proof of the lower bound yields a value of c =

√
2,

which turns out to be optimal. This striking result is due to Paul Lévy.

Theorem* 1.14 (Lévy’s modulus of continuity (1937))Almost surely,

lim sup
h↓0

sup
06t61−h

|B(t+ h) −B(t)|√
2h log(1/h)

= 1 .

Remark 1.15We come back to the modulus of continuity of Brownian motion in Chap-
ter 10, where we prove a substantial extension, the spectrumof fast times of Brownian
motion. We will not use Theorem 1.14 in the sequel as Theorem 1.12 is sufficient to dis-
cuss all problems where an upper bound on the increase of a Brownian motion is needed.
Hence the proof of Lévy’s modulus of continuity may be skipped on first reading. �

In the light of Theorem 1.13, we only need to prove the upper bound. We first look at
increments over a class of intervals, which is chosen to be sparse, but big enough to ap-
proximate arbitrary intervals. More precisely, given natural numbersn,m, we letΛn(m)

be the collection of all intervals of the form
[
(k − 1 + b)2−n+a, (k + b)2−n+a

]
,

for k ∈ {1, . . . , 2n}, a, b ∈ {0, 1
m , . . . ,

m−1
m }. We further defineΛ(m) :=

⋃
n Λn(m).

Lemma 1.16For any fixedm andc >
√

2, almost surely, there existsn0 ∈ N such that,
for anyn > n0,

∣∣B(t) −B(s)
∣∣ 6 c

√
(t− s) log 1

(t−s) for all [s, t] ∈ Λm(n).

Proof. From the tail estimate for a standard normal random variableX, see Lemma 12.9,
we obtain

P
{

sup
k∈{1,...,2n}

sup
a,b∈{0, 1

m ,...,m−1
m }

∣∣B
(
(k − 1 + b)2−n+a

)
−B

(
(k + b)2−n+a

)∣∣ > c
√

2−n+a log(2n+a)
}

62nm2 P
{
X > c

√
log(2n)

}

6
m2

c
√

log(2n)

1√
2π

2n(1−c2/2),

and as the right hand side is summable, the result follows from the Borel–Cantelli lemma.
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Lemma 1.17Givenε > 0 there existsm ∈ N such that for every interval[s, t] ⊂ [0, 1]

there exists an interval[s′, t′] ∈ Λ(m) with |t− t′| < ε (t− s) and|s− s′| < ε (t− s).

Proof. Choosem large enough to ensure that1/m < ε/4 and21/m < 1 + ε/2.
Given an interval[s, t] ⊂ [0, 1], we first pickn such that2−n 6 t − s < 2−n+1, then
a ∈ {0, 1/m, . . . , (m − 1)/m} such that2−n+a 6 t − s < 2−n+a+1/m. Next, pickk ∈
{1, . . . , 2n} such that(k − 1)2−n+a < s 6 k2−n+a, andb ∈ {0, 1/m, . . . , (m − 1)/m}
such that(k−1+b)2−n+a < s 6 (k−1+b+1/m)2−n+a. Let s′ = (k−1+b)2−n+a, then

|s− s′| 6
1
m2−n+a

6
ε
4 2−n+1

6
ε
2 (t− s).

Choosingt′ = (k + b)2−n+a ensures that[s′, t′] ∈ Λn(m) and, moreover,

|t− t′| 6 |s− s′| + |(t− s) − (t′ − s′)| 6
ε
2 (t− s) +

(
2−n+a+1/m − 2−n+a

)

6
ε
2 (t− s) + ε

2 2−n+a
6 ε (t− s),

as required.

Proof of Theorem 1.14. Givenc >
√

2, pick 0 < ε < 1 small enough to ensure that
c̃ := c − ε >

√
2 andm ∈ N as in Lemma 1.17. Using Lemma 1.16 we choosen0 ∈ N

large enough that, for alln > n0 and all intervals[s′, t′] ∈ Λn(m), almost surely,

|B(t′) −B(s′)| 6 c̃
√

(t′ − s′) log 1
(t′−s′) .

Now let [s, t] ⊂ [0, 1] be arbitrary, witht − s < 2−n0 ∧ ε, and pick[s′, t′] ∈ Λ(m) with
|t− t′| < ε (t− s) and|s− s′| < ε (t− s). Then, recalling Theorem 1.12, we obtain
∣∣B(t) −B(s)

∣∣ 6
∣∣B(t) −B(t′)

∣∣+
∣∣B(t′) −B(s′)

∣∣+
∣∣B(s′) −B(s)

∣∣

6 C
√
|t− t′| log 1

|t−t′| + c̃
√

(t′ − s′) log 1
t′−s′ + C

√
|s− s′| log 1

|s−s′|

6
(
4C

√
ε+ c̃

√
(1 + 2ε)(1 − log(1 − 2ε))

)√
(t− s) log 1

t−s .

By makingε > 0 small, the first factor on the right can be chosen arbitrarilyclose toc.
This completes the proof of the upper bound, and hence of the theorem.

Remark 1.18The limsup in Theorem 1.14 may be replaced by a limit, see Exercise 1.7.�

Definition 1.19. A functionf : [0,∞) → R is said to belocally α-Hölder continuous at
x > 0, if there existsε > 0 andc > 0 such that

|f(x) − f(y)| 6 c |x− y|α, for all y > 0 with |y − x| < ε.

We refer toα > 0 as theHölder exponentand toc > 0 as theHölder constant . �

Clearly,α-Hölder continuity gets stronger, as the exponentα gets larger. The results of
this chapter so far indicate that, for Brownian motion, the transition between paths which
areα-Hölder continuous and paths which are not happens atα = 1/2.
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Corollary 1.20 If α < 1/2, then, almost surely, Brownian motion is everywhere locally
α-Hölder continuous.

Proof. Let C > 0 be as in Theorem 1.12. Applying this theorem to the Brownian
motions{B(t) − B(k) : t ∈ [k, k + 1]}, wherek is a nonnegative integer, we see that,
almost surely, for everyk there existsh(k) > 0 such that for allt ∈ [k, k + 1) and
0 < h < (k + 1 − t) ∧ h(k),

∣∣B(t+ h) −B(t)
∣∣ 6 C

√
h log(1/h) 6 C hα .

Doing the same to the Brownian motions{B̃(t) : t ∈ [k, k + 1]} with B̃(t) = B(k + 1 −
t) −B(k + 1) gives the full result.

Remark 1.21This result is optimal in the sense that, forα > 1/2, almost surely, at every
point, Brownian motion fails to be locallyα-Hölder continuous, see Exercise 1.9. Points
where Brownian motion is locally1/2-Hölder continuous exist almost surely, but they are
very rare. We come back to this issue when discussing ‘slow points’ of Brownian motion
in Chapter 10. �

1.3 Nondifferentiability of Brownian motion

Having proved in the previous section that Brownian motion is somewhatregular, let us
see why it iserratic. One manifestation is that the paths of Brownian motion haveno
intervals of monotonicity.

Theorem 1.22Almost surely, for all0 < a < b < ∞, Brownian motion is not monotone
on the interval[a, b].

Proof. First fix a nondegenerate interval[a, b], i.e. an interval of positive length. If it is an
interval of monotonicity, i.e. ifB(s) 6 B(t) for all a 6 s 6 t 6 b, then we pick numbers
a = a1 6 . . . 6 an+1 = b and divide[a, b] inton sub-intervals[ai, ai+1]. Each increment
B(ai) − B(ai+1) has to have the same sign. As the increments are independent,this has
probability2 ·2−n, and takingn→ ∞ shows that the probability that[a, b] is an interval of
monotonicity must be zero. Taking a countable union gives that, almost surely, there is no
nondegenerate interval of monotonicity with rational endpoints, but each nondegenerate
interval would have a nondegenerate rational sub-interval.

In order to discuss differentiability of Brownian motion wemake use of thetime inversion
trick, which allows us to relate differentiability att = 0 to a long-term property. This
property is a complementary result to the law of large numbers: Whereas Corollary 1.11
asserts that Brownian motion grows slower than linearly, the next proposition shows that
the limsup growth ofB(t) is faster than

√
t.
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Proposition 1.23Almost surely,

lim sup
n→∞

B(n)√
n

= +∞, and lim inf
n→∞

B(n)√
n

= −∞. (1.4)

For the proof of Proposition 1.23 we use the Hewitt–Savage 0-1 law for exchangeable
events, which we briefly recall. Readers unfamiliar with theresult are invited to give a
proof as Exercise 1.10.

Definition 1.24. LetX1,X2, . . . be a sequence of random variables on a probability space
(Ω,F ,P) and consider a setA of sequences such that

{
X1,X2, . . . ∈ A

}
∈ F .

The event{X1,X2, · · · ∈ A} is calledexchangeableif
{
X1,X2, . . . ∈ A

}
⊂
{
Xσ1

,Xσ2
, . . . ∈ A

}

for all finite permutationsσ : N → N. Herefinite permutationmeans thatσ is a bijection
with σn = n for all sufficiently largen. �

Lemma 1.25 (Hewitt–Savage 0-1 law)If E is an exchangeable event for an independent,
identically distributed sequence, thenP(E) is 0 or 1.

Proof of Proposition 1.23. We clearly have, by Fatou’s lemma,

P
{
B(n) > c

√
n infinitely often

}
> lim sup

n→∞
P
{
B(n) > c

√
n
}
.

By the scaling property, the expression in thelim sup equalsP{B(1) > c}, which is
positive. LetXn = B(n) −B(n− 1), and note that

{
B(n) > c

√
n infinitely often

}
=
{ n∑

j=1

Xj > c
√
n infinitely often

}

is an exchangeable event. Hence the Hewitt–Savage 0-1 law gives that, with probability
one,B(n) > c

√
n infinitely often. Taking the intersection over all positiveintegersc gives

the first part of the statement and the second part is proved analogously.

Remark 1.26 It is natural to ask whether there exists a ‘gauge’ functionϕ : [0,∞) →
[0,∞) such thatB(t)/ϕ(t) has alim sup which is greater than0 but less than∞. An
answer will be given by the law of the iterated logarithm in the first section of Chapter 5.�

For a functionf , we define theupper andlower right derivatives

D∗f(t) = lim sup
h↓0

f(t+ h) − f(t)

h
,

and

D∗f(t) = lim inf
h↓0

f(t+ h) − f(t)

h
.
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We now show that for any fixed timet, almost surely, Brownian motion is not differentiable
at t. For this we use Proposition 1.23 and the invariance under time inversion.

Theorem 1.27Fix t > 0. Then, almost surely, Brownian motion is not differentiable att.
Moreover,D∗B(t) = +∞ andD∗B(t) = −∞.

Proof. Given a standard Brownian motionB we construct a further Brownian motionX
by time inversion as in Theorem 1.9. Then

D∗X(0) > lim sup
n→∞

X( 1
n ) −X(0)

1
n

> lim sup
n→∞

√
n X( 1

n ) = lim sup
n→∞

B(n)√
n
,

which is infinite by Proposition 1.23. Similarly,D∗X(0) = −∞, showing thatX is not
differentiable at 0. Now lett > 0 be arbitrary and{B(t) : t > 0} a Brownian motion.
ThenX(s) = B(t + s) − B(t) defines a standard Brownian motion and differentiability
of X at zero is equivalent to differentiability ofB at t.

While the previous proof shows that everyt is almost surely a point of nondifferentiability
for the Brownian motion, this doesnot imply that almost surelyeveryt is a point of non-
differentiability for the Brownian motion! The order of thequantifiersfor all t andalmost
surelyin results like Theorem 1.27 is of vital importance. Here thestatement holds for all
Brownian paths outside a set of probability zero, which may depend ont, and the union of
all these sets of probability zero may not itself be a set of probability zero.

To illustrate this point, consider the following example: The argument in the proof of
Theorem 1.27 also shows that the Brownian motionX crosses 0 for arbitrarily small values
s > 0. Defining the level setsZ(t) = {s > 0 : X(s) = X(t)}, this shows that every
t is almost surely an accumulation point from the right forZ(t). But not every point
t ∈ [0, 1] is an accumulation point from the right forZ(t). For example the last zero of
{X(t) : t > 0} before time 1 is, by definition, never an accumulation point from the right
for Z(t) = Z(0). This example illustrates that there can be randomexceptional timesat
which Brownian motion exhibits atypical behaviour. These times are so rare that any fixed
(i.e. nonrandom) time is almost surely not of this kind.

Remark 1.28 The behaviour of Brownian motion at a fixed timet > 0 reflects the be-
haviour attypical timesin the following sense: SupposeX is a measurable event (a set of
paths) such that{B(t) : t > 0} ∈ X almost surely. By stationarity of the increments this
impliesP{{B(t + s) − B(t) : s > 0} ∈ X} = 1 for all fixed t > 0. Moreover, almost
surely, the set of exceptional times{t : {B(t + s) − B(t) : s > 0} 6∈ X} has Lebesgue
measure zero. Indeed, using the joint measurability mentioned in Remark 1.5 and Fubini’s
theorem,

E
∫ ∞

0

1
{
t : {B(t+ s) −B(s) : s > 0} 6∈ X

}
dt =

∫ ∞

0

P
{
{B(s) : s > 0} /∈ X

}
dt = 0.

For example, the previous result shows that, almost surely,the path of a Brownian motion
is not differentiable at Lebesgue-almost every timet. �
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Remark 1.29Exercise 1.11 shows that, almost surely, there exist timest∗, t∗ ∈ [0, 1) with
D∗B(t∗) 6 0 andD∗B(t∗) > 0. Hence the almost sure behaviour at a fixed pointt, which
is described in Theorem 1.27, does not hold at all points simultaneously. �

Theorem 1.30 (Paley, Wiener and Zygmund 1933)Almost surely, Brownian motion is
nowhere differentiable. Furthermore, almost surely, for all t,

either D∗B(t) = +∞ or D∗B(t) = −∞ or both.

Proof. Suppose that there is at0 ∈ [0, 1] such that−∞ < D∗B(t0) 6 D∗B(t0) < ∞.
Then

lim sup
h↓0

|B(t0 + h) −B(t0)|
h

<∞,

and, using the boundedness of Brownian motion on[0, 2], this implies that for some finite
constantM there existst0 with

sup
h∈[0,1]

|B(t0 + h) −B(t0)|
h

6 M.

It suffices to show that this event has probability zero for anyM . From now on fixM . If t0
is contained in the binary interval[(k−1)/2n, k/2n] for n > 2, then for all1 6 j 6 2n−k
the triangle inequality gives
∣∣B ((k + j)/2n)−B ((k + j − 1)/2n)

∣∣

6 |B ((k + j)/2n) −B(t0)| + |B(t0) −B ((k + j − 1)/2n)|
6 M(2j + 1)/2n.

Define events

Ωn,k :=
{∣∣B ((k + j)/2n) −B ((k + j − 1)/2n)

∣∣ 6 M(2j + 1)/2n for j = 1, 2, 3
}
.

Then by independence of the increments and the scaling property, for 1 6 k 6 2n − 3,

P(Ωn,k) 6

3∏

j=1

P
{∣∣B ((k + j)/2n) −B ((k + j − 1)/2n)

∣∣ 6 M(2j + 1)/2n
}

6 P
{
|B(1)| 6 7M/

√
2n
}3

,

which is at most(7M2−n/2)3, since the normal density is bounded by 1/2. Hence

P

(
2n−3⋃

k=1

Ωn,k

)
6 2n(7M2−n/2)3 = (7M)32−n/2,

which is summable over alln. Hence, by the Borel–Cantelli lemma,

P
{

there ist0 ∈ [0, 1] with sup
h∈[0,1]

|B(t0 + h) −B(t0)|
h

6 M
}

6 P

(
2n−3⋃

k=1

Ωn,k for infinitely manyn

)
= 0.
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Remark 1.31The proof of Theorem 1.30 can be tightened to prove that, for anyα > 1
2 , the

sample paths of Brownian motion are, almost surely, nowherelocallyα-Hölder continuous,
see Exercise 1.9. �

Remark 1.32There is an abundance of interesting statements about the right derivatives
of Brownian motion, which we state as exercises at the end of the chapter. As a taster we
mention here that Lévy [Le54] asked whether, almost surely,D∗B(t) ∈ {−∞,∞} for
everyt ∈ [0, 1). Exercise 1.13 shows that this is not the case. �

Another important regularity property, which Brownian motion doesnotpossess is to be of
bounded variation. We first define what it means for a functionto be of bounded variation.

Definition 1.33. A right-continuous functionf : [0, t] → R is a function ofbounded
variation if

V (1)

f (t) := sup

k∑

j=1

∣∣f
(
tj
)
− f

(
tj−1

)∣∣ <∞,

where the supremum is over allk ∈ N and partitions0 = t0 6 t1 6 · · · 6 tk−1 6 tk = t.
If the supremum is infinitef is said to be ofunbounded variation. �

Remark 1.34 It is not hard to show thatf is of bounded variation if and only if it can be
written as the difference of two increasing functions. �

Theorem 1.35Suppose that the sequence of partitions

0 = t(n)

0 6 t(n)

1 6 · · · 6 t(n)

k(n)−1 6 t(n)

k(n) = t

is nested, i.e. at each step one or more partition points are added, and themesh

∆(n) := sup
16j6k(n)

{
t(n)

j − t(n)

j−1

}

converges to zero. Then, almost surely,

lim
n→∞

k(n)∑

j=1

(
B(t(n)

j ) −B(t(n)

j−1)
)2

= t,

and therefore Brownian motion is of unbounded variation.

Remark 1.36For a sequence of partitions as above, we call

lim
n→∞

k(n)∑

j=1

(
B(t(n)

j ) −B(t(n)

j−1)
)2
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the quadratic variation of Brownian motion. The fact that Brownian motion has finite
quadratic variation will be of crucial importance in Chapter 7, however, the analogy to
the notion of bounded variation of a function is not perfect:In Exercise 1.15 we find a
sequence of partitions

0 = t(n)

0 6 t(n)

1 6 · · · 6 t(n)

k(n)−1 6 t(n)

k(n) = t

with mesh converging to zero, such that almost surely

lim sup
n→∞

k(n)∑

j=1

(
B(t(n)

j ) −B(t(n)

j−1)
)2

= ∞.

In particular, the condition that the partitions in Theorem1.35 are nested cannot be dropped
entirely, though it can be replaced by other conditions, seeExercise 1.16. �

The proof of Theorem 1.35 is based on the following simple lemma.

Lemma 1.37If X,Z are independent, symmetric random variables inL
2, then

E
[
(X + Z)2

∣∣X2 + Z2
]

= X2 + Z2.

Proof. By symmetry ofZ we have

E
[
(X + Z)2

∣∣X2 + Z2
]

= E
[
(X − Z)2

∣∣X2 + Z2
]
.

Both sides of the equation are finite, so that we can take the difference and obtain

E
[
XZ

∣∣X2 + Z2
]

= 0,

and the result follows immediately.

Proof of Theorem 1.35. By the Hölder property, we can find, for anyα ∈ (0, 1/2), an
n such that|B(a) −B(b)| 6 |a− b|α for all a, b ∈ [0, t] with |a− b| 6 ∆(n). Hence

k(n)∑

j=1

∣∣B
(
t(n)

j

)
−B

(
t(n)

j−1

)∣∣ > ∆(n)−α
k(n)∑

j=1

(
B
(
t(n)

j

)
−B

(
t(n)

j−1

))2
.

Therefore, once we show that the random variables

Xn :=

k(n)∑

j=1

(
B
(
t(n)

j

)
−B

(
t(n)

j−1

))2

converge almost surely to a positive random variable it follows immediately that Brownian
motion is almost surely of unbounded variation. By inserting elements in the sequence, if
necessary, we may assume that at each step exactly one point is added to the partition.
To see that{Xn : n ∈ N} converges we use the theory of martingales in discrete time,see
Appendix 12.3 for basic facts on martingales. We denote byGn theσ-algebra generated
by the random variablesXn,Xn+1, . . .. Then

G∞ :=

∞⋂

k=1

Gk ⊂ · · · ⊂ Gn+1 ⊂ Gn ⊂ · · · ⊂ G1.
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We show that{Xn : n ∈ N} is a reverse martingale, i.e. that almost surely,

Xn = E
[
Xn−1

∣∣Gn
]

for all n > 2 .

This is easy with the help of Lemma 1.37. Indeed, ifs ∈ (t1, t2) is the inserted point we
apply it to the symmetric, independent random variablesB(s)−B(t1),B(t2)−B(s) and
denote byF theσ-algebra generated by(B(s) −B(t1))

2 + (B(t2) −B(s))2. Then

E
[(
B(t2) −B(t1)

)2∣∣F
]

=
(
B(s) −B(t1)

)2
+
(
B(t2) −B(s)

)2
,

and hence

E
[(
B(t2) −B(t1)

)2 −
(
B(s) −B(t1)

)2−
(
B(t2) −B(s)

)2∣∣F
]

= 0,

which implies that{Xn : n ∈ N} is a reverse martingale.
By the Lévy downward theorem, see Theorem 12.26 in the appendix,

lim
n↑∞

Xn = E[X1 | G∞] almost surely.

The limit has expectationE[X1] = t and, by Fatou’s lemma, its variance is bounded by

lim inf
n↑∞

E
[
(Xn − EXn)

2
]

= lim inf
n↑∞

3

k(n)∑

j=1

(
t(n)

j − t(n)

j−1

)2
6 3t lim inf

n↑∞
∆(n) = 0.

Hence,E[X1 | G∞] = t almost surely, as required.

1.4 The Cameron–Martin theorem

In the previous two sections we have obtained results about the almost sure behaviour of a
Brownian motion{B(t) : t > 0} without drift. In this section we ask whether these results
hold as well for a Brownian motion with drift{B(t) + µt : t > 0} or, more generally, for
which time-dependent drift functionsF the process{B(t) + F (t) : t > 0} has the same
behaviour as a Brownian motion path. This section can be skipped on first reading.

We denote byL0 the law of standard Brownian motion{B(t) : t ∈ [0, 1]}, and for a
functionF : [0, 1] → R write LF for the law of{B(t) + F (t) : t ∈ [0, 1]}. We ask, for
which functionsF any setA with L0(A) = 0 also satisfiesLF (A) = 0, in other words,
for whichF is LF absolutely continuous with respect toL0?

Clearly, necessary conditions are continuity ofF andF (0) = 0. However, these conditions
are not sufficient. Denote byD[0, 1] theDirichlet space

D[0, 1] =
{
F ∈ C[0, 1] : existsf ∈ L

2[0, 1] such thatF (t) =

∫ t

0

f(s) ds ∀t ∈ [0, 1]
}
.

GivenF ∈ D[0, 1] the associatedf is uniquely determined as an element ofL
2[0, 1], and

is denoted byF ′, the derivative ofF .
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Recall that for two nonzero measuresµ andν on the same space we writeµ ⊥ ν, and
say thatµ andν aresingular if there exists a Borel setA with µ(A) = 0 andν(Ac) = 0.
Otherwise, we say that they areequivalentif they are mutually absolutely continuous,
i.e. if µ� ν andν � µ.

Theorem 1.38 (Cameron–Martin) LetF ∈ C[0, 1] satisfyF (0) = 0.

(1) If F 6∈ D[0, 1] thenLF ⊥ L0.
(2) If F ∈ D[0, 1] thenLF andL0 are equivalent.

Remark 1.39 As a consequence we see thatany almost sure property of the Brownian
motionB also holds almost surely forB + F , whenF ∈ D[0, 1]. Conversely, when
F 6∈ D[0, 1] somealmost sure property of Brownian motion fails forB + F , see also
Exercise 1.18. �

Before proving the theorem we make some preparations. ForF ∈ C[0, 1] andn > 0,
denote

Qn(F ) = 2n
2n∑

j=1

[
F
(
j
2n

)
− F

(
j−1
2n

)]2
.

Lemma 1.40LetF ∈ C[0, 1] satisfyF (0) = 0. Then{Qn(F ) : n > 1} is an increasing
sequence, and

F ∈ D[0, 1] ⇐⇒ sup
n

Qn(F ) <∞ .

Moreover, ifF ∈ D[0, 1], thenQn(F ) → ‖F ′‖2
2 asn→ ∞.

Proof. The general inequality(a+ b)2 6 2a2 + 2b2 gives
[
F
(
j
2n

)
− F

(
j−1
2n

)]2
6 2
[
F
(

2j−1
2n+1

)
− F

(
j−1
2n

)]2
+ 2
[
F
(
j
2n

)
− F

(
2j−1
2n+1

)]2
.

Summing this inequality overj ∈ {1, . . . , 2n} yields thatQn(F ) is increasing inn. For
F ∈ D[0, 1] with F ′ = f , we can write, using Cauchy–Schwarz,

Qn(F ) = 2n
2n∑

j=1

(∫ j2−n

(j−1)2−n

f dt
)2

6

2n∑

j=1

∫ j2−n

(j−1)2−n

f2 dt = ||f ||22 .

Assume now thatsupnQn(F ) <∞. For anyt ∈ [0, 1] that is not a dyadic rational and for
eachn > 1, there is a unique interval of the form[k−1

2n , k2n ] (for some integerk > 0), to
which t belongs. Denote this interval byIn(t) = [an, bn] and observe that fort uniformly
distributed in[0, 1], givenI1(t), . . . , In(t), the intervalIn+1(t) is equally likely to be each
of the two halves ofIn(t). This implies that

Yn(t) = 2n[F (bn) − F (an)] ,

defines a martingale with respect to the filtration(σ(In) : n = 0, 1, . . .). Furthermore,

EY 2
n = 22n

2n∑

k=1

1

2n

[
F
(
k
2n

)
− F

(
k−1
2n

)]2
= Qn(F ) .
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Hence{Yn : n = 0, 1, . . .} is a martingale bounded inL2. By the convergence theorem for
L

2-bounded martingales, see Theorem 12.28 in the appendix, there is a random variableY
in L

2[0, 1] such thatYn → Y almost surely and inL2. For fixedj andm we have that

F
(
j

2m

)
=

∫ j
2m

0

Yn(t) dt→
∫ j

2m

0

Y (t) dt asn→ ∞ .

LetG(x) =
∫ x
0
Y (t) dt. SinceF ( j

2m ) = G( j
2m ) for anyj andm andF,G are continuous,

we deduce thatF (x) = G(x) for all x ∈ [0, 1]. ThereforeF ∈ D[0, 1] andF ′ = Y almost
everywhere. AsEY 2

n → EY 2 we conclude thatQn(F ) → ‖F ′‖2
2.

We use the result of Lemma 1.40 to construct a very basic stochastic integral with respect
to Brownian motion.

Lemma 1.41 (Paley–Wiener stochastic integral)Let {B(t) : t > 0} be standard Brow-
nian motion, and supposeF ∈ D[0, 1]. Then the sequence

ξn = 2n
2n∑

j=1

[
F
(
j
2n

)
− F

(
j−1
2n

)][
B
(
j
2n

)
−B

(
j−1
2n

)]

converges almost surely and inL2. We denote the limit ofξn by
∫ 1

0
F ′ dB.

Proof. Recall from Lévy’s construction of Brownian motion that

B
(

2j−1
2n

)
= 1

2

[
B
(

2j−2
2n

)
+B

(
2j
2n

)]
+ σnZ

(
2j−1
2n

)
(1.5)

whereσn = 2−(n+1)/2 andZ(t), for t binary rational, are i.i.d. standard normal random
variables. Therefore

ξn − ξn−1 = 2nσn

2n−1∑

j=1

[
2F
(

2j−1
2n

)
− F

(
2j−2
2n

)
− F

(
2j
2n

)]
Z
(

2j−1
2n

)
.

This implies that{ξn : n > 1} is a martingale. The definition ofξn readily yields that
Eξ2n = Qn(F ). SinceF ∈ D[0, 1], Lemma 1.40 implies thatsupn Eξ2n is bounded, and
thus the convergence theorem forL

2-bounded martingales concludes the proof.

Remark 1.42Denote byDn = {j2−n : j = 0, . . . , 2n} the dyadic partition of the interval
[0, 1]. Let Fn be theσ-algebra inC[0, 1] determined by the restriction map toDn. Then
theσ-algebras(Fn : n > 1) generate the Borelσ-algebra inC[0, 1]. �

Proof of Theorem 1.38. For anyx ∈ C[0, 1] andn > 0, we write

∇(n)

j x = x
(
j
2n

)
− x
(
j−1
2n

)
,

sometimes dropping the superindex whenn is fixed. Forx ∈ C[0, 1], we write

Hn(x) = 2n−1
[ 2n∑

j=1

(∇(n)

j F )2 − 2
2n∑

j=1

∇(n)

j x∇(n)

j F
]
.
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When we look at the finite-dimensional distributions ofL0 andLF on a finite set of times
such asDn, the Radon–Nikodým derivativedLF

dL0
|Dn

is the ratio of the two Lebesgue den-
sities, provided they exist. Hence we obtain

dLF
dL0

∣∣∣
Dn

(x) =

2n∏

j=1

exp
{
− [∇jx−∇jF ]2

21−n

}
exp

{ (∇jx)
2

21−n

}
= e−Hn(x) . (1.6)

By Theorem 12.32 (a) the process given bydLF

dL0
|Dn

= e−Hn is a nonnegative martingale
with respect toL0. (This can also be checked directly, see Exercise 1.17.) It therefore
convergesL0-almost surely to a nonnegative finite limit, and henceHn convergesL0-
almost surely, possibly to∞. We have

EL0
Hn =

∫
Hn(x) dL0(x) =

1

2
Qn(F ) ,

and

VarL0
Hn = Qn(F ) .

Thus, by Chebyshev’s inequality, we get

PL0

{
Hn 6

1
4Qn(F )

}
6

16

Qn(F )
.

If F 6∈ D[0, 1], then Lemma 1.40 implies thatL0-almost surelyHn → ∞. By Theo-
rem 12.32 of the appendix, we conclude thatLF ⊥ L0.

For the converse, suppose thatF ∈ D[0, 1]. By Lemma 1.41, we have

Hn(x) −→
1

2
‖F ′‖2

2 −
∫ 1

0

F ′ dB L0-almost everywhere.

We conclude by (1.6) and Theorem 12.32 (iii) thatLF � L0. To finish the proof of the
theorem, observe thatLF � L0 if and only if L0 � L−F .

Remark 1.43The proof of Theorem 1.38 and an easy scaling also show that, for anyt > 0

andF ∈ D[0, t], the density ofLF with respect toL0 is given as

dLF
dL0

(B) = exp
{
− 1

2

∫ t

0

F ′(s)2 ds+

∫ t

0

F ′ dB
}

for L0-almost everyB ∈ C[0, t].

ChoosingF (s) = µs and applying Brownian scaling we obtain that the density of Brown-
ian motion with driftµ with respect to a driftless Brownian motion onC[0, t] is

dLF
dL0

(B) = exp
{
− 1

2µ
2 t+ µB(t)

}
for L0-almost everyB ∈ C[0, t]. �

We now have a second look at the construction of Brownian motion and the Cameron–
Martin theorem, now from a Hilbert space perspective.
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Let {ϕn : n = 0, 1, . . .} be an orthonormal basis ofL2[0, 1]. For example we may take the
trigonometric basis

{ϕn : n = 0, 1, . . .} = {1} ∪ {
√

2 cos(πnt) : n = 1, 2, . . .}, (1.7)

or theHaar basis

{ϕn : n = 0, 1, . . .} = {1} ∪ {ϕm,k : m > 1 and1 6 k 6 2m−1} , (1.8)

wheren = 2m−1 − 1 + k and

ϕm,k =
√

2m−1
(
1[ 2k−2

2m , 2k−1
2m ] − 1[ 2k−1

2m , 2k
2m ]

)
, (1.9)

see Exercise 1.20. Consider the Dirichlet spaceD[0, 1] endowed with the inner product

〈F,G〉D[0,1] = 〈F ′, G′〉L2[0,1] .

Define{Φn : n = 0, 1, . . .} by

Φn(t) =

∫ t

0

ϕn(s)ds .

As this integration is an isometry fromL2[0, 1] to D[0, 1], we deduce that{Φn : n =

0, 1, . . .} is an orthonormal basis forD[0, 1]. Furthermore, by Cauchy–Schwarz,

∣∣∣
∫ t

0

f(s) ds−
∫ t

0

g(s) ds
∣∣∣ 6 ‖f − g‖2 ;

therefore, ifFn → F in D[0, 1] thenFn → F uniformly. Thus for anyF ∈ D[0, 1], the
series

F =

∞∑

n=0

〈ϕn, F ′〉L2 Φn =

∞∑

n=0

〈Φn, F 〉D Φn ,

converges inD[0, 1] and uniformly.
Let {Φn : n = 0, 1, . . .} be an orthonormal basis inD[0, 1], whereΦn(t) =

∫ t
0
ϕn(s) ds,

and let{Zn : n = 0, 1, . . .} be i.i.d. standard normal random variables. For each fixed
t ∈ [0, 1], we have

∞∑

n=0

Φ2
n(t) =

∞∑

n=0

〈1[0,t], ϕn〉2L2[0,1] = ‖1[0,t]‖2
2 = t

by Parseval’s identity. Therefore, for fixedt, the series

W (t) =

∞∑

n=0

ZnΦn(t) (1.10)

converges almost surely and inL2, since the partial sums form anL2-bounded martingale.
However, the series almost surely does not converge inD[0, 1] since

∑∞
n=0 Z

2
n = ∞

almost surely; we show below that it almost surelydoesconverge uniformly inC[0, 1]

for a suitable choice of{Φn : n = 0, 1, . . .}. Almost sure uniform convergence of (1.10)
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implies that the sum is a standard Brownian motion on[0, 1], since it is continuous and has
the correct covariance. Namely,

Cov(W (t),W (s)) = E
∞∑

n=0

Z2
n

∫ t

0

ϕn(u) du

∫ s

0

ϕn(u) du

=

∞∑

n=0

〈1[0,t], ϕn〉〈1[0,s], ϕn〉 = 〈1[0,t]1[0,s]〉 = s ∧ t ,

where the convergence of (1.10) inL2 is used to interchange summation and integration.

Proposition 1.44For the Haar basis (1.8), the series (1.10) converges uniformly inC[0, 1]

with probability one.

Proof. We can write the series (1.10) more explicitly using (1.9),

W (t) = tZ0 +
∞∑

m=1

2m−1∑

k=1

Zm,kΦm,k(t) , (1.11)

whereZ0 and{Zm,k} are i.i.d. standard normal variables andΦm,k =
∫ t
0
ϕm,k(s) ds. The

tail estimate for standard normal distributions, see Lemma12.9 in the appendix, gives

2m−1∑

k=1

P(|Zm,k| >
√

2m) 6 2me−m

which is summable overm > 1. Thus, almost surely, the bound|Zm,k| 6
√

2m holds in
(1.11) with at most finitely many exceptions. Since|Φm,k(x)| 6 2−m/2 for all x ∈ [0, 1],
the series (1.11) converges uniformly with probability one.

Remark 1.45For the Haar basis (1.8), the construction of Brownian motion via the series
(1.11) coincides with Lévy’s construction as given in Theorem 1.3. �

The construction (1.10) yields an alternative proof for thepositive direction of the Cameron–
Martin theorem. GivenF ∈ D[0, 1], we show thatL0 � LF . Write

F =
∞∑

n=0

anΦn, with
∞∑

n=0

a2
n <∞ ,

whereΦn is the integrated Haar basis (or any other orthonormal basisof D[0, 1] for which
the series (1.10) converges uniformly almost surely). Then,

W + F =

∞∑

n=0

(Zn + an)Φn ,

where, as usual,{Zn} are i.i.d. standard normal. ProvingL0 � LF is thus equivalent
to proving that the law of the vector(Zn : n = 0, 1, . . .) is absolutely continuous to the
law of (Zn + an : n = 0, 1, . . .). To this end we could use Kakutani’s absolute-continuity
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criterion for product measures, see e.g. 14.17 in [Wi91]; however it is also simple to apply
Theorem 12.32 of the appendix directly.

Indeed, letRn(z0, . . . , zn) denote the Radon–Nikodým derivative of the law of the shifted
Gaussian vector(Zj + aj : j = 0, 1, . . .) with respect to the law of the standard Gaussian
vector(Zj : j = 0, 1, . . .). Then

Rn(z0, . . . , zn) =
n∏

j=0

e−(zj−aj)
2/2

e−z
2
j /2

= exp
{ n∑

j=0

ajzj −
n∑

j=0

a2
j/2
}
.

As
∑n
j=0 ajZj is a martingale bounded inL2 and

∑∞
j=0 a

2
j <∞, we conclude that

lim
n→∞

Rn(Z0, . . . , Zn)

almost surely exists and is positive. Theorem 12.32 (iii) then implies thatL0 � LF .

Exercises

Exercise 1.1.Let {B(t) : t > 0} be a Brownian motion with arbitrary starting point. Show
that, for alls, t > 0, we have Cov(B(s), B(t)) = s ∧ t.

Exercise 1.2.S Show that, in Theorem 1.3, Brownian motion is constructed asa jointly
measurable function(ω, t) 7→ B(ω, t) onΩ × [0,∞).

Exercise 1.3.S Show that Brownian motion with start inx ∈ R is a Gaussian process.

Exercise 1.4. Show that, for every pointx ∈ R, there exists atwo-sided Brownian motion
{B(t) : t ∈ R} with B(0) = x, which has continuous paths, independent increments and
the property that, for allt ∈ R andh > 0, the incrementsB(t + h) − B(t) are normally
distributed with expectation zero and varianceh.

Exercise 1.5.S Fix x, y ∈ R. The Brownian bridgewith start inx and end iny is the
process{X(t) : 0 6 t 6 1} defined by

X(t) = B(t) − t
(
B(1) − y

)
, for 0 6 t 6 1 ,

where{B(t) : t > 0} is a Brownian motion started inx. The Brownian bridge is an almost
surely continuous process such thatX(0) = x andX(1) = y.

(a) Show that, for every boundedf : Rn → R,

E
[
f
(
X(t1), . . . , X(tn)

)]
=

∫
f(x1, . . . , xn)

p(t1, x, x1)

p(1, x, y)

×
n∏

i=2

p(ti − ti−1, xi, xi+1)p(1 − tn, xn, y) dx1 . . . dxn,

for all 0 < t1 < · · · < tn < 1 where

p(t, x, y) =
1√
2πt

e−
(y−x)2

2t .
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(b) Infer that, for anyt0 < 1, the laws of the processes{X(t) : 0 6 t 6 t0} and
{B(t) : 0 6 t 6 t0} are mutually absolutely continuous, and the Radon–Nikodým
derivative evaluated at{ψ(t) : 0 6 t 6 t0} is a function ofψ(t0).

Exercise 1.6.S Prove the law of large numbers in Corollary 1.11 directly.
Hint. Use the law of large numbers for sequences of independent identically distributed
random variables to show thatlimn→∞B(n)/n = 0. Then show thatB(t) does not oscil-
late too much betweenn andn+ 1.

Exercise 1.7.S Show the following improvement to Theorem 1.14: Almost surely,

lim
h↓0

sup
06t61−h

|B(t+ h) −B(t)|√
2h log(1/h)

= 1 .

Exercise 1.8.S Let f : [0, 1] → R be a continuous function withf(0) = 0. Then, for a
standard Brownian motion{B(t) : t > 0} andε > 0, we have

P
{

sup
06t61

|B(t) − f(t)| < ε
}
> 0.

Exercise 1.9.S Show that, ifα > 1/2, then, almost surely, at every point, Brownian mo-
tion fails to be locallyα-Hölder continuous.

Exercise 1.10.S Show that, ifE is an exchangeable event for an independent, identically
distributed sequence, thenP(E) is 0 or 1.

Exercise 1.11.Show that, for a Brownian motion{B(t) : t > 0},

(a) for all t > 0 we haveP{t is a local maximum} = 0;
(b) almost surely local maxima exist;
(c) almost surely, there existt∗, t∗ ∈ [0, 1) with D∗B(t∗) 6 0 andD∗B(t∗) > 0.

Exercise 1.12.S Let f ∈ C[0, 1] be any fixed continuous function. Show that, almost
surely, the function{B(t) + f(t) : t ∈ [0, 1]} is nowhere differentiable.

Exercise 1.13.S Show that, almost surely, there exists a timet at whichD∗B(t) = 0.

Exercise 1.14.S Show that, almost surely,

D∗B(t0) = −∞,

wheret0 is uniquely determined by

B(t0) = max
06t61

B(t).

Hint. Try this exerciseafter the discussion of the strong Markov property in Chapter 2.
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Exercise 1.15.S

(a) Show that, almost surely, there exists a family

0 = t(n)

0 6 t(n)

1 6 · · · 6 t(n)

k(n)−1 6 t(n)

k(n) = t

of (random) partitions such that

lim
n↑∞

k(n)∑

j=1

(
B(t(n)

j ) −B(t(n)

j−1)
)2

= ∞ .

Hint. Use the construction of Brownian motion to pick a partition consisting of
dyadic intervals, such that the increment of Brownian motion over any chosen in-
terval is large relative to the square root of its length.

(b) Construct a (nonrandom) sequence of partitions

0 = t(n)

0 6 t(n)

1 6 · · · 6 t(n)

k(n)−1 6 t(n)

k(n) = t

with mesh converging to zero, such that, almost surely,

lim sup
n→∞

k(n)∑

j=1

(
B(t(n)

j ) −B(t(n)

j−1)
)2

= ∞.

Exercise 1.16.S Consider a (not necessarily nested) sequence of partitions

0 = t(n)

0 6 t(n)

1 6 · · · 6 t(n)

k(n)−1 6 t(n)

k(n) = t

with mesh converging to zero.

(a) Show that, in the sense ofL
2-convergence,

lim
n→∞

k(n)∑

j=1

(
B(t(n)

j ) −B(t(n)

j−1)
)2

= t.

(b) Show that, if additionally

∞∑

n=1

k(n)∑

j=1

(
t(n)

j − t(n)

j−1

)2
<∞,

then the convergence in (a) also holds almost surely.

Exercise 1.17.S Using the notation as in Remark 1.42 and below, for a fixed function
F ∈ C[0, 1] and a Brownian motionB ∈ C[0, 1] we denote

Hn = 2n−1
[ 2n∑

j=1

(∇(n)

j F )2 − 2

2n∑

j=1

(
∇(n)

j B
) (

∇(n)

j F
)]
.

Show directly that{e−Hn : n > 1} is a martingale with respect to the filtration(Fn : n > 1).
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Exercise 1.18. By the Cameron-Martin theorem for a Brownian motionB andF ∈
D[0, 1], the functionB + F has almost surely finite quadratic variation. Show that there
exist continuous functionsF 6∈ D[0, 1] such thatB + F has infinite quadratic variation
almost surely.

Exercise 1.19.S LetF ∈ D[0, 1]. The Cameron-Martin theorem together with the Hölder
continuity of Brownian motion implies thatF is Hölder continuous with exponentα, for
all α < 1/2. Prove directly thatF is Hölder continuous with exponent1/2.

Exercise 1.20. Show that the Haar system{ϕn : n = 0, 1, . . .} constructed in (1.8) is
complete inL2[0, 1].
Hint. It suffices to show that this system spans all step functions where the steps are
dyadic intervals of length at least2−m. This can be verified by induction onm.

Notes and comments

The first study of the mathematical process of Brownian motion is due to Bachelier in
[Ba00] in the context of modelling stock market fluctuations, see [DE06] for a modern
edition. Bachelier’s work was long forgotten and has only recently been rediscovered,
today an international society for mathematical finance is named after him. The physical
phenomenon of Brownian motion is usually attributed to Brown [Br28] and was explained
by Einstein in [Ei05], see also [Ei56]. Einstein’s explanation of the phenomenon was
also a milestone in the establishment of the atomistic worldview of physics. The first
rigorous construction of mathematical Brownian motion is due to Wiener [Wi23], and in
his honour Brownian motion is sometimes called theWiener process. Moreover, the space
of continuous function equipped with the distribution of standard Brownian motion is often
calledWiener space. There is also a generalisation of Wiener’s approach to the construction
of more general Gaussian measures on separable Banach space, which is called the abstract
Wiener space, see Kallianpur [Ka71].

As explained in the introduction, Brownian motion describes the macroscopic picture
emerging from a random walk if its increments are sufficiently tame not to cause jumps
which are visible in the macroscopic description. If this isnot the case the class ofLévy
processesand within this class thestable processesoffer a macroscopic description. A very
good book dealing with Lévy processes is Bertoin [Be96] and arecommended introductory
course in the subject is Kyprianou [Ky06].

There is a variety of constructions of Brownian motion in theliterature. The approach
we have followed goes back to one of the great pioneers of Brownian motion, the French
mathematicianPaul Lévy, see [Le48]. Lévy’s construction has the advantage that conti-
nuity properties of Brownian motion can be obtained from theconstruction. An alternative
is to first show that a Markov process with the correct transition probabilities can be con-
structed, and then to use an abstract criterion, like Kolmogorov’s criterion for the existence
of a continuous version of the process. See, for example, Revuz and Yor [RY94], Karatzas
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and Shreve [KS91] and Kahane [Ka85] for further alternativeconstructions. For the Haar
basis (1.8), the construction of Brownian motion via the series (1.11) is exactly Lévy’s
interpolation construction, expressed in more fancy language. Nevertheless, the Hilbert
space point of view is essential in studies of more general Gaussian processes, see the ex-
cellent book by Janson [Ja97]. For a proof that the series (1.10) converges uniformly for the
trigonometric basis (1.7) and more on the Hilbert space perspective, see Kahane [Ka85].

Gaussian processes, only briefly mentioned here, are one of the richest and best under-
stood class of processes in probability theory. Some good references for this are
Adler [Ad90] and Lifshits [Li95]. A lot of effort in current research is put into trying
to extend our understanding of Brownian motion to more general Gaussian processes like
the so-calledfractional Brownian motion. The main difficulty is that these processes do not
have the extremely useful Markov property — which we shall discuss in the next chapter,
and which we will make heavy use of throughout the book.

The modulus of continuity, Theorem 1.14, goes back to Lévy [Le37]. Observe that this
result describes continuity of Brownian motion near itsworst time. By contrast, the law of
the iterated logarithm in the form of Corollary 5.3 shows that at atypical time the continuity
properties of Brownian motion are better: For every fixed time t > 0 andc >

√
2, almost

surely, there existsε > 0 with |B(t) − B(t + h)| 6 c
√
h log log(1/h) for all |h| < ε. In

Chapter 10 we explore for how many timest > 0 we are close to the worst case scenario.

The existence of points where Brownian motion is locally1/2-Hölder continuous is
a very tricky question. Dvoretzky [Dv63] showed that, for a sufficiently small c > 0,
almost surely no point satisfies1/2-local Hölder continuity with Hölder constantc. Later,
Davis [Da83] and, independently, Greenwood and Perkins [GP83] identified the maximal
possible Hölder constant, we will discuss their work in Chapter 10.

There is a lot of discussion about nowhere differentiable, continuous functions in the
analysis literature of the early twentieth century. Examples are Weierstrass’ function, see
e.g. [MG84], and van der Waerden’s function, see e.g. [Bi82]. Nowhere differentiability
of Brownian motion was first shown by Paley, Wiener and Zygmund in [PWZ33], but the
proof we give is due to Dvoretzky, Erdős and Kakutani [DEK61]. Besides the discussion
of special examples of such functions, the statement that insome sense ‘most’ or ‘almost
all’ continuous functions are nowhere differentiable is particularly fascinating. A topo-
logical form of this statement is that nowhere differentiability is a generic property for
the spaceC([0, 1]) in the sense of Baire category. A newer, measure theoretic approach
based on an idea of Christensen [Ch72], which was later rediscovered by Hunt, Sauer, and
Yorke [HSY92], is the notion of prevalence. A subsetA of a separable Banach spaceX is
calledprevalentif there exists a Borel probability measureµ onX such thatµ(x+A) = 1

for anyx ∈ X. A strengthening of the proof of Theorem 1.30, see Exercise 1.12, shows
that the set of nowhere differentiable functions is prevalent.
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The timet whereD∗B(t) = 0 which we constructed in Exercise 1.13 is an exceptional
time, i.e. a time where Brownian motion behaves differentlyfrom almost every other time.
In Chapter 10 we enter a systematic discussion of such times,and in particular address the
question how many exceptional points (in terms of Hausdorffdimension) of a certain type
exist. The set of times whereD∗B(t) = 0 has Hausdorff dimension1/4, see Barlow and
Perkins [BP84].

The interesting fact that the ‘true’ quadratic variation ofBrownian motion, taken as a
supremum over arbitrary partitions with mesh going to zero,is infinite is a result of Lévy,
see [Le40]. Finer variation properties of Brownian motion have been studied by Taylor
in [Ta72]. He shows, for example, that theψ-variation

V ψ = sup

k∑

i=1

ψ
(
|B(ti) −B(ti−1)|

)
,

where the supremum is taken over all partitions0 = t0 < · · · < tk = 1, k ∈ N,
is finite almost surely forψ1(s) = s2/(2 log log(1/s)), but is infinite for anyψ with
ψ(s)/ψ1(s) → ∞ ass ↓ 0.
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Brownian motion as a strong Markov process

In this chapter we discuss the strong Markov property of Brownian motion. We also briefly
discuss Markov processes in general and show that some processes, which can be derived
from Brownian motion, are also Markov processes. We then exploit these facts to get finer
properties of Brownian sample paths.

2.1 The Markov property and Blumenthal’s 0-1 law

For the discussion of the Markov property we include higher dimensional Brownian mo-
tion, which can be defined easily by requiring the characteristics of a linear Brownian
motion in every component, and independence of the components.
Definition 2.1. If B1, . . . , Bd are independent linear Brownian motions started inx1, . . . , xd,
then the stochastic process{B(t) : t > 0} given by

B(t) = (B1(t), . . . , Bd(t))
T

is called ad-dimensional Brownian motionstarted in(x1, . . . , xd)
T. Thed-dimensional

Brownian motion started in the origin is also calledstandard Brownian motion. One-
dimensional Brownian motion is also calledlinear, two-dimensional Brownian motion
planar Brownian motion . �

Notation 2.2. Throughout this book we writePx for the probability measure which makes
thed-dimensional process{B(t) : t > 0} a Brownian motion started inx ∈ Rd, andEx
for the corresponding expectation. �

Suppose now that{X(t) : t > 0} is a stochastic process. Intuitively, theMarkov property
says that if we know the process{X(t) : t > 0} on the interval[0, s], for the prediction of
the future{X(t) : t > s} this is as useful as just knowing the endpointX(s). Moreover,
a process is called a(time-homogeneous) Markov processif it starts afresh at any fixed
times. Slightly more precisely this means that, supposing the process can be started in any
pointX(0) = x ∈ Rd, the time-shifted process{X(s+t) : t > 0} has the same distribution
as the process started inX(s) ∈ Rd. We shall formalise the notion of a Markov process
later in this chapter, but start by giving a straight formulation of the facts for a Brownian
motion.

36
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0

0 s

Fig. 2.1. Brownian motion starts afresh at times.

Note that two stochastic processes{X(t) : t > 0} and {Y (t) : t > 0} are calledin-
dependent, if for any setst1, . . . , tn > 0 and s1, . . . , sm > 0 of times the vectors
(X(t1), . . . ,X(tn)) and(Y (s1), . . . , Y (sm)) are independent.

Theorem 2.3 (Markov property) Suppose that{B(t) : t > 0} is a Brownian motion
started inx ∈ Rd. Lets > 0, then the process{B(t+ s)−B(s) : t > 0} is again a Brow-
nian motion started in the origin and it is independent of theprocess{B(t) : 0 6 t 6 s}.

Proof. It is easy to check that{B(t + s) − B(s) : t > 0} satisfies the definition of
ad-dimensional Brownian motion. The independence statementfollows directly from the
independence of the increments of a Brownian motion.

We now improve this result slightly and introduce some useful terminology.

Definition 2.4.

(a) A filtration on a probability space(Ω,F ,P) is a family (F(t) : t > 0) of σ-
algebras such thatF(s) ⊂ F(t) ⊂ F for all s < t.

(b) A probability space together with a filtration is called afiltered probability space.

(c) A stochastic process{X(t) : t > 0} defined on a filtered probability space with fil-
tration (F(t) : t > 0) is called adapted if X(t) is F(t)-measurable for
anyt > 0. �

Suppose we have a Brownian motion{B(t) : t > 0} defined on some probability space,
then we can define a filtration(F0(t) : t > 0) by letting

F0(t) = σ
(
B(s) : 0 6 s 6 t

)

be theσ-algebra generated by the random variablesB(s), for 0 6 s 6 t. With this
definition, the Brownian motion is obviously adapted to the filtration. Intuitively, this
σ-algebra contains all the information available from observing the process up to timet.
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By Theorem 2.3, the process{B(t+ s)−B(s) : t > 0} is independent ofF0(s). In a first
step, we improve this and allow a slightly larger (augmented) σ-algebraF+(s) defined by

F+(s) =
⋂

t>s

F0(t) .

Clearly, the family(F+(t) : t > 0) is again a filtration andF+(s) ⊃ F0(s), but intuitively
F+(s) is a bit larger thanF0(s), allowing an additional infinitesimal glance into the future.

Theorem 2.5For everys > 0 the process{B(t+ s)−B(s) : t > 0} is independent of the
σ-algebraF+(s).

Proof. By continuity B(t + s) − B(s) = limn→∞B(sn + t) − B(sn) for a
strictly decreasing sequence{sn : n ∈ N} converging tos. By Theorem 2.3, for any
t1, . . . , tm > 0, the vector(B(t1 + s)−B(s), . . . , B(tm + s)−B(s)) = limj↑∞(B(t1 +

sj) − B(sj), . . . , B(tm + sj) − B(sj)) is independent ofF+(s), and so is the process
{B(t+ s) −B(s) : t > 0}.

Remark 2.6 An alternative way of stating this is that conditional onF+(s) the process
{B(t+ s) : t > 0} is a Brownian motion started inB(s). �

We now look at thegerm σ-algebraF+(0), which heuristically comprises all events de-
fined in terms of Brownian motion on an infinitesimal small interval to the right of the
origin.

Theorem 2.7 (Blumenthal’s0-1 law) Letx ∈ Rd andA ∈ F+(0). ThenPx(A) ∈ {0, 1}.

Proof. Using Theorem 2.5 fors = 0 we see that anyA ∈ σ(B(t) : t > 0) is indepen-
dent ofF+(0). This applies in particular toA ∈ F+(0), which therefore is independent
of itself, hence has probability zero or one.

As a first application we show that a standard linear Brownianmotion has positive and
negative values and zeros in every small interval to the right of 0. We have studied this
remarkable property of Brownian motion already by different means, in the discussion
following Theorem 1.27.

Theorem 2.8Suppose{B(t) : t > 0} is a linear Brownian motion. Defineτ = inf{t >
0: B(t) > 0} andσ = inf{t > 0: B(t) = 0}. Then

P0{τ = 0} = P0{σ = 0} = 1 .

Proof. The event

{τ = 0} =
∞⋂

n=1

{
there is0 < ε < 1/n such thatB(ε) > 0

}

is clearly inF+(0). Hence we just have to show that this event has positive probability.
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This follows, asP0{τ 6 t} > P0{B(t) > 0} = 1/2 for t > 0. HenceP0{τ = 0} > 1/2

and we have shown the first part. The same argument works replacing B(t) > 0 by
B(t) < 0 and from these two factsP0{σ = 0} = 1 follows, using the intermediate value
property of continuous functions.

A further application is a0-1 law for the tail σ-algebra of a Brownian motion. Define
G(t) = σ(B(s) : s > t). Let T =

⋂
t > 0 G(t) be theσ-algebra of alltail events.

Theorem 2.9 (Zero-one law for tail events)Let x ∈ Rd and supposeA ∈ T is a tail
event. ThenPx(A) ∈ {0, 1}.

Proof. It suffices to look at the casex = 0. Under the time inversion of Brownian
motion, the tailσ-algebra is mapped on the germσ-algebra, which contains only sets of
probability zero or one, by Blumenthal’s0-1 law.

Remark 2.10 In Exercise 2.2 we shall see that, for any tail eventA ∈ T , the probability
Px(A) is independent ofx. For a germ eventA ∈ F+(0), however, the probabilityPx(A)

may depend onx. �

As final example of this section we now exploit the Markov property to study the local and
global extrema of a linear Brownian motion.

Theorem 2.11For a linear Brownian motion{B(t) : 0 6 t 6 1}, almost surely,

(a) every local maximum is a strict local maximum;

(b) the set of times where the local maxima are attained is countable and dense;

(c) the global maximum is attained at a unique time.

Proof. We first show that, given two nonoverlapping closed time intervals, i.e. such that
their interiors are disjoint, the maxima of Brownian motionon them are different almost
surely, see Figure 2.2 for an illustration. Let[a1, b1] and[a2, b2] be two fixed intervals with
b1 6 a2. Denote bym1 andm2, the maxima of Brownian motion on these two intervals.
Note first that, by the Markov property together with Theorem2.8, almost surelyB(a2) <

m2. Hence this maximum agrees with maximum in the interval[a2 − 1
n , b2], for some

n ∈ N, and we may therefore assume in the proof thatb1 < a2.

Applying the Markov property at timeb1 we see that the random variableB(a2)−B(b1) is
independent ofm1−B(b1). Using the Markov property at timea2 we see thatm2−B(a2)

is also independent of both these variables. The eventm1 = m2 can be written as

B(a2) −B(b1) = m1 −B(b1) − (m2 −B(a2)).

Conditioning on the values of the random variablesm1 −B(b1) andm2 −B(a2), the left
hand side is a continuous random variable and the right hand side a constant, hence this
event has probability 0.



40 Brownian motion as a strong Markov process

b2a2b1a1

m1

m2

m1 − B(b1)

m2 − B(a2)

Fig. 2.2. The random variablesm1 − B(b1) andm2 − B(b2) are independent of the increment
B(a2) −B(b1).

(a) By the statement just proved, almost surely, all nonoverlapping pairs of nondegenerate
compact intervals with rational endpoints have different maxima. If Brownian motion
however has a non-strict local maximum, there are two such intervals where Brownian
motion has the same maximum.
(b) In particular, almost surely, the maximum over any nondegenerate compact interval
with rational endpoints is not attained at an endpoint. Hence every such interval contains
a local maximum, and the set of times where local maxima are attained is dense. As
every local maximum is strict, this set has at most the cardinality of the collection of these
intervals.
(c) Almost surely, for any rational numberq ∈ [0, 1] the maximum in[0, q] and in[q, 1] are
different. Note that, if the global maximum is attained for two pointst1 < t2 there exists a
rational numbert1 < q < t2 for which the maximum in[0, q] and in[q, 1] agree.

2.2 The strong Markov property and the reflection principle

Heuristically, the Markov property states that Brownian motion is started anew at each
deterministic time instance. It is a crucial property of Brownian motion that this holds also
for an important class of random times. These random times are calledstopping times.
The basic idea is that a random timeT is a stopping time if we can decide whether{T6t}
by just knowing the path of the stochastic process up to timet. Think of the situation that
T is the first moment where some random event related to the process happens.

Definition 2.12. A random variableT with values in[0,∞], defined on a probability
space with filtration(F(t) : t > 0) is called astopping timewith respect to(F(t) : t > 0)

if {T 6 t} ∈ F(t), for everyt > 0. �

Remark 2.13We formulate some basic facts about stopping times in general:

• Every deterministic timet > 0 is a stopping time with respect to every filtra-
tion (F(t) : t > 0).
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• If (Tn : n = 1, 2, . . .) is an increasing sequence of stopping times with respect
to (F(t) : t > 0) andTn ↑ T , thenT is also a stopping time with respect to
(F(t) : t > 0). This is so because

{T 6 t} =

∞⋂

n=1

{Tn 6 t} ∈ F(t) .

• Let T be a stopping time with respect to(F(t) : t > 0). Define timesTn by

Tn = (m+ 1)2−n if m2−n 6 T < (m+ 1)2−n .

In other words, we stop at the first time of the formk2−n afterT . It is easy to see
thatTn is a stopping time with respect to(F(t) : t > 0). We will use it later as a
discrete approximation toT . �

Remark 2.14Recall from Section 2.1 the definition of theσ-algebras(F0(t) : t > 0) and
(F+(t) : t > 0) associated with Brownian motion.

• Every stopping timeT with respect to(F0(t) : t > 0) is also a stopping time with
respect to(F+(t) : t > 0) asF0(t) ⊂ F+(t) for everyt > 0.

• SupposeH is a closed set, for example a singleton. Then the first hitting time
T = inf{t > 0: B(t) ∈ H} of the setH is a stopping time with respect to
(F0(t) : t > 0). Indeed, we note that

{T 6 t} =

∞⋂

n=1

⋃

s∈Q∩(0,t)

⋃

x∈Qd∩H

{
B(s) ∈ B(x, 1

n )
}
∈ F0(t).

• SupposeG ⊂ Rd is open, then

T = inf{t > 0: B(t) ∈ G}

is a stopping time with respect to the filtration(F+(t) : t > 0), butnot necessarily
with respect to(F0(t) : t > 0). To see this note that, by continuity of Brownian
motion,

{T 6 t} =
⋂

s>t

{T < s} =
⋂

s>t

⋃

r∈Q∩(0,s)

{B(r) ∈ G} ∈ F+(t),

so thatT is a stopping time with respect to(F+(t) : t > 0). However, supposing
thatG is bounded and the starting point not contained in clG, we may fix a path
γ : [0, t] → Rd with γ(0, t) ∩ clG = ∅ andγ(t) ∈ ∂G. Then theσ-algebraF0(t)

contains no nontrivial subset of{B(s) = γ(s)∀0 6 s 6 t}, i.e. no subset other
than the empty set and the set itself. If we had{T 6 t} ∈ F0(t), the set

{
B(s) = γ(s) for all 0 6 s 6 t , T = t

}

would be inF0(t) and (as indicated in Figure 2.3) a nontrivial subset of this set,
which is a contradiction. �
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γ

γ(t)

G

Fig. 2.3. At timet the pathγ hits the boundary ofG, see the arrow. The two possible dotted
continuations indicate that the path may or may not satisfyT = t.

Because the first hitting times of open or closed sets play an important rôle, the last item
in Remark 2.14 shows that when dealing with Brownian motion it is often preferable to
work with stopping times with respect to the richer filtration (F+(t) : t > 0) instead
of (F0(t) : t > 0). Therefore in the case of Brownian motion we make the convention
that, unless stated otherwise, notions of stopping time, etc. always refer to the filtra-
tion (F+(t) : t > 0). As this filtration is larger, our choice produces more stopping times.

The crucial property which distinguishes(F+(t) : t > 0) from (F0(t) : t > 0) is right-
continuity , which means that

⋂

ε>0

F+(t+ ε) = F+(t) .

To see this note that

⋂

ε>0

F+(t+ ε) =

∞⋂

n=1

∞⋂

k=1

F0(t+ 1/n+ 1/k) = F+(t) .

The next result indicates the technical advantage of right-continuous filtrations.

Proposition 2.15Suppose a random variableT with values in[0,∞] satisfies{T < t} ∈
F(t), for everyt > 0, and(F(t) : t > 0) is right-continuous, thenT is a stopping time
with respect to(F(t) : t > 0).

Proof. Suppose thatT satisfies the conditions of the theorem. Then

{T 6 t} =

∞⋂

k=1

{T < t+ 1/k} ∈
∞⋂

n=1

F(t+ 1/n) = F(t) ,

using the right-continuity of(F(t) : t > 0) in the last step.

We define, for every stopping timeT , theσ-algebra

F+(T ) = {A ∈ A : A ∩ {T 6 t} ∈ F+(t) for all t > 0} .

This means that the part ofA that lies in{T 6 t} should be measurable with respect
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to the information available at timet. Heuristically, this is the collection of events that
happened before the stopping timeT . In particular, it is easy to see that the random path
{B(t) : t 6 T} isF+(T )-measurable. As in the proof of the last theorem we can infer that
for right-continuous filtrations like our(F+(t) : t > 0) the event{T < t} may replace
{T 6 t} without changing the definition.

We can now state and prove thestrong Markov propertyfor Brownian motion, which was
rigorously established by Hunt [Hu56] and Dynkin [Dy57].

Theorem 2.16 (Strong Markov property) For every almost surely finite stopping timeT ,
the process

{B(T + t) −B(T ) : t > 0}

is a standard Brownian motion independent ofF+(T ).

Remark 2.17An alternative form of the strong Markov property is that, for any bounded
measurablef : C([0,∞),Rd) → R andx ∈ Rd, we have almost surely

Ex
[
f
(
{B(T + t) : t > 0}

) ∣∣F+(T )
]

= EB(T )

[
f
(
{B̃(t) : t > 0}

)]
,

where the expectation on the right is with respect to a Brownian motion{B̃(t) : t > 0}
started in the fixed pointB(T ). �

Proof. We first show our statement for the stopping timesTn which discretely ap-
proximateT from above,Tn = (m + 1)2−n if m2−n 6 T < (m + 1)2−n , see Re-
mark 2.13. WriteBk = {Bk(t) : t > 0} for the Brownian motion defined byBk(t) =

B(t + k/2n) − B(k/2n), andB∗ = {B∗(t) : t > 0} for the process defined byB∗(t) =

B(t + Tn) − B(Tn). Suppose thatE ∈ F+(Tn). Then, for every event{B∗ ∈ A}, we
have

P
(
{B∗ ∈ A} ∩ E

)
=

∞∑

k=0

P
(
{Bk ∈ A} ∩ E ∩ {Tn = k2−n}

)

=

∞∑

k=0

P{Bk ∈ A}P
(
E ∩ {Tn = k2−n}

)
,

using that{Bk ∈ A} is independent ofE ∩ {Tn = k2−n} ∈ F+(k2−n) by Theorem 2.5.
Now, by Theorem 2.3,P{Bk ∈ A} = P{B ∈ A} does not depend onk, and hence we get

∞∑

k=0

P{Bk ∈ A}P
(
E ∩ {Tn = k2−n}

)
= P{B ∈ A}

∞∑

k=0

P
(
E ∩ {Tn = k2−n}

)

= P{B ∈ A}P(E),

which shows thatB∗ is a Brownian motion and independent ofE, hence ofF+(Tn).

It remains to generalise this to general stopping timesT . AsTn ↓ T we have that

{B(s+ Tn) −B(Tn) : s > 0}
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is a Brownian motion independent ofF+(Tn) ⊃ F+(T ). Hence the increments

B(s+ t+ T ) −B(t+ T ) = lim
n→∞

B(s+ t+ Tn) −B(t+ Tn)

of the process{B(r + T ) −B(T ) : r > 0} are independent and normally distributed with
mean zero and variances. As the process is obviously almost surely continuous, it isa
Brownian motion. Moreover all increments,B(s + t + T ) − B(t + T ) = limB(s + t +

Tn) −B(t+ Tn), and hence the process itself, are independent ofF+(T ).

Remark 2.18Let τ = inf{t > 0: B(t) = max06s61B(s)}. It is intuitively clear that
τ is not a stopping time. To prove it, recall that almost surelyτ < 1. The increment
B(τ + t) −B(τ) is negative in a small neighbourhood to the right of0, which contradicts
the strong Markov property and Theorem 2.8. �

2.2.1 The reflection principle

We will see many applications of the strong Markov property later, however, the next
result, the reflection principle, is particularly interesting. The reflection principle states
that Brownian motion reflected at some stopping timeT is still a Brownian motion.

Theorem 2.19 (Reflection principle)If T is a stopping time and{B(t) : t > 0} is a
standard Brownian motion, then the process{B∗(t) : t > 0} called Brownian motion
reflected atT and defined by

B∗(t) = B(t)1{t6T} + (2B(T ) −B(t))1{t>T}

is also a standard Brownian motion.

tT=inf{t :B(t)=b}0

b

Fig. 2.4. The reflection principle in the case of the first hitting time of levelb.

Proof. If T is finite, by the strong Markov property both paths

{B(t+ T ) −B(T ) : t > 0} and{−(B(t+ T ) −B(T )) : t > 0} (2.1)
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are Brownian motions and independent of the beginning{B(t) : 0 6 t 6 T}. The concate-
nation mapping, which takes a continuous path{g(t) : t > 0} and glues it to the end point
of a finite continuous path{f(t) : 0 6 t 6 T} to form a new continuous path, is measur-
able. Hence the process arising from glueing the first path in(2.1) to{B(t) : 0 6 t 6 T}
and the process arising from glueing the second path in (2.1)to {B(t) : 0 6 t 6 T} have
the same distribution. The first is just{B(t) : t > 0}, the second is{B∗(t) : t > 0}, as
introduced in the statement.

Remark 2.20For a linear Brownian motion, consider

τ = inf
{
t > 0: B(t) = max

06s61
B(s)

}

and let{B∗(t) : t > 0} be the reflection atτ defined as in Theorem 2.19. Recall from
Remark 2.18 thatτ is not a stopping time. Not only is the reflected processnot Brownian
motion, but its law is singular with respect to that of Brownian motion. Indeed,τ is a point
of increase of the reflected process by construction, whereas we shall see in Theorem 5.14
that Brownian motion almost surely has no such point. �

Now we apply the reflection principle in the case of linear Brownian motion. LetM(t) =

max06s6tB(s). A priori it is not at all clear what the distribution of this random variable
is, but we can determine it as a consequence of the reflection principle.

Theorem 2.21 If a > 0 thenP0{M(t) > a} = 2P0{B(t) > a} = P0{|B(t)| > a}.

Proof. Let T = inf{t > 0: B(t) = a} and let{B∗(t) : t > 0} be Brownian motion
reflected at the stopping timeT . Then

{M(t) > a} = {B(t) > a} ∪ {M(t) > a, B(t) 6 a}.

This is a disjoint union and the second summand coincides with event{B∗(t) > a}. Hence
the statement follows from the reflection principle.

Remark 2.22 Theorem 2.21 is most useful when combined with a tail estimate for the
Gaussian as in Lemma 12.9 in the appendix. For example, for anupper bound we obtain,
for all a > 0,

P0{M(t) > a} 6

√
2t

a
√
π

exp
{
− a2

2t

}
. �

2.2.2 The area of planar Brownian motion

Continuous curves in the plane can still be extremely wild. Space-filling curves, like the
Peano curve, can map the time interval[0, 1] continuously on sets of positive area, see for
example [La98]. We now show that the range of planar Brownianmotion has zero area.
The Markov property and the reflection principle play an important rôle in the proof.
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Suppose{B(t) : t > 0} is planar Brownian motion. We denote the Lebesgue measure
onRd byLd, and use the symbolf ∗ g to denote theconvolution of the functionsf andg
given, whenever well-defined, by

f ∗ g (x) :=

∫
f(y)g(x− y) dy.

For a setA ⊂ Rd andx ∈ Rd we writeA+ x := {a+ x : a ∈ A}.

Lemma 2.23If A1, A2 ⊂ R2 are Borel sets with positive area, then

L2

({
x ∈ R2 : L2(A1 ∩ (A2 + x)) > 0

})
> 0.

Proof. We may assumeA1 andA2 are bounded. By Fubini’s theorem,
∫

R2

1A1
∗ 1−A2

(x) dx =

∫

R2

∫

R2

1A1
(w)1A2

(w − x) dw dx

=

∫

R2

1A1
(w)

(∫

R2

1A2
(w − x) dx

)
dw

= L2(A1)L2(A2) > 0.

Thus1A1
∗ 1−A2

(x) > 0 on a set of positive area. But

1A1
∗ 1−A2

(x) =

∫
1A1

(y) 1−A2
(x− y) dy =

∫
1A1

(y) 1A2+x(y) dy

= L2(A1 ∩ (A2 + x)) ,

proving the lemma.

We are now ready to prove Lévy’s theorem on the area of planar Brownian motion.

Theorem 2.24 (Lévy 1940)Almost surely,L2(B[0, 1]) = 0.

Proof. LetX = L2(B[0, 1]) denote the area ofB[0, 1]. First we check thatE[X] <∞.
Note thatX > a only if the Brownian motion leaves the square centred in the origin of
side length

√
a. Hence, using Theorem 2.21 and Lemma 12.9 of the appendix,

P{X > a} 6 2 P
{

max
t∈[0,1]

|W (t)| > √
a/2 } = 4 P{W (1) >

√
a/2} 6 4e−a/8,

for a > 1, where{W (t) : t > 0} is standard one-dimensional Brownian motion. Hence,

E[X] =

∫ ∞

0

P{X > a} da 6 4

∫ ∞

1

e−a/8da+ 1 <∞.

Note thatB(3t) and
√

3B(t) have the same distribution, and hence

EL2(B[0, 3]) = 3EL2(B[0, 1]) = 3E[X] .

Note that we haveL2(B[0, 3]) 6
∑2
j=0 L2(B[j, j + 1]) with equality if and only if for
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0 6 i < j 6 2 we haveL2(B[i, i+1]∩B[j, j+1]) = 0. On the other hand, forj = 0, 1, 2,

we haveEL2(B[j, j + 1]) = E[X] and

3E[X] = EL2(B[0, 3]) 6

2∑

j=0

EL2(B[j, j + 1]) = 3E[X] ,

whence, almost surely, the intersection of any two of theB[j, j + 1] has measure zero. In
particular,L2(B[0, 1] ∩B[2, 3]) = 0 almost surely.

Now we can use the Markov property to define two Brownian motions,{B1(t) : t ∈ [0, 1]}
by B1(t) = B(t), and{B2(t) : t ∈ [0, 1]} by B2(t) = B(t + 2) − B(2) + B(1). The
random variableY := B(2)−B(1) is independent of both Brownian motions. Forx ∈ R2,
letR(x) denote the area of the setB1[0, 1]∩ (x+B2[0, 1]), and note that{R(x) : x ∈ R2}
is independent ofY . Then

0 = E[L2(B[0, 1] ∩B[2, 3])] = E[R(Y )] = (2π)−1

∫

R2

e−|x|2/2 E[R(x)] dx,

where we are averaging with respect to the Gaussian distribution of B(2) − B(1). Thus,
for L2-almost allx, we haveR(x) = 0 almost surely and hence, by Fubini’s theorem,

L2

({
x ∈ R2 : R(x) > 0

})
= 0, almost surely.

From Lemma 2.23 we get that, almost surely,L2(B[0, 1]) = 0 or L2(B[2, 3]) = 0. The
observation thatL2(B[0, 1]) andL2(B[2, 3]) are identically distributed and independent
completes the proof thatL2(B[0, 1]) = 0 almost surely.

Remark 2.25 How big is the range, or path, of Brownian motion? We have seenthat
the Lebesgue measure of a planar Brownian path is zero almostsurely, but a more pre-
cise answer needs the concept of Hausdorff measure and dimension, which we develop in
Chapter 4. �

Corollary 2.26 For any pointsx, y ∈ Rd, d > 2, we havePx{y ∈ B(0, 1]} = 0.

Proof. Observe that, by projection onto the first two coordinates, it suffices to prove
this result ford = 2. Note that Theorem 2.24 holds for Brownian motion with arbitrary
starting pointy ∈ R2. By Fubini’s theorem, for any fixedy ∈ R2,

∫

R2

Py{x ∈ B[0, 1]} dx = EyL2(B[0, 1]) = 0.

Hence, forL2-almost every pointx, we havePy{x ∈ B[0, 1]} = 0. By symmetry of
Brownian motion,

Py{x ∈ B[0, 1]} = P0{x− y ∈ B[0, 1]} = P0{y − x ∈ B[0, 1]} = Px{y ∈ B[0, 1]} .
We infer thatPx{y ∈ B[0, 1]} = 0, for L2-almost every pointx. For anyε > 0 we thus
have, almost surely,PB(ε){y ∈ B[0, 1]} = 0. Hence,

Px{y ∈ B(0, 1]} = lim
ε↓0

Px{y ∈ B[ε, 1]} = lim
ε↓0

ExPB(ε){y ∈ B[0, 1 − ε]} = 0,

where we have used the Markov property in the second step.
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Remark 2.27Loosely speaking, planar Brownian motion almost surely does not hit sin-
gletons. Which other sets are not hit by Brownian motion? Thisclearly depends on the
size and shape of the set in some intricate way, and a precise answer will use the notion of
capacity, which we study in Chapter 8. �

2.2.3 The zero set of Brownian motion

As a further application of the strong Markov property we have a first look at the properties
of the zero set{t > 0: B(t) = 0} of one-dimensional Brownian motion. We prove that
this set is a closed set with no isolated points (sometimes called a perfect set). This is
perhaps surprising since, almost surely, a Brownian motionhas isolated zeros from the
left, for instance the first zero after1/2, or from the right, like the last zero before1/2.

Theorem 2.28Let{B(t) : t > 0} be a one dimensional Brownian motion and

Zeros = {t > 0: B(t) = 0}

its zero set. Then, almost surely,Zeros is a closed set with no isolated points.

Proof. Clearly, with probability one,Zeros is closed because Brownian motion is
continuous almost surely. To prove that no point ofZeros is isolated we consider the
following construction: For each rationalq ∈ [0,∞) consider the first zero afterq, i.e.,

τq = inf{t > q : B(t) = 0}.

Note thatτq is an almost surely finite stopping time. SinceZeros is closed, theinf is almost
surely a minimum. By the strong Markov property, applied toτq, we have that for eachq,
almost surelyτq is not an isolated zero from the right. But, since there are only countably
many rationals, we conclude that almost surely, for all rationalq, the zeroτq is not isolated
from the right.

Our next task is to prove that the remaining points ofZeros are not isolated from the left.
So we claim that any0 < t ∈ Zeros which is different fromτq for all rationalq is not an
isolated point from the left. To see this take a sequenceqn ↑ t, qn ∈ Q. Definetn = τqn

.
Clearlyqn 6 tn < t and sotn ↑ t. Thust is not isolated from the left.

Remark 2.29Theorem 2.28 implies thatZeros is uncountable, see Exercise 2.9. �

2.3 Markov processes derived from Brownian motion

In this section, we define the concept of a Markov process. Ourmotivation is that various
processes derived from Brownian motion are Markov processes. Among the examples are
the reflection of Brownian motion in zero, and the process{Ta : a > 0} of timesTa when
a Brownian motion reaches levela for the first time. We assume that the reader is familiar
with the notion of conditional expectation given aσ-algebra, see [Wi91] for a reference.
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Definition 2.30. A functionp : [0,∞)×Rd ×B → R, whereB is the Borelσ-algebra in
Rd, is aMarkov transition kernel provided

(1) p( · , · , A) is measurable as a function of(t, x), for eachA ∈ B;

(2) p(t, x, · ) is a Borel probability measure onRd for all t > 0 andx ∈ Rd, when
integrating a functionf with respect to this measure we write

∫
f(y) p(t, x, dy) ;

(3) for allA ∈ B, x ∈ Rd andt, s > 0,

p(t+ s, x,A) =

∫

Rd

p(t, y, A) p(s, x, dy).

An adapted process{X(t) : t > 0} is a (time-homogeneous) Markov processwith
transition kernelp with respect to a filtration(F(t) : t > 0), if for all t > s and Borel sets
A ∈ B we have, almost surely,

P{X(t) ∈ A | F(s)} = p(t− s,X(s), A) . �

Observe thatp(t, x,A) is the probability that the process takes a value inA at timet, if
it is started at the pointx. Readers familiar withMarkov chainscan recognise the pattern
behind this definition: The Markov transition kernelp plays the rôle of the transition ma-
trix P in this setup. The next two examples are easy consequences ofthe Markov property
for Brownian motion.

Example 2.31Brownian motion is a Markov process and for its transition kernel p the
distributionp(t, x, · ) is a normal distribution with meanx and variancet. Similarly, d-
dimensional Brownian motion is a Markov process andp(t, x, · ) is a Gaussian with mean
x and covariance matrixt times identity. Note that property (3) in the definition of the
Markov transition kernel is just the fact that the sum of two independent Gaussian random
vectors is a Gaussian random vector with the sum of the covariance matrices. �

Notation 2.32. The transition kernel ofd-dimensional Brownian motion is described by
probability measuresp(t, x, · ) with densities denoted throughout this book by

p(t, x, y) = (2πt)−d/2 exp
(
− |x− y|2

2t

)
. �

Example 2.33Thereflected one-dimensional Brownian motion{X(t) : t > 0} defined by
X(t) = |B(t)| is a Markov process. Moreover, its transition kernelp(t, x, ·) is the law
of |Y | for Y normally distributed with meanx and variancet, which we call themodulus
normal distributionwith parametersx andt. �
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We now prove a famous theorem of Paul Lévy, which shows that the difference of the
maximum process of a Brownian motion and the Brownian motionitself is a reflected
Brownian motion. To be precise, this means that the difference of the processes has the
same finite-dimensional distributions as a reflected Brownian motion, and is also almost
surely continuous.

Theorem 2.34 (Lévy 1948)Let {M(t) : t > 0} be the maximum process of a linear stan-
dard Brownian motion{B(t) : t > 0}, i.e. the process defined by

M(t) = max
06s6t

B(s).

Then, the process{Y (t) : t > 0} defined byY (t) = M(t) − B(t) is a reflected Brownian
motion.

0 100 200 300 400

0

0 100 200 300 400

0

B(t)

M (t)

M (t)−B(t)

t t

Fig. 2.5. On the left, the processes{B(t) : t > 0} with associated maximum process
{M(t) : t > 0} indicated by the dashed curve. On the right the process{M(t) −B(t) : t > 0}.

Proof. The main step is to show that the process{Y (t) : t > 0} is a Markov process and
its Markov transition kernelp(t, x, · ) has modulus normal distribution with parametersx

andt. Once this is established, it is immediate that the finite-dimensional distributions of
this process agree with those of a reflected Brownian motion.Obviously,{Y (t) : t > 0}
has almost surely continuous paths. For the main step, fixs > 0, consider the two processes
{B̂(t) : t > 0} defined by

B̂(t) = B(s+ t) −B(s) for t > 0,

and{M̂(t) : t > 0} defined by

M̂(t) = max
06u6t

B̂(u) for t > 0.

BecauseY (s) is F+(s)-measurable, it suffices to check that conditional onF+(s), for
everyt > 0, the random variableY (s+ t) has the same distribution as|Y (s) + B̂(t)|. In-
deed, this directly implies that{Y (t) : t > 0} is a Markov process with the same transition
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kernel as the reflected Brownian motion. To prove the claim fixs, t > 0 and observe that
M(s+ t) = M(s) ∨ (B(s) + M̂(t)), and hence

Y (s+ t) = (M(s) ∨ (B(s) + M̂(t))) − (B(s) + B̂(t)).

Using the fact that(a ∨ b) − c = (a− c) ∨ (b− c), we have

Y (s+ t) =
(
Y (s) ∨ M̂(t)

)
− B̂(t).

To finish, it suffices to check, for everyy > 0, thaty∨M̂(t)−B̂(t) has the same distribution
as|y + B̂(t)|. For anya > 0 write

P1 = P{y − B̂(t) > a}, P2 = P
{
y − B̂(t) 6 a andM̂(t) − B̂(t) > a

}
.

ThenP{y∨M̂(t)− B̂(t) > a} = P1 +P2. Since{B̂(t) : t > 0} has the same distribution
as{−B̂(t) : t > 0} we haveP1 = P{y + B̂(t) > a}. To study the second term it is
useful to define the time reversed Brownian motion{W (u) : 0 6 u 6 t} by W (u) :=

B̂(t−u)− B̂(t). Note that this process is also a Brownian motion for0 6 u 6 t since it is
continuous and its finite dimensional distributions are Gaussian with the right covariances.
Let MW (t) = max06u6tW (u). ThenMW (t) = M̂(t) − B̂(t). SinceW (t) = −B̂(t),
we have

P2 = P{y +W (t) 6 a andMW (t) > a}.

Using the reflection principle by reflecting{W (u) : 06u6t} at the first time it hitsa, we
get another Brownian motion{W ∗(u) : 0 6 u 6 t}. In terms of this Brownian motion we
haveP2 = P{W ∗(t) > a + y}. Since it has the same distribution as{−B̂(t) : t > 0},
it follows thatP2 = P{y + B̂(t) 6 − a}. The Brownian motion{B̂(t) : t > 0} has
continuous distribution, and so, by addingP1 andP2, we getP{y ∨ M̂(t)− B̂(t) > a} =

P{|y + B̂(t)| > a}. This proves the main step and, consequently, the theorem.

While, as seen above,{M(t) − B(t) : t > 0} is a Markov process, it is important to note
that the maximum process{M(t) : t > 0} itself is not a Markov process. However the
times when new maxima are achieved form a Markov process, as the following theorem
shows.

Theorem 2.35 For anya > 0 define the stopping times

Ta = inf{t > 0: B(t) = a}.

Then{Ta : a > 0} is an increasing Markov process with transition kernel given by the
densities

p(a, t, s) = a√
2π(s−t)3

exp
(
− a2

2(s−t)
)
1{s > t}, for a > 0.

This process is called thestable subordinatorof index1
2 .

Remark 2.36As the transition densities satisfy theshift-invariance property

p(a, t, s) = p(a, 0, s− t) for all a > 0 ands, t > 0,

the stable subordinators{Ta : a > 0} have stationary and independent increments. �
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Proof. Fix a > b > 0 and note that for allt > 0 we have
{
Ta − Tb = t

}

=
{
B(Tb + s) −B(Tb) < a− b, for s < t, andB(Tb + t) −B(Tb) = a− b

}
.

By the strong Markov property of Brownian motion this event is independent ofF+(Tb)

and therefore in particular of{Td : d 6 b}. This proves the Markov property of{Ta : a > 0}.
The form of the transition kernel follows from the reflectionprinciple,

P{Ta − Tb 6 t} = P{Ta−b 6 t} = P
{

max
0 6s6t

B(s) > a− b
}

= 2P
{
B(t) > a− b

}
= 2

∫ ∞

a−b

1√
2πt

exp
(
− x2

2t

)
dx

=

∫ t

0

1√
2πs3

(a− b) exp
(
− (a−b)2

2s

)
ds,

where we used the substitutionx =
√
t/s (a− b) in the last step.

In a similar way there is another important Markov process, the Cauchy process, hidden in
the planar Brownian motion, see Figure 2.6.

V(s) V(t)

t
0

X(s)

X(t)

s

Fig. 2.6. The Cauchy process embedded in planar Brownian motion

Theorem 2.37Let {B(t) : t > 0} be a planar Brownian motion and denoteB(t) =

(B1(t), B2(t)). Define a family(V (a) : a > 0) of vertical lines by

V (a) = {(x, y) ∈ R2 : x = a},

and letT (a) = τ(V (a)) be the first hitting time ofV (a). Then the process{X(a) : a > 0}
defined byX(a) := B2(T (a)) is a Markov process with transition kernel given by

p(a, x,A) =
1

π

∫

A

a

a2 + (x− y)2
dy .

This process is called theCauchy process.
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Proof. The Markov property of{X(a) : a > 0} is a consequence of the strong Markov
property of Brownian motion for the stopping timesT (a), and the fact thatT (a) < T (b)

for all a < b. In order to calculate the transition density recall from Theorem 2.35 that
T (a), which is the first time when the one-dimensional Brownian motion {B1(s) : s > 0}
hits levela, has density

a√
2πs3

exp
(
− a2

2s

)
.

T (a) is independent of{B2(s) : s > 0} and therefore the density ofB2(T (a)) is (in the
variablex)
∫ ∞

0

1√
2πs

exp
(
− x2

2s

)
a√

2πs3
exp

(
− a2

2s

)
ds =

∫ ∞

0

a e−σ

π(a2 + x2)
dσ =

a

π(a2 + x2)
,

where the integral is evaluated using the substitutionσ = 1
2s (a2 + x2).

Remark 2.38As in the case of stable subordinators, see Remark 2.36, one can see from
the form of the transition kernel that the Cauchy process hasindependent, stationary in-
crements. Alternative proofs of Theorem 2.37, avoiding theexplicit evaluation of integrals
will be given in Exercise 2.19 and Exercise 7.5. �

2.4 The martingale property of Brownian motion

In the previous section we have taken a particular feature ofBrownian motion, the Markov
property, and introduced an abstract class of processes, the Markov processes, which share
this feature. We have seen that a number of process derived from Brownian motion are
again Markov processes and this insight helped us getting new information about Brown-
ian motion. In this section we follow a similar plan, taking adifferent feature of Brownian
motion, the martingale property, as a starting point.

Definition 2.39. A real-valued stochastic process{X(t) : t > 0} is a martingale with
respect to a filtration(F(t) : t > 0) if it is adapted to the filtration,E|X(t)| < ∞ for all
t > 0 and, for any pair of times0 6 s 6 t,

E
[
X(t)

∣∣F(s)
]

= X(s) almost surely.

The process is called asubmartingale if > holds, and asupermartingale if 6 holds in
the display above. �

Remark 2.40Intuitively, a martingale is a process where the current stateX(t) is always
the best prediction for its further states. In this sense, martingales describefair games. If
{X(t) : t > 0} is a martingale, the process{|X(t)| : t > 0} need not be a martingale, but
it still is a submartingale, as a simple application of the triangle inequality shows. �
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Example 2.41For a one-dimensional Brownian motion{B(t) : t > 0} we have

E
[
B(t)

∣∣F+(s)
]

= E
[
B(t) −B(s)

∣∣F+(s)
]
+B(s)

= E
[
B(t) −B(s)

]
+B(s) = B(s), for 0 6 s 6 t,

using Theorem 2.5 in the second step. Hence Brownian motion is a martingale. �

We now state two useful facts about martingales, which we will exploit extensively: The
optional stopping theoremandDoob’s maximal inequality. Both of these results are well-
known in the discrete time setting and there is a reminder in Appendix 12.3. The natural
extension of these results to the continuous time setting isthe content of our propositions.

The optional stopping theorem provides a condition under which the defining equation for
martingales can be extended from fixed times0 6 s 6 t to stopping times0 6 S 6 T .
We are focussing oncontinuousmartingales, which means that, almost surely, their sample
paths are continuous.

Proposition 2.42 (Optional stopping theorem)Suppose{X(t) : t > 0} is a continuous
martingale, and0 6 S 6 T are stopping times. If the process{X(t ∧ T ) : t > 0} is
dominated by an integrable random variableX, i.e. |X(t∧T )| 6 X almost surely, for all
t > 0, then

E
[
X(T )

∣∣F(S)
]

= X(S), almost surely.

Proof. The best way to prove this is to prove the result first for martingales in discrete
time, and then extend the result by approximation. The result for discrete time is provided
in Theorem 12.27 of the appendix. Let us explain the approximation step here.
Fix N ∈ N and define a discrete time martingale byXn = X(T ∧ n2−N ) and stopping
timesS′ = b2NSc + 1 andT ′ = b2NT c + 1, with respect to the filtration(G(n) : n ∈
N) given byG(n) = F(n2−N ). ObviouslyXn is dominated by an integrable random
variable and hence the discrete time result givesE

[
XT ′

∣∣G(S′)
]

= XS′ , which translates
asE

[
X(T )

∣∣F(SN )
]

= X(T ∧SN ) , for SN = 2−N (b2NSc+ 1). Hence, forA ∈ F(S),
using dominated convergence,

∫

A

X(T ) dP = lim
N↑∞

∫

A

E
[
X(T ) | F(SN )

]
dP =

∫

A

lim
N↑∞

X(T ∧ SN ) dP

=

∫

A

X(S) dP,

and hence the claim follows from the definition of conditional expectation.

The following inequality will also be of great use to us.

Proposition 2.43 (Doob’s maximal inequality)Suppose{X(t) : t > 0} is a continuous
martingale andp > 1. Then, for anyt > 0,

E
[(

sup
06s6t

|X(s)|
)p]

6
(

p
p−1

)p
E
[
|X(t)|p

]
.
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Proof. Again this is proved for martingales in discrete time in our appendix, see
Theorem 12.30, and can be extended by approximation. FixN ∈ N and define a discrete
time martingale byXn = X(tn2−N ) with respect to the filtration(G(n) : n ∈ N) given
by G(n) = F(tn2−N ). By the discrete version of Doob’s maximal inequality,

E
[(

sup
16k62N

|Xk|
)p]

6
(

p
p−1

)p
E
[
|X2N |p

]
=
(

p
p−1

)p
E
[
|X(t)|p

]
.

LettingN ↑ ∞ and using monotone convergence gives the claim.

We now use the martingale property and the optional stoppingtheorem to prove Wald’s
lemmas for Brownian motion. These results identify the firstand second moments of the
value of Brownian motion at well-behaved stopping times.

Theorem 2.44 (Wald’s lemma for Brownian motion)Let {B(t) : t > 0} be a standard
linear Brownian motion, andT be a stopping time such that either

(i) E[T ] <∞, or
(ii)

{
B(t ∧ T ) : t > 0

}
is dominated by an integrable random variable.

Then we haveE[B(T )] = 0.

Remark 2.45The proof of Wald’s lemma is based on an optional stopping argument. An
alternative proof of (i), which uses only the strong Markov property and the law of large
numbers, is suggested in Exercise 2.7. Also, the moment condition (i) in Theorem 2.44
can be relaxed, see Theorem 2.50 for an optimal criterion. �

Proof. We first show that a stopping time satisfying condition (i), also satisfies condi-
tion (ii). So supposeE[T ] <∞, and define

Mk = max
06t61

|B(t+ k) −B(k)| andM =

dTe∑

k=1

Mk.

Then

E[M ] = E
[ dTe∑

k=1

Mk

]
=

∞∑

k=1

E
[
1{T > k − 1}Mk

]
=

∞∑

k=1

P{T > k − 1}E[Mk]

= E[M0] E[T + 1] <∞ ,

where, using Fubini’s theorem and Remark 2.22,

E[M0] =

∫ ∞

0

P
{

max
06t61

|B(t)| > x
}
dx 6 1 +

∫ ∞

1

2
√

2
x
√
π

exp
{
− x2

2

}
dx <∞ .

Now note that|B(t ∧ T )| 6 M , so that (ii) holds. It remains to observe that under
condition (ii) we can apply the optional stopping theorem with S = 0, which yields
thatE[B(T )] = 0.
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Corollary 2.46 LetS 6 T be stopping times andE[T ] <∞. Then

E
[
(B(T ))2

]
= E

[
(B(S))2

]
+ E

[(
B(T ) −B(S)

)2]
.

Proof. The tower property of conditional expectation gives

E
[(
B(T )

)2]
= E

[(
B(S)

)2]
+ 2E

[
B(S)E

[
B(T ) −B(S) | F(S)

]]

+ E
[(
B(T ) −B(S)

)2]
.

Note thatE[T ] < ∞ implies E[T − S | F(S)] < ∞ almost surely. Hence the strong
Markov property at timeS together with Wald’s lemma implyE[B(T )−B(S) | F(S)] = 0

almost surely, so that the middle term vanishes.

To find the second moment ofB(T ) and thus prove Wald’s second lemma, we identify a
further martingale derived from Brownian motion.

Lemma 2.47Suppose{B(t) : t > 0} is a linear Brownian motion. Then the process
{
B(t)2 − t : t > 0

}

is a martingale.

Proof. The process is adapted to the natural filtration of Brownian motion and

E
[
B(t)2 − t

∣∣F+(s)
]

= E
[(
B(t) −B(s)

)2 ∣∣F+(s)
]
+ 2 E

[
B(t)B(s)

∣∣F+(s)
]
−B(s)2 − t

= (t− s) + 2B(s)2 −B(s)2 − t = B(s)2 − s ,

which completes the proof.

Theorem 2.48 (Wald’s second lemma)LetT be a stopping time for standard Brownian
motion such thatE[T ] <∞. Then

E
[
B(T )2

]
= E[T ].

Proof. Look at the martingale{B(t)2 − t : t > 0} and define stopping times

Tn = inf{t > 0: |B(t)| = n}

so that{B(t ∧ T ∧ Tn)
2 − t ∧ T ∧ Tn : t > 0} is dominated by the integrable random

variablen2 + T . By the optional stopping theorem we getE[B(T ∧ Tn)2] = E[T ∧ Tn].
By Corollary 2.46 we haveE[B(T )2] > E[B(T∧Tn)2]. Hence, by monotone convergence,

E
[
B(T )2

]
> lim

n→∞
E
[
B(T ∧ Tn)2

]
= lim
n→∞

E
[
T ∧ Tn

]
= E[T ] .

Conversely, now using Fatou’s lemma in the first step,

E
[
B(T )2

]
6 lim inf

n→∞
E
[
B(T ∧ Tn)2

]
= lim inf

n→∞
E
[
T ∧ Tn

]
6 E[T ] .
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Wald’s lemmas suffice to obtain exit probabilities and expected exit times for a linear
Brownian motion. In Chapter 3 we shall explore the corresponding problem for higher-
dimensional Brownian motion using harmonic functions.

Theorem 2.49Leta < 0 < b and, for a standard linear Brownian motion{B(t) : t > 0},
defineT = min{t > 0: B(t) ∈ {a, b}}. Then

• P{B(T ) = a} =
b

|a| + b
andP{B(T ) = b} =

|a|
|a| + b

.

• E[T ] = |a|b.

Proof. LetT = τ({a, b}) be the first exit time from the interval[a, b]. This stopping time
satisfies the condition of the optional stopping theorem, as|B(t ∧ T )| 6 |a| ∨ b. Hence,
by Wald’s first lemma,

0 = E[B(T )] = aP{B(T ) = a} + bP{B(T ) = b}.

Together with the easy equationP{B(T ) = a} + P{B(T ) = b} = 1 one can solve this,
and obtainP{B(T ) = a} = b/(|a|+ b), andP{B(T ) = b} = |a|/(|a|+ b). To use Wald’s
second lemma, we check thatE[T ] <∞. For this purpose note that

E[T ] =

∫ ∞

0

P{T > t} dt =

∫ ∞

0

P{B(s) ∈ (a, b) for all s ∈ [0, t]} dt,

and that, fort > k ∈ N the integrand is bounded by thekth power ofmaxx∈(a,b) Px{B(1) ∈
(a, b)}, i.e. decreases exponentially. Hence the integral is finite.
Now, by Wald’s second lemma and the exit probabilities, we obtain

E[T ] = E[B(T )2] =
a2b

|a| + b
+

b2|a|
|a| + b

= |a|b.

We now discuss a strengthening of Theorem 2.44, which works with a weaker moment
condition. This theorem will not be used in the remainder of the book and can be skipped
on first reading. We shall see in Exercise 2.13 that the condition we give is in some sense
optimal.

Theorem* 2.50Let{B(t) : t > 0} be a standard linear Brownian motion andT a stopping
time withE[T 1/2] <∞. ThenE[B(T )] = 0.

Proof. Let {M(t) : t > 0} be the maximum process of{B(t) : t > 0} andT a stopping
time with E[T 1/2] < ∞. Let τ = dlog4 T e, so thatB(t ∧ T ) 6 M(4τ ). In order to get
E[B(T )] = 0 from the optional stopping theorem it suffices to show that the majorant is
integrable, i.e. that

EM(4τ ) <∞.

Define a discrete time stochastic process{Xk : k ∈ N} by Xk = M(4k) − 2k+1, and
observe thatτ is a stopping time with respect to the filtration(F+(4k) : k ∈ N). Moreover,
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the process{Xk : k ∈ N} is a supermartingale. Indeed,

E
[
Xk

∣∣Fk−1

]
6 M(4k−1) + E

[
max

06t64k−4k−1
B(t)

]
− 2k+1 ,

and the supermartingale property follows as

E
[

max
06t64k−4k−1

B(t)
]

=
√

4k − 4k−1 E
[

max
06t61

B(t)
]

6 2k ,

using that, by the reflection principle, Theorem 2.21, and the Cauchy–Schwarz inequality,

E
[

max
06t61

B(t)
]

= E|B(1)| 6
(
E[B(1)2]

) 1
2 = 1.

Now let t = 4` and use the supermartingale property forτ ∧ ` to get

E
[
M(4τ ∧ t)

]
= E

[
Xτ∧`

]
+ E

[
2τ∧`+1

]
6 E[X0] + 2 E

[
2τ
]
.

Note thatX0 = M(1) − 2, which has finite expectation and, by our assumption on the
moments ofT , we haveE[2τ ] <∞. Thus, by monotone convergence,

E
[
M(4τ )

]
= lim
t↑∞

[
M(4τ ∧ t)

]
<∞ ,

which completes the proof of the theorem.

Given the functionf : R → R, f(x) = x2, we were able, in Lemma 2.47, to subtract a
suitable term fromf(B(t)) to obtain a martingale. To get a feeling for what we wish to
subtract in the case of a generalf , we look at the analogous problem for the simple random
walk {Sn : n ∈ N}. A straightforward calculation gives, forf : Z → R,

E
[
f(Sn+1)

∣∣σ(S1, . . . , Sn)
]
− f(Sn) = 1

2

(
f(Sn + 1) − 2f(Sn) + f(Sn − 1)

)

= 1
2 ∆̃f(Sn) ,

where∆̃ is the second difference operator∆̃f(x) := f(x+1)−2f(x)+f(x−1). Hence

f(Sn) − 1
2

n−1∑

k=0

∆̃f(Sk)

defines a (discrete time) martingale. In the Brownian motioncase, one would expect a
similar result with∆̃f replaced by its continuous analogue, the Laplacian

∆f(x) =

d∑

i=1

∂2f

∂x2
i

.

Theorem 2.51Let f : Rd → R be twice continuously differentiable, and{B(t) : t > 0}
be ad-dimensional Brownian motion. Further suppose that, for all t > 0 andx ∈ Rd, we
haveEx|f(B(t))| <∞ andEx

∫ t
0
|∆f(B(s))| ds <∞. Then the process{X(t) : t > 0}

defined by

X(t) = f(B(t)) − 1
2

∫ t

0

∆f(B(s)) ds

is a martingale.
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Proof. For any0 6 s < t,

E
[
X(t)

∣∣F(s)
]

= EB(s)

[
f(B(t− s))

]
− 1

2

∫ s

0

∆f(B(u)) du−
∫ t−s

0

EB(s)

[
1
2 ∆f(B(u))

]
du .

Now, using integration by parts and12 ∆p(t, x, y) = ∂
∂tp(t, x, y), we find

EB(s)

[
1
2 ∆f(B(u))

]
= 1

2

∫
p(u,B(s), x)∆f(x) dx

= 1
2

∫
∆p(u,B(s), x) f(x) dx =

∫
∂
∂up(u,B(s), x) f(x) dx ,

and hence
∫ t−s

0

EB(s)

[
1
2 ∆f(B(u))

]
du = lim

ε↓0

∫ [ ∫ t−s

ε

∂
∂up(u,B(s), x) du

]
f(x) dx

=

∫
p(t− s,B(s), x) f(x) dx− lim

ε↓0

∫
p(ε,B(s), x) f(x) dx

= EB(s)

[
f(B(t− s))

]
− f(B(s)) ,

and this confirms the martingale property.

Example 2.52Usingf(x) = x2 in Theorem 2.51 yields the familiar martingale{B(t)2 −
t : t > 0}. Usingf(x) = x3 we obtain the martingale{B(t)3 − 3

∫ t
0
B(s) ds : t > 0}

and not the familiar martingale{B(t)3 − 3tB(t) : t > 0}. Of course, the difference
{
∫ t
0
(B(t) −B(s)) ds : t > 0} is a martingale. �

The next lemma states a fundamental principle, which we willdiscuss further in Chapter 7,
see in particular Theorem 7.18.

Corollary 2.53 Supposef : Rd → R satisfies∆f(x) = 0 and Ex|f(B(t))| < ∞, for
everyx ∈ Rd andt > 0. Then the process{f(B(t)) : t > 0} is a martingale.

Example 2.54The functionf : R2 → R given byf(x1, x2) = ex1 cosx2 satisfies∆f(x) =

0. HenceX(t) = eB1(t) cosB2(t) defines a martingale, where{B1(t) : t > 0} and
{B2(t) : t > 0} are independent linear Brownian motions. �

Exercises

Exercise 2.1.Show that the definition ofd-dimensional Brownian motion is invariant un-
der an orthonormal change of coordinates. More precisely, if A is a d × d-matrix with
AAT = Id and{B(t) : t > 0} is Brownian motion, then so is{AB(t) : t > 0}.
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Exercise 2.2.Show that for any tail eventA ∈ T the probabilityPx(A) is independent
of x, whereas for a germ eventA ∈ F+(0) the probabilityPx(A) may depend onx.

Exercise 2.3.S Show that

(i) If S 6 T are stopping times, thenF+(S) ⊂ F+(T ).
(ii) If Tn ↓ T are stopping times, thenF+(T ) =

⋂∞
n=1 F+(Tn).

(iii) If T is a stopping time, then the random variableB(T ) is F+(T )-measurable.

Exercise 2.4. Let {B(t) : −∞ < t <∞} be a two-sided Brownian motion as defined in
Exercise 1.4, but including thed-dimensional case. A real valued random variableτ is

• astopping time if {τ 6 t} ∈ F+(t) :=
⋂∞
n=1 σ(B(s) : −∞ < s 6 t+ 1

n ),
• a reverse stopping timeif {τ 6 t} ∈ G−(t) :=

⋂∞
n=1 σ(B(s) : t− 1

n 6 s <∞).

For a stopping timeτ letF+(τ) be the collection of eventsA with A ∩ {τ 6 t} ∈ F+(t),
for a reverse stopping timeτ let G−(τ) be the collection of eventsA with A ∩ {τ > t} ∈
G−(t). Show that

(a) {B(τ + t) −B(τ) : t > 0} is a standard Brownian motion independent ofF+(τ),

(b) {B(τ − t) −B(τ) : t > 0} is a standard Brownian motion independent ofG−(τ).

Exercise 2.5.Let {B(t) : 0 6 t 6 1} be a linear Brownian motion andF ∈ D[0, 1]. Show
that, almost surely, the set{t ∈ [0, 1] : B(t) = F (t)} is a perfect set.
Hint. Use the Cameron–Martin theorem, see Theorem 1.38.

Exercise 2.6.Let {B(t) : 0 6 t 6 1} be a linear Brownian motion and

τ = sup
{
t ∈ [0, 1] : B(t) = 0

}
.

Show that, almost surely, there exist timestn < sn < τ with tn ↑ τ such that

B(tn) < 0 and B(sn) > 0.

Exercise 2.7.S Let {B(t) : t > 0} be a standard Brownian motion on the line, andT be a
stopping time withE[T ] <∞. Define an increasing sequence of stopping times byT1 = T

andTn = T (Bn) + Tn−1 where the stopping timeT (Bn) is the same function asT , but
associated with the Brownian motion{Bn(t) : t > 0} given by

Bn(t) = B(t+ Tn−1) −B(Tn−1).

(a) Show that, almost surely,

lim
n↑∞

B(Tn)

n
= 0.

(b) Show thatB(T ) is integrable.
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(c) Show that, almost surely,

lim
n↑∞

B(Tn)

n
= E

[
B(T )

]
.

Combining (a) and (c) implies thatE
[
B(T )

]
= 0, which is Wald’s lemma.

Exercise 2.8.Show that, for anyx > 0 and measurable setA ⊂ [0,∞),

Px
{
B(s) > 0 for all 0 6 s 6 t andB(t) ∈ A

}
= Px{B(t) ∈ A} − P−x{B(t) ∈ A} .

Exercise 2.9.S Show that any nonempty, closed set with no isolated points isuncountable.
Note that this applies, in particular, to the zero set of linear Brownian motion.

Exercise 2.10. TheOrnstein–Uhlenbeck diffusionis the process{X(t) : t ∈ R}, given by

X(t) = e−tB(e2t) for all t ∈ R,

see also Remark 1.10. Show that{X(t) : t > 0} and{X(−t) : t > 0} are Markov pro-
cesses and find their Markov transition kernels.

Exercise 2.11. Let x, y ∈ Rd and{B(t) : t > 0} a d-dimensional Brownian motion
started inx. Define thed-dimensionalBrownian bridge{X(t) : 0 6 t 6 1} with start inx
and end iny by

X(t) = B(t) − t
(
B(1) − y

)
, for 0 6 t 6 1 .

Show that the Brownian bridge isnot a time-homogeneous Markov process.

Exercise 2.12. Find two stopping timesS 6 T with E[S] <∞ such that

E[(B(S))2] > E[(B(T ))2].

Exercise 2.13.S The purpose of this exercise is to show that the moment condition in
Theorem 2.50 is optimal. Let{B(t) : t > 0} be a standard linear Brownian motion and
defineT = inf{t > 0: B(t) = 1}, so thatB(T ) = 1 almost surely. Show that

E[Tα] <∞ for all α < 1/2.

Exercise 2.14.Let {B(t) : t > 0} be a standard linear Brownian motion

(a) Show that there exists a stopping timeT with ET = ∞ butE[(B(T ))2] <∞.
(b) Show that, for every stopping timeT with ET = ∞ andE

√
T <∞, we have

E
[
B(T )2

]
= ∞.

Exercise 2.15.Let {B(t) : t > 0} be a linear Brownian motion.

(a) Show that, forσ > 0, the process{exp(σB(t) − σ2t
2 ) : t > 0} is a martingale.
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(b) Show, by taking derivatives∂
n

∂σn at 0, that the following processes are martingales.

• {B(t)2 − t : t > 0},
• {B(t)3 − 3tB(t) : t > 0}, and
• {B(t)4 − 6tB(t)2 + 3t2 : t > 0}.

(c) FindE[T 2] for T = min{t > 0: B(t) ∈ {a, b}} anda < 0 < b.

Exercise 2.16.S Let {B(t) : t > 0} be a linear Brownian motion anda, b > 0. Show that

P0

{
B(t) = a+ bt for somet > 0

}
= e−2ab.

Exercise 2.17.S Let R > 0 andA = {−R,R}. Denote byτ(A) the first hitting time of
A, and byTx the first hitting times of the pointx ∈ R. Consider a linear Brownian motion
started atx ∈ [0, R], and prove that

(a) Ex[τ(A)] = R2 − x2.

(b) Ex
[
TR
∣∣TR < T0

]
= R2−x2

3 .

Hint. In (b) use one of the martingales of Exercise 2.15(b).

Exercise 2.18. Let {B(t) : t > 0} be a linear Brownian motion.

(a) Use the optional stopping theorem for the martingale in Exercise 2.15(a) to show
that, withτa = inf{t > 0: B(t) = a},

E0

[
e−λτa

]
= e−a

√
2λ, for all λ, a > 0 .

(b) Show that, withτ−a = inf{t > 0: B(t) = −a}, we have

E0

[
e−λτa

]
= E0

[
e−λτa 1{τa < τ−a}

]
+ E0

[
e−λτ−a 1{τ−a < τa}

]
e−2a

√
2λ .

(c) Deduce thatτ = τa ∧ τ−a satisfies

E0

[
e−λτ

]
= sech(a

√
2λ) ,

where sech(x) = 2
ex+e−x .

Exercise 2.19.In this exercise we interpretR2 as the complex plane. Hence a planar Brow-
nian motion becomes a complex Brownian motion. A complex-valued stochastic process
is called a martingale, if its real and imaginary parts are martingales. Let{B(t) : t > 0}
be a complex Brownian motion started ini, the imaginary unit.

(a) Show that{eiλB(t) : t > 0} is a martingale, for anyλ ∈ R.

(b) Let T be the first time when{B(t) : t > 0} hits the real axis. Using the optional
stopping theorem atT , show that

E
[
eiλB(T )

]
= e−λ .

Inverting the Fourier transform, the statement of (b) meansthat B(T ) is Cauchy dis-
tributed, a fact we already know from an explicit calculation, see Theorem 2.37.
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Exercise 2.20.S Let f : Rd → R be twice continuously differentiable,{B(t) : t > 0} a
d-dimensional Brownian motion such thatEx

∫ t
0
e−λs|f(B(s))| ds < ∞ and

Ex
∫ t
0
e−λs|∆f(B(s))| ds <∞, for anyx ∈ Rd andt > 0.

(a) Show that the process{X(t) : t > 0} defined by

X(t) = e−λt f(B(t)) −
∫ t

0

e−λs
(

1
2 ∆f(B(s)) − λf(B(s))

)
ds

is a martingale.

(b) SupposeU is a bounded open set,λ > 0, andu : U → R is a bounded solution of

1
2∆u(x) = λu(x), for x ∈ U ,

and lim
x→x0

u(x) = f(x0) for all x0 ∈ ∂U . Show that,

u(x) = Ex
[
f(B(τ)) e−λτ

]
,

whereτ = inf{t > 0: B(t) 6∈ U}.

Notes and comments

The Markov property is central to any discussion of Brownianmotion. The discussion of
this chapter is only a small fraction of what has to be said, and the Markov property will
be omnipresent in the rest of the book. The name goes back to Markov’s paper [Ma06]
where the Markovian dependence structure was introduced and a law of large numbers
for dependent random variables was proved. The strong Markov property had been used
for special stopping times, like hitting times of a point, since the 1930s. Hunt [Hu56]
formalised the idea and gave rigorous proofs, and so did, independently, Dynkin [Dy57].

Zero-one laws are classics in probability theory. We have already encountered the
powerful Hewitt–Savage law and there are more to come. Blumenthal’s zero-one law was
first proved in [Bl57]. It holds well beyond the setting of Brownian motion, for a class
of Markov processes calledFeller processes, which includes all processes with stationary,
independent increments.

The reflection principle is usually attributed to D. André [An87], who stated a variant
for random walks. His concern was the ballot problem: if two candidates in a ballot receive
a, respectivelyb votes, witha > b, what is the probability that the first candidate was
always in the lead during the counting of the votes? See the classical text of Feller [Fe68]
for more on this problem. A formulation of the reflection principle for Brownian motion
was given by Lévy [Le39], though apparently not based on the rigorous foundation of the
strong Markov property. We shall later use a higher-dimensional version of the reflection
principle, where a Brownian motion inRd is reflected in a hyperplane.
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The class of Markov processes, defined in this chapter, has a rich and fascinating the-
ory of its own, and some aspects are discussed in the books Rogers and Williams [RW00a,
RW00b] and Chung [Ch82]. A typical feature of this theory is its strong connection to anal-
ysis and potential theory, which stems from the key rôle played by the transition semigroup
in their definition. This aspect is emphasised in different ways in the books by Blumen-
thal and Getoor [BG68] and Bass [Ba98]. Many of the importantexamples of Markov
processes can be derived from Brownian motion in one way or the other, and this is an ex-
cellent motivation for further study of the theory. Amongstthem are stable Lévy processes,
like the Cauchy process or stable subordinators, the Besselprocesses, and diffusions.

The intriguing relationship uncovered in Theorem 2.34 has found numerous extensions
and complementary results, among them Pitman’s2M−B theorem, which we will discuss
in Section 5.5, which describes the process{2M(t) − B(t) : t > 0} as a3-dimensional
Bessel process or, equivalently, a Brownian motion conditioned to stay positive.

The concept of martingales is due to Doob, see [Do53]. They are an important class
of stochastic processes in their own right and one of the gemsof modern probability the-
ory. A gentle introduction, mostly in discrete time, is Williams [Wi91], while Revuz and
Yor [RY94] discuss continuous martingales and the rich relations to Brownian motion. A
fascinating fact, due to Dambis [Da65], Dubins, and Schwarz[DS65], is that for every
continuous martingale{M(t) : t > 0} with unbounded quadratic variation there exists a
time-change, i.e. a reparametrisationt 7→ Tt such thatTt, t > 0 are stopping times, such
thatt 7→M(Tt) is a Brownian motion.

The martingale featuring in Exercise 2.15 (a) plays an important rôle in the context
of the Cameron–Martin theorem. It represents the density ofthe law of a Brownian mo-
tion with constant drift, with respect to the law of a driftless Brownian motion on the
spaceC[0, t], see Remark 1.43. See also Freedman [Fr83] for a nice treatment of this
connection. Girsanov’s theorem offers a more systematic approach to mutual densities,
which is best understood in the language of semimartingales, see for example Revuz and
Yor [RY94]. Theorem 2.50 establishes a special case of an important result in martingale
theory, the Burkholder–Davis–Gundy inequalities, see [BDG72] for the original paper and
Theorem 3.28 of Karatzas and Shreve [KS91] or Rogers and Williams [RW00b] for a text-
book treatment. A presentation closer to ours is in Proposition VII-2-3(b) of Neveu [Ne75].
Exercise 2.17 appears in similar form in Stern [St75].
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Harmonic functions, transience and recurrence

In this chapter we explore the relation of harmonic functions and Brownian motion. This
approach will be particularly useful ford-dimensional Brownian motion ford > 1. It
allows us to study the fundamental questions of transience and recurrence of Brownian
motion, investigate the classical Dirichlet problem of electrostatics, and provide the back-
ground for the deeper investigations of probabilistic potential theory, which will follow in
Chapter 8.

3.1 Harmonic functions and the Dirichlet problem

Let U be adomain, i.e. a connected open setU ⊂ Rd, and∂U be its boundary. Suppose
that its closureU is a homogeneous body and its boundary is electrically charged, the
charge given by some continuous functionϕ : ∂U → R. TheDirichlet problemasks for
the voltageu(x) at some pointx ∈ U . Kirchhoff’s laws state thatu must be aharmonic
functionin U . We therefore start by discussing the basic features of harmonic functions.

Definition 3.1. LetU ⊂ Rd be a domain. A functionu : U → R is harmonic (onU ) if it
is twice continuously differentiable and, for anyx ∈ U ,

∆u(x) :=
d∑

j=1

∂2u

∂x2
j

(x) = 0.

If instead of the last condition only∆u(x) > 0, then the functionu is subharmonic. �

To begin with we give two useful reformulations of the harmonicity condition, called the
mean value properties, which do not make explicit reference to differentiability.

Theorem 3.2LetU ⊂ Rd be a domain andu : U → R measurable and locally bounded.
The following conditions are equivalent:

(i) u is harmonic;
(ii) for any ballB(x, r) ⊂ U , we have

u(x) =
1

L(B(x, r))

∫

B(x,r)

u(y) dy;

65
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(iii) for any ballB(x, r) ⊂ U ,

u(x) =
1

σx,r(∂B(x, r))

∫

∂B(x,r)

u(y) dσx,r(y),

whereσx,r is the surface measure on∂B(x, r).

Remark 3.3We use the following version of Green’s identity,
∫

∂B(x,r)

∂u

∂n
(y) dσx,r(y) =

∫

B(x,r)

∆u(y) dy, (3.1)

wheren(y) is the outward normal vector of the ball aty, see [Ba95]. One can avoid the
use of this identity and prove the result by purely probabilistic means, see Exercise 8.1.�
Proof. (ii) ⇒ (iii) Assumeu has the mean value property (ii). Defineψ : (0,∞) → R by

ψ(r) = r1−d
∫

∂B(x,r)

u(y) dσx,r(y).

Then, for anyr > 0, we have

rd L(B(x, 1))u(x) = L(B(x, r))u(x) =

∫

B(x,r)

u(y) dy =

∫ r

0

ψ(s) sd−1 ds.

Differentiating with respect tor givesψ(r) = dL(B(x, 1))u(x) for almost allr ∈ (0,∞).
As drd−1L(B(x, 1)) = σx,r(∂B(x, r)) we infer that

u(x) =
1

σx,r(∂B(x, r))

∫

∂B(x,r)

u(y) dσx,r(y), for almost allr ∈ (0,∞). (3.2)

Supposeg : [0,∞) → [0,∞) is a smooth function with compact support in[0, ε) and∫
g(|x|) dx = 1. Integrating (3.2) one obtains

u(x) =

∫
u(y)g(|x− y|) dy

for all x ∈ U and sufficiently smallε > 0. As convolution of a smooth function with a
bounded function produces a smooth function, we observe that u is infinitely often differ-
entiable inU . In particular, this implies that (3.2) holds indeed for allr > 0, proving (iii).

(iii) ⇒ (ii) Fix s > 0, multiply (iii) by σx,r(∂B(x, r)) and integrate over all radii0 < r < s.

(iii) ⇒ (i) We have seen above that (iii) implies thatu is infinitely often differentiable
in U . Now suppose that∆u 6= 0, so that there exists a small ballB(x, ε) ⊂ U such that
either∆u(x) > 0 onB(x, ε), or ∆u(x) < 0 onB(x, ε). With the notation from above,

0 = ψ′(r) = r1−d
∫

∂B(x,r)

∂u

∂n
(y) dσx,r(y) = r1−d

∫

B(x,r)

∆u(y) dy,

using (3.1). This is a contradiction.

(i) ⇒ (iii) Suppose thatu is harmonic andB(x, r) ⊂ U . Using (3.1), we obtain that

ψ′(r) = r1−d
∫

∂B(x,r)

∂u

∂n
(y) dσx,r(y) = r1−d

∫

B(x,r)

∆u(y) dy = 0.

Henceψ is constant, and aslimr↓0 ψ(r) = σ0,1(B(0, 1))u(x), we obtain (iii).
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Remark 3.4A twice differentiable functionu : U → R is subharmonic if and only if

u(x) 6
1

L(B(x, r))

∫

B(x,r)

u(y) dy for any ballB(x, r) ⊂ U . (3.3)

This can be obtained in a way very similar to Theorem 3.2, see also Exercise 3.1. �

An important property satisfied by harmonic, and in fact subharmonic, functions is the
maximum principle. This is one of the key principles of analysis.

Theorem 3.5 (Maximum principle) Supposeu : Rd → R is a function, which is subhar-
monic on an open connected setU ⊂ Rd.

(i) If u attains its maximum inU , thenu is a constant.

(ii) If u is continuous on̄U andU is bounded, then

max
x∈Ū

u(x) = max
x∈∂U

u(x).

Remark 3.6 If u is harmonic, the theorem may be applied to bothu and−u. Hence the
conclusions of the theorem also hold with ‘maximum’ replaced by ‘minimum’. �

Proof. (i) Let M be the maximum. Note thatV = {x ∈ U : u(x) = M} is
relatively closed inU . SinceU is open, for anyx ∈ V , there is a ballB(x, r) ⊂ U . By the
mean-value property ofu, see Remark 3.4,

M = u(x) 6
1

L(B(x, r))

∫

B(x,r)

u(y) dy 6 M.

Equality holds everywhere, and asu(y) 6 M for all y ∈ B(x, r), we infer thatu(y) = M

almost everywhere onB(x, r). By continuity this impliesB(x, r) ⊂ V . HenceV is also
open, and by assumption nonempty. SinceU is connected we get thatV = U . Therefore,
u is constant onU .
(ii) Sinceu is continuous and̄U is closed and bounded,u attains a maximum on̄U .
By (i) the maximum has to be attained on∂U .

Corollary 3.7 Supposeu1, u2 : Rd → R are functions, which are harmonic on a bounded
domainU ⊂ Rd and continuous on̄U . If u1 andu2 agree on∂U , then they are identical.

Proof. By Theorem 3.5(ii) applied tou1 − u2 we obtain that

sup
x∈Ū

{
u1(x) − u2(x)

}
= sup
x∈∂U

{
u1(x) − u2(x)

}
= 0.

Henceu1(x) 6 u2(x) for all x ∈ Ū . Applying the same argument tou2 − u1, one sees
thatsupx∈Ū{u2(x) − u1(x)} = 0. Henceu1(x) = u2(x) for all x ∈ Ū .

We can now formulate the basic fact on which the relationshipof Brownian motion and
harmonic functions rests.
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Theorem 3.8SupposeU is a domain,{B(t) : t > 0} a Brownian motion started inside
U and τ = τ(∂U) = min{t > 0: B(t) ∈ ∂U} the first hitting time of its boundary.
Letϕ : ∂U → R be measurable, and such that the functionu : U → R with

u(x) = Ex
[
ϕ(B(τ)) 1{τ <∞}

]
, for everyx ∈ U , (3.4)

is locally bounded. Thenu is a harmonic function.

Proof. The proof uses only the strong Markov property of Brownian motion and the
mean value characterisation of harmonic functions. For a ball B(x, δ) ⊂ U let τ̃ = inf{t >
0: B(t) 6∈ B(x, δ)}, then the strong Markov property implies that

u(x) = Ex
[
Ex
[
ϕ(B(τ)) 1{τ <∞}

∣∣F+(τ̃)
]]

= Ex
[
u
(
B(τ̃)

)]

=

∫

∂B(x,δ)

u(y)$x,δ(dy),

where$x,δ is the uniform distribution on the sphere∂B(x, δ). Therefore,u has the mean
value property and, as it is also locally bounded, it is harmonic onU by Theorem 3.2.

Definition 3.9. LetU be a domain inRd and let∂U be its boundary. Supposeϕ : ∂U → R
is a continuous function on its boundary. A continuous function v : U → R is a solution
to the Dirichlet problem with boundary valueϕ, if it is harmonic onU andv(x) = ϕ(x)

for x ∈ ∂U . �

The Dirichlet problem was posed by Gauss in 1840. In fact Gauss thought he showed
that there is always a solution, but his reasoning was wrong and Zaremba in 1911 and
Lebesgue in 1924 gave counterexamples. However, if the domain is sufficiently nice there
is a solution, as we will see below.

Definition 3.10. Let U ⊂ Rd be a domain. We say thatU satisfies thePoincaré cone
condition at x ∈ ∂U if there exists a coneV based atx with opening angleα > 0, and
h > 0 such thatV ∩ B(x, h) ⊂ U c. �

The following lemma, which is illustrated by Figure 3.1, will prepare us to solve the Dirich-
let problem for ‘nice’ domains. Recall that we denote, for any open or closed setA ⊂ Rd,
by τ(A) the first hitting time of the setA by Brownian motion,

τ(A) = inf{t > 0: B(t) ∈ A}.

Lemma 3.11Let0 < α < 2π andC0(α) ⊂ Rd be a cone based at the origin with opening
angleα, and

a = sup
x∈clB(0,

1
2 )

Px
{
τ(∂B(0, 1)) < τ(C0(α))

}
.

Thena < 1 and, for any positive integerk andh′ > 0, we have

Px
{
τ(∂B(z, h′)) < τ(Cz(α))

}
6 ak, for all x, z ∈ Rd with |x− z| < 2−kh′,

whereCz(α) is a cone based atz with opening angleα.
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Fig. 3.1. Brownian motion avoiding a cone.

Proof. It is easy to verifya < 1 using, for example, Exercise 1.8. Ifx ∈ B(0, 2−k) then
by the strong Markov property

Px
{
τ(∂B(0, 1)) < τ(C0(α))

}

6

k−1∏

i=0

sup
x∈B(0,2−k+i)

Px
{
τ(∂B(0, 2−k+i+1)) < τ(C0(α))

}
= ak.

Therefore, for any positive integerk andh′ > 0, we have by scalingPx
{
τ(∂B(z, h′)) <

τ(Cz(α))
}

6 ak , for all x with |x− z| < 2−kh′.

Theorem 3.12 (Dirichlet Problem) SupposeU ⊂ Rd is a bounded domain such that
every boundary point satisfies the Poincaré cone condition,and supposeϕ is a continuous
function on∂U . Let τ(∂U) = inf{t > 0: B(t) ∈ ∂U}, which is an almost surely finite
stopping time. Then the functionu : U → R given by

u(x) = Ex
[
ϕ(B(τ(∂U)))

]
, for x ∈ U,

is the unique continuous function harmonic onU with u(x) = ϕ(x) for all x ∈ ∂U .

Proof. The uniqueness claim follows from Corollary 3.7. The functionu is bounded and
hence harmonic onU by Theorem 3.8. It remains to show that the Poincaré cone condition
implies thatu is continuous on the boundary. Fixz ∈ ∂U , then there is a coneCz(α)

based atz with angleα > 0 with Cz(α)∩B(z, h) ⊂ U c. By Lemma 3.11, for any positive
integerk andh′ > 0, we have

Px
{
τ(∂B(z, h′)) < τ(Cz(α))

}
6 ak

for all xwith |x−z| < 2−kh′. Givenε > 0, there is a0 < δ 6 h such that|ϕ(y)−ϕ(z)| <
ε for all y ∈ ∂U with |y − z| < δ. For allx ∈ U with |z − x| < 2−kδ,

|u(x) − u(z)| =
∣∣Exϕ(B(τ(∂U))) − ϕ(z)

∣∣ 6 Ex
∣∣ϕ(B(τ(∂U))) − ϕ(z)

∣∣ . (3.5)
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If the Brownian motion hits the coneCz(α), which is outside the domainU , before the
sphere∂B(z, δ), then |z − B(τ(∂U))| < δ, andϕ(B(τ(∂U))) is close toϕ(z). The
complement has small probability. More precisely, (3.5) isbounded above by

2‖ϕ‖∞Px
{
τ(∂B(z, δ)) < τ(Cz(α))} + εPx{τ(∂U) < τ(∂B(z, δ))} 6 2‖ϕ‖∞ak + ε.

This implies thatu is continuous onU .

Remark 3.13If the Poincaré cone condition holds at every boundary point, one can simu-
late the solution of the Dirichlet problem by running many independent Brownian motions,
starting inx ∈ U until they hit the boundary ofU and lettingu(x) be the average of the
values ofϕ on the hitting points. �

Remark 3.14 In Chapter 8 we will improve the results on the Dirichlet problem signifi-
cantly and give sharp criteria for the existence of solutions. �

To justify the introduction of conditions on the domain we now give an example where the
functionu of Theorem 3.12 fails to solve the Dirichlet problem.

Example 3.15 Take a solutionv : B(0, 1) → R of the Dirichlet problem on the planar disc
B(0, 1) with boundary conditionϕ : ∂B(0, 1) → R. LetU = {x ∈ R2 : 0 < |x| < 1} be
the punctured disc. We claim thatu(x) = Ex

[
ϕ(B(τ(∂U)))

]
fails to solve the Dirichlet

problem onU with boundary conditionϕ : ∂B(0, 1) ∪ {0} → R if ϕ(0) 6= v(0). Indeed,
as planar Brownian motion does not hit points, by Corollary 2.26, the first hitting timeτ
of ∂U = ∂B(0, 1)∪ {0} agrees almost surely with the first hitting time of∂B(0, 1). Then,
by Theorem 3.12,u(0) = E0[ϕ(B(τ))] = v(0) 6= ϕ(0). �

We now show how the techniques we have developed so far can be used to prove a classical
result from harmonic analysis, Liouville’s theorem, by probabilistic means. The proof uses
the reflection principle for higher-dimensional Brownian motion.

Theorem 3.16 (Liouville’s theorem)Any bounded harmonic function onRd is constant.

Proof. Let u : Rd → [−M,M ] be a harmonic function,x, y two distinct points in
Rd, andH the hyperplane so that the reflection inH takesx to y. Let {B(t) : t > 0}
be Brownian motion started atx, and{B(t) : t > 0} its reflection inH. Let τ(H) =

min{t : B(t) ∈ H} and note that

{B(t) : t > τ(H)} d
= {B(t) : t > τ(H)}. (3.6)

Harmonicity implies thatE[u(B(t))] = u(x) and decomposing the above intot < τ(H)

andt > τ(H) we get

u(x) = E
[
u(B(t))1{t<τ(H)}

]
+ E

[
u(B(t))1{t > τ(H)}

]
.



3.2 Recurrence and transience of Brownian motion 71

A similar equation holds foru(y) whenB(t) is replaced byB(t). Now, using (3.6),

|u(x) − u(y)| =
∣∣E
[
u(B(t))1{t<τ(H)}

]
− E

[
u(B(t))1{t<τ(H)}

]∣∣

6 2MP{t < τ(H)} → 0 ast→ ∞.

Thusu(x) = u(y), and sincex andy were chosen arbitrarily,u must be constant.

Remark 3.17Clearly, any linear function is harmonic. In Exercise 3.10,the reader will be
asked to prove that any harmonic function inRd with sublinear growth is constant. �

3.2 Recurrence and transience of Brownian motion

A Brownian motion{B(t) : t > 0} in dimensiond is calledtransientif

lim
t↑∞

|B(t)| = ∞ almost surely.

Note that the event{limt↑∞ |B(t)| = ∞} is a tail event and hence, by the zero-one law
for tail events, it must have probability zero or one. In thissection we decide in which
dimensionsd the Brownian motion is transient, and in which it is not. Thisquestion
is intimately related to the exit probabilities of the Brownian motion from an annulus:
Suppose the motion starts at a pointx inside an annulus

A = {x ∈ Rd : r < |x| < R}, for 0 < r < R <∞.

What is the probability that the Brownian motion hits∂B(0, r) before∂B(0, R)? The
answer is given in terms of harmonic functions on the annulusand is therefore closely
related to the Dirichlet problem.

To find explicit solutionsu : clA → R of the Dirichlet problem on an annulus it is first
reasonable to assume thatu is spherically symmetric, i.e. there is a functionψ : [r,R] → R
such thatu(x) = ψ(|x|2). We can express derivatives ofu in terms ofψ as

∂iψ(|x|2) = ψ′(|x|2)2xi and∂iiψ(|x|2) = ψ′′(|x|2)4x2
i + 2ψ′(|x|2).

Therefore,∆u = 0 means

0 =
d∑

i=1

(
ψ′′(|x|2)4x2

i + 2ψ′(|x|2)
)

= 4|x|2ψ′′(|x|2) + 2dψ′(|x|2).

Lettingy = |x|2 > 0 we can write this as

ψ′′(y) =
−d
2y
ψ′(y).

This is solved by everyψ satisfyingψ′(y) = const · y−d/2 and thus∆u = 0 holds
on{|x| 6= 0} for

u(x) =





|x| if d = 1,

2 log |x| if d = 2,

|x|2−d if d > 3.

(3.7)
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We writeu(r) for the value ofu(x) for all x ∈ ∂B(0, r). Now define stopping times

Tr = τ(∂B(0, r)) = inf{t > 0: |B(t)| = r} for r > 0,

and denote byT = Tr ∧ TR the first exit time fromA. By Theorem 3.12 we have

u(x) = Ex
[
u(B(T ))

]
= u(r)Px{Tr < TR} + u(R)(1 − Px{Tr < TR}).

This formula can be solved

Px{Tr < TR} =
u(R) − u(x)

u(R) − u(r)

and we get an explicit solution for the exit problem.

Theorem 3.18Suppose{B(t) : t > 0} is a Brownian motion in dimensiond > 1 started
in x ∈ A, which is an open annulusA with radii 0 < r < R <∞. Then,

Px{Tr < TR} =





R−|x|
R−r if d = 1,

logR−log |x|
logR−log r if d = 2,

R2−d−|x|2−d

R2−d−r2−d if d > 3.

LettingR ↑ ∞ in Theorem 3.18 leads to the following corollary.

Corollary 3.19 For anyx 6∈ B(0, r), we have

Px{Tr <∞} =





1 if d 6 2,

rd−2

|x|d−2 if d > 3.

We now apply this to the problem ofrecurrenceand transienceof Brownian motion in
various dimensions. Generally speaking, we call a Markov process{X(t) : t > 0} with
values inRd

• point recurrent , if, almost surely, for everyx ∈ Rd there is a (random) sequencetn ↑ ∞
such thatX(tn) = x for all n ∈ N,

• neighbourhood recurrent, if, almost surely, for everyx ∈ Rd andε > 0, there exists a
(random) sequencetn ↑ ∞ such thatX(tn) ∈ B(x, ε) for all n ∈ N.

• transient, if it converges to infinity almost surely.

Theorem 3.20Brownian motion is

• point recurrent in dimensiond = 1,

• neighbourhood recurrent, but not point recurrent, ind = 2,

• transient in dimensiond > 3.
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Proof. We leave the cased = 1 as Exercise 3.4, and look at dimensiond = 2. Fix
ε > 0 andx ∈ Rd. By Corollary 3.19 and shift-invariance the stopping timet1 = inf{t >
0: B(t) ∈ B(x, ε)} is almost surely finite. Using the strong Markov property at timet1+1

we see that this also applies tot2 = inf{t > t1 + 1: B(t) ∈ B(x, ε)}, and continuing like
this, we obtain a sequence of timestn ↑ ∞ such that, almost surely,B(tn) ∈ B(x, ε) for all
n ∈ N. Taking an intersection over a countable family of balls(B(xi, εi) : i = 1, 2, . . .),
forming a basis of the Euclidean topology, implies that ind = 2 Brownian motion is
neighbourhood recurrent. Recall from Corollary 2.26 that planar Brownian motion does
not hit points, hence it cannot be point recurrent.

It remains to show that Brownian motion is transient in dimensionsd > 3. Look at the
eventsAn := {|B(t)| > n for all t > Tn3}. Recall from Proposition 1.23 thatTn3 < ∞
almost surely. By the strong Markov property, for everyn > |x|1/3,

Px(Ac
n) = Ex

[
PB(Tn3 ){Tn <∞}

]
=
( 1

n2

)d−2

.

Note that the right hand side is summable, and hence the Borel–Cantelli lemma shows that
only finitely many of the eventsAc

n occur, which implies that|B(t)| diverges to infinity,
almost surely, and hence that Brownian motion ind > 3 is transient.

Remark 3.21Neighbourhood recurrence, in particular, implies that thepath of a planar
Brownian motion (running for an infinite amount of time) is dense in the plane. �

We now have a qualitative look at the transience of Brownian motion in Rd, d > 3, and
ask for the speed of escape to infinity. This material is slightly more advanced and can be
skipped on first reading.

Consider a standard Brownian motion{B(t) : t > 0} in Rd, for d > 3, and fix a sequence
tn ↑ ∞. For anyε > 0, by Fatou’s lemma,

P
{∣∣B(tn)

∣∣ < ε
√
tn infinitely often

}
> lim sup

n→∞
P
{∣∣B(tn)

∣∣ < ε
√
tn
}
> 0.

By the zero-one law for tail events, see Theorem 2.9, the probability on the left hand side
must therefore be one, whence

lim inf
n→∞

|B(tn)|√
tn

= 0, almost surely. (3.8)

This statement is refined by the Dvoretzky–Erdős test.

Theorem* 3.22 (Dvoretzky–Erdős test)Let {B(t) : t > 0} be Brownian motion inRd

for d > 3 andf : (0,∞) → (0,∞) increasing. Then

∫ ∞

1

f(r)d−2r−d/2 dr <∞ if and only if lim inf
t↑∞

|B(t)|
f(t)

= ∞ almost surely.

Conversely, if the integral diverges, thenlim inf
t↑∞

|B(t)|/f(t) = 0 almost surely.
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For the proof we first recall two generally useful tools. The first is an easy case of the
Paley–Zygmund inequality, see Exercise 3.5 for the full statement.

Lemma 3.23 (Paley–Zygmund inequality)For any nonnegative random variableX with
E[X2] <∞,

P
{
X > 0

}
>

E[X]2

E[X2]
.

Proof. The Cauchy–Schwarz inequality gives

E[X] = E[X 1{X > 0}] 6 E[X2]1/2
(
P{X > 0}

)1/2
,

and the required inequality follows immediately.

The second tool is a version of the Borel–Cantelli lemma, which allows some dependence
of the events. This is known as the Kochen–Stone lemma, and isa consequence of the
Paley–Zygmund inequality, see Exercise 3.6 or [KS64].

Lemma 3.24SupposeE1, E2, . . . are events with

∞∑

n=1

P(En) = ∞ and lim inf
k→∞

∑k
m=1

∑k
n=1 P(En ∩ Em)

(∑k
n=1 P(En)

)2 <∞ .

Then, with positive probability, infinitely many of the events take place.

A core estimate in the proof of the Dvoretzky–Erdős test is the following lemma, which is
based on the hitting probabilities of the previous paragraphs.

Lemma 3.25There exists a constantC1 > 0 depending only on the dimensiond such that,
for anyρ > 0, we have

sup
x∈Rd

Px
{

there existst > 1 with |B(t)| 6 ρ
}

6 C1 ρ
d−2 .

Proof. We use Corollary 3.19 for the probability that the motion started at time one hits
B(0, ρ), to see that

Px
{

there existst > 1 with |B(t)| 6 ρ
}

6 E0

[( ρ

|B(1) + x|
)d−2]

6 ρd−2 1

(2π)d/2

∫

Rd

|y + x|2−d exp
{
− |y|2

2

}
dy.

By considering the integration domains|y + x| > |y| and |y + x| 6 |y| separately, it is
easy to see that the integral on the right is uniformly bounded in x.

Proof of Theorem 3.22. Define events

An =
{

there existst ∈ (2n, 2n+1] with |B(t)| 6 f(t)
}
.
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By Brownian scaling, monotonicity off , and Lemma 3.25,

P(An) 6 P
{

there existst > 1 with |B(t)| 6 f(2n+1)2−n/2
}

6C1

(
f(2n+1) 2−n/2

)d−2

.

Now assume that the integral converges, or equivalently, that
∞∑

n=1

(
f(2n) 2−n/2

)d−2

<∞ . (3.9)

Then the Borel Cantelli lemma and (3.9) imply that, almost surely, the set{t > 0:

|B(t)| 6 f(t)} is bounded. Since (3.9) also applies to any constant multiple of f in
place off , it follows thatlim inft↑∞ |B(t)|/f(t) = ∞ almost surely.

For the converse, suppose that the integral diverges, whence
∞∑

n=1

(
f(2n) 2−n/2

)d−2

= ∞ . (3.10)

In view of (3.8), we may assume thatf(t) <
√
t for all large enought. Changingf on a

finite interval, we may assume that this inequality holds forall t > 0.
Forρ ∈ (0, 1), consider the random variableIρ =

∫ 2

1
1{|B(t)| 6 ρ} dt. Since the density

of |B(t)| on the unit ball is bounded from above and also away from zero for t ∈ [1, 2], we
infer that

C2ρ
d

6 E[Iρ] 6 C3ρ
d

for suitable constants depending only on the dimension. To complement this by an estimate
of the second moment, we use the Markov property to see that

E[I2
ρ ] = 2E

[∫ 2

1

1{|B(t)| 6 ρ}
∫ 2

t

1{|B(s)| 6 ρ} ds dt
]

6 2E
[∫ 2

1

1{|B(t)| 6 ρ}EB(t)

∫ ∞

0

1{|B̃(s)| 6 ρ} ds dt
]
,

where the inner expectation is with respect to a Brownian motion {B̃(t) : t > 0} started
in the fixed pointB(t), whereas the outer expectation is with respect toB(t). We analyse
the dependence of the inner expectation on the starting point. Givenx 6= 0, we letT =

inf{t > 0: |B(t)| = x} and use the strong Markov property to see that

E0

∫ ∞

0

1{|B(s)| 6 ρ} ds > E
∫ ∞

T

1{|B(s)| 6 ρ} ds = Ex

∫ ∞

0

1{|B(s)| 6 ρ} ds,

so that the expectation is maximal if the process is started at the origin. Hence we obtain

E[I2
ρ ] 6 2C3 ρ

d E0

∫ ∞

0

1{|B(s)| 6 ρ} ds .

Moreover, by Brownian scaling,

E0

∫ ∞

0

1{|B(s)| 6 ρ} ds = ρ2

∫ ∞

0

P{|B(s)| 6 1} ds

6 ρ2
(
1 +

∫ ∞

1

L(B(0, 1))

(2πs)d/2
ds
)

= C4 ρ
2,
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whereC4 is a finite constant. In summary, we haveE[I2
ρ ] 6 2C3C4 ρ

d+2. By the Paley–
Zygmund inequality, for a suitable constantC5 > 0,

P{Iρ > 0} >
E[Iρ]

2

E[I2
ρ ]

> C5ρ
d−2 .

Now chooseρ = f(2n)2−n/2, which is smaller than one, asf(t) <
√
t. By Brownian

scaling and monotonicity off , we have

P(An) > P{Iρ > 0} > C5

(
f(2n) 2−n/2

)d−2

,

so
∑
n P(An) = ∞ by (3.10). Form < n − 1, the Markov property at time2n−1,

Brownian scaling and Lemma 3.25 yield that

P[An | Am] 6 sup
x∈Rd

Px
{

there existst > 1 with |B(t)| 6 f(2n+1)2(1−n)/2
}

6 C1

(
f(2n+1) 2(1−n)/2

)d−2

.

From this, and the assumption thatf(t) <
√
t, we get that

lim inf
k→∞

∑k
m=1

∑k
n=1 P(An ∩Am)

(∑k
n=1 P(An)

)2 = 2 lim inf
k→∞

∑k
m=1 P(Am)

∑k
n=m+2 P[An | Am]

(∑k
n=1 P(An)

)2

6 2
C1

C5
lim inf
k→∞

∑k
n=1(f(2n+1) 2(1−n)/2)d−2

∑k
n=1(f(2n) 2−n/2)d−2

<∞ .

The Kochen–Stone lemma now yields thatP{An infinitely often} > 0, whence by The-
orem 2.9 this probability is 1. Thus the set{t > 0: |B(t)| 6 f(t)} is almost surely
unbounded. Since (3.10) also applies toεf in place off for any ε > 0, it follows that
lim inft↑∞ |B(t)|/f(t) = 0 almost surely.

3.3 Occupation measures and Green’s functions

We now address the following question: Given a bounded domainU ⊂ Rd, how much time
does Brownian motion spend inU? Our first result states that for a linear Brownian motion
running for a finite amount of time, this time is comparable tothe Lebesgue measure ofU .

Theorem 3.26Let {B(s) : s > 0} be a linear Brownian motion andt > 0. Define the
occupation measureµt by

µt(A) =

∫ t

0

1A(B(s)) ds for A ⊂ R Borel.

Then, almost surely,µt is absolutely continuous with respect to the Lebesgue measure.
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Proof. Absolute continuity ofµt with respect to the Lebesgue measure follows if

lim inf
r↓0

µt(B(x, r))

L(B(x, r))
<∞ for µt-almost everyx ∈ R,

see for example Theorem 2.12 in [Ma95]. To see this we use firstFatou’s lemma and then
Fubini’s theorem,

E
∫

lim inf
r↓0

µt(B(x, r))

L(B(x, r))
dµt(x) 6 lim inf

r↓0

1

2r
E
∫
µt(B(x, r)) dµt(x)

= lim inf
r↓0

1

2r

∫ t

0

∫ t

0

P
{
|B(s1) −B(s2)| 6 r

}
ds1 ds2 .

Using that the density of a standard normal random variableX is bounded by one, we get

P
{
|B(s1) −B(s2)| 6 r

}
= P

{
|X| 6

r√
|s1−s2|

}
6

2r√
|s1−s2|

,

and this implies that

lim inf
r↓0

1

2r

∫ t

0

∫ t

0

P
{
|B(s1) −B(s2)| 6 r

}
ds1 ds2 6

∫ t

0

∫ t

0

ds1 ds2√
|s1 − s2|

<∞.

This implies that, almost surely,µt is absolutely continuous with respect toL.

We now turn to higher dimensionsd > 2. A first simple result shows that whether the
overall time spent in a bounded set is finite or not depends just on transience or recurrence
of the process.

Theorem 3.27LetU ⊂ Rd be a nonempty bounded open set andx ∈ Rd arbitrary.

• If d = 2, thenPx-almost surely,
∫ ∞

0

1U (B(t)) dt = ∞ .

• If d > 3, thenEx

∫ ∞

0

1U (B(t)) dt <∞ .

Proof. As U is contained in a ball and contains a ball, it suffices to show this for balls.
By shifting, we can even restrict to ballsU = B(0, r) centred in the origin. Let us start
with the first claim. We letd = 2 and letG = B(0, 2r). LetS0 = 0 and, for allk > 0, let

Tk = inf{t > Sk : B(t) 6∈ G} and Sk+1 = inf{t > Tk : B(t) ∈ U}.

Recall that, almost surely, these stopping times are finite.From the strong Markov property
we infer, fork > 1,

Px
{ ∫ Tk

Sk

1U (B(t)) dt > s
∣∣∣F+(Sk)

}
= PB(Sk)

{∫ T1

0

1U (B(t)) dt > s
}

= Ex
[
PB(Sk)

{∫ T1

0

1U (B(t)) dt > s
}]

= Px
{∫ Tk

Sk

1U (B(t)) dt > s
}
,

by rotation invariance. Hence the random variables{
∫ Tk

Sk
1U (B(t)) dt, : k = 1, 2, . . .} are

independent and, as the second term does not depend onk, identically distributed. As they
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are not identically zero, but nonnegative, they have positive expectation and, by the strong
law of large numbers we infer

∫ ∞

0

1U (B(t)) dt > lim
n→∞

n∑

k=1

∫ Tk

Sk

1U (B(t)) dt = ∞,

which proves the first claim. For the second claim, we first look at Brownian motion
started in the origin and obtain, making good use of Fubini’stheorem and denoting by
p : [0,∞) × Rd × Rd → [0, 1] the transition density of Brownian motion,

E0

∫ ∞

0

1B(0,r)(B(s)) ds =

∫ ∞

0

P0{B(s) ∈ B(0, r)} ds =

∫ ∞

0

∫

B(0,r)

p(s, 0, y) dy ds

=

∫

B(0,r)

∫ ∞

0

p(s, 0, y) ds dy

= σ(∂B(0, 1))

∫ r

0

ρd−1

∫ ∞

0

(
1√
2πs

)d
e

−ρ2

2s ds dρ.

Now we can use the substitutiont = ρ2/s and obtain, using thatd > 3 to ensure finiteness
of the integral, for a suitable constantC(d) <∞,

= C(d)

∫ r

0

ρd−1ρ2−d dρ = C(d)
2 r2 <∞.

For start in an arbitraryx 6= 0, we look at a Brownian motion started in0 and a stopping
timeT , which is the first hitting time of the sphere∂B(0, |x|). Using spherical symmetry
and the strong Markov property we obtain

Ex

∫ ∞

0

1B(0,r)(B(s)) ds = E0

∫ ∞

T

1B(0,r)(B(s)) ds

6 E0

∫ ∞

0

1B(0,r)(B(s)) ds <∞.

In the case when Brownian motion is transient it is interesting to ask further for the ex-
pected time the process spends in a bounded open set. In ordernot to confine this discus-
sion to the cased > 3 we introduce suitable stopping rules for Brownian motion ind = 2.

Definition 3.28. Suppose that{B(t) : 0 6 t 6 T} is ad-dimensional Brownian motion
and one of the following three cases holds:

(1) d > 3 andT = ∞,
(2) d > 2 andT is an independent exponential time with parameterλ > 0,
(3) d > 2 andT is the first exit time from a bounded domainD.

We use the convention thatD = Rd in cases (1), (2). We refer to these three cases by
saying that{B(t) : 0 6 t 6 T} is a transient Brownian motion. �

Remark 3.29 For a transient Brownian motion{B(t) : 0 6 t 6 T}, givenF+(t), on
the event{B(t) = y, t < T}, the process{B(s + t) : 0 6 s 6 T} is again a transient
Brownian motion of the same type, started iny. We donot consider Brownian motion
stopped at afixedtime, because this model lacks this form of the Markov property. �



3.3 Occupation measures and Green’s functions 79

Theorem 3.30For transient Brownian motion{B(t) : 0 6 t 6 T} there exists a transition
(sub-)densityp∗ : [0,∞) × Rd × Rd → [0, 1] such that, for anyt > 0,

Px
{
B(t) ∈ A andt 6 T

}
=

∫

A

p∗(t, x, y) dy for everyA ⊂ Rd Borel.

Moreover, for allt > 0 andL-almost everyx, y ∈ D we havep∗(t, x, y) = p∗(t, y, x).

Proof. Fix t throughout the proof. For the existence of the density, by the Radon–
Nikodým theorem, it suffices to check thatPx{B(t) ∈ A andt 6 T} = 0, if A is a Borel
set of Lebesgue measure zero. This is obvious, by just dropping the requirementt 6 T ,
and recalling thatB(t) is normally distributed. Ifd > 3 andT = ∞, or if d > 2 andT is
independent, exponentially distributed symmetry is obvious.
Hence we can now concentrate on the cased > 2 and a bounded domainD. We fix a
compact setK ⊂ D and define, for everyx ∈ K andn ∈ N, a measureµ(n)

x on the Borel
setsA ⊂ D,

µ(n)

x (A) = Px
{
B( kt2n ) ∈ K for all k = 0, . . . , 2n andB(t) ∈ A

}
.

Thenµ(n)
x has a density

p∗n(t, x, y) =

∫

K

· · ·
∫

K

2n∏

i=1

p
(
t

2n , zi−1, zi
)
dz1 . . . dz2n−1 ,

wherez0 = x, z2n = y andp is the transition density ofd-dimensional Brownian motion.
As p is symmetric in the space variables, so isp∗n for everyn. Note thatp∗n is decreasing in
n. From the monotone convergence theorem one can see thatp∗K(t, x, y) := lim p∗n(t, x, y)
is a transition subdensity of Brownian motion stopped upon leavingK. The symmetry of
p∗n gives p∗K(t, x, y) = p∗K(t, y, x). Choosing an increasing sequence of compact sets
exhaustingD and taking a monotone limit yields a symmetric versionp∗(t, x, y) of the
transition density.

In all of our three cases of transient Brownian motions we will from now on choose partic-
ular versions of the transition densities. Recall thatp denotes the transition kernel for the
(unstopped) Brownian motion. Then,

(1) if d > 3 andT = ∞, we takep∗(t, x, y) = p(t, x, y);

(2) if d > 2 andT is exponential with parameterλ > 0, we choose

p∗(t, x, y) = e−λt p(t, x, y);

(3) if d > 2 andT is the first exit time fromD, we let

p∗(t, x, y) = p(t, x, y) − Ex
[
p(t− T,B(T ), y) 1{T < t}

]
.

It is easy to verify that thesep∗ are indeed transition densities as claimed.
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Definition 3.31. For transient Brownian motion{B(t) : 0 6 t 6 T} we define the
Green’s functionG : Rd × Rd → [0,∞] by

G(x, y) =

∫ ∞

0

p∗(t, x, y) dt .

The Green’s function is also called theGreen kernel. Sometimes it is also called the
potential kernel, but we shall reserve this terminology for a closely relatedconcept, see
Remark 8.21. �

In probabilistic termsG is the density of theexpectedoccupation measure for the transient
Brownian motion started inx.

Theorem 3.32If f : Rd → [0,∞] is measurable, then

Ex

∫ T

0

f(B(t)) dt =

∫
f(y)G(x, y) dy.

Proof. Fubini’s theorem implies

Ex

∫ T

0

f(B(t)) dt =

∫ ∞

0

Ex
[
f(B(t)) 1{t 6 T}

]
dt =

∫ ∞

0

∫
p∗(t, x, y) f(y) dy dt

=

∫ ∫ ∞

0

p∗(t, x, y) dt f(y) dy =

∫
G(x, y)f(y) dy,

by definition of the Green’s function.

In case (1), i.e. ifT = ∞, Green’s function can be calculated explicitly.

Theorem 3.33If d > 3 andT = ∞, then

G(x, y) = c(d) |x− y|2−d, wherec(d) = Γ(d/2−1)
2πd/2 .

Proof. Assumed > 3 and use the substitutions = |x− y|2/2t to obtain,

G(x, y) =

∫ ∞

0

1

(2πt)d/2
e−|x−y|2/2t dt =

∫ 0

∞

( s

π|x− y|2
)d/2

e−s
(
− |x− y|2

2s2

)
ds

=
|x− y|2−d

2πd/2

∫ ∞

0

s(d/2)−2 e−s ds =
Γ(d/2 − 1)

2πd/2
|x− y|2−d,

whereΓ(x) =
∫∞
0
sx−1e−s ds is the Gamma function. This proves thatG has the given

form and the calculation above also shows that the integral is infinite if d 6 2.

In case (2), if Brownian motion is stopped at an independent exponential time, one can find
the asymptotics ofG(x, y) for x→ y.

Theorem 3.34If d = 2 andT is an independent exponential time with parameterλ > 0,
then

G(x, y) ∼ − 1

π
log |x− y| for |x− y| ↓ 0 .
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Proof. From the explicit form ofp∗ we get

G(x, y) = Gλ(x− y) :=

∫ ∞

0

1

2πt
exp

{
− |x−y|2

2t − λt
}
dt .

We thus getGλ(x − y) = G1(
√
λ(x − y)) and may assume without loss of generality

thatλ = 1. Then

G(x, y) =
1

2π

∫ ∞

0

e−t

t

∫ ∞

|x−y|2/(2t)
e−s ds dt =

1

2π

∫ ∞

0

e−s
∫ ∞

|x−y|2/(2s)

e−t

t
dt ds .

For an upper bound we use that,

∫ ∞

|x−y|2/(2s)

e−t

t
dt 6

{
log 2s

|x−y|2 + 1, if |x− y|2 6 2s,

1, if |x− y|2 > 2s.

For |x− y| 6 1 this gives, withγ̃ :=
∫∞
1
e−s log s ds <∞, a bound of

G(x, y) 6
1

2π

(
1 + log 2 + γ̃ − 2 log |x− y|

)
,

which is asymptotically equal to− 1
π log |x− y|. For a lower bound we use

∫ ∞

|x−y|2/(2s)

e−t

t
dt > log

2s

|x− y|2 − 1,

and thus with0 < γ := −
∫∞
0
e−s log s ds denoting Euler’s constant,

G(x, y) >
1

2π

(
− 1 + log 2 − γ − 2 log |x− y|

)
,

and again this is asymptotically equal to− 1
π log |x− y|.

We now explore some of the major analytic properties of Green’s function.

Theorem 3.35In all three cases of transient Brownian motion ind > 2, the Green’s
functionG : D ×D → [0,∞] has the following properties:

(i) G is finite off and infinite on the diagonal∆ = {(x, y) : x = y}.

(ii) G is symmetric, i.e.G(x, y) = G(y, x) for all x, y ∈ D.

(iii) For anyy ∈ D the Green’s functionG( · , y) is subharmonic onD \ {y}.
Moreover, in case (1) and (3) it is harmonic.

This result is easy in the cased > 3, T = ∞, where the Green’s function is explicitly
known by Theorem 3.33. We prepare the proof ind = 2 by two lemmas of independent
interest.
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Lemma 3.36If d = 2, for x, y, z ∈ R2 with |x− z| = 1,

− 1

π
log |x− y| =

∫ ∞

0

p(s, x, y) − p(s, x, z) ds ,

wherep is the transition kernel for the (unstopped) Brownian motion.

Proof. For |x− z| = 1, we obtain
∫ ∞

0

p(t, x, y) − p(t, x, z) dt =
1

2π

∫ ∞

0

(
e−

|x−y|2
2t − e−

1
2t

) dt
t

=
1

2π

∫ ∞

0

(∫ 1/(2t)

|x−y|2/(2t)
e−s ds

) dt
t
,

and by changing the order of integration this equals

1

2π

∫ ∞

0

e−s
(∫ 1/(2s)

|x−y|2/(2s)

dt

t

)
ds = − 1

π
log |x− y|,

which completes the proof.

Lemma 3.37LetD ⊂ R2 be a bounded domain andx, y ∈ D andT the first exit time
fromD. Then, withu(x) = 2 log |x|,

G(x, y) =
−1

2π
u(x− y) − Ex

[−1

2π
u
(
B(T ) − y

)]
.

Proof. Recall that

p∗(t, x, y) = p(t, x, y) − Ex
[
p(t− T,B(T ), y)1{T < t}

]
.

As p(t, x, x+ v) does not depend onx, we can add

0 = −p(t, x, x+ v) + Ex
[
p(t, B(T ), B(T ) + v)

]

on the right hand side. Integrating overt and using Lemma 3.36 yields the statement.

Proof of Theorem 3.35. We first look at properties (i) and (ii). These are obvious
in the cased > 3, T = ∞, by the explicit form of the Green’s function uncovered in
Theorem 3.33. In the case thatT is an independent exponential time we can see from the
explicit form ofp∗ that the Green’s function is symmetric and finite everywhereexcept on
the diagonal. Moreover note for later reference that in thiscase twice differentiability is
easy to check using dominated convergence.
We now focus on the case where the Brownian motion is stopped upon leaving a bounded
domainD and look at the cased = 2 andd > 3 separately. First letd = 2. Lemma 3.37
gives, forx 6= y, thatG(x, y) <∞. However, we have

Ex[−1/(2π)u(B(T ) − x)] <∞,

henceG(x, x) = ∞ by Lemma 3.37. Ifx ∈ D, thenG(x, · ) is continuous onD \ {x},
because the right hand side of the equation in Lemma 3.37 is continuous. Similarly, if
y ∈ D the right hand side is continuous inx onD \ {y}, asEx[u(B(T )− y)] is harmonic
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in x. HenceG( · , x) is also continuous onD \ {x}. The symmetry follows from the
almost-everywhere symmetry ofp∗(t, · , · ) together with the continuity. Ifd > 3 the same
proof works, replacing−1/(2π)u(x−y) by `(x, y) = c(d)|x−y|2−d. In fact the argument
becomes easier because

`(x, y) =

∫ ∞

0

p(t, x, y) dt , for all x, y ∈ Rd ,

and there is no need to subtract a ‘renormalisation’ term.
Next we investigate (sub-)harmonicity of the Green’s function in all cases. Define

Gε(x, y) :=

∫

B(y,ε)

G(x, z) dz, for B(y, ε) ⊂ D andx ∈ D.

We first prove thatGε(· , y) satisfies the mean value property of subharmonic functions on
D \ B(y, ε), i.e.

Gε(x, y) 6
1

L(B(x, r))

∫

B(x,r)

Gε(z, y) dz, for 0 < r < |x− y| − ε. (3.11)

Indeed, fixx 6= y in D, let 0 < r < |x − y| and ε < |x − y| − r. Denoteτ =

inf{t : |B(t) − x| = r}. As a Brownian motion started inx spends no time inB(y, ε)

before timeτ , we can write

Gε(x, y) = Ex
[
1{τ < T}

∫ T

τ

1{B(t) ∈ B(y, ε)} dt
]
.

From the strong Markov property applied at timeτ , we obtain

Gε(x, y) = Ex
[
1{τ < T}EB(τ)

∫ T̃

0

1{B̃(t) ∈ B(y, ε)} dt
]
,

where the inner expectation is with respect to a transient Brownian motion{B̃(t) : 0 6 t

6 T̃} with the same stopping rule, but started in the fixed pointB(τ). By the strong
Markov property and since, on the eventτ < T , the random variableB(τ) is uniformly
distributed on∂B(x, r), by rotational symmetry, we conclude,

Gε(x, y) = Px
{
τ < T

} ∫

∂B(x,r)

Gε(z, y) d$x,r(z) 6

∫

∂B(x,r)

Gε(z, y) d$x,r(z).

This implies (3.11) and it is also easy to see that in cases (1)and (3) we have equality
in (3.11), as in these casesτ < T with probability one. Focusing on these two cases for
the moment, we obtain using continuity ofG, for x, y ∈ D with |x− y| > r,

G(x, y) = lim
ε↓0

Gε(x, y)

L(B(y, ε))
= lim

ε↓0

1

L(B(x, r))

∫

B(x,r)

Gε(z, y)

L(B(y, ε))
dz

=
1

L(B(x, r))

∫

B(x,r)

G(z, y) dz,

where the last equality follows from the bounded convergence theorem. This proves har-
monicity in cases (1) and (3). In case (2) the same argument still gives (3.11), and we can
infer thatG( · , y) is subharmonic onRd \ {y} as the function is twice differentiable.
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Remark 3.38LetK ⊂ Rd, for d > 3, be a compact set andµ be any measure onK. Then

u(x) =

∫

K

G(x, y) dµ(y), for x ∈ Kc

is a harmonic function onKc. This follows as, by Fubini’s theorem, the mean value prop-
erty ofG( · , y) can be carried over tou. Physically,u(x) is the electrostatic (or Newtonian)
potential atx resulting from a charge represented byµ. The Green functionG( · , y) can
be interpreted as the electrostatic potential induced by a unit charge in the pointy. �

3.4 The harmonic measure

We have seen in the previous section that, for any compact setK ⊂ Rd, d > 3, and any
µ onK functions of the formu(x) =

∫
G(x, y) dµ(y) are positive harmonic functions on

Kc. An interesting question is whether every positive harmonic function onKc can be
represented in such a way by a suitable measureµ on ∂K. The answer can be given in
terms of the harmonic measure.

Definition 3.39. Let {B(t) : t > 0} be ad-dimensional Brownian motion,d > 2, started
in some pointx and fix a closed setA ⊂ Rd. Define a measureµA(x, · ) by

µA(x,B) = P
{
B(τ) ∈ B, τ <∞} whereτ = inf{t > 0: B(t) ∈ A},

for B ⊂ A Borel. In other words,µA(x, · ) is the distribution of the first hitting point of
A, and the total mass of the measure is the probability that a Brownian motion started inx
ever hits the setA. If x 6∈ A the harmonic measure is supported by∂A. �

The following corollary is an equivalent reformulation of Theorem 3.12.

Corollary 3.40 If the Poincaré cone condition is satisfied at every pointx ∈ ∂U on the
boundary of a bounded domainU , then the solution of the Dirichlet problem with boundary
conditionϕ : ∂U → R, can be written as

u(x) =

∫
ϕ(y)µ∂U (x, dy) for all x ∈ U.

Remark 3.41Of course, the harmonicity ofu does not rely on the Poincaré cone condition.
In fact, by Theorem 3.8, for any compactA ⊂ Rd and Borel setB ⊂ ∂A, the function
x 7→ µA(x,B) is harmonic onAc. �

Besides its value in the discussion of the Dirichlet problem, the harmonic measure is also
interesting in its own right, as it intuitively weighs the points ofA according to their acces-
sibility from x. We now show that the measuresµA(x, · ) for different values ofx ∈ Ac

are mutually absolutely continuous. This is a form of the famousHarnack principle.

Theorem 3.42 (Harnack principle) SupposeA ⊂ Rd is compact andx, y are in the
unbounded component ofAc. ThenµA(x, · ) � µA(y, · ).
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Proof. GivenB ⊂ ∂A Borel, by Remark 3.41, the mappingx 7→ µA(x,B) is a
harmonic function onAc. If it takes the value zero for somey ∈ Ac, theny is a minimum
and the maximum principle, Theorem 3.5, together with the subsequent remark, imply that
µA(x,B) = 0 for all x ∈ Ac, as required.

The Harnack principle allows to formulate the following definition.

Definition 3.43. A compact setA is callednonpolar for Brownian motion , or simply
nonpolar, if µA(x,A) > 0 for one (and hence for all)x ∈ Ac. Otherwise, the setA is
calledpolar for Brownian motion . �

We now give an explicit formula for the harmonic measures on the unit sphere∂B(0, 1).
Note that ifx = 0 then the distribution ofB(τ) is (by symmetry) the uniform distribution,
but if x is another point it is an interesting problem to determine this distribution in terms
of a probability density.

Theorem 3.44 (Poisson’s formula)Suppose thatB ⊂ ∂B(0, 1) is a Borel subset of the
unit sphere ford > 2. Let$ denote the uniform distribution on the unit sphere. Then, for
all x 6∈ ∂B(0, 1),

µ∂B(0,1)(x,B) =

∫

B

∣∣1 − |x|2
∣∣

|x− y|d d$(y).

Remark 3.45The density appearing in the theorem is usually called thePoisson kernel
and appears frequently in potential theory. �

Proof. We start by looking at the case|x| < 1. Recall thatτ denotes the first hitting
time of the set∂B(0, 1). To prove the theorem we indeed show that for every bounded
measurablef : Rd → R we have

Ex[f(B(τ))] =

∫

∂B(0,1)

1 − |x|2
|x− y|d f(y) d$(y), (3.12)

which on the one hand implies the formula by choosing indicator functions, on the other
hand, by the monotone class theorem, see e.g. Chapter 5, (1.5), in [Du95], it suffices to
show this for smooth functionsf . To prove (3.12) we recall Theorem 3.12, which tells us
that we just have to show that the right hand side as a functionin x ∈ B(0, 1) defines a
solution of the Dirichlet problem onB(0, 1) with boundary valuef .
Straightforward (double) differentiation shows that, foreveryy ∈ ∂B(0, 1), the mapping

x 7→ 1 − |x|2
|x− y|d

is harmonic onB(0, 1). Using the characterisation of harmonic functions via the mean
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value property, Theorem 3.2, we get for any ballB(z, r) ⊂ B(0, 1),

1

σz,r(∂B(z, r))

∫

∂B(z,r)

(∫

∂B(0,1)

1 − |x|2
|x− y|d f(y) d$(y)

)
dσz,r(x)

=

∫

∂B(0,1)

(
1

σz,r(∂B(z, r))

∫

∂B(z,r)

1 − |x|2
|x− y|d dσz,r(x)

)
f(y) d$(y)

=

∫

∂B(0,1)

1 − |z|2
|z − y|d f(y) d$(y),

by Fubini’s theorem, which implies the required harmonicity. To check the boundary con-
dition first look at the casef ≡ 1, in which case we have to show that, for allx ∈ B(0, 1),

I(x) :=

∫

∂B(0,1)

1 − |x|2
|x− y|d $(dy) ≡ 1.

Indeed, observe thatI(0) = 1, I is invariant under rotation and∆I = 0 onB(0, 1), by the
first part. Now letx ∈ B(0, 1) with |x| = r < 1 and letτ := inf{t : |B(t)| > r}. By
Theorem 3.12,

I(0) = E0

[
I(B(τ))

]
= I(x) ,

using rotation invariance in the second step. HenceI ≡ 1, as required.
Now we show that the right hand side in the theorem can be extended continuously to all
pointsy ∈ ∂B(0, 1) by f(y). We writeD0 for ∂B(0, 1) with a δ-neighbourhoodB(y, δ)

removed andD1 = ∂B(0, 1) \D0 = ∂B(0, 1) ∩ B(y, δ). We have, using thatI ≡ 1, for
all x ∈ B(y, δ/2) ∩ B(0, 1),

∣∣∣f(y) −
∫

∂B(0,1)

1 − |x|2
|x− z|d f(z) d$(z)

∣∣∣

=
∣∣∣
∫

∂B(0,1)

1 − |x|2
|x− z|d (f(y) − f(z)) d$(z)

∣∣∣

6 2‖f‖∞
∫

D0

1 − |x|2
|x− z|d d$(z) + sup

z∈D1

|f(y) − f(z)|.

For fixedδ > 0 the first term goes to0 asx → y by dominated convergence, whereas
the second can be made arbitrarily small by choice ofδ. This completes the proof if
x ∈ B(0, 1).
If |x| > 1 we use inversion at the unit circle to transfer the problem tothe case studied
before. Indeed, it is not hard to check that a function

u : B(0, 1)
c → R

is harmonic if and only if its inversion

u∗ : B(0, 1) \ {0} → R, u∗(x) = u
(
x

|x|2
)
|x|2−d,

is harmonic, see Exercise 3.2. Now suppose thatf : ∂B(0, 1) → R is a smooth function
on the boundary. Then define a harmonic function

u : B(0, 1)
c → R, u(x) = Ex

[
f
(
B(τ(∂B(0, 1)))

)
1
{
τ(∂B(0, 1)) <∞

}]
.
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Thenu∗ : B(0, 1) \ {0} → R is bounded and harmonic. By Exercise 3.11 we can extend
it to the origin, so that the extension is harmonic onB(0, 1). In fact, this extension is
obviously given byu∗(0) =

∫
f d$. The harmonic extension is continuous on the closure,

with boundary values given byf . Hence it agrees with the function of the first part, and
u = u∗∗ must be its inversion, which gives the claimed formula.

We now fix a compact nonpolar setA ⊂ Rd, and look at the harmonic measureµA(x, · )
whenx→ ∞. The first task is to make sure that the limit object is well-defined.

Theorem 3.46Let A ⊂ Rd be a compact, nonpolar set, then there exists a probability
measureµA onA, given by

µA(B) = lim
x→∞

Px
{
B(τ(A)) ∈ B | τ(A) <∞

}
for B ⊂ A Borel.

This measure is called theharmonic measure(from infinity).

Remark 3.47The harmonic measure weighs the points ofA according to their accessibility
from infinity. It is naturally supported by theouter boundaryof A, which is the boundary
of the infinite connected component ofRd \A. �

The proof is prepared by a lemma, which is yet another examplehow the strong Markov
property can be exploited to great effect.

Lemma 3.48For A ⊂ Rd compact and nonpolar and everyε > 0, there exists a large
R > 0 such that, for allx ∈ ∂B(0, R) and any hyperplaneH ⊂ Rd containing the origin,

Px
{
τ(A) < τ(H)

}
< εPx

{
τ(A) <∞

}
.

Proof. Fix a radiusr > 0 such thatA ⊂ B(0, r). Suppose there exists a large radius
R > r such that, for allx ∈ ∂B(0, R),

Px
{
τ(B(0, r)) < τ(H)

}
< εPx

{
τ(B(0, r)) <∞

}
. (3.13)

Then, using the strong Markov property,

Px
{
τ(A) < τ(H)

}
6 Ex

[
1{τ(B(0, r)) < τ(H)}PB(τ(B(0,r))){τ(A) <∞}

]
.

Now recall from Remark 3.41 thatx 7→ Px{τ(A) < ∞} is harmonic onAc. Hence the
ratio of any two values of this function on the compact set∂B(0, r) is bounded by a fixed
constantC > 0, independent ofε > 0. Therefore, using (3.13) in the second step,

Px
{
τ(A) < τ(H)

}
6 C Ex

[
1{τ(B(0, r)) < τ(H)} min

z∈∂B(0,r)
Pz{τ(A) <∞}

]

< εC Px{τ(A) <∞},
from which the result follows.
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It remains to show (3.13). Observe that there exists an absolute constantq < 1 such that,
for anyx ∈ ∂B(0, 2) and hyperplaneH,

Px
{
τ(B(0, 1)) < τ(H)

}
< q Px

{
τ(B(0, 1)) <∞

}
.

Let k be large enough to ensure thatqk < ε. Then, by the strong Markov property and
Brownian scaling,

sup
x∈∂B(0,r2k)

Px
{
τ(B(0, r)) < τ(H)

}

6 sup
x∈∂B(0,r2k)

Ex
[
1{τ(B(0, r2k−1)) < τ(H)}

× PB(τ(B(0,r2k−1)))

{
τ(B(0, r)) < τ(H)

}]

6 q sup
x∈∂B(0,r2k)

Px
{
τ(B(0, r2k−1)) <∞

}

× sup
x∈∂B(0,r2k−1)

Px
{
τ(B(0, r)) < τ(H)}.

Iterating this and lettingR = r2k gives

sup
x∈∂B(0,R)

Px
{
τ(B(0, r)) < τ(H)

}
6 qk

k∏

j=1

sup
x∈∂B(0,r2j)

Px
{
τ(B(0, r2j−1)) <∞

}

= qk sup
x∈∂B(0,R)

Px
{
τ(B(0, r)) <∞

}
,

as required to complete the proof.

Proof of Theorem 3.46. Let x, y ∈ ∂B(0, r) andH be the hyperplane through the
origin, which is orthogonal tox − y. If {B(t) : t > 0} is a Brownian motion started inx,
define{B(t) : t > 0} the Brownian motion started iny, obtained by definingB(t) as the
reflection ofB(t) atH, for all timest 6 τ(H), andB(t) = B(t) for all t > τ(H). This
coupling gives, for everyε > 0 and sufficiently larger,

∣∣µA(x,B) − µA(y,B)
∣∣ 6 Px

{
τ(A) < τ(H)

}
6 εµA(x,A),

using Lemma 3.48 for the last inequality. In particular, we get |µA(x,A) − µA(y,A)|
6 εµA(x,A). Next, let|z| > r and apply the strong Markov property to obtain

µA(x,B)

µA(x,A)
− µA(z,B)

µA(z,A)
=

∫ ( µA(x,B)

µB(0,r)(z,B(0, r))µA(x,A)
− µA(y,B)

µA(z,A)

)
µB(0,r)(z, dy)

=
1

µA(z,A)

∫ (
µA(x,B)

µA(z,A)

µB(0,r)(z,B(0, r))µA(x,A)
− µA(y,B)

)
µB(0,r)(z, dy)

6
1

µA(z,A)

∫ (
µA(x,B) (1 + ε) − µA(y,B)

)
µB(0,r)(z, dy),

where we used that

µA(z,A) =

∫
µB(0,r)(z, dy)µA(y,A) 6 (1 + ε)µB(0,r)(z,B(0, r))µA(x,A).
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This leads to the estimate

µA(x,B)

µA(x,A)
− µA(z,B)

µA(z,A)
6 ε

µA(z,B)

µA(z,A)
+ ε(1 + ε)

µA(x,A)

µA(z,A)
6 ε+ ε(1 + ε)2.

Similarly, we obtain

µA(x,B)

µA(x,A)
− µA(z,B)

µA(z,A)
>

1

µA(z,A)

∫ (
µA(x,B) (1 − ε) − µA(y,B)

)
µB(0,r)(z, dy),

and from this

µA(x,B)

µA(x,A)
− µA(z,B)

µA(z,A)
> − ε

µA(z,B)

µA(z,A)
− ε(1 + ε)

µA(x,A)

µA(z,A)
> − ε− ε(1 + ε)2.

As ε > 0 was arbitrary, this implies thatµA(x,B)/µA(x,A) converges asx→ ∞.

Example 3.49For any ballB(x, r) the harmonic measureµB(x,r) is equal to the uniform
distribution$x,r on∂B(x, r). Indeed, note that, for allR > r, we have

$x,r( · ) = C(R)

∫

∂B(x,R)

µB(x,r)(y, · )d$x,R(y),

whereC(R) is a normalizing constant, because the two balls are concentric, and both
sides of the equation are rotationally invariant finite measures on the sphere∂B(x, r)

and hence multiples of each other. LettingR ↑ ∞, we obtain from Theorem 3.46, that
$x,r = µB(x,r). �

The following surprising theorem shows that the harmonic measure from infinity can also
be obtained without this limiting procedure.

Theorem 3.50LetA ⊂ Rd be a nonpolar compact set, and supposeB(x, r) ⊃ A, let$x,r

be the uniform distribution on∂B(x, r). Then we have, for any Borel setB ⊂ A,

µA(B) =

∫
µA(a,B) d$x,r(a)∫
µA(a,A) d$x,r(a)

.

Remark 3.51The surprising fact here is that the right hand side doesnot dependon the
choice of the ballB(x, r). �

The crucial observation behind this result is that, starting a Brownian motion in a uniformly
chosen point on the boundary of a sphere, the first hitting point of any ball inside that
sphere, if it exists, is again uniformly distributed, see Figure 3.2.

Lemma 3.52LetB(x, r) ⊂ B(y, s) andB ⊂ ∂B(x, r) Borel. Then
∫
µ∂B(x,r)(a,B) d$y,s(a)∫

µ∂B(x,r)(a, ∂B(x, r)) d$y,s(a)
= $x,r(B).
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Fig. 3.2. Starting Brownian motion uniformly on the big circle, the distribution of the first hitting
point on the small circle is also uniform.

Proof. By Example 3.49 we have$y,s = µ∂B(y,s) and hence, for the normalisation
constantc(R) := 1/

∫
µ∂B(y,s)(a, ∂B(y, s)) d$x,R(a), we have

$y,s( · ) = lim
R↑∞

c(R)

∫
µ∂B(y,s)(a, · ) d$x,R(a) .

Hence, for anyB ⊂ ∂B(x, r) Borel, using the Markov property in the second step,
∫
µ∂B(x,r)(a,B) d$y,s(a) = lim

R↑∞
c(R)

∫∫
µ∂B(x,r)(a,B)µ∂B(y,s)(b, da) d$x,R(b)

= lim
R↑∞

c(R)

∫
µ∂B(x,r)(b,B) d$x,R(b)

= C $x,r(B) ,

for a suitable constantC, becauseB(x,R) andB(x, r) are concentric. By substituting
B = ∂B(x, r) into the equation, we see that the constant must be as claimedin the state-
ment.

Proof of Theorem 3.50. Assume thatB(x, r) andB(y, s) are two balls containingA.
We may then find a ballB(z, t) containing both these balls. Using Lemma 3.52 and the
strong Markov property applied to the first hitting ofB(x, r) we obtain, for anyB ⊂ A,

∫
µA(a,B) d$x,r(a) = c1

∫ ∫
µA(a,B)µB(x,r)(b, da) d$z,t(b)

= c1

∫
µA(b,B) d$z,t(b) = c1

∫ ∫
µA(a,B)µB(y,s)(b, da) d$z,t(b)

= c2

∫
µA(a,B) d$y,s(a),

for suitable constantsc1, c2 depending only on the choice of the balls. ChoosingB = A
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gives the normalisation constant

c2 =

∫
µA(a,A) d$x,r(a)∫
µA(a,A) d$y,s(a)

,

and this shows that the right hand side in Theorem 3.50 is independent of the choice of the
enclosing ball. Hence it must stay constant asr → ∞, which completes the proof.

Exercises

Exercise 3.1.Show that, ifu : U → R is subharmonic, then

u(x) 6
1

L(B(x, r))

∫

B(x,r)

u(y) dy for any ballB(x, r) ⊂ U .

Conversely, show that any twice differentiable functionu : U → R satisfying (3.3) is sub-
harmonic. Also give an example of a discontinuous functionu satisfying (3.3).

Exercise 3.2.Let d > 2. Show that a functionu : B(0, 1)
c → R is harmonic if and only if

its inversion

u∗ : B(0, 1) \ {0} → R, u∗(x) = u
(
x

|x|2
)
|x|2−d

is harmonic.

Exercise 3.3.S Supposeu : B(x, r) → R is harmonic and bounded byM . Show that the
kth order partial derivatives are bounded by a constant multiple ofMr−k.

Exercise 3.4.Prove the cased = 1 in Theorem 3.20.

Exercise 3.5.S Prove the strong form of thePaley–Zygmund inequality:
For any nonnegative random variableX with E[X2] <∞ andλ ∈ [0, 1),

P
{
X > λE[X]

}
> (1 − λ)2

E[X]2

E[X2]
.

Exercise 3.6.Prove theKochen–Stone lemma: SupposeE1, E2, . . . are events with

∞∑

n=1

P(En) = ∞ and lim inf
k→∞

∑k
m=1

∑k
n=1 P(En ∩ Em)

(∑k
n=1 P(En)

)2 <∞ .

Then, with positive probability, infinitely many of the events take place.
Hint. Apply the Paley–Zygmund inequality toX = lim infn→∞ 1En

.
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Exercise 3.7.S Suppose thatu is a radial harmonic function on the annulus

D = {x ∈ Rd : r < |x| < R},

where radial meansu(x) = ũ(|x|) for some functioñu : (r,R) → R and allx. Suppose
further thatu is continuous on̄D. Show that,

• if d > 3, there exist constantsa andb such thatu(x) = a+ b|x|2−d;
• if d = 2, there exist constantsa andb such thatu(x) = a+ b log |x|.

Exercise 3.8.S Show that any positive harmonic function onRd is constant.

Exercise 3.9. Let H be a hyperplane inRd and let{B(t) : t > 0} be ad-dimensional
Brownian motion. Forz ∈ Rd, show that

sup
t>0

Ez
[
|B(t)| 1{t < τ(H)}

]
<∞.

Hint. We may assume thatH is the hyperplane{x1 = 0} andz1 > 0. Bound thè 2-norm
by the`1-norm. IfB(t) = (B1(t), ..., Bd(t)), the estimate forEz[|Bj(t)|1{t < τ(H)}]
when j > 1 follows from the tails ofτ(H). The estimate forB1 reduces to the one-
dimensional setting, where the reflection principle yieldsthe density ofB(t)1{t < τ(0)}.

Exercise 3.10.Let u be a harmonic function onRd such that|u(x)|
|x| → 0 asx→ ∞.

Show thatu is constant.
Hint. Follow the proof of Theorem 3.16, and use Exercise 3.9.

Exercise 3.11.S Let D ⊂ Rd be a domain andx ∈ D. Supposeu : D \ {x} → R is
bounded and harmonic. Show that there exists a unique harmonic continuationu : D → R.

Exercise 3.12.Let f : (0, 1) → (0,∞) with t 7→ f(t)/t decreasing. Then
∫ 1

0

f(r)d−2r−d/2 dr <∞ if and only if lim inf
t↓0

|B(t)|
f(t)

= ∞ almost surely.

Conversely, if the integral diverges, thenlim inft↓0 |B(t)|/f(t) = 0 almost surely.

Exercise 3.13. Show that, ifd > 3 andT is an independent exponential time with
parameterλ > 0, then

G(x, y) ∼ c(d) |x− y|2−d for |x− y| ↓ 0 ,

wherec(d) is as in Theorem 3.33.

Exercise 3.14.S Show that ifD is a bounded domain, then the Green’s function

G :
(
D ×D

)
\ ∆

is continuous, where∆ = {(x, x) : x ∈ D} is the diagonal.
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Exercise 3.15.S Find the Green’s function for the planar Brownian motion stopped when
leaving the domainB(0, R).

Exercise 3.16.S Supposex, y 6∈ B(0, r) andA ⊂ B(0, r) is a compact, nonpolar set. Show
that µA(x, · ) andµA(y, · ) are mutually absolutely continuous with a density bounded
away from zero and infinity.

Exercise 3.17.S SupposeK ⊂ R2 is a compact set. TheKallianpur–Robbins lawstates
that, for a standard planar Brownian motion{Bt : t > 0},

∫ t
0

1K(Bt) dt

log t

d−→ X, ast ↑ ∞,

whereX has an exponential distribution with meanL(K)
2π .

(a) Fix radii 0 < r1 < r2 and define stopping timesτ0 = 0 and

τ2k+i = inf
{
t > τ2k+i−1 : |B(t)| = ri} for integersk > 0 andi ∈ {1, 2}.

For anyR > r2 denote

N(R) = sup{k ∈ N : sup
06t6τ2k

|B(t)| < R
}
.

Show that

N(R)

logR

d−→ Y asR ↑ ∞,

whereY has an exponential distribution with parameterlog(r2/r1).

(b) Show that, for a Brownian motion{B(t) : t > 0} started uniformly on∂B(0, r1)

and stopped at the first timeτ when they reach∂B(0, r2) we have

E
∫ τ

0

1K
(
B(s)

)
ds = log

(
r2
r1

) L(K)
π .

(c) Use(a), (b) and the law of large numbers to show that, forK = B(0, 1),

∫ T (R)

0
1K(Bt) dt

logR

d−→ X, asR ↑ ∞,

whereX has an exponential distribution with meanL(K)
π .

(d) Use(c) to prove the Kallianpur–Robbins law in the caseK = B(0, 1).

A modification of this technique can also be used to prove the Kallianpur–Robbins
law for arbitrary compact setsK. If you want to try, see for example Section 3
in [Mö00] for a good hint.
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Notes and comments

Gauss discusses the Dirichlet problem in [Ga40] in a paper onelectrostatics. Examples
which show that a solution may not exist for certain domains were given by Zaremba [Za11]
and Lebesgue [Le24]. Zaremba’s example is the punctured disc we discuss in Exam-
ple 3.15, and Lebesgue’s example is the thorn, which we will discuss in Example 8.40.
For domains with smooth boundary the problem was solved by Poincaré [Po90]. The
Dirichlet problem will be revisited in Chapter 8.

Bachelier [Ba00, Ba01] was the first to note a connection of Brownian motion and the
Laplace operator. The first probabilistic approaches to theDirichlet problem were made
by Phillips and Wiener [PW23] and Courant, Friedrichs and Lewy [CFL28]. These proofs
used probability in a discrete setting and approximation. The treatment of the Dirichlet
problem using Brownian motion and the probabilistic definition of the harmonic mea-
sure are due to the pioneering work of Kakutani [Ka44a, Ka44b, Ka45]. Further rela-
tionships between Brownian motion and partial differential equations are the subject of
the Feynman–Kac formulas explored later in this book, see Section 7.7.4, and can also be
found in Durrett [Du84]. A current survey of probabilistic methods in analysis can be found
in the book of Bass [Ba95], see also Rao [Ra77], Port and Stone[PS78] or Doob [Do84]
for classical references.

Pólya [Po21] discovered that a simple symmetric random walkon Zd is recurrent for
d 6 2 and transient otherwise. His result was later extended to Brownian motion by
Lévy [Le40] and Kakutani [Ka44a]. Neighbourhood recurrence implies, in particular, that
the path of a planar Brownian motion (running for an infinite amount of time) is dense in
the plane. A more subtle question is whether ind > 3 all orthogonal projections of ad-
dimensional Brownian motion are neighbourhood recurrent,or equivalently whether there
is an infinite cylinder avoided by its range. In fact, an avoided cylinder does exist almost
surely. This result is due to Adelman, Burdzy and Pemantle [ABP98]. The Dvoretzky–
Erdős test is originally from [DE51] and more information and additional references can
be found in Pruitt [Pr90]. There is also an analogous result for planar Brownian motion
(with shrinking balls) which is due to Spitzer [Sp58].

Green introduced the function named after him in [Gr28]. Itsprobabilistic interpreta-
tion appears in Kac’s paper [Ka51] and is investigated thoroughly by Hunt [Hu56]. Quite
a lot can be said about the transition densities:p∗(t, · , · ) is jointly continuous onD ×D

and symmetric in the space variables. Moreover,p∗(t, x, y) vanishes if eitherx or y is on
the boundary ofD, if this boundary is sufficiently regular. This is, of course, only difficult
in case (3) and full proofs for this case can be found in Bass [Ba95] or in the classical book
of Port and Stone [PS78].

Poisson’s formula for the harmonic measure on a sphere is named after the French
mathematician Siméon-Denis Poisson. The functionu∗ defined by inversion on a sphere,
which we used in the proof, is also known as Kelvin transform of u, see also II.1 in
Bass [Ba95].
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The Kallianpur-Robbins law, first proved by Kallianpur and Robbins in [KR53], gives
the limiting distribution of the scaled occupation times ofrecurrent Brownian motions.
Exercise 3.17 gives the two-dimensional case, in which the limiting distribution is expo-
nential, in the one-dimensional case the limiting distribution is a one-sided normal distri-
bution. A substantial extension of this law was given by Darling and Kac in [DK57]. This
leads to the study of additive functionals of Brownian motion, see Chapter X in [RY94]. A
study of almost-sure Kallianpur-Robbins laws can be found in [Mö00].
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Hausdorff dimension: Techniques and applications

Dimensions are a tool to measure the size of mathematical objects on a crude scale. For
example, in classical geometry one can use dimension to see that a line segment (a one-
dimensional object) is smaller than the surface of a ball (a two-dimensional object), but
there is no difference between line-segments of different lengths. It may therefore come
as a surprise that dimension is able to distinguish the size of so many objects in probabil-
ity theory. In this chapter we first introduce a suitably general notion of dimension, the
Hausdorff dimension. We then describe general techniques to calculate the Hausdorff di-
mension of arbitrary subsets ofRd, and apply these techniques to the graph and zero set
of Brownian motion in dimension one, and to the range of higher dimensional Brownian
motion. Lots of further examples will follow in subsequent chapters.

4.1 Minkowski and Hausdorff dimension

4.1.1 The Minkowski dimension

How can we capture the dimension of a geometric object? One requirement for a useful
definition of dimension is that it should beintrinsic. This means that it should be inde-
pendent of an embedding of the object in an ambient space likeRd. Intrinsic notions of
dimension can be defined in arbitrary metric spaces.
SupposeE is a bounded metric space with metricρ. Here bounded means that the diameter
|E| = sup{ρ(x, y) : x, y ∈ E} of E is finite. The example we have in mind is a bounded
subset ofRd. The definition of Minkowski dimension is based on the notionof acovering
of the metric spaceE. A coveringof E is a finite or countable collection of sets

E1, E2, E3, . . . with E ⊂
∞⋃

i=1

Ei .

Define, forε > 0,

M(E, ε) = min
{
k > 1: there exists a finite covering

E1, . . . , Ek of E with |Ei| 6 ε for i = 1, . . . , k
}
,

(4.1)

where|A| is the diameter of a setA ⊂ E. Intuitively, whenE has dimensions the number
M(E, ε) should be of orderε−s. This can be verified in simple cases like line segments,
planar squares, etc. This intuition motivates the definition of Minkowski dimension.

96
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Definition 4.1. For a bounded metric spaceE we define thelower Minkowski dimension
as

dimME := lim inf
ε↓0

logM(E, ε)

log(1/ε)
,

and theupper Minkowski dimension as

dimME := lim sup
ε↓0

logM(E, ε)

log(1/ε)
.

We always havedimME 6 dimME, but equality need not hold. If it holds we write

dimM E := dimME = dimME.
�

Remark 4.2 If E is a subset of the unit cube[0, 1]d ⊂ Rd then let

M̃n(E) = #
{
Q ∈ Dn : Q ∩ E 6= ∅

}

be the number of dyadic cubes of side length2−n which hitE. Then there exists a constant
C(d) > 0, not depending onE, such that

M̃n(E) > M(E,
√
d 2−n) > C(d) M̃n(E).

Hence

dimME := lim sup
n↑∞

log M̃n(E)

n log 2
and dimME := lim inf

n↑∞

log M̃n(E)

n log 2
. �

Example 4.3 In Exercise 4.1, we calculate the Minkowski dimension of a deterministic
‘fractal’, the (ternary) Cantor set,

C =
{ ∞∑

i=1

xi
3i

: xi ∈ {0, 2}
}
⊂ [0, 1] .

This set is obtained from the unit interval[0, 1] by first removing the middle third, and then
successively the middle third out of each remaining interval ad infinitum, see Figure 4.1
for the first three stages of the construction. �

Remark 4.4 There is an unpleasant limitation of Minkowski dimension: Observe that
singletonsS = {x} have Minkowski dimension0, but we shall see in Exercise 4.2 that the
set

E :=
{

1
n : n ∈ N

}
∪
{
0
}

has positive dimension. Hence the Minkowski dimension doesnot have thecountable
stability property

dim

∞⋃

k=1

Ek = sup
{

dimEk : k > 1
}
.

This is one of the properties we expect from a reasonable concept of dimension. There are
two ways out of this problem.
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1

1/9 1/3 1/9

Fig. 4.1. The ternary Cantor set is obtained by removing the middle third from each interval. The
figure shows the first three steps of the infinite procedure.

(i) One can use a notion of dimension taking variations of the size in the different sets
in a covering into account. This captures finer details of theset and leads to the
notion ofHausdorff dimension.

(ii) One can enforce the countable stability property by subdividing every set in count-
ably many bounded pieces and taking the maximal dimension ofthem. The infi-
mum over the numbers such obtained leads to the notion ofpacking dimension.

We follow the first route now, but come back to the second routelater in the book. �

4.1.2 The Hausdorff dimension

The Hausdorff dimension and Hausdorff measure were introduced by Felix Hausdorff in
1919. Like the Minkowski dimension, Hausdorff dimension can be based on the notion of
a covering of the metric spaceE. For the definition of the Minkowski dimension we have
evaluated coverings crudely by counting the number of sets in the covering. Now we also
allow infinite coverings and take the size of the covering sets, measured by their diameter,
into account.
Looking back at the example of Exercise 4.2 one can see that the setE = {1/n : n > 1}∪
{0} can be covered much more effectively, if we decrease the sizeof the balls as we move
from right to left. In this example there is a big difference between evaluations of the
covering which take into account that we use small sets in thecovering, and the evaluation
based on just counting the number of sets used to cover.
A very useful evaluation is theα-value of a covering. For everyα > 0 and covering
E1, E2, . . . we say that theα-value of the covering is

∞∑

i=1

|Ei|α .
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The terminology of theα-values of a covering allows to formulate a concept of dimension,
which is sensitive to the effect that the fine features of thisset occur in different scales at
different places.

Definition 4.5. For everyα > 0 theα-Hausdorff content of a metric spaceE is defined
as

Hα
∞(E) = inf

{ ∞∑

i=1

|Ei|α : E1, E2, . . . is a covering ofE
}
,

informally speaking theα-value of the most efficient covering. If0 6 α 6 β, and
Hα

∞(E) = 0, then alsoHβ
∞(E) = 0. Thus we can define

dimE = inf
{
α > 0: Hα

∞(E) = 0
}

= sup
{
α > 0: Hα

∞(E) > 0
}
,

theHausdorff dimensionof the setE. �

Remark 4.6 The Hausdorff dimension may, of course, be infinite. But it iseasy to see
that subsets ofRd have Hausdorff dimension no larger thand. Moreover, in Exercise 4.3
we show that for every bounded metric space, the Hausdorff dimension is bounded from
above by the lower Minkowski dimension. Finally, in Exercise 4.4 we check that Hausdorff
dimension has the countable stability property. �
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Fig. 4.2. The ball, sphere and line segment pictured here all have1-Hausdorff content equal to one.

The concept of theα-Hausdorff content plays an important part in the definitionof the
Hausdorff dimension. However, it does not help distinguishthe size of sets of the same di-
mension. For example, the three sets sketched in Figure 4.2 all have the same1-Hausdorff
content: the ball and the sphere on the left can be covered by aball of diameter one, so
that their1-Hausdorff content is at most one, but the line segment on theright also does
not permit a more effective covering and its1-Hausdorff content is also1. Therefore,
one considers a refined concept, theHausdorff measure. Here the idea is to consider only
coverings bysmallsets.
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Definition 4.7. LetX be a metric space andE ⊂ X. For everyα > 0 andδ > 0 define

Hα
δ (E) = inf

{ ∞∑

i=1

|Ei|α : E1, E2, E3, . . . coverE, and|Ei| 6 δ
}
,

i.e. we are considering coverings ofE by sets of diameter no more thanδ. Then

Hα(E) = sup
δ>0

Hα
δ (E) = lim

δ↓0
Hα
δ (E)

is theα-Hausdorff measureof the setE. �

Remark 4.8 Theα-Hausdorff measure has two obvious properties which, together with
Hα(∅) = 0, make it anouter measure. These arecountable subadditivity,

Hα
( ∞⋃

i=1

Ei

)
6

∞∑

i=1

Hα(Ei) , for any sequenceE1, E2, E3, . . . ⊂ X ,

andmonotonicity,

Hα(E) 6 Hα(D), if E ⊂ D ⊂ X . �

One can express the Hausdorff dimension in terms of the Hausdorff measure.

Proposition 4.9For every metric spaceE we have

Hα(E) = 0 ⇔ Hα
∞(E) = 0

and therefore

dimE = inf{α : Hα(E) = 0} = inf{α : Hα(E) <∞}
= sup{α : Hα(E) > 0} = sup{α : Hα(E) = ∞} .

Proof. Suppose first thatHα
∞(E) = c > 0, which clearly impliesHα

δ (E) > c for
all δ > 0. Hence,Hα(E) > c > 0. Conversely, ifHα

∞(E) = 0, for everyδ > 0 there
exists a covering by setsE1, E2, . . . with

∑∞
k=1 |Ek|α < δ. These sets have diameter

less thanδ1/α, henceHα
δ1/α(E) < δ and lettingδ ↓ 0 yieldsHα(E) = 0, proving the

claimed equivalence. The equivalence readily implies thatdimE = inf{α : Hα(E) =

0} = sup{α : Hα(E) > 0}.

To verify the alternative representations it suffices to show that Hα(E) < ∞ implies
Hβ(E) = 0 for all β > α. So supposeHα(E) = C < ∞. Givenδ > 0 there exists a
covering by setsE1, E2, . . . with diameter less thanδ andα-value not more thanC + 1,
whenceHα

δ (E) 6 C + 1. Note thatHβ
δ (E) 6 δβ−αHα

δ (E) 6 δβ−α(C + 1). Letting
δ ↓ 0 impliesHβ(E) = 0.
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Remark 4.10As Lipschitz maps increase the diameter of sets by at most a constant, the
image of any setA ⊂ E under a Lipschitz map has at most the Hausdorff dimension ofA.
This observation is particularly useful for projections. �

A natural generalisation of the last remark arises when we look at the effect of Hölder
continuous maps on the Hausdorff dimension.

Definition 4.11. Let 0 < α 6 1. A function f : (E1, ρ1) → (E2, ρ2) between metric
spaces is calledα-Hölder continuous if there exists a (global) constantC > 0 such that

ρ2

(
f(x), f(y)

)
6 C ρ1

(
x, y
)α

for all x, y ∈ E1 .

A constantC as above is sometimes calledHölder constant. �

Remark 4.12Hölder continuous maps allow some control on the Hausdorff measure of
images: We show in Exercise 4.6 that, iff : (E1, ρ1) → (E2, ρ2) is surjective andα-
Hölder continuous with constantC, then for anyβ > 0,

Hβ(E2) 6 CβHαβ(E1),

and thereforedim(E2) 6
1
α dim(E1). �

4.1.3 Upper bounds on the Hausdorff dimension

We now give general upper bounds for the dimension of graph and range of functions,
which are based on Hölder continuity.

Definition 4.13. For a functionf : A→ Rd, forA ⊂ [0,∞), we define thegraph to be

Graphf (A) =
{
(t, f(t)) : t ∈ A

}
⊂ Rd+1,

and therangeor path to be

Rangef (A) = f(A) =
{
f(t) : t ∈ A

}
⊂ Rd. �

Proposition 4.14Supposef : [0, 1] → Rd is anα-Hölder continuous function. Then

(a) dim
(
Graphf [0, 1]

)
6 1 + (1 − α)

(
d ∧ 1

α

)
,

(b) and, for anyA ⊂ [0, 1], we havedimRangef (A) 6
dimA
α .

Proof. Sincef isα-Hölder continuous, there exists a constantC such that, ifs, t ∈ [0, 1]

with |t− s| 6 ε, then|f(t) − f(s)| 6 Cεα. Cover[0, 1] by no more thand1/εe intervals
of lengthε. The image of each such interval is then contained in a ball ofdiameter2Cεα.
One can now

• either cover each such ball by no more than a constant multiple ofεdα−d balls of dia-
meterε,
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• or use the fact that subintervals of length(ε/C)1/α in the domain are mapped into balls
of diameterε to cover the image inside the ball by a constant multiple ofε1−1/α balls of
radiusε.

In both cases, look at the cover of the graph consisting of theproduct of intervals and
corresponding balls of diameterε. The first construction needs a constant multiple of
εdα−d−1 product sets, the second usesε−1/α product sets, all of which have diameter of
orderε. This gives the upper bounds for (a), while (b) follows from Remark 4.12.

Remark 4.15By countable stability of Hausdorff dimension, the statements of Proposi-
tion 4.14 remain true iff : [0,∞) → Rd is only locally α-Hölder continuous. �

We now take a first look at dimensional properties of Brownianmotion and harvest the
results from our general discussion so far. We have shown in Corollary 1.20 that linear
Brownian motion is everywhere locallyα-Hölder continuous for anyα < 1/2, almost
surely. This extends obviously tod-dimensional Brownian motion, and this allows us to
get an upper bound on the Hausdorff dimension of its range andgraph. For convenience,
when referring to Brownian motion, we drop the reference to the function in the subindex
of Graphf (A) andRangef (A).

Corollary 4.16 For any fixed setA ⊂ [0,∞) the graph of ad-dimensional Brownian
motion satisfies, almost surely,

dim
(
Graph(A)

)
6

{
3/2 if d = 1,

2 if d > 2 .

and its range satisfies, almost surely,

dim Range(A) 6 (2 dimA) ∧ d.

Remark 4.17The correspondinglower boundsfor the Hausdorff dimension ofGraph(A)

andRange(A) are more subtle and will be discussed in Section 4.4.3, when we have more
sophisticated tools at our disposal. Our upper bounds also hold for the Minkowski dimen-
sion, see Exercise 4.7, and corresponding lower bounds are easier than in the Hausdorff
case and obtainable at this stage, see Exercise 4.10. �

Corollary 4.16 does not make any statement about the2-Hausdorff measure of the range,
and any such statement requires more information than the Hölder exponent alone can
provide, see for example Exercise 4.9. It is however not difficult to show that, ford > 2,

H2
(
B([0, 1])

)
<∞ almost surely. (4.2)

Indeed, for anyn ∈ N, we look at the covering ofB([0, 1]) by the closure of the balls

B
(
B( kn ), max

k
n 6t6 k+1

n

∣∣B(t) −B( kn )
∣∣
)
, k ∈ {0, . . . , n− 1}.



4.1 Minkowski and Hausdorff dimension 103

By the uniform continuity of Brownian motion on the unit interval, the maximal diameter
in these coverings goes to zero, asn→ ∞. Moreover, we have

E
[(

max
k
n 6t6 k+1

n

∣∣B(t) −B( kn )
∣∣
)2]

= E
[(

max
06t6 1

n

|B(t)|
)2]

=
1

n
E
[(

max
06t61

|B(t)|
)2]

,

using Brownian scaling. The expectation on the right is finite by Proposition 2.43. Hence
the expected2-value of thenth covering is bounded from above by

4E
[ n−1∑

k=0

(
max

k
n 6t6 k+1

n

∣∣B(t) −B( kn )
∣∣
)2]

= 4 E
[(

max
06t61

|B(t)|
)2]

,

which implies, by Fatou’s lemma, that

E
[
lim inf
n→∞

4

n−1∑

k=0

(
max

k
n 6t6 k+1

n

∣∣B(t) −B( kn )
∣∣
)2]

<∞.

Hence the liminf is almost surely finite, which proves (4.2).

The next theorem improves upon (4.2) by showing that the2-dimensional Hausdorff mea-
sure of the range ofd-dimensional Brownian motion is zero for anyd > 2. The proof is
considerably more involved and may be skipped on first reading. It makes use of the fact
that we have a ‘natural’ measure on the range at our disposal,which we can use as a tool to
pick a good cover by cubes. The idea of using a natural measuresupported by the ‘fractal’
for comparison purposes will also turn out to be crucial for the lower bounds for Hausdorff
dimension, which we discuss in the next section.

Theorem* 4.18 Let {B(t) : t > 0} be a Brownian motion in dimensiond > 2. Then,
almost surely, for any setA ⊂ [0,∞) we have

H2(Range(A)) = 0.

Proof. It is sufficient to show thatH2(Range[0,∞)) = 0 for d > 3, as2-dimensional
Brownian motion is the projection of3-dimensional Brownian motion, and projections
cannot increase the Hausdorff measure. Moreover it sufficesto proveH2(Range[0,∞) ∩
Cube) = 0 almost surely, for any half-open cubeCube ⊂ Rd of side length one at positive
distance from the starting point of the Brownian motion. Without loss of generality we
may assume that this cube is the unit cubeCube = [0, 1)d, and our Brownian motion is
started at somex 6∈ Cube.

Let d > 3, and recall the definition of the (locally finite) occupationmeasureµ, defined by

µ(A) =

∫ ∞

0

1A(B(s)) ds , for A ⊂ Rd Borel.

Let Dk be the collection of all cubes
∏d
i=1[ni2

−k, (ni + 1)2−k) wheren1, . . . , nd ∈
{0, . . . , 2k − 1}. We fix a thresholdm ∈ N and letM > m. We callD ∈ Dk with k > m

abig cube if

µ(D) >
1
ε 2−2k .
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The collectionE(M) consists of all maximal big cubesD ∈ Dk, m 6 k < M , i.e. all
those which are not contained in another big cube, together with all cubesD ∈ DM which
are not contained in a big cube, but intersectRange[0,∞). ObviouslyE(M) is a cover of
Range[0,∞) ∩ Cube by sets of diameter smaller than

√
d2−m.

To find the expected2-dimensional Hausdorff content of this cover, first look at acube
D ∈ DM . We denote byD = DM ⊂ DM−1 ⊂ · · · ⊂ Dm with Dk ∈ Dk the ascending
sequence of cubes containingD. LetD∗

k be the cube with the same centre asDk and3/2

its side length, see Figure 4.3.

DM

Dm

mD*D*
M

Fig. 4.3. Nested systems of cubes, cubesD∗

k indicated by dashed,Dk by solid boundaries.

Let τ(D) be the first hitting time of the cubeD andτk = inf{t > τ(D) : B(t) 6∈ D∗
k}

be the first exit time fromD∗
k for M > k > m. For the cubesCube = [0, 1)d and

Child = [0, 1
2 )d we also define the expanded cubesCube∗ andChild∗ and the stopping

time τ = inf{t > 0: B(t) 6∈ Cube∗}. Let

q := sup
y∈Child∗

Py
{∫ τ

0

1Cube(B(s)) ds 6
1
ε

}
< 1 .

By the strong Markov property applied to the stopping timesτM < . . . < τm+1 and
Brownian scaling,

Px
{
µ(Dk) 6

1
ε 2−2k for all M > k > m

∣∣ τ(D) <∞
}

6 Px
{∫ τk

τk+1

1Dk
(B(s)) ds 6

1
ε 2−2k for all M > k > m

∣∣∣ τ(D) <∞
}

6

M−1∏

k=m

sup
y∈D∗

k+1

Py
{

22k

∫ τ̃k

0

1Dk
(B(s)) ds 6

1
ε

}
6 qM−m ,

whereτ̃k is the first exit time of the Brownian motion fromD∗
k and the last inequality fol-

lows from Brownian scaling. Recall from Theorem 3.18 thatPx{τ(D) <∞} 6 c2−M(d−2),
for a constantc > 0 depending only on the dimensiond and the fixed distance ofx from
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the unit cube. Hence the probability that any given cubeD ∈ DM is in our cover is

Px
{
µ(Dk) 6

1
ε 2−2k for all M > k > m, τ(D) <∞

}
6 c2−M(d−2)qM−m .

Hence the expected2-value from the cubes inE(M) ∩ DM is

d2dM2−2MPx
{
µ(Dk) 6

1
ε 2−2k for all M > k > m, τ(D) <∞

}
6 cd qM−m . (4.3)

The2-value from the cubes inE(M) ∩⋃mk=M+1 Dk is bounded by

M−1∑

k=m

d2−2k
∑

D∈C(M)∩Dk

1{µ(D) > 2−2k 1
ε} 6 dε

M−1∑

k=m

∑

D∈C(M)∩Dk

µ(D)

6 dε µ(Cube) .

(4.4)

As Eµ(Cube) < ∞ by Theorem 3.27, we infer from (4.3) and (4.4) that the expected2-
value of our cover converges to zero forε ↓ 0 and a suitable choiceM = M(ε). Hence
a subsequence converges to zero almost surely, and, asm was arbitrary, this ensures that
H2(Range[0,∞)) = 0 almost surely.

4.2 The mass distribution principle

From the definition of the Hausdorff dimension it is plausible that in many cases it is
relatively easy to give an upper bound on the dimension: justfind an efficient cover of the
set and find an upper bound to itsα-value. However it looks more difficult to give lower
bounds, as we must obtain a lower bound onα-values ofall covers of the set.
The mass distribution principle is a way around this problem, which is based on the exis-
tence of a nonzero measure on the set. The basic idea is that, if this measure distributes a
positive amount of mass on a setE in such a manner that its local concentration is bounded
from above, then the set must be large in a suitable sense. Forthe purpose of this method
we call a measureµ on the Borel sets of a metric spaceE amass distribution onE, if

0 < µ(E) <∞ .

The intuition here is that a positive and finite mass is spreadover the spaceE.

Theorem 4.19 (Mass distribution principle)SupposeE is a metric space andα > 0. If
there is a mass distributionµ onE and constantsC > 0 andδ > 0 such that

µ(V ) 6 C|V |α ,

for all closed setsV with diameter|V | 6 δ, then

Hα(E) >
µ(E)

C
> 0,

and hencedimE > α.
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Proof. Suppose thatU1, U2, . . . is a cover ofE by arbitrary sets with|Ui| 6 δ. Let Vi
be the closure ofUi and note that|Ui| = |Vi|. We have

0 < µ(E) 6 µ
( ∞⋃

i=1

Ui

)
6 µ

( ∞⋃

i=1

Vi

)
6

∞∑

i=1

µ(Vi) 6 C
∞∑

i=1

|Ui|α .

Passing to the infimum over all such covers, and lettingδ ↓ 0 gives the statement.

We now apply this technique to find the Hausdorff dimension ofthe zero set of a linear
Brownian motion. Recall that this is an uncountable set withno isolated points.
At first it is not clear what measure onZeros would be suitable to apply the mass distri-
bution principle. Here Lévy’s theorem, see Theorem 2.34, comes to our rescue: Recall
the definition of the maximum process{M(t) : t > 0} associated with a Brownian motion
from Chapter 2.2.3.

Definition 4.20. Let {B(t) : t > 0} be a linear Brownian motion and{M(t) : t > 0} the
associated maximum process. A timet > 0 is a record time for the Brownian motion if
M(t) = B(t) and the set of all record times for the Brownian motion is denoted byRec. �

Note that the record times are the zeros of the process{Y (t) : t > 0} given by

Y (t) = M(t) −B(t).

By Theorem 2.34 this process is a reflected Brownian motion, and hence its zero set and
the zero set of{B(t) : t > 0} have the same distribution. A natural measure onRec is
given by the distribution function{M(t) : t > 0}, which allows us to get a lower bound
for the Hausdorff dimension ofRec via the mass distribution principle.

Lemma 4.21Almost surely,dim(Rec∩ [0, 1]) > 1/2 and hencedim(Zeros∩ [0, 1])>1/2.

Proof. The first equality follows from Theorem 2.34, so that we can focus in this proof
on the record set. Sincet 7→ M(t) is a non-decreasing and continuous function, we can
regard it as a distribution function of a positive measureµ, with µ(a, b] = M(b) −M(a).

This measure is supported on the (closed) setRec of record times, see Exercise 4.12. We
know that, with probability one, the Brownian motion is locally Hölder continuous with
any exponentα < 1/2. Thus there exists a (random) constantCα, such that, almost surely,

M(b) −M(a) 6 max
06h6b−a

B(a+ h) −B(a) 6 Cα(b− a)α,

for all a, b ∈ [0, 1]. By the mass distribution principle, we get that, almost surely,

dim(Rec ∩ [0, 1]) > α.

Lettingα ↑ 1
2 finishes the proof.
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To get an upper bound on the Hausdorff dimension ofZeros we use a covering consisting
of intervals. Define the collectionDk of intervals[j2−k, (j+1)2−k) for j = 0, . . . , 2k−1,
and letZ(I) = 1 if there existst ∈ I with B(t) = 0, andZ(I) = 0 otherwise. To estimate
the dimension of the zero set we need an estimate for the probability that Z(I) = 1, i.e.
for the probability that a given interval contains a zero of Brownian motion.

Lemma 4.22There is an absolute constantC such that, for anya, ε > 0,

P
{

there existst ∈ (a, a+ ε) withB(t) = 0
}

6 C
√

ε
a+ε .

Proof. Consider the eventA = {|B(a+ε)| 6
√
ε}. By the scaling property of Brownian

motion, we can give the upper bound

P(A) = P
{
|B(1)| 6

√
ε
a+ε

}
6 2
√

ε
a+ε .

Knowing that Brownian motion has a zero in(a, a + ε) makes the eventA very likely.
Indeed, applying the strong Markov property at the stoppingtimeT = inf{t > a : B(t) =

0}, we have

P(A) > P
(
A ∩ {0 ∈ B[a, a+ ε]}

)

> P{T 6 a+ ε} min
a6t6a+ε

P{|B(a+ ε)| 6
√
ε |B(t) = 0}.

Clearly the minimum is achieved att = a and, using the scaling property of Brownian
motion, we haveP{|B(a+ ε)| 6

√
ε |B(a) = 0} = P{|B(1)| 6 1} =: c > 0. Hence,

P{T 6 a+ ε} 6
2
c

√
ε
a+ε ,

and this completes the proof.

Remark 4.23This is only very crude information about the position of thezeros of a linear
Brownian motion. Much more precise information is available, for example in the form
of the arcsine law for the last sign-change, which we prove inthe next chapter, and which
(after a simple scaling) yields the precise value of the probability in Lemma 4.22. �

We have thus shown that, for anyε > 0 and sufficiently large integerk, we have

E[Z(I)] 6 c1 2−k/2, for all I ∈ Dk with I ⊂ (ε, 1 − ε) ,

for some constantc1 > 0. Hence the covering of the set{t ∈ (ε, 1 − ε) : B(t) = 0} by all
I ∈ Dk with I ∩ (ε, 1 − ε) 6= ∅ andZ(I) = 1 has an expected12 -value of

E
[ ∑

I∈Dk
I∩(ε,1−ε) 6=∅

Z(I) 2−k/2
]

=
∑

I∈Dk
I∩(ε,1−ε) 6=∅

E[Z(I)] 2−k/2 6 c1 2k 2−k/2 2−k/2 = c1.

We thus get, from Fatou’s lemma,

E
[
lim inf
k→∞

∑

I∈Dk
I∩(ε,1−ε) 6=∅

Z(I) 2−k/2
]

6 lim inf
k→∞

E
[ ∑

I∈Dk
I∩(ε,1−ε) 6=∅

Z(I) 2−k/2
]

6 c1.
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Hence the liminf is almost surely finite, which means that there exists a family of coverings
with maximal diameter going to zero and bounded1

2 -value. This implies that, almost
surely,

H 1
2

{
t ∈ (ε, 1 − ε) : B(t) = 0

}
<∞,

and, in particular, thatdim(Zeros ∩ (ε, 1 − ε)) 6
1
2 . As ε > 0 was arbitrary, we obtain

the same bound for the full zero set. Combining this estimatewith Lemma 4.21 we have
verified the following result.

Theorem 4.24Let{B(t) : 0 6 t 6 1} be a linear Brownian motion. Then, with probability
one, we have

dim
(
Zeros ∩ [0, 1]

)
= dim

(
Rec ∩ [0, 1]

)
= 1

2 .

Remark 4.25The Hausdorff measureH 1
2 vanishes on the zero set of Brownian motion,

see Exercise 4.14, just like that Hausdorff measureH2 vanishes on the range of Brownian
motion, as seen in Theorem 4.18. Therefore another method isneeded to construct a natural
positive finite measure on the zero set. We encountered an indirect construction, via Lévy’s
identity, in the proof of Lemma 4.21. A powerful direct construction of the same measure,
known as thelocal time at zero, will be the subject of Chapter 6. �

4.3 The energy method

The energy method is a technique to find a lower bound for the Hausdorff dimension, which
is particularly interesting in applications to random fractals. It replaces the condition on
the mass of all closed sets in the mass distribution principle by finiteness of an energy.

Definition 4.26. Supposeµ is a mass distribution on a metric space(E, ρ) andα > 0.
Theα-potential of a pointx ∈ E with respect toµ is defined as

φα(x) =

∫
dµ(y)

ρ(x, y)α
.

In the caseE = R3 andα = 1, this is the Newton gravitational potential of the massµ.
Theα-energyof µ is

Iα(µ) =

∫
φα(x) dµ(x) =

∫∫
dµ(x) dµ(y)

ρ(x, y)α
. �

The simple idea of the energy method is the following: Mass distributions withIα(µ) <∞
spread the mass so that at each place the concentration is sufficiently small to overcome
the singularity of the integrand. This is only possible on sets which are large in a suitable
sense.
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Theorem 4.27 (Energy method)Let α > 0 and µ be a mass distribution on a metric
spaceE. Then, for everyε > 0, we have

Hα
ε (E) >

µ(E)2
∫∫
ρ(x,y)<ε

dµ(x) dµ(y)
ρ(x,y)α

.

Hence, ifIα(µ) <∞ thenHα(E) = ∞ and, in particular,dimE > α.

Remark 4.28To get a lower bound on the dimension from this method it suffices to show
finiteness of a single integral. In particular, in order to show for a random setE that
dimE > α almost surely, it suffices to show thatEIα(µ) < ∞ for a (random) measure
onE. �

Proof. If {An : n = 1, 2, . . .} is any pairwise disjoint covering ofE consisting of sets
of diameter< ε, then

∫∫

ρ(x,y)<ε

dµ(x) dµ(y)

ρ(x, y)α
>

∞∑

n=1

∫∫

An×An

dµ(x) dµ(y)

ρ(x, y)α
>

∞∑

n=1

µ(An)
2

|An|α
,

and moreover,

µ(E) 6

∞∑

n=1

µ(An) =

∞∑

n=1

|An|
α
2
µ(An)

|An|α
2

Givenδ > 0 choose a covering as above such that additionally
∞∑

n=1

|An|α 6 Hα
ε (E) + δ.

Using now the Cauchy–Schwarz inequality, we get

µ(E)2 6

∞∑

n=1

|An|α
∞∑

n=1

µ(An)
2

|An|α
6

(
Hα
ε (E) + δ

) ∫∫

ρ(x,y)<ε

dµ(x) dµ(y)

ρ(x, y)α
.

Letting δ ↓ 0 and dividing both sides by the integral gives the stated inequality. Further,
letting ε ↓ 0, if EIα(µ) < ∞ the integral converges to zero, so thatHα

ε (E) diverges to
infinity.

We now apply the energy method to resolve questions left openin the first section of this
chapter, namely the lower bounds for the Hausdorff dimension of the graph and range of
Brownian motion.

The nowhere differentiability of linear Brownian motion established in the first chapter
suggests that its graph may have dimension greater than one.For dimensionsd > 2, it
is interesting to look at the range of Brownian motion. We have seen that planar Brown-
ian motion is neighbourhood recurrent, that is, it visits every neighbourhood in the plane
infinitely often. In this sense, the range of planar Brownianmotion is comparable to the
plane itself and one can ask whether this is also true in the sense of dimension.
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Theorem 4.29 (Taylor 1953)Let{B(t) : 0 6 t 6 1} bed-dimensional Brownian motion.

(a) If d = 1, thendim Graph[0, 1] = 3/2 almost surely.

(b) If d > 2, thendim Range[0, 1] = dimGraph[0, 1] = 2 almost surely.

Recall that we already know the upper bounds from Corollary 4.16. We now look at lower
bounds for the range of Brownian motion ind > 2.

Proof of Theorem 4.29(b). A natural measure onRange[0, 1] is the occupation measure
µ defined byµ(A) = L(B−1(A) ∩ [0, 1]), for all Borel setsA ⊂ Rd, or, equivalently,

∫

Rd

f(x) dµ(x) =

∫ 1

0

f
(
B(t)

)
dt,

for all bounded measurable functionsf . We want to show that for any0 < α < 2,

E
∫∫

dµ(x) dµ(y)

|x− y|α = E
∫ 1

0

∫ 1

0

ds dt

|B(t) −B(s)|α <∞. (4.5)

Let us evaluate the expectation

E|B(t) −B(s)|−α = E
[
(|t− s|1/2|B(1)|)−α

]
= |t− s|−α/2

∫

Rd

cd
|z|α e

−|z|2/2dz.

The integral can be evaluated using polar coordinates, but all we need is that it is a finite
constantc depending ond andα only. Substituting this expression into (4.5) and using
Fubini’s theorem we get

EIα(µ) = c

∫ 1

0

∫ 1

0

ds dt

|t− s|α/2 6 2c

∫ 1

0

du

uα/2
<∞. (4.6)

ThereforeIα(µ) < ∞ and hencedim Range[0, 1] > α, almost surely. The lower bound
on the range follows by lettingα ↑ 2. We also obtain a lower bound for the dimension of
the graph: As the graph of a function can be projected onto thepath, the dimension of the
graph is at least the dimension of the path by Remark 4.10. Hence, if d > 2, almost surely
dim Graph[0, 1]>2.

Now let us turn to linear Brownian motion and prove the first half of Taylor’s theorem.

Proof of Theorem 4.29(a). Again we use the energy method for a sharp lower bound.
Recall that we have shown in Corollary 4.16 thatdimGraph[0, 1] 6 3/2. Letα < 3/2 and
define a measureµ on the graph by

µ(A) = L1({0 6 t 6 1: (t, B(t)) ∈ A}) for A ⊂ [0, 1] × R Borel.

Changing variables, theα-energy ofµ can be written as
∫∫

dµ(x) dµ(y)

|x− y|α =

∫ 1

0

∫ 1

0

ds dt

(|t− s|2 + |B(t) −B(s)|2)α/2 .

Bounding the integrand, taking expectations, and applyingFubini we get that

EIα(µ) 6 2

∫ 1

0

E
(
(t2 +B(t)2)−α/2

)
dt. (4.7)
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Let p(z) =
√

2π
−1

exp(−z2/2) denote the standard normal density. By scaling, the ex-
pectation above can be written as

2

∫ +∞

0

(t2 + tz2)−α/2p(z) dz. (4.8)

Comparing the size of the summands in the integration suggests separatingz 6
√
t from

z >
√
t. Then we can bound (4.8) above by twice

∫ √
t

0

(t2)−α/2dz +

∫ ∞

√
t

(tz2)−α/2p(z) dz = t
1
2−α + t−α/2

∫ ∞

√
t

z−αp(z) dz.

Furthermore, we separate the last integral at 1. We get

∫ ∞

√
t

z−αp(z) dz 6 1 +

∫ 1

√
t

z−α dz.

The latter integral is of ordert(1−α)/2. Substituting these results into (4.7), we see that the
expected energy is finite whenα < 3/2. The claim now follows from the energy method.

4.4 Frostman’s lemma and capacity

In this section we provide a converse to the mass distribution principle, i.e. starting from
a lower bound on the Hausdorff measure we construct a mass distribution on a set. This
is often useful, for example if one wants to relate the Hausdorff dimension of a set and its
image under some transformation.

Theorem 4.30 (Frostman’s lemma)If A ⊂ Rd is a closed set such thatHα(A) > 0, then
there exists a Borel probability measureµ supported onA and a constantC > 0 such that
µ(D) 6 C|D|α for all Borel setsD.

We now give a proof of Frostman’s lemma, which is based on the representation of compact
subsets ofRd by trees, an idea that we will encounter again in Chapter 9. The main
ingredient in the proof is the max-flow min-cut theorem. See Section 12.4 in the appendix
for definitions and notation associated with trees, flows on trees and statement and proof
of the max-flow min-cut theorem.

Proof of Frostman’s lemma. We may assumeA ⊂ [0, 1]d. Any compact cube inRd

of side lengths can be split into2d nonoverlapping compact cubes of side lengths/2. We
first create a tree with a root that we associate with the cube[0, 1]d. Every vertex in the tree
has2d edges emanating from it, each leading to a vertex that is associated with one of the
2d subcubes with half the side length of the original cube. We then erase the edges ending
in vertices associated with subcubes that do not intersectA. In this way we construct a tree
T = (V,E) such that the rays in∂T correspond to sequences of nested compact cubes, see
Figure 4.4.
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A

Fig. 4.4. The first two stages in the construction of the tree associated with the shaded setA ⊂
[0, 1]2. Dotted edges in the tree are erased.

There is a canonical mappingΦ: ∂T → A, which maps sequences of nested cubes to their
intersection. Note that ifx ∈ A, then there is an infinite path emanating from the root, all
of whose vertices are associated with cubes that containx and thus intersectA. HenceΦ
is surjective.

For any edgee at leveln define the capacityC(e) = (d
1
2 2−n)α. We now associate to every

cutsetΠ a covering ofA, consisting of those cubes associated with the initial vertices of
the edges in the cutset. To see that the resulting collectionof cubes is indeed a covering, let
ξ be a ray. AsΠ is a cutset, it contains one of the edges in this ray, and the cube associated
with the initial vertex of this edge contains the pointΦ(ξ). Hence we indeed cover the
entire setΦ(∂T ) = A. This implies that

inf
{∑

e∈Π

C(e) : Π a cutset
}

> inf
{∑

j

|Aj |α : A ⊂
⋃

j

Aj

}
,

and asHα
∞(A) > 0, by the equivalence in Proposition 4.9, this is bounded fromzero.

Thus, by the max-flow min-cut theorem, there exists a flowθ : E → [0,∞) of positive
strength such thatθ(e) 6 C(e) for all edgese ∈ E.
We now show how to define a suitable measure on the space of infinite paths. Given an
edgee ∈ E we associate a setT (e) ⊂ ∂T consisting of all rays containing the edgee.
Define

ν̃
(
T (e)

)
= θ(e).

It is easily checked that the collectionC(∂T ) of subsetsT (v) ⊂ ∂T for all v ∈ T is a
semi-algebra on∂T . Recall that this means that ifA,B ∈ C(∂T ), thenA ∩ B ∈ C(∂T )

andAc is a finite disjoint union of sets inC(∂T ). Because the flow through any vertex is
preserved,̃ν is countably additive. Thus, using a measure extension theorem such as, for
example A.1(1.3) in [Du95], we can extend̃ν to a measureν on theσ-algebra generated
by C(∂T ).
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We can now define a Borel measureµ = ν ◦ Φ−1 on A, which satisfiesµ(C) = θ(e),
whereC is the cube associated with the initial vertex of the edgee. Suppose now thatD
is a Borel subset ofRd andn is the integer such that2−n < |D ∩ [0, 1]d| 6 2−(n−1).
ThenD∩ [0, 1]d can be covered with3d of the cubes in the above construction having side
length2−n, or diameterd

1
2 2−n. Using this bound, we have

µ(D) 6 d
α
2 3d2−nα 6 d

α
2 3d|D|α,

so we have a finite measureµ satisfying the requirement of the lemma. Normalisingµ to
get a probability measure completes the proof.

Definition 4.31. We define theRieszα-capacity, or simply theα-capacity, of a metric
space(E, ρ) as

Capα(E) := sup
{
Iα(µ)−1 : µ a mass distribution onE with µ(E) = 1

}
.

In the case of the Euclidean spaceE = Rd with d > 3 andα = d−2 the Rieszα-capacity
is also known as theNewtonian capacity. �

Theorem 4.27 states that a set of positiveα-capacity has dimension at leastα. We now
show that, in this formulation the method is sharp. Our proofof this fact relies on Frost-
man’s lemma and hence refers to closed subsets of Euclidean space.

Theorem 4.32 For any closed setA ⊂ Rd,

dimA = sup
{
α : Capα(A) > 0

}
.

Proof. It only remains to show6, and for this purpose it suffices to show that if
dimA > α, then there exists a Borel probability measureµ onA such that

Iα(µ) =

∫

Rd

∫

Rd

dµ(x) dµ(y)

|x− y|α <∞.

By our assumption for some sufficiently smallβ > α we haveHβ(A) > 0. By Frostman’s
lemma, there exists a nonzero Borel probability measureµ onA and a constantC such
thatµ(D) 6 C|D|β for all Borel setsD. By restrictingµ to a smaller set if necessary,
we can make the support ofµ have diameter less than one. Fixx ∈ A, and fork > 1 let
Sk(x) = {y : 2−k < |x− y| 6 21−k}. Sinceµ has no atoms, we have

∫

Rd

dµ(y)

|x− y|α =

∞∑

k=1

∫

Sk(x)

dµ(y)

|x− y|α 6

∞∑

k=1

µ(Sk(x))2
kα,

where the equality follows from the monotone convergence theorem and the inequality
holds by the definition of theSk. Also,

∞∑

k=1

µ(Sk(x))2
kα

6 C
∞∑

k=1

|22−k|β2kα = C ′
∞∑

k=1

2k(α−β),

whereC ′ = 22βC.
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Sinceβ > α, we have

Iα(µ) 6 C ′
∞∑

k=1

2k(α−β) <∞,

which proves the theorem.

In Corollary 4.16 we have seen that the image of a setA ⊂ [0,∞) under Brownian motion
has at most twice the Hausdorff dimension ofA. Naturally, the question arises whether
this is a sharp estimate. The following result of McKean shows that, ifd > 2, this is sharp
for anysetA, while in d = 1 it is sharp as long asdimA 6

1
2 .

Theorem 4.33 (McKean 1955)LetA ⊂ [0,∞) be a closed subset and{B(t) : t > 0} a
d-dimensional Brownian motion. Then, almost surely,

dimB(A) = 2 dimA ∧ d.

Proof. The upper bound was verified in Corollary 4.16. For the lower bound let
α < dim(A) ∧ (d/2). By Theorem 4.32, there exists a Borel probability measureµ onA
such thatIα(µ) <∞. Denote bỹµ the measure onRd defined by

µ̃(D) = µ({t > 0: B(t) ∈ D})

for all Borel setsD ⊂ Rd. Then

E[I2α(µ̃)] = E
[∫∫

dµ̃(x) dµ̃(y)

|x− y|2α
]

= E
[∫ ∞

0

∫ ∞

0

dµ(t) dµ(s)

|B(t) −B(s)|2α
]
,

where the second equality can be verified by a change of variables. Note that the denom-
inator on the right hand side has the same distribution as|t − s|α|Z|2α, whereZ is a
d-dimensional standard normal random variable. Since2α < d, we have that

E[|Z|−2α] =
1

(2π)d/2

∫

Rd

|y|−2αe−|y|2/2 dy <∞.

Hence, using Fubini’s theorem,

E[I2α(µ̃)] =

∫ ∞

0

∫ ∞

0

E[|Z|−2α]
dµ(t) dµ(s)

|t− s|α 6 E[|Z|−2α] Iα(µ) <∞.

Thus,E[I2α(µ̃)] <∞, and henceI2α(µ̃) <∞ almost surely. Moreover,̃µ is supported on
B(A) becauseµ is supported onA. It follows from Theorem 4.27 thatdimB(A) > 2α

almost surely. By lettingα ↑ dim(A) ∧ d/2, we see thatdim(B(A)) > 2 dim(A) ∧ d

almost surely. This completes the proof of Theorem 4.33.

Remark 4.34 We have indeed shown that, ifCapα(A) > 0, thenCap2α(B(A)) > 0

almost surely. The converse of this statement is also true and will be discussed later, see
Theorem 9.36. �
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Remark 4.35Later in the book, we shall be able to significantly improve McKean’s the-
orem and show that for Brownian motion in dimensiond > 2, almost surely, for any
A ⊂ [0,∞), we havedimB(A) = 2 dim(A). This result is Kaufman’s theorem, see
Theorem 9.28. Note the difference between the results of McKean and Kaufman: In The-
orem 4.33, the null probability set depends onA, while Kaufman’s theorem has a much
stronger claim: it states dimension doubling simultaneously for all sets. This allows us to
plug in random setsA, which may depend completely arbitrarily on the Brownian motion.
For Kaufman’s theorem,d > 2 is a necessary condition: we have seen that the zero set of
one dimensional Brownian motion has dimension1/2, while its image is a single point.�

Exercises

Exercise 4.1.S Show that for the ternary Cantor setC, we havedimM C = log 2
log 3 .

Exercise 4.2.S LetE := {1/n : n ∈ N} ∪ {0}. Show thatdimM E = 1
2 .

Exercise 4.3.S Show that, for every bounded metric space, the Hausdorff dimension is
bounded from above by the lower Minkowski dimension.

Exercise 4.4.S Show that Hausdorff dimension has the countable stability property.

Exercise 4.5. Show that, for the ternary Cantor setC we havedimC = log 2
log 3 .

Exercise 4.6.S Supposef : (E1, ρ1) → (E2, ρ2) is surjective andα-Hölder continuous
with constantC. Show that, for anyβ > 0,

Hβ(E2) 6 CβHαβ(E1),

and thereforedim(E2) 6
1
α dim(E1).

Exercise 4.7.Supposef : [0, 1] → Rd is anα-Hölder continuous function. Show that

(a) dimM(Graphf [0, 1]) 6 1 + (1 − α)
(
d ∧ 1

α

)
,

(b) and, for anyA ⊂ [0, 1], we havedimM Rangef (A) 6
dimM A

α .

Exercise 4.8.S For any integerd > 1 and0 < α < d construct a compact setA ⊂ Rd

such thatdimA = α.

Exercise 4.9.Construct a functionf : [0, 1] → Rd which isα-Hölder continuous for any
α < β, but hasHβ(Rangef [0, 1]) = ∞.

Exercise 4.10.A function f : [0, 1] → R is calledreverseβ-Hölder for some0 < β < 1

if there exists a constantC > 0 such that for any interval[t, s], there is a subinterval
[t1, s1] ⊂ [t, s], such that|f(t1) − f(s1)| > C|t − s|β . Let f : [0, 1] → R be reverse
β-Hölder. Show thatdimM(Graphf [0, 1]) > 2 − β.
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Exercise 4.11.Show that for{B(t) : t > 0} we havedimM Graph[0, 1] = 3
2 if d = 1, and

dimM Graph[0, 1] = dimM B[0, 1] = 2 if d > 2, almost surely.

Exercise 4.12.Show that the set of record points of a linear Brownian motionsatisfies,
almost surely,

Rec = {s > 0: M(s+ h) > M(s− h) for all 0 < h < s}.

Exercise 4.13. Show thatdimM {0 6 t 6 1 : B(t) = 0} = 1
2 , almost surely.

Exercise 4.14.S Show thatH1/2(Zeros) = 0, almost surely.

Exercise 4.15. For a Brownian path{B(t) : t > 0} in Rd, d > 2, we denote by

Wε(t) =
{
x ∈ Rd : |x−B(s)| < ε for some0 6 s 6 t

}

theWiener sausageof width ε > 0 up to timet.

(a) Show that, for a suitable constantC > 0, we haveEL(W1(t)) 6 Ct.

(b) Infer from the result of (a) thatH2(Range[0, 1]) <∞, almost surely.

Notes and comments

Felix Hausdorff introduced the Hausdorff measure in his seminal paper [Ha19]. Credit
should also be given to Carathéodory [Ca14] who introduced ageneral construction in
which Hausdorff measure can be naturally embedded. The Hausdorff measure indeed de-
fines a measure on the Borel sets, proofs can be found in [Ma95]and [Ro99]. IfX = Rd

andα = d the Hausdorff measureHα is a constant multiple of Lebesgue measureLd,
moreover ifα is an integer andX an embeddedα-submanifold, thenHα is (a constant
multiple of) the surface measure. This idea can also be used to develop vector analysis on
sets with much less smoothness than a differentiable manifold. For more about Hausdorff
dimension and geometric questions related to it we stronglyrecommend Mattila [Ma95].
The classic text of Rogers [Ro99], which first appeared in 1970, is a thorough discussion
of Hausdorff measures. Falconer [Fa97a, Fa97b] covers a range of applications and current
developments, but with more focus on deterministic fractals.

The results on the Hausdorff dimension of graph and range of aBrownian motion are
due to S.J. Taylor [Ta53, Ta55] and independently to Lévy [Le51] though the latter paper
does not contain full proofs. Taylor also proved in [Ta55] that the dimension of the zero
set of a Brownian motion in dimension one is1/2. Stronger results show that, almost
surely, the Hausdorff dimension ofall nondegenerate level sets is1/2. For this and much
finer results see [Pe81]. A classical survey, which inspireda lot of activity in the area
of Hausdorff dimension and stochastic processes is Taylor [Ta86] and a modern survey is
Xiao [Xi04].
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The energy method and Frostman’s lemma all stem from Otto Frostman’s famous
1935 thesis [Fr35], which lays the foundations of modern potential theory. The elegant
quantitative proof of the energy method given here is due to Oded Schramm. Frost-
man’s lemma was generalised to complete, separable metric spaces by Howroyd [Ho95]
using a functional-analytic approach. The main difficulty arising in the proof is that, if
Hα(E) = ∞, one has to find a subsetA ⊂ E with 0 < Hα(A) < ∞, which is tricky
to do in abstract metric spaces. Frostman’s original proof uses, in a way, the same idea
as the proof presented here, though the transfer to the tree setup is not done explicitly.
Probability using trees became fashionable in the 1990s andindeed, this is the right way
to look at many problems of Hausdorff dimension and fractal geometry. Recommended
survey articles are by Pemantle [Pe95], Lyons [Ly96] or the chapter on random fractals
in [KM09], more information can be found in [Pe99] and [LP05].

McKean’s theorem is due to Henry McKean [McK55]. Its surprising extension by
Kaufman is not as hard as one might think considering the wideapplicability of the result.
The original source is [Ka69], we discuss the result in depthin Chapter 9.

The concept of ‘reverse Hölder’ mappings only partially extends from Minkowski to
Hausdorff dimension. Iff : [0, 1] → R is bothβ-Hölder and reverseβ-Hölder for some
0 < β < 1, it satisfiesdim(Graphf [0, 1]) > 1, see Przytycki and Urbański [PU89]. For
example, the Weierstrass nowhere differentiable functionW (t) =

∑∞
n=0 a

n cos(bnt), for
ab > 1, 0 < a < 1, isβ-Hölder and reverseβ-Hölder for some0 < β < 1. The Hausdorff
dimension of its graph is, however, not rigorously known in general.

There is a natural refinement of the notions of Hausdorff dimension and Hausdorff
measure, which is based on evaluating sets by applying an arbitrary ‘gauge’ functionϕ
to the diameter, rather than taking a power. Measuring sets using a gauge function not
only allows much finer results, it also turns out that the natural measures on graph and
range of Brownian paths, which we have encountered in this chapter, turn out to be Haus-
dorff measures for suitable gauge functions. Results in this direction are Ciesielski and
Taylor [CT62], Ray [Ra63a], Taylor [Ta64] and we include elements of this discussion in
Chapter 6, where the zero set of Brownian motion is considered.

The Wiener sausages, defined in Exercise 4.15, have been widely studied. In the early
sixties, Kesten, Spitzer and Whitman, see e.g. p.252 in [IM74], showed thatL(W1(t))/t,
for d > 3, converges almost surely to the Newtonian capacity of the unit ball. This result
indicates that covering of the Brownian path with balls offixedsize is not sufficient to show
that its 1

2 -dimensional Hausdorff measure is zero. Spitzer [Sp64] showed that, ford = 3,
the expected volume of the Wiener sausage satisfies

E[L(W1(t))] = c t+
4

(2π)3/2
c2

√
t+ o(

√
t),

wherec = Cap1(B(0, 1)). A central limit theorem, which highlights the deep connec-
tion of the Wiener sausage to the self-intersections of the Brownian path is due to Le
Gall [LG88b]. An integrated view of these results is given byCsáki and Hu [CHu07].
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Brownian motion and random walk

In this chapter we discuss some aspects of the relation between random walk and Brownian
motion. The first two sections aim to demonstrate the nature of this relation by examples,
which are of interest in their own right. These arefirst the law of the iterated logarithm,
which is easier to prove for Brownian motion and can be extended to random walks by
an embedding argument, andseconda proof that Brownian motion does not have points
of increase, which is based on a combinatorial argument for asuitable class of random
walks and then extended to Brownian motion. We then discuss the Skorokhod embedding
problem systematically, and give a proof of the Donsker invariance principle based on the
Skorokhod embedding. We give a variety of applications of Donsker’s invariance principle,
including the arcsine laws and Pitman’s2M −B theorem.

5.1 The law of the iterated logarithm

Suppose{B(t) : t > 0} is a standard linear Brownian motion. Although at any given timet
and for any open setU ⊂ R the probability of the event{B(t) ∈ U} is positive, over a long
time Brownian motion cannot grow arbitrarily fast. We have seen in Corollary 1.11 that,
for any smallε > 0, almost surely, there existst0 > 0 such that|B(t)| 6 εt for all t > t0,
whereas Proposition 1.23 ensures that for every largek, almost surely, there exist arbitrarily
large timest such that|B(t)| > k

√
t. It is therefore natural to ask for the asymptotic

smallest upper envelopeof the Brownian motion, i.e. for a functionψ : (1,∞) → R such
that

lim sup
t→∞

B(t)

ψ(t)
= 1.

The law of the iterated logarithm (whose name comes from the answer to this question but
is by now firmly established for this type of upper-envelope results) provides such a ‘gauge’
function, which determines the almost-sureasymptotic growthof a Brownian motion.
A similar problem arises for arbitrary random walks{Sn : n > 0}, where we ask for a
sequence(an : n > 0) such that

lim sup
n→∞

Sn
an

= 1.

These two questions are closely related, and we start with ananswer to the first one.

118
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Theorem 5.1 (Law of the Iterated Logarithm for Brownian moti on)Suppose{B(t) : t > 0}
is a standard linear Brownian motion. Then, almost surely,

lim sup
t→∞

B(t)√
2t log log(t)

= 1.

Remark 5.2By symmetry it follows that, almost surely,

lim inf
t→∞

B(t)√
2t log log(t)

= −1.

Hence, for anyε > 0, there existst0 such that|B(t)| 6 (1 + ε)
√

2t log log(t) for any
t > t0, while there exist arbitrarily large timest with |B(t)| > (1 − ε)

√
2t log log(t). �
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Fig. 5.1. Brownian motion and its asymptotic upper envelopeψ(t) =
√

2t log log(t) at large times.
In the picture on the left we see a typical Brownian path indicating that times where the path comes
near to the envelope are very sparse. The picture on the right was chosen from a large number of
samples so that the Brownian motion ends near the envelope. Due to the implicit conditioning on
this event, the sample path of the motion has features untypical of Brownianpaths. See the ‘Notes
and comments’ section for more details.

Proof. The main idea is to scale by a geometric sequence. Letψ(t) =
√

2t log log(t).
We first prove the upper bound. Fixε > 0 andq > 1. Let

An =

{
max

06t6qn
B(t) > (1 + ε)ψ(qn)

}
.

By Theorem 2.21 the maximum of Brownian motion up to a fixed time t has the same
distribution as|B(t)|. Therefore

P(An) = P
{ |B(qn)|√

qn
> (1 + ε)

ψ(qn)√
qn

}
.

We can use the tail estimateP{Z > x} 6 e−x
2/2 for a standard normally distributedZ

andx > 1, see Lemma 12.9 in the appendix, to conclude that, for largen,

P(An) 6 2 exp
(
−(1 + ε)2 log log qn

)
=

2

(n log q)(1+ε)2
.
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This is summable inn and hence, by the Borel–Cantelli lemma, we get that only finitely
many of these events occur. For larget write qn−1 6 t < qn. We have

B(t)

ψ(t)
=

B(t)

ψ(qn)

ψ(qn)

qn
t

ψ(t)

qn

t
6 (1 + ε)q,

sinceψ(t)/t is decreasing int, and thus

lim sup
t→∞

B(t)

ψ(t)
6 (1 + ε)q, almost surely.

Since this holds for anyε > 0 andq > 1 we have proved thatlim supB(t)/ψ(t) 6 1

almost surely.

For the lower bound, fixq > 1. In order to use the Borel–Cantelli lemma in the other
direction, we need to create a sequence ofindependentevents. Let

Dn =
{
B(qn) −B(qn−1) > ψ(qn − qn−1)

}
.

We now use Lemma 12.9 of the appendix to see that there is a constantc > 0 such that, for
largex,

P{Z > x} >
ce−x

2/2

x
.

Using this estimate we get, for some further constantc̃ > 0 andn large enough,

P(Dn) = P
{
Z >

ψ(qn−qn−1)√
qn−qn−1

}
> c

e− log log(qn−qn−1)

√
2log log(qn − qn−1)

>
ce− log(n log q)

√
2 log(n log q)

>
c̃

n log n
,

and therefore
∑
n P(Dn) = ∞. Thus for infinitely manyn

B(qn) > B(qn−1) + ψ(qn − qn−1) > − 2ψ(qn−1) + ψ(qn − qn−1),

where the second inequality follows from applying the previously proved upper bound to
−B(qn−1). From the above we get that almost surely, for infinitely manyn,

B(qn)

ψ(qn)
>

−2ψ(qn−1) + ψ(qn − qn−1)

ψ(qn)
>

−2√
q

+
qn − qn−1

qn
= 1 − 2√

q
− 1

q
. (5.1)

Indeed, to obtain the second inequality first note that

ψ(qn−1)

ψ(qn)
=
ψ(qn−1)√
qn−1

√
qn

ψ(qn)

1√
q

6
1√
q
,

sinceψ(t)/
√
t is increasing int for larget. For the second term we just use the fact that

ψ(t)/t is decreasing int. Now (5.1) implies that

lim sup
t→∞

B(t)

ψ(t)
> − 2√

q
+ 1 − 1

q
almost surely,

and lettingq ↑ ∞ concludes the proof of the lower bound.
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Corollary 5.3 Suppose{B(t) : t > 0} is a standard Brownian motion. Then, almost surely,

lim sup
h↓0

|B(h)|√
2h log log(1/h)

= 1.

Proof. By Theorem 1.9 the process{X(t) : t > 0} defined byX(t) = tB(1/t) for
t > 0 is a standard Brownian motion. Hence, using Theorem 5.1, we get

lim sup
h↓0

|B(h)|√
2h log log(1/h)

= lim sup
t↑∞

|X(t)|√
2t log log t

= 1 .

The law of the iterated logarithm is a result which is easier to prove for Brownian motion
than for random walks, as scaling arguments can be used to good effect in the proof. We
now use an ad hoc argument to obtain a law of the iterated logarithm for simple random
walks, i.e. the random walk with increments taking the values±1 with equal probability,
from Theorem 5.1. A version for more general walks will follow with analogous arguments
from the embedding techniques of Section 5.3, see Theorem 5.17.

Theorem 5.4 (Law of the Iterated Logarithm for simple random walk) Let{Sn : n > 0}
be a simple random walk. Then, almost surely,

lim sup
n→∞

Sn√
2n log log n

= 1.

We now start the technical work to transfer the result from Brownian motion to simple
random walk. The next result shows that the limsup does not change if we only look along
a sufficiently dense sequence of random times. We abbreviateψ(t) =

√
2t log log(t).

Lemma 5.5If {Tn : n > 1} is a sequence of random times (not necessarily stopping times)
satisfyingTn → ∞ andTn+1/Tn → 1 almost surely, then

lim sup
n→∞

B(Tn)

ψ(Tn)
= 1 almost surely.

Furthermore, ifTn/n→ a > 0 almost surely, then

lim sup
n→∞

B(Tn)

ψ(an)
= 1 almost surely.

Proof. The upper bound follows from the upper bound for continuous time without
any conditions on{Tn : n > 1}. For the lower bound some restrictions are needed, which
prevent us from choosing, for example,T0 = 0 andTn = inf{t > Tn−1 + 1: B(t) < 1

n}.
Our conditionsTn+1/Tn → 1 andTn → ∞ make sure that the times are sufficiently dense
to rule out this effect. Define, for fixedq > 4,

Dk =
{
B(qk) −B(qk−1) > ψ(qk − qk−1)

}
,

Ωk =

{
min

qk 6 t 6 qk+1
B(t) −B(qk) > −

√
qk
}

andD∗
k = Dk ∩ Ωk.
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Note thatDk andΩk are independent events. From Brownian scaling and Lemma 12.9 it
is easy to see, as in the proof of Theorem 5.1, that, for a suitable constantc > 0,

P(Dk) = P
{
B(1) >

ψ(qk−qk−1)√
qk−qk−1

}
>

c

k log k
.

Moreover, by scaling,P(Ωk) =: cq > 0, andcq that does not depend onk. As P(D∗
k) =

cqP(Dk) the sum
∑
k P(D∗

2k) is infinite. As the events{D∗
2k : k > 1} are independent, by

the Borel–Cantelli lemma, for infinitely many (even)k,

min
qk6t6qk+1

B(t) > B(qk−1) + ψ(qk − qk−1) −
√
qk.

By Remark 5.2, for all sufficiently largek, we haveB(qk−1) > − 2ψ(qk−1) and, by easy
asymptotics,ψ(qk − qk−1) > ψ(qk)(1 − 1

q ). Hence, for infinitely manyk,

min
qk6t6qk+1

B(t)>ψ(qk − qk−1) − 2ψ(qk−1) −
√
qk > ψ(qk)

(
1 − 1

q − 2√
q

)
−
√
qk ,

with the right hand side being positive by our choice ofq. Now definen(k) = min{n :

Tn > qk}. Since the ratiosTn+1/Tn tend to1, it follows that for any fixedε > 0, we have
qk 6 Tn(k) < qk (1 + ε) for all largek. Thus, for infinitely manyk,

B(Tn(k))

ψ(Tn(k))
>

ψ(qk)

ψ(qk(1 + ε))

(
1 − 1

q − 2√
q

)
−
√
qk

ψ(qk)
.

But since
√
qk/ψ(qk) → 0 andψ(qk)/ψ(qk(1 + ε)) → 1/

√
1 + ε, we conclude that

lim sup
n→∞

B(Tn)

ψ(Tn)
>

1√
1 + ε

(
1 − 1

q − 2√
q

)
,

and since the left hand side does not depend onq and ε > 0 we can letq ↑ ∞ and
ε ↓ 0 to arrive at the desired conclusion. For the last part, note that if Tn/n → a then
ψ(Tn)/ψ(an) → 1.

1

2

T T
3

T
4

T
1 2

t

−1

−2

0

Fig. 5.2. Embedding simple random walk into Brownian motion
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Proof of Theorem 5.4. To prove the law of the iterated logarithm for simple random
walk, we letT0 = 0 and, forn > 1,

Tn = min{t > Tn−1 : |B(t) −B(Tn−1)| = 1}.

The timesTn are stopping times for Brownian motion and, hence, by the strong Markov
property, the waiting timesTn − Tn−1 are independent and identically distributed random
variables. Obviously,P{B(Tn) − B(Tn−1) = 1} = P{B(Tn) − B(Tn−1) = −1} = 1

2 ,

and therefore{B(Tn) : n > 0} is a simple random walk. By Theorem 2.49, we have
E[Tn − Tn−1] = 1, and hence the law of large numbers ensures thatTn/n converges al-
most surely to 1, and the theorem follows from Lemma 5.5.

Remark 5.6The technique used to get Theorem 5.4 from Theorem 5.1 is based on finding
an increasing sequence of stopping times{Tn : n > 0} for the Brownian motion, such that
Sn = B(Tn) defines a simple random walk, while we keep some control over the size of
Tn. This ‘embedding technique’ will be extended substantially in Section 5.3. �

5.2 Points of increase for random walk and Brownian motion

A point t ∈ (0,∞) is a local point of increase for the functionf : (0,∞) → R if for some
open interval(a, b) containingt we havef(s) 6 f(t) for all s ∈ (a, t) andf(t) 6 f(s)

for all s ∈ (t, b). In this section we show that Brownian motion almost surely has no local
points of increase. Our proof uses a combinatorial argumentto derive a quantitative result
for simple random walks, and then uses this result to study the case of Brownian motion.
A crucial tool in the proof is an inequality of Harris [Ha60],which is of some independent
interest.

Theorem 5.7 (Harris’ inequality) Suppose thatX = (X1, . . . ,Xd) is a random vari-
able with values inRd and independent coordinates. Letf, g : Rd → R be measurable
functions, which are non-decreasing in each coordinate. Then,

E
[
f(X)g(X)

]
> E[f(X)] E[g(X)] , (5.2)

provided the above expectations are well-defined.

Proof. One can argue, using the monotone convergence theorem, thatit suffices to prove
the result whenf andg are bounded. We assumef andg are bounded and proceed by
induction on the dimensiond. Suppose first thatd = 1. Note that

(f(x) − f(y))(g(x) − g(y)) > 0 , for all x, y ∈ R.

Therefore, forY an independent random variable with the same distribution asX,

0 6 E
[
(f(X) − f(Y ))(g(X) − g(Y ))

]

= 2E
[
f(X)g(X)

]
− 2E

[
f(X)

]
E
[
g(Y )

]
,

and (5.2) follows easily. Now, suppose (5.2) holds ford− 1. Define

f1(x1) = E
[
f(x1,X2, . . . ,Xd)

]
,
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and defineg1 similarly. Note thatf1(x1) andg1(x1) are non-decreasing functions ofx1.
Sincef andg are bounded, we may apply Fubini’s theorem to write the left hand side of
(5.2) as

∫

R

E
[
f(x1,X2, . . . ,Xd) g(x1,X2, . . . ,Xd)

]
dµ1(x1) , (5.3)

whereµ1 denotes the law ofX1. The expectation in the integral is at leastf1(x1)g1(x1)

by the induction hypothesis. Thus, using the result for thed = 1 case, we can bound (5.3)
from below byE[f1(X1)] E[g1(X1)], which equals the right hand side of (5.2), completing
the proof.

For the rest of this section, letX1,X2, . . . be independent random variables with

P{Xi = 1} = P{Xi = −1} = 1
2 ,

and letSk =
∑k
i=1Xi be their partial sums. Denote

pn = P{Si > 0 for all 1 6 i 6 n} . (5.4)

Then{Sn is a maximum amongS0, S1, . . . Sn} is precisely the event that the reversed
random walk given byS′

k = Xn+. . .+Xn−k+1 is nonnegative for allk = 1, . . . , n. Hence
this event also has probabilitypn. The following lemma gives the order of magnitude of
pn, the proof will be given as Exercise 5.4.

Lemma 5.8There are positive constantsC1 andC2 such that

C1√
n

6 P{Si > 0 for all 1 6 i 6 n} 6
C2√
n

for all n > 1.

The next lemma expresses, in terms of thepn defined in (5.4), the probability thatSj stays
between0 andSn for j between0 andn.

Lemma 5.9We havep2
n 6 P

{
0 6 Sj 6 Sn for all 1 6 j 6 n

}
6 p2

bn/2c.

Proof. The two events

A = {0 6 Sj for all j 6 bn/2c} and

B = {Sj 6 Sn for j > bn/2c}

are independent, sinceA depends only onX1, . . . ,Xbn/2c andB depends only on the
remainingXbn/2c+1, . . . ,Xn. Therefore,

P
{
0 6 Sj 6 Sn for all j ∈ {0, . . . , n}

}
6 P(A ∩B) = P(A)P(B) 6 p2

bn/2c,

which proves the upper bound.
For the lower bound, we letf(x1, . . . , xn) = 1 if all the partial sumsx1 + . . .+xk for k =

1, . . . , n are nonnegative, andf(x1, . . . , xn) = 0 otherwise. Also, defineg(x1, . . . , xn) =



5.2 Points of increase for random walk and Brownian motion 125

f(xn, . . . , x1). Thenf andg are non-decreasing in each component. By Harris’ inequality,
for X = (X1, . . . ,Xn), we haveE[f(X)g(X)] > E[f(X)] E[g(X)] = p2

n. Also,

E
[
f(X)g(X)

]
= P{X1 + . . .+Xj > 0 and Xj+1 + . . .+Xn > 0 for all j }
= P

{
0 6 Sj 6 Sn for all 1 6 j 6 n

}
,

which proves the lower bound.

Definition 5.10.

(a) A sequences0, s1, . . . , sn of reals has a (global)point of increaseatk ∈ {0, . . . , n},
if si 6 sk for i = 0, 1, . . . , k − 1 andsk 6 sj for j = k + 1, . . . , n.

(b) A real-valued functionf has aglobal point of increase in the interval (a, b) if
there is a pointt ∈ (a, b) such thatf(s) 6 f(t) for all s ∈ (a, t) andf(t) 6 f(s)

for all s ∈ (t, b). t is a local point of increaseif it is a global point of increase in
some interval. �

Theorem 5.11LetS0, S1, . . . , Sn be a simple random walk. Then

P
{
S0, . . . , Sn has a point of increase

}
6

C

log n
,

for all n > 1, whereC does not depend onn.

The key to Theorem 5.11 is the following upper bound, which holds for more general
random walks. It will be proved as Exercise 5.5.

Lemma 5.12For any random walk{Sj : j > 0} on the line,

P
{
S0, . . . , Sn has a point of increase

}
6 2

∑n
k=0 pkpn−k∑bn/2c
k=0 p2

k

. (5.5)

Remark 5.13Equation (5.5) is easy to interpret: The expected number of points of increase
by timen is the numerator in (5.5), and given that there is at least onepoint of increase
in [0, n/2], the expected number of these points in[0, n] is bounded from below by the
denominator. �

Proof of Theorem 5.11. To bound the numerator in (5.5), we can use symmetry to
deduce from Lemma 5.8 that

n∑

k=0

pkpn−k 6 2 + 2

bn/2c∑

k=1

pkpn−k 6 2 + 2C2
2

bn/2c∑

k=1

k−1/2(n− k)−1/2

6 2 + 4C2
2n

−1/2

bn/2c∑

k=1

k−1/2 ,
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which is bounded above because the last sum is bounded by a constant multiple ofn1/2.
Since Lemma 5.8 implies that the denominator in (5.5) is at leastC2

1 logbn/2c , this com-
pletes the proof.

We now see how we can use embedding ideas to pass from the result aboutsimplerandom
walks to the result about Brownian motion.

Theorem 5.14Brownian motion almost surely has no local points of increase.

Proof. To deduce this, it suffices to apply Theorem 5.11 to asimplerandom walk on
the integers. Indeed, it clearly suffices to show that the Brownian motion{B(t) : t > 0}
almost surely has no global points of increase in a fixed time interval(a, b) with rational
endpoints. Sampling the Brownian motion when it visits a lattice yields a simple random
walk; by refining the lattice, we may make this walk as long as we wish and capture all
required detail.

More precisely, for any vertical spacingh > 0 defineτ0 to be the firstt > a such that
B(t) is an integral multiple ofh, and fori > 0 let τi+1 be the minimalt > τi such that
|B(t) − B(τi)| = h. DefineNb = max{k ∈ Z : τk < b}. For integersi satisfying
0 6 i 6 Nb, define

Si =
B(τi) −B(τ0)

h
.

Then{Si : i = 1, . . . , Nb} is a finite portion of a simple random walk. If the Brown-
ian motion has a global point of increaset0 ∈ (a, b), and if k is an integer such that
τk−1 6 t0 6 τk, then this random walk has points of increase atk − 1 andk. Similarly, if
t0 < τ0 or t0 > τNb

, thenk = 0, resp.k = Nb, is a point of increase for the random walk.
Therefore, for alln,

P
{
{B(t) : t > 0} has a global point of increase in(a, b)

}

6 P{Nb 6 n} +

∞∑

m=n+1

P
{
S0, . . . , Sm has a point of increase andNb = m

}
.

(5.6)

Note thatNb 6 n implies |B(b) −B(a)| 6 (n+ 1)h, so

P{Nb 6 n} 6 P
{
|B(b) −B(a)| 6 (n+ 1)h

}
= P

{
|Z| 6

(n+1)h√
b−a

}
,

whereZ has a standard normal distribution. SinceS0, . . . , Sm, conditioned onNb = m

is a finite portion of a simple random walk, it follows from Theorem 5.11 that for some
constantC, we have

∞∑

m=n+1

P
{
S0, . . . , Sm has a point of increase, andNb = m

}

6

∞∑

m=n+1

P{Nb = m} C

logm
6

C

log(n+ 1)
.

Thus, the probability in (5.6) can be made arbitrarily smallby first takingn large and then
pickingh > 0 sufficiently small.
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5.3 Skorokhod embedding and Donsker’s invariance principle

In the proof of Theorem 5.4 we have made use of the fact that there exists a stopping time
T for linear Brownian motion with the property thatE[T ] <∞ and the law ofB(T ) is the
uniform distribution on{−1, 1}. To use the same method for random walks{Sn : n ∈ N}
with general increments, it would be necessary to find, for a given random variableX
representing an increment, a stopping timeT with E[T ] < ∞, such thatB(T ) has the
law ofX. This problem is called theSkorokhod embedding problem. By Wald’s lemmas,
Theorem 2.44 and Theorem 2.48, for any integrable stopping timeT , we have

E
[
B(T )

]
= 0 and E

[
B(T )2

]
= E[T ] <∞ ,

so that the Skorokhod embedding problem can only be solved for random variablesX
with mean zero and finite second moment. However, these are the only restrictions, as the
following result shows.

Theorem 5.15 (Skorokhod embedding theorem)Suppose that{B(t) : t > 0} is a stan-
dard Brownian motion and thatX is a real valued random variable withE[X] = 0

andE[X2] < ∞. Then there exists a stopping timeT , with respect to the natural fil-
tration (F(t) : t > 0) of the Brownian motion, such thatB(T ) has the law ofX and
E[T ] = E[X2].

Example 5.16Assume thatX may take two valuesa < b. In order thatE[X] = 0 we
must havea < 0 < b andP{X = a} = b/(b−a) andP{X = b} = −a/(b−a). We have
seen in Theorem 2.49 that, for the stopping timeT = inf{t : B(t) 6∈ (a, b)} the random
variableB(T ) has the same distribution asX, and thatE[T ] = −ab is finite. �

Note that the Skorokhod embedding theorem allows us to use the arguments developed for
the proof of the law of the iterated logarithm for simple random walks, Theorem 5.4, and
obtain a much more general result.

Theorem 5.17 (Hartman–Wintner law of the iterated logarithm) Let {Sn : n ∈ N} be
a random walk with incrementsSn − Sn−1 of zero mean and finite varianceσ2. Then

lim sup
n→∞

Sn√
2σ2 n log log n

= 1.

We now present two proofs of the Skorokhod embedding theorem, which actually rep-
resent different constructions of the required stopping times. Both approaches, Dubins’
embedding, and the Azéma–Yor embedding are very elegant andhave their own merits.

5.3.1 The Dubins’ embedding theorem

The first one, due to Dubins [Du68], is particularly simple and based on the notion of
binary splitting martingales. We say that a martingale{Xn : n ∈ N} is binary splitting if,
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whenever for somex0, . . . , xn ∈ R the event

A(x0, . . . , xn) := {X0 = x0,X1 = x1, . . . ,Xn = xn}

has positive probability, the random variableXn+1 conditioned onA(x0, . . . , xn) is sup-
ported on at most two values.

0 20 40 60 80 100

−4

−3

−2

2

3

4

Fig. 5.3. Dubins’ embedding for the uniform distribution on{−4,−2, 0, 2, 4}: First go until you hit
{−3, 3}, in this picture you hit−3. Given that, continue until you hit either−2 or−4, in this picture
you hit−2. HenceB(T ) = −2 for this sample.

Lemma 5.18Let X be a random variable withE[X2] < ∞. Then there is a binary
splitting martingale{Xn : n ∈ N} such thatXn → X almost surely and inL2.

Proof. We define the martingale{Xn : n ∈ N} and the associated filtration(Gn : n ∈
N) recursively. LetG0 be the trivialσ-algebra (consisting only of the empty set and the
underlying probability space itself) andX0 = EX. Define the random variableξ0 by

ξ0 =

{
1 , if X > X0 ,

−1 , if X < X0 .

For anyn > 0, let Gn = σ(ξ0, . . . , ξn−1) andXn = E[X | Gn]. Also define the random
variableξn by

ξn =

{
1 , if X > Xn ,

−1 , if X < Xn .

Note thatGn is generated by a partitionPn of the underlying probability space into2n

sets, each of which has the formA(x0, . . . , xn). As each element ofPn is a union of two
elements ofPn+1, the martingale{Xn : n ∈ N} is binary splitting. Also we have, for
example as in (12.1) in the appendix, that

E
[
X2
]

= E
[
(X −Xn)

2
]
+ E

[
X2
n

]
> E

[
X2
n

]
.
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Hence{Xn : n ∈ N} is bounded inL2 and, from the convergence theorem forL
2-

bounded martingales and Lévy’s upward theorem, see Theorems 12.28 and 12.25 in the
appendix, we get

Xn → X∞ := E
[
X
∣∣G∞

]
almost surely and inL2,

whereG∞ = σ
(⋃∞

i=0 Gi
)
. To conclude the proof we have to show thatX = X∞ almost

surely. We claim that, almost surely,

lim
n↑∞

ξn (X −Xn+1) = |X −X∞| . (5.7)

Indeed, ifX(ω) = X∞(ω) this is easy. IfX(ω) < X∞(ω) then for some large enough
N we haveX(ω) < Xn(ω) for anyn > N , henceξn = −1 and (5.7) holds. Similarly, if
X(ω) > X∞(ω) thenξn = 1 for n > N and so (5.7) holds.
Using thatξn is Gn+1-measurable, we find that

E
[
ξn (X −Xn+1)

]
= E

[
ξnE[X −Xn+1 | Gn+1]

]
= 0 .

Recall that ifYn → Y almost surely, and{Yn : n = 0, 1, · · · } isL
2-bounded, thenEYn →

EY (see, for example, the discussion of uniform integrabilityin 12.3 of the appendix).
Hence, as the left hand side of (5.7) isL

2-bounded, we conclude thatE|X −X∞| = 0.

Proof of Theorem 5.15. From Lemma 5.18 we take a binary splitting martingale
{Xn : n ∈ N} such thatXn → X almost surely and inL2. Recall from the example
preceding this proof that ifX is supported on a set of two elements{−a, b} for some
a, b > 0 thenT = inf{t : B(t) ∈ {−a, b}} is the required stopping time. Hence, asXn

conditioned onA(x0, . . . , xn−1) is supported on at most two values it is clear we can find
a sequence of stopping timesT0 6 T1 6 . . . such thatB(Tn) is distributed asXn and
ETn = E[X2

n]. As Tn is an increasing sequence, we haveTn ↑ T almost surely for some
stopping timeT . Also, by the monotone convergence theorem

ET = lim
n↑∞

ETn = lim
n↑∞

E
[
X2
n

]
= E

[
X2
]
.

AsB(Tn) converges in distribution toX by construction, and converges almost surely to
B(T ) by continuity of the Brownian sample paths, we get thatB(T ) is distributed asX.

5.3.2 The Azéma–Yor embedding theorem

In this section we discuss a second solution to the Skorokhodembedding problem with a
more explicit construction of the stopping times.

Theorem* 5.19 (Azéma–Yor embedding theorem)Suppose thatX is a real valued ran-
dom variable withE[X] = 0 andE[X2] <∞. Let

Ψ(x) = E
[
X
∣∣X > x

]
if P{X > x} > 0 ,

andΨ(x) = 0 otherwise. For a Brownian motion{B(t) : t > 0} let {M(t) : t > 0} be the
maximum process and define a stopping timeτ by

τ = inf{t > 0: M(t) > Ψ(B(t))}.

ThenE[τ ] = E[X2] andB(τ) has the same law asX.
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Fig. 5.4. The Azéma–Yor embedding: the path is stopped when the Brownian motion hits the
levelΨ−1(M(t)), whereΨ−1(x) = sup{b : Ψ(b) 6 x}.

We proceed in three steps. In the first step we formulate an embedding for random variables
taking only finitely many values.

Lemma 5.20Suppose the random variableX with EX = 0 takes only finitely many values

x1 < x2 < · · · < xn.

Definey1 < y2 < · · · < yn−1 byyi = Ψ(xi+1), and define stopping timesT0 = 0 and

Ti = inf
{
t > Ti−1 : B(t) 6∈ (xi, yi)

}
for i 6 n− 1.

ThenT = Tn−1 satisfiesE[T ] = E[X2] andB(T ) has the same law asX.
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Fig. 5.5. The Azéma–Yor embedding for the uniform distribution on the set {−2,−1, 0, 1, 2}. The
drawn path samples the valueB(T ) = 0 with T = T4.
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Proof. First observe thatyi > xi+1 and equality holds if and only ifi = n− 1. We have
E[Tn−1] < ∞, by Theorem 2.49, andE[Tn−1] = E[B(Tn−1)

2], from Theorem 2.48. For
i = 1, . . . , n− 1 define random variables

Yi =

{
E[X |X > xi+1] if X > xi+1,

X if X 6 xi.

Note thatY1 has expectation zero and takes on the two valuesx1, y1. For i > 2, given
Yi−1 = yi−1, the random variableYi takes the valuesxi, yi and has expectationyi−1.
GivenYi−1 = xj , j 6 i− 1 we haveYi = xj . Note thatYn−1 = X. We now argue that

(B(T1), . . . , B(Tn−1))
d
= (Y1, . . . , Yn−1).

Clearly,B(T1) can take only the valuesx1, y1 and has expectation zero, hence the law of
B(T1) agrees with the law ofY1. For i > 2, givenB(Ti−1) = yi−1, the random vari-
ableB(Ti) takes the valuesxi, yi and has expectationyi−1. GivenB(Ti−1) = xj where
j 6 i−1, we haveB(Ti) = xj . Hence the two tuples have the same law and, in particular,
B(Tn−1) has the same law asX.

In the second step, we show that the stopping time we have constructed in Lemma 5.20
agrees with the stopping timeτ in the Azéma–Yor embedding.

Lemma 5.21The stopping timeT constructed in Lemma 5.20 and the stopping timeτ in
Theorem 5.19 are equal.

Proof. Suppose thatB(Tn−1) = xi, and henceΨ(B(Tn−1)) = yi−1. If i 6 n− 1, then
i is minimal with the property thatB(Ti) = · · · = B(Tn−1), and thusB(Ti−1) 6= B(Ti).
HenceM(Tn−1) > yi−1. If i = n we also haveM(Tn−1) = xn > yi−1, which implies
in any case thatτ 6 T . Conversely, ifTi−1 6 t < Ti thenB(t) ∈ (xi, yi) and this implies
M(t) < yi 6 Ψ(B(t)). Henceτ > T , and altogether we have seen thatT = τ .

This completes the proof of Theorem 5.19 for random variables taking finitely many val-
ues. The general case follows from a limiting procedure, which is left as Exercise 5.10.

5.3.3 The Donsker invariance principle

Let {Xn : n > 0} be a sequence of independent and identically distributed random vari-
ables and assume that they are normalised, so thatE[Xn] = 0 andVar(Xn) = 1. This
assumption is no loss of generality forXn with finite variance, since we can always con-
sider the normalisation

Xn − E[Xn]√
Var(Xn)

.

We look at therandom walkgenerated by the sequence

Sn =

n∑

k=1

Xk ,
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and interpolate linearly between the integer points, i.e.

S(t) = S[t] + (t− [t])(S[t]+1 − S[t]) .

This defines a random functionS ∈ C[0,∞). We now define a sequence{S∗
n : n > 1} of

random functions inC[0, 1] by

S∗
n(t) =

S(nt)√
n

for all t ∈ [0, 1].

Theorem 5.22 (Donsker’s invariance principle)On the spaceC[0, 1] of continuous func-
tions on the unit interval with the metric induced by the sup-norm, the sequence{S∗

n : n > 1}
converges in distribution to a standard Brownian motion{B(t) : t ∈ [0, 1]}.

Remark 5.23Donsker’s invariance principle is also called thefunctional central limit the-
orem. The nameinvariance principlecomes from the fact that the limit in Theorem 5.22
does not depend on the choice of the exact distribution of thenormalised random vari-
ablesXn. �

The idea of the proof is to construct the random variablesX1,X2,X3, . . . on the same
probability space as the Brownian motion in such a way that{S∗

n : n > 1} is with high
probability close to a scaling of this Brownian motion.

Lemma 5.24Suppose{B(t) : t > 0} is a linear Brownian motion. Then, for any random
variableX with mean zero and variance one, there exists a sequence of stopping times

0 = T0 6 T1 6 T2 6 T3 6 . . .

with respect to the Brownian motion, such that

(a) the sequence{B(Tn) : n > 0} has the distribution of the random walk with incre-
ments given by the law ofX,

(b) the sequence of functions{S∗
n : n > 0} constructed from this random walk satisfies

lim
n→∞

P
{

sup
06t61

∣∣∣
B(nt)√

n
− S∗

n(t)
∣∣∣ > ε

}
= 0 .

Proof. Using Skorokhod embedding, we defineT1 to be a stopping time withE[T1] = 1

such thatB(T1) = X in distribution. By the strong Markov property,

{B2(t) : t > 0} = {B(T1 + t) −B(T1) : t > 0}

is a Brownian motion and independent ofF+(T1) and, in particular, of(T1, B(T1)). Hence
we can define a stopping timeT ′

2 for the Brownian motion{B2(t) : t > 0} such that
E[T ′

2] = 1 andB2(T
′
2) = X in distribution. ThenT2 = T1 + T ′

2 is a stopping time for
the original Brownian motion withE[T2] = 2, such thatB(T2) is the second value in a
random walk with increments given by the law ofX. We can proceed inductively to get a
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sequence0 = T0 6 T1 6 T2 6 T3 < . . . such thatSn = B(Tn) is the embedded random
walk, andE[Tn] = n.

AbbreviateWn(t) = B(nt)√
n

and letAn be the event that there existst ∈ [0, 1) such that
|S∗
n(t) −Wn(t)| > ε. We have to show thatP(An) → 0. Let k = k(t) be the unique

integer with(k − 1)/n 6 t < k/n. SinceS∗
n is linear on such an interval we have

An ⊂
{

there existst ∈ [0, 1) such that
∣∣Sk/

√
n−Wn(t)

∣∣ > ε
}

∪
{

there existst ∈ [0, 1) such that
∣∣Sk−1/

√
n−Wn(t)

∣∣ > ε
}
.

As Sk = B(Tk) =
√
nWn(Tk/n), we obtain

An ⊂ A∗
n :=

{
there existst ∈ [0, 1) such that

∣∣Wn

(
Tk/n)

)
−Wn(t)

∣∣ > ε
}

∪
{

there existst ∈ [0, 1) such that
∣∣Wn

(
Tk−1/n

)
−Wn(t)

∣∣ > ε
}
.

For given0 < δ < 1 the eventA∗
n is contained in

{
there exists, t ∈ [0, 2] such that|s− t| < δ , |Wn(s) −Wn(t)| > ε

}
(5.8)

∪
{

there existst ∈ [0, 1) such that|Tk/n− t| ∨ |Tk−1/n− t| > δ
}
. (5.9)

Note that the probability of (5.8) does not depend onn. Choosingδ > 0 small, we can
make this probability as small as we wish, since Brownian motion is uniformly continu-
ous on[0, 2]. It remains to show that for arbitrary, fixedδ > 0, the probability of (5.9)
converges to zero asn→ ∞. To prove this we use that

lim
n→∞

Tn
n

= lim
n→∞

1

n

n∑

k=1

(Tk − Tk−1) = 1 almost surely.

This is Kolmogorov’s law of large numbers for the sequence{Tk − Tk−1} of independent
identically distributed random variables with mean1. Observe that for every sequence
{an} of reals one has

lim
n→∞

an
n

= 1 ⇒ lim
n→∞

sup
06k6n

|ak − k|/n = 0 .

This is a matter of plain (deterministic) arithmetic and easily checked. Hence we have,

lim
n→∞

P
{

sup
06k6n

|Tk − k|
n

> δ
}

= 0 . (5.10)

Now recall thatt ∈ [(k − 1)/n, k/n) and letn > 2/δ. Then

P
{

there existst ∈ [0, 1] such that|Tk/n− t| ∨ |Tk−1/n− t| > δ
}

6 P
{

sup
16k6n

(Tk − (k − 1)) ∨ (k − Tk−1)

n
> δ
}

6 P
{

sup
16k6n

Tk − k

n
> δ/2

}
+ P

{
sup

16k6n

(k − 1) − Tk−1

n
> δ/2

}
,

and by (5.10) both summands converge to0.
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Proof of the Donsker invariance principle. Choose the sequence of stopping times as
in Lemma 5.24 and recall from the scaling property of Brownian motion that the random
functions{Wn(t) : 0 6 t 6 1} given byWn(t) = B(nt)/

√
n are standard Brownian

motions. Suppose thatK ⊂ C[0, 1] is closed and define

K[ε] = {f ∈ C[0, 1] : ‖f − g‖sup 6 ε for someg ∈ K}.

ThenP{S∗
n ∈ K} 6 P{Wn ∈ K[ε]} + P{‖S∗

n −Wn‖sup > ε} . As n → ∞, the second
term goes to0, whereas the first term does not depend onn and is equal toP{B ∈ K[ε]}
for a Brownian motionB. AsK is closed we have

lim
ε↓0

P{B ∈ K[ε]} = P
{
B ∈

⋂

ε>0

K[ε]
}

= P{B ∈ K}.

Putting these facts together, we obtainlim supn→∞ P{S∗
n ∈ K} 6 P{B ∈ K}, which is

condition (ii) in the Portmanteau theorem, Theorem 12.6 in the appendix. Hence Donsker’s
invariance principle is proved.

Below and in the following section we harvest a range of results for random walks, which
we can transfer from Brownian motion by means of Donsker’s invariance principle. Read-
ers unfamiliar with the nature of convergence in distribution are recommended to look at
the appendix, Chapter 12.1.

Theorem 5.25Suppose that{Xk : k > 1} is a sequence of independent, identically dis-
tributed random variables withE[X1] = 0 and0 < E[X2

1 ] = σ2 < ∞. Let{Sn : n > 0}
be the associated random walk and

Mn = max{Sk : 0 6 k 6 n}

its maximal value up to timen. Then, for allx > 0,

lim
n→∞

P{Mn > x
√
n} =

2√
2πσ2

∫ ∞

x

e−y
2/2σ2

dy .

Proof. By scaling we can assume thatσ2 = 1. Suppose now thatg : R → R is a
continuous bounded function. Define a functionG : C[0, 1] → R by

G(f) = g
(

max
x∈[0,1]

f(x)
)
,

and note thatG is continuous and bounded. Then, by definition,

E
[
G(S∗

n)
]

= E
[
g
(

max
06t61

S(tn)√
n

)]
= E

[
g
(max06k6n Sk√

n

)]
,

and

E
[
G(B)

]
= E

[
g
(

max
06t61

B(t)
)]
.

Hence, by Donsker’s invariance principle,

lim
n→∞

E
[
g
(Mn√

n

)]
= E

[
g
(

max
06t61

B(t)
)]
.
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From the Portmanteau theorem, Theorem 12.6, and the reflection principle, Theorem 2.21,
we infer

lim
n→∞

P{Mn > x
√
n} = P{ max

06t61
B(t) > x} = 2P{B(1) > x} ,

and the latter probability is the given integral.

5.4 The arcsine laws for random walk and Brownian motion

We now discuss the two famous arcsine laws for Brownian motion and also for random
walks. Their name comes from thearcsine distribution, which is the distribution on
(0, 1) which has the density

1

π
√
x(1 − x)

for x ∈ (0, 1).

The cumulative distribution function of an arcsine distributed random variableX is there-
fore given by

P{X 6 x} =
2

π
arcsin(

√
x) for x ∈ (0, 1) .
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Fig. 5.6. The density of the arcsine distribution is concentrated near the boundary values0 and1.

Thefirst arcsine lawdescribes the law of the last passage over level zero by a Brownian
motion or random walk running for finite time. In the case of a Brownian motion we shall
find this law by a smart calculation, and then Donsker’s invariance principle will allow us
to transfer the result to random walks. Observe that the following result is surprising: the
rightmost zero of Brownian motion in the interval(0, 1) is most likely to be near zero or
one, see Figure 5.6.
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Theorem 5.26 (First arcsine law for Brownian motion)Let{B(t) : t > 0} be a standard
linear Brownian motion. Then,

(a) the random variableL = sup
{
t ∈ [0, 1] : B(t) = 0

}
, the last zero of Brownian

motion in[0, 1], is arcsine distributed, and
(b) the random variableM∗ ∈ [0, 1], which is almost surely uniquely determined by

B(M∗) = max
s∈[0,1]

B(s),

is arcsine distributed.

Proof. By Theorem 2.11 Brownian motion has a unique maximum on the interval[0, 1],
and hence the maximiserM∗ is well-defined. Moreover, Theorem 2.34 shows thatM∗,
which is the last zero of the process{M(t) −B(t) : t > 0} has the same law asL. Hence
it suffices to prove part (b).

Recall that{M(t) : 0 6 t 6 1} is defined byM(t) = max06s6tB(s). Fors ∈ [0, 1],

P{M∗ < s} = P
{

max
06u6s

B(u) > max
s6v61

B(v)
}

= P
{

max
06u6s

B(u) −B(s) > max
s6v61

B(v) −B(s)
}

= P
{
M1(s) > M2(1 − s)

}
,

where{M1(t) : 0 6 t 6 s} is the maximum process of the Brownian motion{B1(t) :

0 6 t 6 s}, which is given byB1(t) = B(s− t) −B(s), and{M2(t) : 0 6 t 6 1} is the
maximum process of the independent Brownian motion{B2(t) : 0 6 t 6 1− s}, which is
given byB2(t) = B(s + t) − B(s). Since, by Theorem 2.21, for any fixedt, the random
variableM(t) has the same law as|B(t)|, we have

P
{
M1(s) > M2(1 − s)

}
= P

{
|B1(s)| > |B2(1 − s)|

}
.

Using the scaling invariance of Brownian motion we can express this in terms of a pair of
two independent standard normal random variablesZ1 andZ2 , by

P
{
|B1(s)| > |B2(1 − s)|

}
= P

{√
s |Z1| >

√
1 − s |Z2|

}
= P

{ |Z2|√
Z2

1 + Z2
2

<
√
s
}
.

In polar coordinates,(Z1, Z2) = (R cos θ,R sin θ) pointwise. The fact that the random
variableθ is uniformly distributed on[0, 2π] follows from Lemma 12.11 in the appendix.
So the last quantity becomes

P
{ |Z2|√

Z2
1 + Z2

2

<
√
s
}

= P
{
| sin(θ)| < √

s
}

= 4P
{
θ < arcsin(

√
s)
}

= 4

(
arcsin(

√
s)

2π

)
=

2

π
arcsin(

√
s).

It follows by differentiating thatM∗ has density(π
√
s(1 − s))−1 for s ∈ (0, 1).

For random walks the first arcsine law takes the form of a limittheorem, as the length of
the walk tends to infinity.
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Proposition 5.27 (Arcsine law for the last sign-change)Suppose that{Xk : k > 1} is
a sequence of independent, identically distributed randomvariables withE[X1] = 0 and
0 < E[X2

1 ] = σ2 <∞. Let{Sn : n > 0} be the associated random walk and

Nn = max{1 6 k 6 n : SkSk−1 6 0}
the last time the random walk changes its sign before timen. Then, for allx ∈ (0, 1),

lim
n→∞

P{Nn 6 xn} =
2

π
arcsin(

√
x) .

Proof. The strategy of proof is to use Theorem 5.26, and apply Donsker’s invariance
principle to extend the result to random walks. AsNn is unchanged under scaling of the
random walk we may assume thatσ2 = 1. Define a bounded functiong onC[0, 1] by

g(f) = max{t 6 1: f(t) = 0}.
It is clear thatg(S∗

n) differs fromNn/n by a term, which is bounded by1/n and therefore
vanishes asymptotically. Hence Donsker’s invariance principle would imply convergence
of Nn/n in distribution tog(B) = sup{t 6 1: B(t) = 0} — if g was continuous.g is
not continuous, but we show thatg is continuous on the setC of all f ∈ C[0, 1] such that
f takes positive and negative values in every neighbourhood of every zero andf(1) 6= 0.
As, by Theorem 2.28, Brownian motion is almost surely inC, we get from property (v) in
the Portmanteau theorem, Theorem 12.6, and by Donsker’s invariance principle, that, for
every continuous boundedh : R → R,

lim
n→∞

E
[
h
(Nn
n

)]
= lim
n→∞

E
[
h◦g(S∗

n)
]

= E
[
h◦g(B)

]
= E

[
h(sup{t 6 1: B(t) = 0})

]
,

which completes the proof subject to the claim. To see thatg is continuous onC, let ε > 0

be given andf ∈ C. Let

δ0 = min
t∈[g(f)+ε,1]

|f(t)| ,

and chooseδ1 such that(−δ1, δ1) ⊂ f(g(f) − ε, g(f) + ε) . Let 0 < δ < δ0 ∧ δ1. If now
‖h− f‖∞ < δ, thenh has no zero in(g(f) + ε, 1], but has a zero in(g(f)− ε, g(f) + ε),
because there ares, t ∈ (g(f) − ε, g(f) + ε) with h(t) < 0 andh(s) > 0. Thus|g(h) −
g(f)| < ε. This shows thatg is continuous onC.

There is a second arcsine law for Brownian motion, which describes the law of the random
variableL

{
t ∈ [0, 1] : B(t) > 0

}
, the time spent by Brownian motion above thex-axis.

This statement is much harder to derive directly for Brownian motion, though we will do
this using more sophisticated tools in Chapter 8. At this stage we can use random walks to
derive the result for Brownian motion.

Theorem 5.28 (Second arcsine law for Brownian motion)Let{B(t) : t > 0} be a stan-
dard linear Brownian motion. Then,L

{
t ∈ [0, 1] : B(t) > 0

}
, is arcsine distributed.

The idea is to prove a direct relationship between the first maximum and the number of
positive terms for asimplerandom walk by a combinatorial argument, and then transfer
this to Brownian motion using Donsker’s invariance principle.
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Lemma 5.29Let{Sk : k = 1, . . . , n} be a simple, symmetric random walk on the integers.
Then

#
{
k ∈ {1, . . . , n} : Sk > 0

} d
= min

{
k ∈ {0, . . . , n} : Sk = max

06j6n
Sj
}
. (5.11)

Proof. LetXk = Sk − Sk−1 for eachk ∈ {1, . . . , n}, with S0 := 0. We rearrange the
tuple(X1, . . . ,Xn) by

• placing first indecreasingorder ofk the termsXk for whichSk > 0,
• and then inincreasingorder ofk theXk for whichSk 6 0.

Denote the new tuple by(Y1, . . . , Yn) := Tn(X1, . . . ,Xn). We first show that

(X1, . . . ,Xn)
d
= (Y1, . . . , Yn) .

Note that, because the increments(X1, . . . ,Xn) are uniformly distributed on{−1, 1}n,
this is equivalent to showing thatTn is a bijection for everyn ∈ N. For n = 1 this
is obviously true, and we continue by induction, assuming that Tk is a bijection for any
k 6 n − 1. Tn is obviously a bijection on those tuples for which all partial sums are
nonpositive. For all other tuples(x1, . . . , xn) let

`(x1, . . . , xn) = max
{

1 6 k 6 n :

k∑

j=1

xj > 0
}
.

Then, abbreviatingx = (x1, . . . , xn),

Tn(x1, . . . , xn) =
(
x`(x), T`(x)−1

(
x1, . . . , x`(x)−1

)
, x`(x)+1, . . . , xn

)
.

Note that, ify = Tn(x) then`(x) = `(y), and therefore the inverse ofTn is given as

T−1
n (y1, . . . , yn) =

(
T−1
`(y)−1

(
y2, . . . , y`(y)

)
, y1, y`(y)+1, . . . , yn

)
,

proving thatTn is a bijection, as required.
Now {Sk(Y ) : k = 1, . . . , n} given bySk(Y ) =

∑k
j=1 Yj is a random walk and we check

by induction onn that

#
{
k ∈ {1, . . . , n} : Sk(X) > 0}

= min{k ∈ {0, . . . , n} : Sk(Y ) = max
06j6n

Sj(Y )
}
.

(5.12)

Indeed, this obviously holds forn = 1. Suppose it holds for fixedn. WhenXn+1 is
appended there are two possibilities:

• SupposeSn+1(X) > 0, so that

#
{
k ∈ {1, . . . , n+ 1} : Sk(X) > 0} = #

{
k ∈ {1, . . . , n} : Sk(X) > 0} + 1.

Denoting(Y ∗
1 , . . . , Y

∗
n+1) = Tn+1(X1, . . . ,Xn+1) we haveY ∗

1 = Xn+1, and therefore

min{k ∈ {0, . . . , n+ 1} : Sk(Y
∗) = max

06j6n+1
Sj(Y

∗)
}

= min{k ∈ {0, . . . , n} : Sk(Y ) = max
06j6n

Sj(Y )
}

+ 1.



5.4 The arcsine laws for random walk and Brownian motion 139

In summary, appending the valueXn+1 to (X1, . . . ,Xn) in this case, has led to the in-
crease of both sides in Equation (5.12) by one.

• SupposeSn+1(X) 6 0, so that

#
{
k ∈ {1, . . . , n+ 1} : Sk(X) > 0} = #

{
k ∈ {1, . . . , n} : Sk(X) > 0}.

ThenY ∗
n+1 = Xn+1 and therefore

min{k ∈ {0, . . . , n+ 1} : Sk(Y
∗) = max

06j6n+1
Sj(Y

∗)
}

= min{k ∈ {0, . . . , n} : Sk(Y ) = max
06j6n

Sj(Y )
}
.

In summary, appending the valueXn+1 to (X1, . . . ,Xn) in this case, has left both sides
in Equation (5.12) unchanged.

This completes the induction step and proves the lemma.

Proof of Theorem 5.28. Look at the right hand side of the equation (5.11), which
divided byn can be written asg(S∗

n) for the functiong : C[0, 1] → [0, 1] defined by

g(f) = inf
{
t ∈ [0, 1] : f(t) = sup

s∈[0,1]

f(s)
}
.

The functiong is continuous in everyf ∈ C[0, 1] which has a unique maximum, hence al-
most everywhere with respect to the distribution of Brownian motion. Hence, by Donsker’s
invariance principle and the Portmanteau theorem, Theorem12.6, the right hand side
in (5.11) divided byn converges to the distribution ofg(B), which by Theorem 5.26 is
the arcsine distribution.

Similarly, by Exercise 5.11, the left hand side of (5.11) divided byn can be approximated
in probability byh(S∗

n) for the functionh : C[0, 1] → [0, 1] defined by

h(f) = L{t ∈ [0, 1] : f(t) > 0
}
.

It is not hard to see that the functionh is continuous in everyf ∈ C[0, 1] with the property
that

lim
ε↓0

L{t ∈ [0, 1] : − ε 6 f(t) 6 ε
}

= 0,

which again is equivalent toL{t ∈ [0, 1] : f(t) = 0
}

= 0, a property which Brownian
motion has almost surely. Hence, again by Donsker’s invariance principle and the Port-
manteau theorem, the left hand side in (5.11) divided byn converges to the distribution of
h(B) = L{t ∈ [0, 1] : B(t) > 0}, and this completes the argument.

Remark 5.30The proof of Theorem 5.28 can now be used literally to show that the second
arcsine law holds for random walks{Sn : n > 0} with mean zero and finite variance.
Indeed, ifPn = #{1 6 k 6 n : Sk > 0} is the number of positive values of the random
walk before timen, then, for allx ∈ (0, 1),

lim
n→∞

P{Pn 6 xn} =
2

π
arcsin(

√
x) . �
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5.5 Pitman’s2M −B theorem

Pitman’s2M −B theorem describes an interesting relationship between the3-dimensional
Bessel process, which, loosely speaking, can be consideredas a linear Brownian motion
conditioned to avoid zero and a simple transformation of theBrownian path, namely the
process

{
(2M(t) −B(t),M(t)) : t > 0

}
for M(t) = max

06s6t
B(s).

Geometrically, the first component of this process is obtained by reflecting the Brownian
path at each time in the level of the current maximum. We will obtain this result from
a random walk analogue, using Donsker’s invariance principle to pass to the Brownian
motion case.

We start by discussing simple random walks conditioned to avoid zero, and its continuous-
time analogue, the three-dimensional Bessel process. Consider a simple random walk on
{0, 1, 2, . . . , n} conditioned to reachn before0. By Bayes’ rule, this conditioned process is
a Markov chain with the following transition probabilities: p̂(0, 1) = 1 and for1 6 k < n,

p̂(k, k + 1) = (k + 1)/2k ; p̂(k, k − 1) = (k − 1)/2k . (5.13)

This is an instance of Doob’sH-transform, see Exercise 5.13. Takingn→ ∞, this leads us
to definethesimple random walk onN = {1, 2, . . .} conditioned to avoid zero(forever)
as a Markov chain onN with transition probabilities as in (5.13) for allk > 1.

Lemma 5.31Let {S(j) : j = 0, 1, . . .} be a simple random walk onZ and let{ρ̃(j) : j =

0, 1, . . .} be a simple random walk onN conditioned to avoid zero. Then for` > 1 and any
sequence(x0, . . . , x`) of positive integers, we have

P
{
ρ̃(1) = x1, . . . , ρ̃(`) = x`

∣∣ ρ̃(0) = x0

}

=
x`
x0

P
{
S(1) = x1, . . . , S(`) = x`

∣∣S(0) = x0

}
.

Proof. We prove the result by induction oǹ. The casè = 1 is just (5.13). Assume
the lemma holds for̀ − 1 and let(x0, . . . , x`) be a sequence of positive integers such that
|xj − xj−1| = 1 for j = 1, . . . , `. Clearly, the probability on the right hand side of the
equation is just2−`. Moreover, using the induction hypothesis and the Markov property,

P
{
ρ̃(1) = x1, . . . , ρ̃(`) = x`

∣∣ ρ̃(0) = x0

}

=
x`−1

x0
21−` P

{
ρ̃(`) = x`

∣∣ ρ̃(`− 1) = x`−1

}

=
x`−1

x0
21−` x`

2x`−1
=

x`
x0

2−`,

as required to complete the proof.

Define thethree-dimensional Bessel process{ρ(t) : t > 0} by taking a3-dimensional
Brownian motion{W (t) : t > 0} and putting

ρ(t) = |W (t)| .
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Fix h > 0 and assume|W (0)| = h. Define the stopping times{τ (h)

j : j = 0, 1, . . .} by
τ (h)

0 = 0 and, forj > 0,

τ (h)

j+1 = min
{
t > τ (h)

j : |ρ(t) − ρ(τ (h)

j )| = h
}
.

Given thatρ(τ (h)

j ) = kh for somek > 0, by Theorem 3.18, we have that

ρ(τ (h)

j+1) =

{
(k + 1)h, with probability k+1

2k ,

(k − 1)h, with probability k−1
2k .

(5.14)

We abbreviateτj = τ (1)

j . By (5.13) and (5.14), the sequence{ρ(τj) : j = 0, 1, . . .} has
the same distribution as the simple random walk onN conditioned to avoid zero, with the
initial condition ρ̃(0) = 1.

Lemma 5.32The sequence{τn − n : n > 0} is a martingale and there existsC > 0 with

Var(τn − n) 6 C n .

Proof. If {B(t) : t > 0} is standard linear Brownian motion, then we know from
Lemma 2.47 that{B(t)2 − t : t > 0} is a martingale. As{ρ(t)2 − 3t : t > 0} is the sum of
three independent copies of this martingale, it is also a martingale. Given thatρ(τn−1) = k,
optional sampling (recall Theorem 12.27 of the appendix) for this martingale at timesτn−1

andτn yields

k2 − 3τn−1 =
(k + 1)3

2k
+

(k − 1)3

2k
− 3E[τn | τn−1] ,

henceE[τn − τn−1 | τn−1] = 1, so that{τn − n : n > 0} is a martingale. To bound its
variance, consider the scalar product

Z :=
〈
W (t+ 1) −W (t) , W (t)

|W (t)|
〉
.

Given F(t), the σ-algebra generated byW (s), for s ∈ [0, t], the distribution ofZ is
standard normal. This is clear ifW (t) is on a coordinate axis; and the general case follows
by rotational symmetry of 3-dimensional Brownian motion. Moreover,

Z =
〈
W (t+ 1) , W (t)

|W (t)|
〉
− |W (t)| 6 |W (t+ 1)| − |W (t)| .

ThereforeP{|W (t+ 1)| − |W (t)| > 2 | F(t)} > P{Z > 2}. For anyn,

k⋃

j=1

{
|W (τn−1 + j)| − |W (τn−1 + j − 1)| > 2

}
⊂ {τn − τn−1 6 k},

so that, givenτn−1, the differenceτn − τn−1 is stochastically bounded from above by a
geometric random variable with parameterp := P{Z > 2}. Hence,

Var(τn − τn−1 − 1) 6 E
[
(τn − τn−1)

2
]

6
2

p
.

By orthogonality of martingale differences, see e.g. (12.1) in the appendix, we conclude
thatVar(τn − n) 6 2n/p, which completes the proof.
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We use the following notation,

• {S(j) : j = 0, 1, . . .} is a simple random walk inZ,

• {M̃(j) : j = 0, 1, . . .} defined byM̃(j) = max06a6j S(a) is its maximum process;

• {ρ̃(j) : j = 0, 1, . . .} is a simple random walk onN conditioned to avoid zero,

• {Ĩ(j) : j = 0, 1, . . .} defined byĨ(j) = mink>j ρ̃(k) is its future minimum process.

Let {I(t) : t > 0} defined byI(t) = mins>t ρ(s) be the future minimum process of the
process{ρ(t) : t > 0}.

Proposition 5.33Let Ĩ(0) = ρ̃(0) = 0, and extend the processes{ρ̃(j) : j = 0, 1, . . .} and
{Ĩ(j) : j = 0, 1, . . .} to [0,∞) by linear interpolation. Then

{
hρ̃(t/h2) : 0 6 t 6 1

} d→
{
ρ(t) : 0 6 t 6 1

}
ash ↓ 0 , (5.15)

and
{
hĨ(t/h2) : 0 6 t 6 1

} d→
{
I(t) : 0 6 t 6 1

}
ash ↓ 0 , (5.16)

where
d→ indicates convergence in law as random elements ofC[0, 1].

Proof. For anyh > 0, Brownian scaling implies that the process{τ (h)
n : n = 0, 1, . . .}

has the same law as the process{h2τn : n = 0, 1, . . .}. Doob’sL2 maximal inequality, see
Theorem 12.30, and Lemma 5.32 yield that

E
[

max
06j6n

(τj − j)2
]

6 C n,

for a suitable constantC > 0. Therefore, takingn = bh−2tc,

E
[

max
06t61

(τ (h)

bh−2tc − h2bh−2tc)2
]

= h4 E
[

max
06t61

(τbh−2tc − bh−2tc)2
]

6 C h2 ,

whence also (for a slightly larger constant)

E
[

max
06t61

(τ (h)

bh−2tc − t)2
]

6 C h2 . (5.17)

Since{ρ(t) : 0 6 t 6 1} is uniformly continuous almost surely, we infer that

max
06t61

|ρ(τ (h)

bh−2tc) − ρ(t)| → 0 in probability ash ↓ 0,

and similar reasoning gives the analogous result whenb·c is replaced byd·e. Sinceρ̃(t/h2)

is, by definition, a weighted average ofρ̃(bh−2tc) and ρ̃(dh−2te), the proof of (5.15)
is now concluded by recalling that{ρ(τ (h)

j ) : j = 0, 1, . . .} has the same distribution as
{hρ̃(j) : j = 0, 1, . . .}. Similarly, {I(τ (h)

j ) : j = 0, 1, . . .} has the same distribution as

{hĨ(j) : j = 0, 1, . . .}, so (5.16) follows from (5.17) and the continuity ofI.
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Theorem 5.34 (Pitman’s2M − B theorem) Let {B(t) : t > 0} be a linear Brown-
ian motion and letM(t) = max06s6tB(s) denote its maximum up to timet. Also let
{ρ(t) : t > 0} be a three-dimensional Bessel process and let{I(t) : t > 0} be the corre-
sponding future infimum process given byI(t) = infs>t ρ(s). Then

{
(2M(t) −B(t),M(t)) : t > 0

} d
=
{
(ρ(t), I(t)) : t > 0

}
.

In particular, {2M(t) −B(t) : t > 0} is a three-dimensional Bessel process.

Proof. Following the original paper [Pi75], we prove the theorem inthe discrete setting,
i.e. we show that, forS(0) = ρ̃(0) = 0,

{
(2M̃(j) − S(j), M̃(j)) : j = 0, 1, . . .

} d
=
{
(ρ̃(j), Ĩ(j)) : j = 0, 1, . . .

}
. (5.18)

The theorem then follows directly by invoking Donsker’s invariance principle and Propo-
sition 5.33. First note that (5.18) is equivalent to

{
(S(j), M̃(j)) : j = 0, 1, . . .

} d
=
{
(2Ĩ(j) − ρ̃(j), Ĩ(j)) : j = 0, 1, . . .

}
,

which we establish by computing the transition probabilities. IfS(j) < M̃(j), then clearly

(S(j + 1), M̃(j + 1)) =

{
(S(j) + 1, M̃(j)), with probability 1

2 ,

(S(j) − 1, M̃(j)), with probability 1
2 .

(5.19)

If S(j) = M̃(j), then

(S(j + 1), M̃(j + 1)) =

{
(S(j) + 1, M̃(j) + 1), with probability 1

2 ,

(S(j) − 1, M̃(j)), with probability 1
2 .

(5.20)

We now compute the transition probabilities of{(2Ĩ(j) − ρ̃(j), Ĩ(j)) : j = 0, 1, . . .}. To
this end, we first show that{Ĩ(j) : j = 0, 1, . . .} is the maximum process of{2Ĩ(j) −
ρ̃(j) : j = 0, 1, . . .}. Indeed, for allj 6 k, since(Ĩ − ρ̃)(j) 6 0, we have

2Ĩ(j) − ρ̃(j) = Ĩ(j) + (Ĩ − ρ̃)(j) 6 Ĩ(k) .

On the other hand, letj∗ be the minimalj∗ 6 k such thatĨ(j∗) = Ĩ(k). Thenρ̃(j∗) =

Ĩ(j∗) and we infer that(2Ĩ − ρ̃)(j∗) = Ĩ(j∗) = I(k).

Assume now that2Ĩ(j) − ρ̃(j) < Ĩ(j), i.e., ρ̃(j) > Ĩ(j). Lemma 5.31 and the fact that
{S(j) : j = 0, 1, . . .} is recurrent imply that, for integersk > i > 0,

P
{
∃j with ρ̃(j) = i

∣∣ ρ̃(0) = k
}

=
i

k
P
{
∃j with S(j) = i

∣∣S(0) = k
}

=
i

k
.

Thus, fork > i > 0,

P
{
Ĩ(j) = i

∣∣ ρ̃(j) = k
}

= P
{
∃j with ρ̃(j) = i

∣∣ ρ̃(0) = k
}
− P

{
∃j with ρ̃(j) = i− 1

∣∣ ρ̃(0) = k
}

=
1

k
.
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Therefore,

P
{
ρ̃(j + 1) = k − 1 | ρ̃(j) = k, Ĩ(j) = i

}

=
P{ρ̃(j + 1) = k − 1, Ĩ(j) = i | ρ̃(j) = k}

P{Ĩ(j) = i | ρ̃(j) = k}

=
k−1
2k

1
k−1

1
k

=
1

2
.

(5.21)

We conclude that if2Ĩ(j) − ρ̃(j) < Ĩ(j), then

(2Ĩ(j + 1) − ρ̃(j + 1), Ĩ(j + 1))

=

{
(2Ĩ(j) − ρ̃(j) + 1, Ĩ(j)), with probability 1

2 ,

(2Ĩ(j) − ρ̃(j) − 1, Ĩ(j)), with probability 1
2 .

(5.22)

Assume now that̃ρ(j) = Ĩ(j) = k. Thenρ̃(j + 1) = k + 1, and a computation analogous
to (5.21) shows that

Ĩ(j + 1) =

{
Ĩ(j) + 1, with probability 1

2 ,

Ĩ(j), with probability 1
2 .

(5.23)

Indeed,

P{Ĩ(j + 1) = k + 1 | Ĩ(j) = ρ̃(j) = k}

=
P{ρ̃(j + 1) = k + 1 | ρ̃(j) = k}P{Ĩ(j + 1) = k + 1 | ρ̃(j + 1) = k + 1}

P{Ĩ(j) = k | ρ̃(j) = k}

=
k+1
2k

1
k+1

1
k

=
1

2
.

By (5.23), if ρ̃(j) = Ĩ(j) = k, then we have

(2Ĩ(j + 1) − ρ̃(j + 1), Ĩ(j + 1))

=

{
(2Ĩ(j) − ρ̃(j) + 1, Ĩ(j) + 1), with probability 1

2 ,

(2Ĩ(j) − ρ̃(j) − 1, Ĩ(j)), with probability 1
2 .

(5.24)

Finally, comparing (5.19) and (5.20) to (5.22) and (5.24) completes the proof.

We now use the combinatorial technique developed for Pitman’s 2M − B theorem to
prove a result of Ciesielski and Taylor [CT62], which relates the occupation times of a
3-dimensional Brownian motion to exit times of one-dimensional Brownian motion. An
alternative proof based on a Feynman–Kac formula will be given in Section 7.4.

Theorem 5.35 (Ciesielski–Taylor identity)Let{W (t) : t > 0} be a3-dimensional Brow-
nian motion and letT =

∫∞
0

1{|W (s)| 6 1} ds be the total amount of time it spends in
the unit ball. Let{B(t) : t > 0} be a1-dimensional Brownian motion and letτ = min{t :

|B(t)| = 1}. Then we have

T
d
= τ . (5.25)
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Remark 5.36 The statement of Theorem 5.35 remains true if, for anyd > 3, we let
{W (t) : t > 0} be ad-dimensional Brownian motion and{B(t) : t > 0} be a(d − 2)-
dimensional Brownian motion, but the proof we present here works only ford = 3. �

Lemma 5.37Let {S(j) : j = 0, . . . , γ} be simple random walk started atS(0) = 0 and
stopped at the random timeγ = min{j : S(j) = n}. Then{n− S(γ − j) : j = 0, . . . , γ}
has the same distribution as{ρ̃(j) : j = 0, . . . , L}, whereρ̃(0) = 0 andL = max{j :

ρ̃(j) = n}. In particular,γ andL have the same law.

Proof. Fix x0 = 0 and consider a possible path(x0, x1, . . . , x`) for the simple random
walk stopped atγ, where |xi − xi−1| = 1 for all i > 1 and xi < n for all i < `

with x` = n. The probability that{S(j) : j = 0, . . . , γ} takes this path is2−`. The
probability that{ρ̃(j) : j = 1, . . . , `} takes the path{n − x`−j : j = 1, . . . , `} is 21−`n
by Lemma 5.31. Furthermore, conditioned on{ρ̃(j) : j = 1, . . . , `} taking this path, the
probability thatĨ(`+ 1) = n+ 1 is

P
{
ρ̃(`+ 1) = n+ 1 | ρ̃(`) = n

}
P
{
Ĩ(`+ 1) = n+ 1 | ρ̃(`+ 1) = n+ 1

}

=
n+ 1

2n

1

n+ 1
=

1

2n
.

Combining these facts yields the result.

Proof of Theorem 5.35. We prove the theorem in the discrete setting, namely we denote
τ̃ = min{j > 0: |S(j)| = n}, and show that forn > 1,

#
{
i > 1 : ρ̃(i− 1), ρ̃(i) ∈ {0, . . . , n}

} d
= τ̃ . (5.26)

Dividing both sides of (5.26) byn2 and lettingn ↑ ∞ yields (5.25), see Exercise 5.15.

As a warm up, observe that forn = 1 both sides of (5.26) are identically1, and forn = 2

each side of (5.26) is a geometric random variable with parameter 1
2 , multiplied by 2. For

the full argument letγ = min{j : S(j) = n} as in Lemma 5.37, which implies that

#
{
i ∈ {1, . . . , γ} : S(i− 1), S(i) ∈ {0, . . . , n}

}

d
= #

{
i > 1: ρ̃(i− 1), ρ̃(i) ∈ {0, . . . , n}

}
.

But deleting the negative excursions between two points in which {S(i) : i = 0, 1, . . .}
is zero gives a reflected simple random walk with the law of{|S(i)| : i = 0, 1, . . .} and
therefore

#
{
i ∈ {1, . . . , γ} : S(i− 1), S(i) ∈ {0, . . . , n}

}

d
= #

{
i ∈ {1, . . . , τ̃} : |S(i− 1)|, |S(i)| ∈ {0, . . . , n}

}
= τ̃ ,

as required to prove (5.26).

In a similar spirit the following theorem relates occupation times and exit times for a stan-
dard linear Brownian motion.
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Theorem 5.38Let {B(t) : t > 0} be a standard linear Brownian motion and, fora > 0,
let τa = inf{t > 0: B(t) = a} andσa = inf{t > 0: |B(t)| = a}. Then

∫ τa

0

1{0 6 B(t) 6 a} dt d
= σa.

The key to the proof is the fact, due to David Williams, that removing the negative excur-
sions from a standard linear Brownian motion{B(s) : s > 0} leads to a reflected Brownian
motion{|B(s)| : s > 0}.

Lemma 5.39Let s(t) =
∫ t
0

1{B(s) > 0} ds and let t(s) = inf{t > 0: s(t) > s} its
right-continuous inverse. Then

{
B(t(s)) : s > 0

} d
=
{
|B(s)| : s > 0

}
.

Proof. Let {S(n) : n = 0, 1, . . .} be a simple random walk and consider{S∗
n(s) : s > 0}

defined as in Donsker’s invariance principle. Removing the negative excursions from the
simple random walk leads to a reflected simple random walk, therefore

{
S∗
n

(
t(s, S∗

n)
)
: s > 0

} d
=
{
|S∗
n(s)| : s > 0

}
, (5.27)

wheres(t, f) =
∫ t
0

1{f(s) > 0} ds andt(s, f) = inf{t > 0: s(t, f) > s}. For everyt >
0 the mappingf 7→ f(t( · , f)) is continuous inf ∈ C[0, t] with respect to the supremum
norm provided that

lim
ε↓0

L{s ∈ [0, t] : − ε 6 f(s) 6 ε
}

= 0,

a property which Brownian motion has almost surely. Hence Donsker’s invariance princi-
ple gives the claim by lettingn→ ∞ in (5.27).

Proof of Theorem 5.38. We obviously have that
∫ τa

0

1{0 6 B(s) 6 a} ds = inf{s > 0: B(t(s)) = a}.

By Lemma 5.39 we further have

inf{s > 0: B(t(s)) = a} d
= inf{s > 0: |B(s)| = a} = σa,

which implies the result.

Exercises

Exercise 5.1.S Suppose{B(t) : t > 0} is a standard linear Brownian motion. Show that

lim sup
n↑0

sup
n6t<n+1

B(t) −B(n)√
2 log n

= 1 almost surely.

Exercise 5.2.S Derive from Theorem 5.1 that, for ad-dimensional Brownian motion,

lim sup
t↑∞

|B(t)|√
2t log log t

= 1 almost surely.
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Exercise 5.3.S Suppose{B(t) : t > 0} is a linear Brownian motion andτ the first hitting
time of level1. Show that, almost surely,

lim sup
h↓0

B(τ) −B(τ − h)√
2h log log(1/h)

6 1.

Exercise 5.4.S Let {Sk : k > 0} be a simple, symmetric random walk on the integers.
Show that there are positive constantsC1 andC2 such that

C1√
n

6 P{Si > 0 for all 1 6 i 6 n} 6
C2√
n

for all n > 1.

Hint. For simple random walk areflection principleholds in quite the same way as for
Brownian motion. The key to the proof is to verify that

P{Si > 0 for all 1 6 i 6 n} = P{Sn > 0} − P{S∗
n 6 − 2}

whereS∗
n is the random walk reflected at the stopping timeτ−1 = min{k : Sk = −1}.

Exercise 5.5.S Prove that, for any random walk{Sj : j > 0} on the line,

P
{
S0, . . . , Sn has a point of increase

}
6 2

∑n
k=0 pkpn−k∑bn/2c
k=0 p2

k

,

wherep0, . . . , pn are as in (5.4).

Exercise 5.6. An eventA ⊂ Rd is anincreasing eventif,

(x1, . . . , xi−1, xi,xi+1, . . . xd) ∈ A andx̃i > xi

=⇒ (x1, . . . , xi−1, x̃i, xi+1, . . . xd) ∈ A.

If A andB are increasing events, show that

P(A ∩B) > P(A)P(B),

i.e.A andB are positively correlated.

Exercise 5.7.S Show that we can obtain a lower bound on the probability that arandom
walk has a point of increase that differs from the upper boundonly by a constant factor.
More precisely, for any random walk on the line,

P
{
S0, . . . , Sn has a point of increase

}
>

∑n
k=0 pkpn−k

2
∑bn/2c
k=0 p2

k

,

wherep0, . . . , pn are as in (5.4).

Exercise 5.8. Let {B(t) : 0 6 t 6 1} be a linear Brownian motion.

(a) Use the Cameron–Martin theorem to show that, for anyF ∈ D[0, 1], the process
{
B(t) + F (t) : 0 6 t 6 1

}

almost surely has no point of increase.
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(b) Find aF ∈ C[0, 1] such that{B(t) + F (t) : 0 6 t 6 1} has a point of increase.

Exercise 5.9.SupposeX1, . . . ,Xn are independent and identically distributed and con-
sider their ordered relabelling given byX(1) > X(2) > . . . > X(n) . Show that

E[X(i)X(j)] > E[X(i)]E[X(j)],

provided these expectations are well-defined.

Exercise 5.10.S Given a centred random variableX, show that there exist centred random
variablesXn taking only finitely many values, such thatXn converges toX in law and,
for Ψn(x) = E

[
Xn

∣∣Xn > x
]
, the embedding stopping times

τn = inf{t > 0: M(t) > Ψn(B(t))}

converge almost surely toτ . Infer thatB(τ) has the same law asX, andE[τ ] = E[X2].

Exercise 5.11.S Suppose that{Sn : n > 0} is a random walk with mean zero and positive,
finite variance. Define{S∗

n(t) : 0 6 t 6 1} as in Donsker’s invariance principle. Show
that

L{t ∈ [0, 1] : S∗
n(t) > 0

}
− 1

n #
{
k ∈ {1, . . . , n} : Sk > 0

}

converges to zero in probability.

Exercise 5.12.S Let {B(t) : t > 0} be a standard linear Brownian motion anda > 0.
Define stopping timesτa = inf{t > 0: B(t) = a}, τa,0 = inf{t > τa : B(t) = 0} and a
random time

σ0 = sup{0 6 t 6 τa : B(t) = 0}.

The process{e(t) : 0 6 t 6 τe} given by

e(t) = B(σ0 + t), τe = τa,0 − σ0

is aBrownian excursionconditioned to hit levela, andτe is called itslifetime.

(a) For any0 < b 6 a denote byτeb the first hitting time of levelb by the excur-
sion {e(t) : 0 6 t 6 τe}. Show that, for0 < b < a, the process{e(τeb +

t) : 0 6 t 6 τea − τeb } is a Brownian motion conditioned to hit levela before
level zero.

(b) Show that the time-reversed excursion{e(τe − t) : 0 6 t 6 τe} is also a Brownian
excursion conditioned to hit levela.

Hint. For (b) show an analogous statement for simple random walk and use Donsker’s
invariance principle to transfer the result to the Brownianmotion case.
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Exercise 5.13.Letp(x, y) be the transition matrix of an irreducible Markov chain{Xj : j =

0, 1, . . .} on a finite state spaceV . Fora, b ∈ V , consider the hitting time

T = Tab = min
{
j > 0: Xj ∈ {a, b}

}

and writeH(x) = Px{XT = b}. Show that the chain{Xj : j = 0, 1, . . .} conditioned to
reachb beforea and absorbed atb has the same law as the Markov chain{Yj : j = 0, 1, . . .}
onV \ {a} with transition probabilities

p̂(x, y) = p(x, y)
H(y)

H(x)
for x 6= b.

The chain{Yj : j = 0, 1, . . .} is called theDoob H-transform of the original chain
{Xj : j = 0, 1, . . .}.

Exercise 5.14.Let {ρ(t) : t > 0} be a three-dimensional Bessel process.

(a) Verify that the process{X(t) : t > 0} given byX(t) = ρ(t)4 − 6t2ρ(t)2 + 3ρ(t)2

is a martingale.
(b) Use (a) to derive a tighter bound forVar(τn − τn−1) in Lemma 5.32.

Exercise 5.15.Let {S(j) : j = 0, 1, . . .} be a simple random walk on the integers started
atS(0) = 0, and{ρ̃(j) : j = 0, 1, . . .} be a simple random walk onN conditioned to avoid
zero, withρ̃(0) = 0.

(a) Show that, asn ↑ ∞,

1

n2
min

{
j : |S(j)| = n

} d−→ min{t > 0: |B(t)| = 1},

where{B(t) : t > 0} is a1-dimensional Brownian motion.

(b) Show that, asn ↑ ∞,

1

n2
#
{
i > 1 : ρ̃(i− 1), ρ̃(i) ∈ {0, . . . , n}

} d−→
∫ ∞

0

1{|W (s)| 6 1} ds,

where{W (t) : t > 0} is a3-dimensional Brownian motion.

Notes and comments

Historically, the law of the iterated logarithm was first proved for simple random walk by
Khinchin [Kh23, Kh24] and later generalised to other randomwalks by Kolmogorov [Ko29]
and Hartman and Wintner [HW41]. The original arguments of Kolmogorov, Hartman and
Wintner were extremely difficult, and a lot of authors have since provided more accessible
proofs, see, for example, de Acosta [dA83]. For Brownian motion the law of the iterated
logarithm is also due to Khinchin [Kh33]. The idea of using embedding arguments to trans-
fer the result from the Brownian motion to the random walk case is due to Strassen [St64].
For a survey of laws of the iterated logarithm, see Bingham [Bi86].
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An extension of the law of the iterated logarithm is Strassen’s law, which is first proved
in [St64]. If a standard Brownian motion on the interval[0, t] is rescaled by a factor1/t
in time and a factor

√
2t log log(1/t) in space, the set of limit points inC[0, 1] are exactly

the functionsf with f(0) = 0 and
∫ 1

0
(f ′(t))2 dt 6 1. Strassen’s law also explains the

approximate form of the curve in the right half of Figure 5.1.Any function in this class
with f(1) = 1 satisfies

1 >

∫ 1

0

(f ′(t))2 dt >

(∫ 1

0

f ′(t) dt
)2

= 1,

which implies thatf ′(t) is constant and thusf(t) = t for all t ∈ (0, 1). Therefore, for
larget, the Brownian path conditioned on ending near to its upper envelope resembles a
straight line in the sup-norm, as can be seen in Figure 5.1.

The nonincrease phenomenon, which is described in Theorem 5.11, holds for arbitrary
symmetric random walks, and can thus be viewed as a combinatorial consequence of fluc-
tuations in random sums. Indeed, our argument shows this — subject to a generalisation of
Lemma 5.8. The latter result holds if the incrementsXi have a symmetric distribution, or if
the increments have mean zero and finite variance, see e.g. Section XII.8 in Feller [Fe66].
Dvoretzky, Erd̋os and Kakutani [DEK61] were the first to prove that Brownian motion

almost surely has no local points of increase. Knight [Kn81]and Berman [Be83] noted
that this follows from properties of the local time of Brownian motion; direct proofs were
given by Adelman [Ad85] and Burdzy [Bu90]. The proof we give is taken from [Pe96c].

A higher-dimensional analogue of this question is whether,for Brownian motion in the
plane, there exists a line such that the Brownian motion path, projected onto that line, has
a global point of increase, or equivalently whether the Brownian motion path admits cut
lines. We say a linè is acut line for the Brownian motion if, for somet0 ∈ (0, 1) with
B(t0) ∈ `, the pointsB(t) lie on one side of̀ for all t ∈ [0, t0) and on the other side
of ` for all t ∈ (t0, 1]. It was proved by Bass and Burdzy [BB97] that planar Brownian
motion almost surely doesnot have cut lines. Burdzy [Bu89], with a correction to the
proof in [Bu95], however showed that Brownian motion in the plane almost surely does
havecut points, which are pointsB(t) such that the Brownian motion path with the point
B(t) removed is disconnected. It was conjectured that the Hausdorff dimension of the set
of cut points is3/4. This conjecture has recently been proved by Lawler, Schramm and
Werner [LSW01c], see also the discussion in our appendix, Chapter 11.

For Brownian motion in three dimensions, there almost surely exist cut planes, where
we sayP is a cut planeif for some t, the set{B(s) : 0 < s < t} lies on one side of
the plane and the set{B(s) : 1 > s > t} on the other side. This result, originally due to
Pemantle, is also described in Bass and Burdzy [BB97]. An argument of Evans, which is
closely related to material we discuss in the final section ofChapter 10, shows that the set
of times corresponding to cut planes has Hausdorff dimension zero.
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Pemantle [Pe97] has shown that the range of planar Brownian motion almost surely
does not cover any straight line segment. Which curves can andwhich cannot be covered
by a Brownian motion path is, in general, an open question. Also unknown is the minimal
Hausdorff dimension of curves contained in the range of planar Brownian motion, though
it is known that it contains a curve of Hausdorff dimension 4/3, namely its outer boundary,
see Lawler, Schramm and Werner [LSW01c] and Chapter 11.

Harris’ inequality was discovered by Harris [Ha60] and is also known asFKG inequal-
ity in recognition of the work of Fortuin, Kasteleyn and Ginibre[FKG71] who extended
the original inequality beyond the case of product measures. ‘Correlation inequalities’ like
these play an extremely important rôle in percolation theory and spatial statistical physics.
Exercise 5.9 indicates the important rôle of this idea in theinvestigation of order statistics,
see Lehmann [Le66] and Bickel [Bi67] for further discussionand applications.

The Skorokhod embedding problem is a classic, which still leads to some attractive
research. The first embedding theorem is due to Skorokhod [Sk65]. The Russian original
of this work appeared in 1961 and the Dubins embedding, whichwe have presented is not
much younger, see [Du68]. Our presentation, based on the idea of binary splitting martin-
gales, follows Ex. II.7, p 34 in Neveu [Ne75] and we thank Jim Pitman for directing us to
this reference. Another classic embedding technique is Root’s embedding, see [Ro69]. The
Azéma–Yor embedding was first described in [AY79], but we follow Meilijson [Me83] in
the proof. One of the attractive features of the Azéma–Yor embedding is that, among all
stopping timesT with ET <∞ which represent a given random variableX, it maximises
themax06t6T B(t). Generalisation of the embedding problem to more general classes of
probability laws requires different forms of minimality for the embedding stopping time, or
more general processes in which one embeds. A survey of current developments is [Ob04].

The idea of an invariance principle that allows to transfer limit theorems from special
cases to general random walks can be traced to Erdős and Kac [EK46, EK47]. The first
general result of this nature is due to Donsker [Do51] following an idea of Doob [Do49].
Our treatment of Donsker’s invariance principle is close tothat of Freedman [Fr83]. Be-
sides the embedding technique there is also a popular alternative proof, which goes back
to Prohorov [Pr56]. Suppose that a subsequence of{S∗

n : n > 1} converges in distribution
to a limitX. This limit is a continuous random function, which is easilyseen to have sta-
tionary, independent increments, which have expectation zero and variance equal to their
length. By a general result this implies thatX is a Brownian motion. So Brownian motion
is the only possible limit point of the sequence{S∗

n : n > 1}. The difficult part of this proof
is now to show that every subsequence of{S∗

n : n > 1} has a convergent subsubsequence,
thetightness property.

Many interesting applications and extensions of Donsker’sinvariance principle can be
found in [Bi99]. Central limit theorems also hold in the context of martingales, see Hall
and Heyde [HH80] for an extensive treatment of this subject.An important class of ex-
tensions of Donsker’s invariance principle are the strong approximation theorems which
were provided by Skorokhod [Sk65] and Strassen [St64]. In these results the Brownian
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motion and the random walk are constructed on the same probability space in such a way
that they are close almost surely. An optimal result in this direction is the famous paper of
Komlós, Major and Tusnády [KMT75]. For an exposition of their work and applications,
see [CR81], and an alternative, more transparent, treatment of the simple random walk case
is given in [Ch07].

The arcsine laws for Brownian motion were first proved by Lévyin [Le39, Le48].
The proof of the first law, which we give here, follows Kallenberg [Ka02]. This law can
also be proved by a direct calculation, which however is slightly longer, see for example
Durrett [Du95]. Our proof of the second arcsine law goes backto an idea of Baxter [Ba62].
Arcsine laws also hold for symmetric random variables without any moment assumptions,
see Feller [Fe66]. Some more recent developments related toarcsine laws can be found in
Pitman and Yor [PY92] and [PY03].

Pitman’s2M − B theorem, often also called2M − X theorem, is from [Pi75]. We
follow Pitman’s original approach with some small modifications. A closely related area
is the subject of path decompositions due to Williams, see [Wi70, Wi74]. Lemma 5.39
offers a first glimpse: Removing the negative excursions from the path of a Brownian
motion leads to a reflected Brownian motion. A nice treatmentof Pitman’s theorem and
related path decomposition results is Le Gall [LG86c]. Hambly et al. [HMO01] discuss
a generalisation of the discrete variant, whose proof is based in part on a reversibility
argument that has a queueing interpretation. Further significant generalisations lead to
interesting connections to families of non-colliding Brownian motions and eventually to
random matrix theory, see e.g. Grabiner [Gr99]. The proof ofthe Ciesielski–Taylor identity
is adapted from Pitman’s paper [Pi75], but the idea goes backto Williams [Wi70].
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Brownian local time

In this chapter we focus on linear Brownian motion and address the question how to mea-
sure the amount of time spent by a Brownian path at a given level. As we already know
from Theorem 3.26 that the occupation times up to timet are absolutely continuous mea-
sures, their densities are a viable measure for the time spent at levela during the time
interval [0, t]. We shall show that these densities make up a continuous random field
{La(t) : a ∈ R, t > 0}, which is called the Brownian local time. Interesting informa-
tion about the distribution of this process is contained in atheorem of Lévy (studying it as
function of time) and the Ray–Knight theorem (studying it asfunction of the level). We
finally show how to interpret local time as a family of Hausdorff measures.

6.1 The local time at zero

How can we measure the amount of time spent by a standard linear Brownian motion
{B(t) : t > 0} at zero? We have already seen that, almost surely, the zero set has Hausdorff
dimension1/2. Moreover, by Exercise 4.14, the1/2-dimensional Hausdorff measure of
the zero set is zero, so Hausdorff measure as defined so far does not give an interesting
answer.

We approach this problem by counting the number of downcrossings of a nested sequence
of intervals decreasing to zero. More precisely, for a linear Brownian motion{B(t) : t > 0}
with arbitrary starting point, givena < b, we define stopping timesτ0 = 0 and, forj > 1,

σj = inf
{
t > τj−1 : B(t) = b

}
, τj = inf

{
t > σj : B(t) = a

}
. (6.1)

We call the random functions

B(j) : [0, τj − σj ] → R, B(j)(s) = B(σj + s)

thejth downcrossing of[a, b]. For everyt > 0 we denote by

D(a, b, t) = max
{
j ∈ N : τj 6 t

}

the number ofdowncrossingsof the interval[a, b] before timet. Note thatD(a, b, t) is
almost surely finite by the uniform continuity of Brownian motion on the compact inter-
val [0, t].

153
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Theorem 6.1 (Downcrossing representation of the local timeat zero) There exists a
stochastic process{L(t) : t > 0} called thelocal time at zerosuch that for all sequences
an ↑ 0 andbn ↓ 0 with an < bn, almost surely,

lim
n→∞

2(bn − an)D(an, bn, t) = L(t) for everyt > 0.

Moreover, this process is almost surely locallyγ-Hölder continuous for anyγ < 1/2.

Remark 6.2 To see why the normalisation in this formula is plausible recall from Theo-
rem 5.38 that the time spent in the interval[an, bn] during a full downcrossing has the same
law as the first exit time from[an, 2bn − an] by a Brownian motion started inbn, which
by Theorem 2.49 has a mean of(bn − an)

2. By the law of large numbers the total time
spent in[an, bn] is therefore approximately2(bn − an)

2D(an, bn, t) taking into account
that about the same time is spent in up- and downcrossings. ThereforeL(t) plays the rôle
of the density at zero of the occupation measure of Brownian motion. �

In the following we will use two types of both geometric distributions:X is geometrically
distributed on{1, 2, . . .} with success parameterp (or, equivalently, mean1p ) if

P{X = k} = p (1 − p)k−1 for k ∈ {1, 2, . . .}.

Similarly,X is geometrically distributed on{0, 1, 2, . . .} with success parameterp if

P{X = k} = p (1 − p)k for k ∈ {0, 1, 2, . . .}.

If the type is not clear from the context we will always state the domain for clarification.
The key ingredient of the proof of Theorem 6.1 is the following fact.

Lemma 6.3Suppose thata < m < b < c and let{B(t) : t > 0} be a linear Brownian
motion, andT the first time when it hits levelc. Let

• D be the number of downcrossings of the interval[a, b] completed at timeT ,

• Dl be the number of downcrossings of the interval
[
a,m

]
completed at timeT ,

• Du be the number of downcrossings of the interval
[
m, b

]
completed at timeT .

There exist two independent sequencesX0,X1, . . . andY0, Y1, . . . of independent nonneg-
ative random variables, which are also independent ofD, such that forj > 1 the random
variablesXj are geometric on{1, 2 . . .} with mean(b − a)/(m − a) and the random
variablesYj are geometric on{1, 2 . . .} with mean(b− a)/(b−m), and

Dl = X0 +

D∑

j=1

Xj and Du = Y0 +

D∑

j=1

Yj .

Proof. Recall the definition of the stopping timesσj , τj from (6.1). Forj > 0, define
thejth downcrossings, resp. upcrossings, of[a, b] by

B(j)

↓ : [0, τj − σj ] → R, B(j)

↓ (s) = B(σj + s), if j > 1,

B(j)

↑ : [0, σj+1 − τj ] → R, B(j)

↑ (s) = B(τj + s).
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Fig. 6.1. The downcrossing of[a, b] contains one downcrossing of[a,m] and the following upcross-
ing of [a, b] contains one further downcrossing of[a,m].

By the strong Markov property all these pieces of the Brownian path are independent. Note
thatD depends only on the family(B(j)

↓ : j > 1) of downcrossings.

First look atDl and denote byX0 the number of downcrossings of[a,m] before the first
downcrossing of[a, b]. Thejth downcrossing of[a, b] contains exactly one downcrossing
of [a,m] and thejth upcrossing of[a, b] contains a random numberXj − 1 of downcross-
ings of[a,m], which, by Theorem 2.49, satisfies

P
{
Xj = k

}
=
(m− a

b− a

)(b−m

b− a

)k−1

for everyk ∈ {1, . . .}.

In other wordsXj is geometrically distributed on{1, 2, . . .} with success parameter given
by (m− a)/(b− a).

Secondlook atDu and denote byY0 the number of downcrossings of[m, b] after the last
downcrossing of[a, b]. No downcrossings of[m, b] can occur during an upcrossing of
[a, b]. Fix a j and look at the downcrossingB(j)

↓ : [0,∞) → R formally extended to have
infinite lifetime by attaching an independent Brownian motion at the endpoint. Define
stopping times̃σ0 = 0 and, fori > 1,

τ̃i = inf
{
t > σ̃i−1 : B(j)

↓ (t) = m
}
, σ̃i = inf

{
t > τ̃i : B

(j)

↓ (t) = b
}
.

This subdivides the path ofB(j)

↓ into downcrossing periods[σ̃i−1, τ̃i], and upcrossing peri-
ods[τ̃i, σ̃i] of [m, b], such that the pieces

B(j)

↓,i : [0, τ̃i − σ̃i−1] → R, B(j)

↓,i(s) = B(σ̃i−1 + s), for i > 0,

B(j)

↑,i : [0, σ̃i − τ̃i] → R, B(j)

↑,i(s) = B(τ̃i + s), for i > 1,

are all independent. Asc > b the first hitting time of levelc must lie in a downcrossing
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Fig. 6.2. The downcrossing of[a, b] contains three downcrossings of[m, b] and the following up-
crossing of[a, b] contains no further downcrossings of[m, b].

period, while the lifetimeτj − σj of B(j)

↓ expires when the lower boundarya is hit for
the first time, which can only occur during an upcrossing period. By Theorem 2.49 the
probability thata is hit during any upcrossing period equals(b−m)/(b− a).

Hence the number of downcrossings of[m, b] during thejth downcrossing of[a, b] is a
geometric random variableYj on {1, 2, . . .} with (success) parameter(b − m)/(b − a),
which completes the proof.

For the proof of Theorem 6.1 we first prove the convergence forthe case when the Brown-
ian motion is stopped at the timeT = Tb when it first reaches some levelb > b1. This has
the advantage that there cannot be any uncompleted upcrossings.

Lemma 6.4For any two sequencesan ↑ 0 and bn ↓ 0 with an < bn, the discrete time
stochastic process{2(bn − an)D(an, bn, T ) : n ∈ N} is a submartingale with respect to
the natural filtration(Fn : n ∈ N).

Proof. We may assume that, for eachn, we have

either (1) an = an+1 or (2) bn = bn+1 ,

which is no loss of generality, as we may replace a step where bothan andbn are changed
by two steps, where only one is changed at a time. The originalsequence is then a subse-
quence of the modified one and inherits the submartingale property.
Now fix n andfirst assume that we are in case (1)an = an+1. By Lemma 6.3 forDl,
the total numberD(an, bn+1, T ) of downcrossings of[an, bn+1] givenFn is the sum of
D(an, bn, T ) independent geometric random variables with parameter(bn+1 − an)/(bn−



6.1 The local time at zero 157

an) plus a nonnegative contribution. Hence,

E
[
(bn+1 − an)D(an, bn+1, T )

∣∣Fn
]

> (bn − an)D(an, bn, T ),

which is the submartingale property (for thenth step).
Secondassume that we are in case (2)bn = bn+1. Then Lemma 6.3 forDu shows that the
number of downcrossings of[an+1, bn] givenFn is the sum ofD(an, bn, T ) independent
geometric random variables with parameter(bn − an+1)/(bn − an) plus a nonnegative
contribution. Hence

E
[
(bn − an+1)D(an+1, bn, T )

∣∣Fn
]

> (bn − an)D(an, bn, T ),

and together with the first case this establishes that{2(bn − an)D(an, bn, T ) : n ∈ N} is
a submartingale with respect to its natural filtration.

Lemma 6.5For any two sequencesan ↑ 0 andbn ↓ 0 with an < bn the limit

L(Tb) := lim
n→∞

2(bn − an)D(an, bn, Tb) (6.2)

exists almost surely. It is not zero and does not depend on thechoice of sequences.

Proof. Observe thatD(an, bn, Tb) is a geometric random variable on{0, 1, . . .} with
parameter(bn− an)/(b− an). Recall that the variance of a geometric random variable on
{0, 1, . . .} with parameterp is (1 − p)/p2, and so its second moment is bounded by2/p2.
Hence

E
[
4(bn − an)

2D(an, bn, Tb)
2
]

6 8 (b− an)
2,

and thus the submartingale in Lemma 6.4 isL
2-bounded. By the submartingale conver-

gence theorem, see Theorem 12.21 in the appendix, the limit

lim
n↑∞

2(bn − an)D(an, bn, Tb)

exists almost surely, and by Theorem 12.28 also inL
2 ensuring that the limit is nonzero.

Finally, note that the limit does not depend on the choice of the sequencean ↑ 0 and
bn ↓ 0 because if it did, then given two sequences with different limits in (6.2) we could
construct a sequence of intervals alternating between the sequences, for which the limit
in (6.2) would not exist.

Lemma 6.6For any fixed timet > 0, almost surely, the limit

L(t) := lim
n→∞

2(bn − an)D(an, bn, t) exists.

Proof. We define an auxiliary Brownian motion{Bt(s) : s > 0} byBt(s) = B(t+ s).
For any integerb > b1 we denote byDt(an, bn, Tb) the number of downcrossings of the
interval[an, bn] by the auxiliary Brownian motion before it hitsb. Then, almost surely,

Lt(Tb) := lim
n↑∞

2(bn − an)Dt(an, bn, Tb),
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exists by the previous lemma. Givent > 0 we fix a Brownian path such that this limit
exists for all integersb > b1. Pickb so large thatTb > t. Define

L(t) := L(Tb) − Lt(Tb) .

To show that this is the required limit, observe that

D(an, bn, Tb) −Dt(an, bn, Tb) − 1 6 D(an, bn, t) 6 D(an, bn, Tb) −Dt(an, bn, Tb),

where the correction−1 on the left hand side arises from the possibility thatt interrupts
a downcrossing. Multiplying by2(bn − an) and taking a limit givesL(Tb) − Lt(Tb) for
both bounds, proving convergence.

We now have to study the dependence ofL(t) on the timet in more detail. To simplify the
notation we write

In(s, t) = 2(bn − an)
(
D(an, bn, t) −D(an, bn, s)

)
for all 0 6 s < t .

The following lemma contains a probability estimate, whichis sufficient to get the conver-
gence of the downcrossing numbers jointly for all times and to establish Hölder continuity.

Lemma 6.7Letγ < 1/2 and0 < ε < (1 − 2γ)/3. Then, for allt > 0 and0 < h < 1, we
have

P
{
L(t+ h) − L(t) > hγ

}
6 2 exp{− 1

2 h
−ε} .

Proof. As, by Fatou’s lemma,

P
{
L(t+h)−L(t) > hγ

}
= P

{
lim inf
n→∞

In(t, t+h) > hγ
}

6 lim inf
n→∞

P
{
In(t, t+h) > hγ

}

we can focus on estimatingP{In(t, t + h) > hγ} for fixed largen. It suffices to estimate
Px{In(0, h) > hγ

}
uniformly for all x ∈ R. This probability is clearly maximal when

x = bn, so we may assume this. LetTh = inf{s > 0: B(s) = bn+h(1−ε)/2} and observe
that

{
In(0, h) > hγ

}
⊂
{
In(0, Th) > hγ

}
∪
{
Th < h

}
.

The number of downcrossings of[an, bn] during the period beforeTh is geometrically
distributed on{0, 1, . . .} with mean(bn − an)

−1h(1−ε)/2 and thus

Pbn

{
In(0, Th) > hγ

}
6

( h(1−ε)/2

bn − an + h(1−ε)/2

)b 1
2(bn−an)

hγc

n→∞−→ exp
{
− 1

2 h
γ− 1

2+ ε
2

}
6 exp

{
− 1

2 h
−ε}.

With {W (s) : s > 0} denoting a standard linear Brownian motion,

Pbn

{
Th < h

}
= P

{
max

06s6h
W (s) > h(1−ε)/2

}
6

√
2

πh−ε exp
{
− 1

2 h
−ε}

where we have used Remark 2.22 in the last step. The result follows by adding the last two
displayed formulas.
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Lemma 6.8Almost surely,

L(t) := lim
n→∞

2(bn − an)D(an, bn, t)

exists for everyt > 0.

Proof. It suffices to prove the simultaneous convergence for all0 6 t 6 1. We define a
countable set of gridpoints

G =
⋃

m∈N

Gm ∪ {1}, for Gm =
{
k
m : k ∈ {0, . . . ,m− 1}

}

and show that the stated convergence holds on the event

EM =
⋂

t∈G

{
L(t) = lim

n→∞
2(bn − an)D(an, bn, t) exists

}

∩
⋂

m>M

⋂

t∈Gm

{
L(t+ 1

m ) − L(t) 6 (1/m)γ
}
.

which, by choosingM suitably, has probability arbitrarily close to one by the previous two
lemmas. Given anyt ∈ [0, 1) and a largem we find t1, t2 ∈ Gm with t2 − t1 = 1

m and
t ∈ [t1, t2]. We obviously have

2(bn − an)D(an, bn, t1) 6 2(bn − an)D(an, bn, t) 6 2(bn − an)D(an, bn, t2).

Both bounds converge onEM , and the difference of the limits isL(t2) − L(t1), which is
bounded bym−γ and thus can be made arbitrarily small by choosing a largem.

Lemma 6.9 For γ < 1
2 , almost surely, the process{L(t) : t > 0} is locally γ-Hölder

continuous.

Proof. It suffices to look at0 6 t < 1. We use the notation of the proof of the
previous lemma and show thatγ-Hölder continuity holds on the set constructed there.
Indeed, whenever0 6 s < t < 1 andt− s < 1/M we pickm > M such that

1
m+1 6 t− s < 1

m .

We taket1 6 s with t1 ∈ Gm and s − t1 < 1/m, and t2 > t with t2 ∈ Gm and
t2 − t < 1/m. Note thatt2 − t1 6 2/m by construction and hence,

L(t) − L(s) 6 L(t2) − L(t1) 6 2(1/m)γ 6 2
(
m+1
m )γ (t− s)γ .

The result follows as the fraction on the right is bounded by2.

This completes the proof of the downcrossing representation, Theorem 6.1. It is easy to
see from this representation that, almost surely, the localtime at zero increases only on the
zero set of the Brownian motion, see Exercise 6.1.
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Observe that the increasing process{L(t) : t > 0} is not a Markov process. Heuristically,
the size of the incrementL(t + h) − L(t) depends on the position of the first zero of the
Brownian motion after timet, which is strongly dependent on the position of the last zero
before timet. The last zero however is the position of the last point of increase of the local
time process before timet, and therefore the path{L(s) : 0 6 s 6 t} contains relevant
information beyond its endpoint.

Nevertheless, we can describe the law of the local time process, thanks to the following
famous theorem of Paul Lévy, which describes the law of the local time at zero in terms of
the maximum process of Brownian motion. It opens the door to finer results on the local
time at zero, like those presented in Section 6.4 of this chapter.

Theorem 6.10 (Lévy)The local time at zero{L(t) : t > 0} and the maximum process
{M(t) : t > 0} of a standard linear Brownian motion have the same distribution.

Remark 6.11In fact, a similar proof shows that the processes{(L(t), |B(t)|) : t > 0} and
{(M(t),M(t) − B(t)) : t > 0} have the same distribution. Details are deferred to Exer-
cise 6.2 as we present a different argument for this in Theorem 7.38. See also Exercise 6.5
for an alternative approach, which goes back to Lévy himself. �

The proof of Theorem 6.10 uses the simple random walk embedded in the Brownian mo-
tion, a technique which we will exploit extensively. Define stopping timesτ0 := τ (n)

0 := 0

and

τk := τ (n)

k := inf
{
t > τk−1 : |B(t) −B(τk−1)| = 2−n

}
, for k > 1 .

Thenth embedded random walk{X(n)

k : k = 1, 2, . . .} is defined by

Xk := X(n)

k := 2nB
(
τ (n)

k

)
.

The length of the embedded random walk is

N := N (n)(t) := max{k ∈ N : τk 6 t} ,

which is easily seen to be independent of the actual walk.

Lemma 6.12For everyt > 0, almost surely,lim
n→∞

2−2nN (n)(t) = t.

Proof. First note that{ξ(n)

k : k = 1, 2, . . .} defined by

ξk := ξ(n)

k := τ (n)

k − τ (n)

k−1

is a sequence of independent random variables, for eachn. By Theorem 2.49 the mean
of ξk is 2−2n and its variance is, by Brownian scaling, equal toc2−4n for some constant
c > 0. (See, for example, Exercise 2.15 for instructions how to find the constant.) Define

S(n)(t) =

d22nte∑

k=1

ξ(n)

k .
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ThenES(n)(t) = d22nte2−2n → t andVar
(
S(n)(t)

)
= c2−4nd22nte, hence

E
∞∑

n=1

(
S(n)(t) − ES(n)(t)

)2
<∞ .

We infer that, almost surely,limn→∞ S(n)(t) = t. For fixedε > 0, we pickn0 large so
that

S(n)(t− ε) 6 t 6 S(n)(t+ ε) for all n > n0.

The sum overξk up toN (n)(t) + 1 is at leastt, by definition, and hence we getN (n)(t) +

1 > d22n(t − ε)e. Conversely, the sum overξk up toN (n)(t) is at mostt and hence
N (n)(t) 6 d22n(t+ ε)e. The result follows asε > 0 was arbitrary.

Lemma 6.13Almost surely, for everyt > 0,

lim
n↑∞

2−n#
{
k ∈ {1, . . . , N (n)(t)} : |Xk−1| = 0, |Xk| = 1

}
= L(t).

Proof. By Theorem 6.1 applied to the sequencesan = −2−n andbn = 0 we have

lim
n↑∞

2−n#
{
k ∈ {1, . . . , N (n)(t)} : Xk−1 = 0,Xk = −1

}
= 1

2L(t) .

Applying Theorem 6.1 to the sequencesan = 0 andbn = 2−n we get

lim
n↑∞

2−n#
{
k ∈ {1, . . . , N (n)(t)} : Xk−1 = 1,Xk = 0

}
= 1

2L(t) .

As #{k 6 N : Xk−1 = 1,Xk = 0} and#{k 6 N : Xk−1 = 0,Xk = 1} differ by no
more than one, the result follows by adding up the two displayed formulas.

0 2 4 6 8 10
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Mk

N(n)(t)

k

0 2 4 6 8 10

0

1

2
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Yk = Mk −Xk

k

N(n)(t)

Fig. 6.3. On the left an embedded random walk{Xk : k > 0} together with its maximum process
{Mk : k > 0}. On the right the associated difference process{Yk : k > 0} defined byYk =
Mk −Xk.
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We define the maximum process{M (n)

k : k = 1, 2, . . .} associated with the embedded
random walk by

Mk = M (n)

k = max
{
X(n)

j : j ∈ {0, . . . , k}
}
.

Then the process{Y (n)

k : k = 1, 2, . . .} defined byYk := Y (n)

k := Mk −Xk is a Markov
chain with statespace{0, 1, 2, . . .} and the following transition mechanism

• if j 6= 0 thenP{Yk+1 = j + 1 |Yk = j} = 1
2 = P{Yk+1 = j − 1 |Yk = j},

• P{Yk+1 = 0 |Yk = 0} = 1
2 = P{Yk+1 = 1 |Yk = 0} .

One can recover the maximum process{Mk : k = 1, 2, . . .} from {Yk : k = 1, 2, . . .} by
counting the number of flat steps

Mk = #
{
j ∈ {1, . . . , k} : Yj = Yj−1

}
.

Hence we obtain, asymptotically, the maximum process of theBrownian motion as a limit
of the number of flat steps in{Y (n)

k : k = 1, 2, . . .}.

Lemma 6.14For any timet > 0, almost surely,

M(t) = lim
n↑∞

2−n #
{
j ∈ {1, . . . , N (n)(t)} : Y (n)

j = Y (n)

j−1

}
.

Proof. Note that#
{
j ∈ {1, . . . , N (n)(t)} : Yj = Yj−1

}
is the maximum of the random

walk {Xk : k = 1, 2, . . . , N (n)(t)} over its entire length. This maximum, multiplied by
2−n, differs fromM(t) by no more than2−n, and this completes the argument.

Removing the flat steps in the process{Y (n)

j : j = 1, 2, . . .}we obtain a process{Ỹ (n)

k : k =

1, 2, . . .}, which has the same law as{|Xk| : k = 1, 2, . . .}. By Lemma 6.13 we therefore
have the convergence in distribution, asn ↑ ∞,

2−n#
{
k ∈ {1, . . . , N (n)(t)} : Ỹ (n)

k−1 = 0, Ỹ (n)

k = 1
} d−→ L(t), (6.3)

jointly for any finite set of times.

Lemma 6.15Almost surely,

lim
n↑∞

2−n
(
#
{
j ∈ {1, . . . , N (n)(t)} : Y (n)

j−1 = Y (n)

j

}

− #
{
k ∈ {1, . . . , N (n)(t)} : Ỹ (n)

k−1 = 0, Ỹ (n)

k = 1
})

= 0 .

Proof. First note that when{Yj : j = 1, 2, . . .} returns to zero for theith time, the
number of steps before it moves to one is given by a random variableZi with distribution

P{Zi = k
}

= 2−k−1 for k = 0, 1, . . ..

Denoting byZ0 the number of steps before it moves initially, the random variablesZ0, Z1, . . .

are independent and independent of the process{Ỹ (n)

k : k = 1, 2, . . .}. Let

A(n) = #
{
j ∈ {1, . . . , N (n)(t)} : Y (n)

j−1 = 1, Y (n)

j = 0
}
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Fig. 6.4. On the left a sample of the processes{Yj : 0 6 j 6 N (n)(t)}. On the right the associated
{Ỹk : 0 6 k 6 N (n)(t)}, which is obtained by removing the two flat steps and extending the path to
its original length.

be the total number of returns to zero before timeN (n)(t). With a possible small modifi-
cation of the final valueZA(n) we get, almost surely, asn ↑ ∞,

2−n
(
#
{
j ∈ {1, . . . , N (n)(t)} : Y (n)

j = Y (n)

j−1

}

− #
{
j ∈ {1, . . . , N (n)(t)} : Y (n)

j−1 = 0, Y (n)

j = 1
})

= 2−n
A(n)∑

i=0

(Zi − 1) =
(
2−nA(n)

) 1

A(n)

A(n)∑

i=0

(
Zi − EZi

)
−→ 0,

because the first factor converges by Lemma 6.13 and the second by the law of large
numbers, irrespective of the actual value ofZA(n) . To study the effect of the removal
of the flat pieces, recall that almost surely the lengthN (n)(t) of the walk is of order
22nt, by Lemma 6.12, and the number of flat pieces isMN(n)(t), which is of order2n,
by Lemma 6.14. Hence, for allε > 0, if n is large enough,

N (n)(t− ε) +MN(n)(t) 6 N (n)(t).

We infer from this that

2−n
(
#
{
j ∈ {1, . . . , N (n)(t)} : Ỹ (n)

j−1 = 0, Ỹ (n)

j = 1
}

− #
{
j ∈ {1, . . . , N (n)(t)} : Y (n)

j−1 = 0, Y (n)

j = 1
})

6 2−n#
{
j ∈ {N (n)(t− ε) + 1, . . . , N (n)(t)} : Ỹ (n)

j−1 = 0, Ỹ (n)

j = 1
}
,

and the right hand side converges almost surely to a random variable, which has the law of
L(t) − L(t− ε) and hence can be made arbitrarily small by choice ofε > 0.

Proof of Theorem 6.10. Note that both processes in Theorem 6.10 are continuous, so
that it suffices to compare their finite dimensional distributions. Equality of these follows
directly by combining Lemma 6.14, Equation (6.3) and Lemma 6.15.
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Theorem 6.16 (Occupation time representation of the local time at zero) For all se-
quencesan ↑ 0 andbn ↓ 0 with an < bn, almost surely,

lim
n→∞

1

bn − an

∫ t

0

1{an 6 B(s) 6 bn} ds = L(t) for everyt > 0.

The proof is prepared by the following lemma, which is a direct consequence of Theo-
rem 5.38. See also Exercise 6.6 for an alternative proof.

Lemma 6.17Let {W (s) : s > 0} be a standard linear Brownian motion andτ1 its first
hitting time of level1. ThenE

∫ τ1
0

1{0 6 W (s) 6 1} ds = 1.

Proof. By Theorem 5.38 we haveE
∫ τ1
0

1{0 6 W (s) 6 1} ds = Eσ1, whereσ1 is the
first exit time from[−1, 1]. By Theorem 2.49 we haveEσ1 = 1.

Proof of Theorem 6.16. Recall the stopping timesτj defined foran < bn as in (6.1).
For the proof of the lower bound note that

∫ t

0

1{an 6 B(s) 6 bn} ds >

D(an,bn,t)∑

j=1

∫ τj

τj−1

1{an 6 B(s) 6 bn} ds .

By Brownian scaling
∫ τj

τj−1

1{an 6 B(s) 6 bn} ds = (bn − an)
2

∫ τ(j)

0

1{0 6 Wj(s) 6 1} ds ,

where{Wj(s) : s > 0} are independent standard linear Brownian motions andτ(j) =

inf{s > 0: Wj(s) = 0 and there existst < s with Wj(t) = 1}. Hence

1

bn − an

D(an,bn,t)∑

j=1

∫ τj

τj−1

1{an 6 B(s) 6 bn} ds

= (bn − an)D(an, bn, t)
[ 1

D(an, bn, t)

D(an,bn,t)∑

j=1

∫ τ(j)

0

1{0 6 Wj(s) 6 1} ds
]
.

The first factor converges almost surely to1
2 L(t), by Theorem 6.1. From the law of large

numbers we get for the second factor, almost surely,

lim
n↑∞

1

D(an, bn, t)

D(an,bn,t)∑

j=1

∫ τ(j)

0

1{0 6 W (s) 6 1} ds = E
∫ τ

0

1{0 6 W (s) 6 1} ds .

Applying Lemma 6.17 first to{W (s) : s > 0}, and then to{1−W (s+ τ1) : s > 0} yields

E
∫ τ

0

1{0 6 W (s) 6 1} ds = 2 .

This verifies the lower bound. The upper bound can be obtainedby including the period
[τj , τj+1] for j = D(an, bn, t) in the summation and using the same arguments as for the
lower bound. This completes the proof of Theorem 6.16.
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6.2 A random walk approach to the local time process

Given a levela ∈ R the construction of the previous chapter allows us to define the
local time at levela for a linear Brownian motion{B(t) : t > 0}. Indeed, simply let
{La(t) : t > 0} be the local time at zero of the auxiliary Brownian motion{Ba(t) : t > 0}
defined byBa(t) = B(t)−a. Using Theorem 6.16 it is not hard to show that{La(t) : a ∈
R} is the density of the occupation measureµt introduced in Theorem 3.26.

Theorem 6.18For linear Brownian motion{B(t) : t > 0}, almost surely, for any bounded
measurableg : R → R andt > 0,

∫
g(a) dµt(a) =

∫ t

0

g(B(s)) ds =

∫ ∞

−∞
g(a)La(t) da.

Proof. First, observe that for the statement it suffices to have{La(t) : t > 0} defined for
L-almost everya. Second, we may assume thatt is fixed. Indeed, it suffices to verify the
second equality for a countable family of bounded measurableg : R → R, for example the
indicator functions of rational intervals. Having fixed such ag both sides are continuous
in t. For fixedt, we know from Theorem 3.26 thatµt � L almost surely, hence a density
f exists by the Radon–Nikodým theorem and may be obtained as

f(a) = lim
ε↓0

1

2ε

∫ t

0

1{a− ε 6 B(s) 6 a+ ε} ds,

which equalsLa(t) by Theorem 6.16, almost surely forL-almost everya.

A major result about linear Brownian motion is that the density {La(t) : a ∈ R} of the
occupation measures can be chosen to be continuous, a fact which we now prove. To
exploreLa(t) as a function of the levelsa we extend the downcrossing representation to
holdsimultaneouslyat all levelsa.
Givena ∈ R and a large integern we letI(a, n) be the unique dyadic interval such that
a ∈ I(a, n) = [j(a)2−n, (j(a) + 1)2−n). For a standard Brownian motion{B(t) : t > 0}
we denote byD(n)(a, t) the number of downcrossings of the intervalI(a, n) before timet.
In the notation of the previous section we can write

D(n)(a, t) := #
{
k ∈ {0, . . . , N (n)(t) − 1} : X(n)

k = j(a) + 1, X(n)

k+1 = j(a)
}
.

Theorem 6.19 (Trotter’s theorem) Let {B(t) : t > 0} be a standard linear Brownian
motion and letD(n)(a, t) be the number of downcrossings before timet of thenth stage
dyadic interval containinga. Then, almost surely,

La(t) = lim
n→∞

2−n+1D(n)(a, t) exists for alla ∈ R andt > 0.

Moreover, for everyγ < 1
2 , the random field

{La(t) : a ∈ R, t > 0}

is almost surely locallyγ-Hölder continuous.
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Remark 6.20Note that{La(t) : a ∈ R, t > 0} is a stochastic process depending on more
than one parameter, and to emphasise this fact we use the notion random field. �

The proof uses the following estimate for the sum of independent geometric random vari-
ables with mean two, which we prove as Exercise 6.7.

Lemma 6.21LetX1,X2, . . . be independent geometrically distributed random variables
on {1, 2, . . .} with mean2. Then, for sufficiently smallε > 0, for all nonnegative inte-
gersk 6 m,

P
{∣∣∣

k∑

j=1

(Xj − 2)
∣∣∣ > εm

}
6 4 exp

{
− 1

5 ε
2m
}
.

The following lemma is the heart of the proof of Theorem 6.19.

Lemma 6.22Suppose thata < b and let{B(t) : 0 6 t 6 T} be a linear Brownian motion
stopped at the timeT when it first hits a given level aboveb. Let

• D be the number of downcrossings of the interval[a, b],

• Dl be the number of downcrossings of the interval
[
a, a+b2

]
,

• Du be the number of downcrossings of the interval
[
a+b
2 , b

]
.

Then, for sufficiently smallε > 0, for all nonnegative integersk 6 m,

P
{∣∣D − 1

2 Dl

∣∣ > εm or
∣∣D − 1

2 Du

∣∣ > εm
∣∣D = k

}
6 12 exp

{
− 1

5 ε
2m
}
.

Proof. By Lemma 6.3 we have that, given{D = k}, there exist independent random
variablesX0,X1,X2 . . ., such that

Dl = X0 +

k∑

j=1

Xj ,

andX1,X2, . . . are geometrically distributed on{1, 2, . . .} with mean2. An inspection of
the proof of Theorem 6.3 reveals thatX0 is either zero or also geometrically distributed
with mean2, depending on the starting point of the Brownian motion.
Using Lemma 6.21 and Chebyshev’s inequality, we get, ifε > 0 is small enough,

P
{∣∣ 1

2 Dl −D
∣∣ > εm

∣∣D = k
}

6 P
{∣∣

k∑

j=1

(Xj − 2)
∣∣ > εm

∣∣∣D = k
}

+ P
{
X0 > εm

}

6 4 exp
{
− ε2

5 m
}

+ 2 exp{−εm log 2} 6 6 exp
{
− ε2

5 m
}
.

The argument is analogous forDu, and this completes the proof.

We now fixγ < 1
2 and a large integerN . We stop the Brownian motion at timeTN when it

first hits levelN , and abbreviateD(n)(a) := D(n)(a, TN ). We denote thenth dyadic grid
by Dn := Dn(N) := {k2−n : k ∈ {−N2n,−N2n + 1, . . . , N2n − 1}}.
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Lemma 6.23Denote byΩ(m) the event that, for alln > m,

(a)
∣∣D(n)(a) − 1

2 D
(n+1)(a)

∣∣ 6 2n(1−γ) for all a ∈ [−N,N),

(b)
∣∣D(n)(a) −D(n)(b)

∣∣ 6 2 2n(1−γ) for all a, b ∈ [−N,N) with |a− b|62−n.

Then

lim
m↑∞

P
(
Ω(m)

)
= 1 .

Proof. The event in item(a) follows by combining the following three events,

(i)
∣∣D(n)(a) − 1

2 D
(n+1)(a)

∣∣ 6 1
n2 2−nγ D(n)(a) for a ∈ [−N,N) with D(n)(a)>2n,

(ii)
∣∣D(n)(a) − 1

2 D
(n+1)(a)

∣∣ 6 2n(1−γ) for all a ∈ [−N,N) with D(n)(a) < 2n,

(iii) D(n)(a) 6 n22n for all a ∈ [−N,N).

We observe that it is equivalent to show (i),(ii) for alla ∈ Dn+1 and (iii) for all a ∈ Dn.
To estimate the probability of (i) we use Lemma 6.22 withε = 1

n2 2−nγ andm = k. We
get that

∞∑

n=m

∑

a∈Dn+1

P
{∣∣D(n)(a) − 1

2 D
(n+1)(a)

∣∣ > 1
n2 2−nγ D(n)(a) andD(n)(a) > 2n

}

6

∞∑

n=m

∑

a∈Dn+1

12 exp
{
− 1

5n4 2n(1−2γ)
}

6 (48N)

∞∑

n=m

2n exp
{
− 1

5n4 2n(1−2γ)
} m→∞−→ 0 .

For event (ii) we get from Lemma 6.22 withε = 2−γn andm = 2n > k. This gives that
∞∑

n=m

∑

a∈Dn+1

P
{∣∣D(n)(a) − 1

2 D
(n+1)(a)

∣∣ > 2n(1−γ) andD(n)(a) < 2n
}

6

∞∑

n=m

∑

a∈Dn+1

12 exp
{
− 1

5 2n(1−2γ)
}

6 (48N)

∞∑

n=m

2n exp
{
− 1

5 2n(1−2γ)
} m→∞−→ 0 .

For event (iii) we use that, given that the walk hitsj(a), the random variableD(n)(a)

is geometrically distributed with parameter2
−n

N−a >
2−n

2N . We therefore obtain, for some
sequenceδn → 0,

P
{
D(n)(a) > n22n

}
6
(
1 − 2−n

2N

)n22n−1
6 exp{−n2 1−δn

2N },
hence, for sufficiently largem,

∞∑

n=m

∑

a∈Dn

P
{
D(n)(a) > n22n

}
6

∞∑

n=m

(2N)2n exp
{
− n2 1−δn

2N

} m→∞−→ 0.

This completes the estimates needed for item (a).
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The event in item(b) need only be checked for alla, b ∈ Dn with |a− b| = 2−n. Note that
D(n)(a), resp.D(n)(b), are the number of downcrossings of the lower, resp. upper, half of
an interval of length2−n+1, which may or may not be dyadic. Denote bỹD(n−1)(a) =

D̃(n−1)(b) the number of downcrossings of this interval. Then

P{|D(n)(a) −D(n)(b)
∣∣ > 2 2n(1−γ)}

6 P{|D(n)(a) − 1
2 D̃

(n−1)(a)
∣∣ > 2n(1−γ)} + P{|D(n)(b) − 1

2 D̃
(n−1)(b)

∣∣ > 2n(1−γ)},

and summability of these probabilities over alla, b ∈ Dn with |a − b| = 2−n andn > m

has been established in the proof of item (a). This completesthe proof.

Lemma 6.24On the setΩ(m) we have that

La(TN ) := lim
n→∞

2−n+1D(n)(a)

exists for everya ∈ [−N,N).

Proof. We show that the sequence defined by2−n+1D(n)(a), for n ∈ N, is a Cauchy
sequence. Indeed, by item (a) in the definition of the setΩ(m), for anya ∈ [−N,N ] and
n > m, we get that

∣∣2−n+1D(n)(a) − 2−nD(n+1)(a)
∣∣ 6 2−nγ+1 .

Thus, for anyn > m,

sup
k > n

∣∣2−n+1D(n)(a) − 2−k+1D(k)(a)
∣∣

6

∞∑

k=n

∣∣2−k+1D(k)(a) − 2−kD(k+1)(a)
∣∣ 6

∞∑

k=n

2−kγ+1 n→∞−→ 0,

and thus the sequence is a Cauchy sequence and therefore convergent.

Lemma 6.25OnΩ(m) the process{La(TN ) : a ∈ [−N,N)} is γ-Hölder continuous.

Proof. Fix a, b ∈ [−N,N) with 2−n−1 6 a − b 6 2−n for somen > m. Then, using
item (a) and item (b) in the definition ofΩ(m), for all k > n,
∣∣2−k+1D(k)(a) − 2−k+1D(k)(b)

∣∣ 6
∣∣2−n+1D(n)(a) − 2−n+1D(n)(b)

∣∣

+
k−1∑

j=n

∣∣2−jD(j+1)(a) − 2−j+1D(j)(a)
∣∣+

k−1∑

j=n

∣∣2−jD(j+1)(b) − 2−j+1D(j)(b)
∣∣

6 4 2−nγ + 4

∞∑

j=n

2−jγ ,

Lettingk ↑ ∞, we get

|La(TN ) − Lb(TN )| 6
(
4 + 4

1−2−γ

)
2−nγ6

(
22+γ + 22+γ

1−2−γ

)
|a− b|γ ,

which completes the proof.
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Lemma 6.26For any fixed timet > 0, almost surely, the limit

La(t) := lim
n→∞

2−n+1D(n)(a) exists for alla ∈ R

and moreover{La(t) : a ∈ R} is γ-Hölder continuous.

Proof. Given t > 0 define the auxiliary Brownian motion{Bt(s) : s > 0} by
Bt(s) = B(t + s) and denote byD(n)

t (a) the number of downcrossings associated to
the auxiliary Brownian motion. Then, almost surely,Lat (TN ) := limn↑∞ 2−n+1D(n)

t (a)

exists for alla ∈ R and integersN . On this event we pickN so large thatTN > t. De-
fine La(t) := La(TN ) − Lat (TN ), and observe that{La(t) : a ∈ R} defined like this is
γ-Hölder continuous by Lemma 6.25. It remains to show that this definition agrees with
the one stated in the lemma. To this end, observe that

D(n)(a, TN ) −D(n)

t (a, TN ) − 1 6 D(n)(a, t) 6 D(n)(a, TN ) −D(n)

t (a, TN ).

Multiplying by 2−n+1 and taking a limit proves the claimed convergence.

Lemma 6.27Almost surely,

La(t) := lim
n→∞

2−n+1D(n)(a, t)

exists for everyt > 0 anda ∈ R and{La(t) : a ∈ R, t > 0} is γ-Hölder continuous.

Proof. It suffices to look att ∈ [0, N) anda ∈ [−N,N). Recall the definition of the
dyadic pointsDn in [−N,N) and additionally define dyadic points in[0, N) by

Hm =
{
k2−m : k ∈ {0, . . . , N2m − 1}

}
, H =

∞⋃

m=1

Hm .

We show that the claimed statements hold on the set
⋂

t∈H

{
La(t) exists for alla ∈ [−N,N) anda 7→ La(t) is γ-Hölder continuous

}

∩
⋂

m>M

⋂

t∈Hm

⋂

a∈Dm

{
La(t+ 2−m) − La(t) 6 2−mγ

}
,

which, by choosingM suitably, has probability arbitrarily close to one by Lemma6.26 and
Lemma 6.7.
Given anyt ∈ [0, N) anda ∈ [−N,N ], for any largem, we find t1, t2 ∈ Hm with
t2 − t1 = 2−m andt ∈ [t1, t2]. We have

2−n+1D(n)(a, t1) 6 2−n+1D(a, t) 6 2−n+1D(a, t2).

Both bounds converge on our set, and the difference of the limits isLa(t2) − La(t1). We
can then findb ∈ Hk for k > M with |La(t1)−Lb(t1)| < 2−mγ and|La(t2)−Lb(t2)| <
2−mγ and get

0 6 La(t2) − La(t1) 6 |La(t2) − Lb(t2)| + |Lb(t2) − Lb(t1)| + |La(t1) − Lb(t1)|
6 3 × 2−mγ ,

which can be made arbitrarily small by choice ofm, proving simultaneous convergence.
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For the proof of continuity, supposea, b ∈ [−N,N) ands, t ∈ [0, N) with 2−m 6 |a −
b| 6 2−m and2−m 6 t− s 6 2−m for somem > M . We picks1, s2 ∈ Hm andt1, t2 ∈
Hm such thats−2−m < s1 6 s 6 s2 < s+2−m andt−2−m < t1 6 t 6 t2 < t+2−m,
anda1, b1 ∈ Dm with |a− a1| 6 2−m and|b− b1| 6 2−m. Then

La(t) − Lb(s) 6 La(t2) − Lb(s1)

6 |La(t2) − La1(t2)| + |La1(t2) − La1(s1)| + |La1(s1) − Lb(s1)|,
La(s) − Lb(t) 6 La(s2) − Lb(t1)

6 |La(s2) − La1(s2)| + |La1(s2) − La1(t1)| + |La1(t1) − Lb(t1)|,

and all contributions on the right are bounded by constant multiples of 2−mγ , by the con-
struction of our set. This completes the proof ofγ-Hölder continuity.

This completes the proof of Trotter’s theorem, Theorem 6.19.

6.3 The Ray–Knight theorem

We now have a closer look at the distributions of local timesLx(T ) as a function of the
levelx in the case that Brownian motion is started at an arbitrary point and stopped at the
timeT when it first hits level zero. The following remarkable distributional identity goes
back to the work of Ray and Knight.

Theorem 6.28 (Ray–Knight theorem)Supposea > 0 and{B(t) : 0 6 t 6 T} is a linear
Brownian motion started ata and stopped at timeT = inf{t > 0: B(t) = 0}, when it
reaches level zero for the first time. Then

{Lx(T ) : 0 6 x 6 a} d
= {|W (x)|2 : 0 6 x 6 a} ,

where{W (x) : x > 0} is a standard planar Brownian motion.

0
0 

0
0 

B(t)

a a

t

T

x

|W (x)|2 = Lx(T )

Fig. 6.5. The Brownian path on the left, and its local time as a function of the level, on the right.
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Remark 6.29The process{|W (x)|2 : x > 0} of squared norms of a planar Brownian mo-
tion is called the squaredtwo-dimensional Bessel process. For any fixedx, the random
variable|W (x)|2 is exponentially distributed with mean2x, see Lemma 12.16 in the ap-
pendix. �

We carry out the proof of the Ray–Knight theorem in three steps. As a warm-up, we look
at one point0 < x 6 a. Recall from the downcrossing representation, Theorem 6.1, that

lim
n→∞

2
n Dn(x) = Lx(T ) almost surely,

whereDn(x) denotes the number of downcrossings of the interval[x − 1/n, x] before

time T . Recall that basic facts about convergence in distribution, indicated with
d→, are

collected in Section 12.1 of the appendix.

Lemma 6.30For any0 < x 6 a, we have2
n Dn(x)

d−→ |W (x)|2 asn ↑ ∞.

Proof. By the strong Markov property and the exit probabilities from an interval
described in Theorem 2.49, it is clear that, providedn > 1/x, the random variableDn(x) is
geometrically distributed with (success) parameter1/(nx), i.e. P{Dn(x) = k} = 1

nx (1−
1
nx )k−1 for all k ∈ {1, 2, . . .}. Hence, asn→ ∞, we obtain that

P{Dn(x) > ny/2} =
(
1 − 1

nx

)bny/2c −→ e−y/(2x) ,

and the result follows, as|W (x)|2 is exponentially distributed with mean2x.

Lemma 6.30 is the ‘one-point version’ of Theorem 6.28. The essence of the Ray–Knight
theorem is captured in the ‘two-point version’, which we prove next. We fix two pointsx
andx+ h with 0 < x < x+ h < a. The next three lemmas are the crucial ingredients for
the proof of Theorem 6.28.

Lemma 6.31Let0 < x < x+ h < a. Then, for alln > h, we have

Dn(x+ h) = D +

Dn(x)∑

j=1

Ij Nj ,

where

• D = D(n) is the number of downcrossings of the interval[x+h− 1
n , x+h] before

the Brownian motion hits levelx,
• for any j ∈ N the random variableIj = I(n)

j is Bernoulli distributed with mean
1

nh+1 ,
• for any j ∈ N the random variableNj = N (n)

j is geometrically distributed with
meannh+ 1,

and all these random variables are independent of each otherand ofDn(x).

Proof. The decomposition ofDn(x+h) is based on counting the number of downcross-
ings of the interval[x+ h− 1/n, x+ h] that have taken place between the stopping times
in the sequence
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−5 0 5 10 15 20 25 30 35 40 45

xk+1

xk+1 − 1
n

xk

xk − 1
n

τ2j−2 τ2j−1

B(2j−1)

Fig. 6.6. The random variablesIj andNj depend only on the piecesB(2j−1) for j > 1. For this
sampleIj = 1 as the path hitsx + h beforex − 1

n
andNj = 2, because the path downcrosses

[x+ h− 1

n
, x+ h] twice before hittingx− 1

n
.

τ0 = inf
{
t > 0: B(t) = x

}
, τ1 = inf

{
t > τ0 : B(t) = x− 1

n

}
,

τ2j = inf
{
t > τ2j−1 : B(t) = x

}
, τ2j+1 = inf

{
t > τ2j : B(t) = x− 1

n

}
,

for j > 1. By the strong Markov property the pieces

B(0) : [0, τ0] → R, B(0)(s) = B(s)

B(j) : [0, τj − τj−1] → R, B(j)(s) = B(τj−1 + s), j > 1,

are all independent. The crucial observation of the proof isthat the vectorDn(x) is a
function of the piecesB(2j) for j > 1, whereas we shall define the random variablesD,
I1, I2, . . . andN1, N2 . . . depending only on the other piecesB(0) andB(2j−1) for j > 1.
First, letD be the number of downcrossings of[x + h − 1/n, x + h] during the time
interval [0, τ0]. Then fixj > 1 and hence a pieceB(2j−1). DefineIj to be the indicator
of the event thatB(2j−1) reaches levelx + h during its lifetime. By Theorem 2.49 this
event has probability1/(nh+1). Observe that the number of downcrossings byB(2j−1) is
zero if the event fails. If the event holds, we defineNj as the number of downcrossings of
[x+ h− 1/n, x+ h] byB(2j−1), which is a geometric random variable with meannh+ 1

by the strong Markov property and Theorem 2.49.

The claimed decomposition follows now from the fact that thepiecesB(2j) for j > 1 do not
upcross the interval[x+h−1/n, x+h] by definition and thatB(2j−1) for j = 1, . . . ,Dn(x)

are exactly the pieces that take place before the Brownian motion reaches level zero.
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Lemma 6.32Supposenun are nonnegative, even integers andun → u. Then

2

n
D(n) +

2

n

nun
2∑

j=1

I(n)

j N (n)

j
d−→ X̃2 + Ỹ 2 + 2

M∑

j=1

Z̃j asn ↑ ∞,

whereX̃, Ỹ are normally distributed with mean zero and varianceh, the random vari-
ableM is Poisson distributed with parameteru/(2h) and Z̃1, Z̃2, . . . are exponentially
distributed with meanh, and all these random variables are independent.

Proof. By Lemma 6.30, we have, for̃X, Ỹ as defined in the lemma,

2

n
D(n) d−→ |W (h)|2 d

= X̃2 + Ỹ 2 asn ↑ ∞.

Moreover, we observe that

2

n

nun
2∑

j=1

I(n)

j N (n)

j
d
=

2

n

Bn∑

j=1

N (n)

j ,

whereBn is binomial with parametersnun/2 ∈ {0, 1, . . .} and1/(nh + 1) ∈ (0, 1) and
independent ofN (n)

1 , N (n)

2 , . . .. We now show that, whenn ↑ ∞, the random variablesBn
converge in distribution toM and the random variables1n N

(n)

j converge toZ̃j , as defined
in the lemma. For this purpose it suffices to show convergenceof the Laplace transforms,
see Proposition 12.8 in the appendix.
First note that, forλ, θ > 0, we have

E exp
{
− λZ̃j

}
= 1

λh+1 , E
[
θM
]

= exp
{
− u(1−θ)

2h

}
,

and hence

E exp
{
− λ

M∑

j=1

Z̃j

}
= E

(
1

λh+1

)M
= exp

{
− u

2h
λh
λh+1

}
= exp

{
− uλ

2λh+2

}
.

Convergence of1n N
(n)

j is best seen using tail probabilities

P
{

1
n N

(n)

j > a
}

=
(
1 − 1

nh+1

)bnac −→ exp
{
− a

h

}
= P{Z̃j > a} .

Hence, for a suitable sequenceδn → 0,

E exp
{
− λ 1

n N
(n)

j

}
=

1 + δn
λh+ 1

.

For the binomial distributions we have

E
[
θBn

]
=
(

θ
nh+1 +

(
1 − 1

nh+1

))nun/2

−→ exp
{
− u(1−θ)

2h

}
,

and thus

lim
n↑∞

E exp
{
− λ

1

n

Bn∑

j=1

N (n)

j

}
= lim
n↑∞

E
[(

1+δn

λh+1

)Bn
]

= lim
n↑∞

exp
{
− u

2h
λh−δn

λh+1

}

= exp
{
− uλ

2λh+2

}
= E exp

{
− λ

M∑

j=1

Z̃j

}
.
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Lemma 6.33SupposeX is standard normally distributed,Z1, Z2, . . . standard exponen-
tially distributed andN Poisson distributed with parameter`2/2 for some` > 0. If all
these random variables are independent, then

(X + `)2
d
= X2 + 2

N∑

j=1

Zj .

Proof. It suffices to show that the Laplace transforms of the random variables on the two
sides of the equation agree. Letλ > 0. Completing the square, we find

E exp{−λ (X + `)2} =
1√
2π

∫
exp{−λ (x+ `)2 − x2/2} dx

=
1√
2π

∫
exp

{
− 1

2

(√
2λ+ 1x+ 2λ`√

2λ+1

)2 − λ`2 + 2λ2`2

2λ+1

}
dx

=
1√

2λ+ 1
exp

{
− λ`2

2λ+1

}
.

From the special casè= 0 we getE exp{−λX2} = 1√
2λ+1

. For anyθ > 0,

E[θN ] = exp{−`2/2}
∞∑

k=0

(`2θ/2)k

k! = exp{(θ − 1)`2/2} .

Using this and thatE exp{−2λZj} = 1
2λ+1 we get

E exp
{
− λ

(
X2 + 2

N∑

j=1

Zj
)}

=
1√

2λ+ 1
E
( 1

2λ+ 1

)N
=

1√
2λ+ 1

exp
{
− λ`2

2λ+1

}
,

which completes the proof.

Remark 6.34An alternative proof of Lemma 6.33 will be given in Exercise 6.8. �

By combining the previous three lemmas we obtain the following convergence result for
the conditional distribution ofDn(x + h) givenDn(x), which is the ‘two-point version’
of the Ray–Knight theorem.

Lemma 6.35Supposenun are nonnegative, even integers andun → u. For anyλ > 0,

lim
n→∞

E
[
exp

{
− λ 2

nDn(x+ h)
} ∣∣ 2

nDn(x) = un
]

= E(0,
√
u)

[
exp

{
− λ|W (h)|2

}]
,

where{W (x) : x > 0} denotes a planar Brownian motion started in(0,
√
u) ∈ R2.
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Proof. Combining Lemmas 6.31 and 6.32 we get

lim
n→∞

E
[
exp

{
− λ 2

nDn(x+ h)
} ∣∣ 2

nDn(x) = un
]

= E
[
exp

{
− λ

(
X̃2 + Ỹ 2 + 2

M∑

j=1

Z̃j

)}]

= E
[
exp

{
− λh

(
X2 + Y 2 + 2

M∑

j=1

Zj

)}]
,

whereX, Y are standard normally distributed,Z1, Z2, . . . are standard exponentially dis-
tributed andM is Poisson distributed with parameter`2/2, for ` =

√
u/h. By Lemma 6.33

the right hand side can thus be rewritten as

E
[
exp

{
− λh

(
(X +

√
u/h)2 + Y 2

)}]
= E(0,

√
u)

[
exp

{
− λ|W (h)|2

}]
,

which proves the lemma.

Now we complete the proof of Theorem 6.28. Note that, as both{Lx(T ) : x > 0} and
{|W (x)|2 : x > 0} are continuous processes, it suffices to show that, for any

0 < x1 < · · · < xm < a

the vectors
(
Lx1(T ), . . . , Lxm(T )

)
and

(
|W (x1)|2, . . . , |W (xm)|2

)

have the same distribution. The Markov property of the downcrossing numbers, which
approximate the local times, allows us to reduce this problem to the study of the ‘two-
point version’.

Lemma 6.36For all sufficiently large integersn, the process
{
Dn(xk) : k = 1, . . . ,m

}

is a (possibly inhomogeneous) Markov chain.

Proof. Fix k ∈ {2, . . . ,m}. By Lemma 6.31 applied tox = xk−1 andh = xk − xk−1

we can writeDn(xk) as a function ofDn(xk−1) and various random variables, which
by construction, are independent ofDn(x1), . . . ,Dn(xk−1). This establishes the Markov
property.

Note that, by rotational invariance of planar Brownian motion,{|W (xk)|2 : k = 1, . . . ,m}
is a Markov chain with transition probabilities given by

E
[
exp{−λ |W (xk+1)|2}

∣∣ |W (xk)|2 = u
]

= E(0,
√
u)

[
exp{−λ |W (xk+1 − xk)|2}

]
,

for all λ > 0. The following general fact about the convergence of families of Markov
chains ensures that we have done enough to complete the proofof Theorem 6.28.
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Lemma 6.37Suppose, forn = 1, 2, . . ., that {X(n)

k : k = 1, . . . ,m} is a Markov chain
with discrete state spaceΩn ⊂ [0,∞) and that{Xk : k = 1, . . . ,m} is a Markov chain
with state space[0,∞). Suppose further that

(1) (X(n)

1 , . . . ,X(n)
m ) converges almost surely to some random vector(Y1, . . . , Ym),

(2) X(n)

1
d→ X1 asn ↑ ∞,

(3) for all k = 1, . . . ,m− 1, λ > 0 andyn ∈ Ωn with yn → y, we have

lim
n→∞

E
[
exp{−λX(n)

k+1}
∣∣X(n)

k = yn
]

= E
[
exp{−λXk+1}

∣∣Xk = y
]∣∣∣.

Then

(X(n)

1 , . . . ,X(n)

m )
d−→ (X1, . . . ,Xm)

and, in particular, the vectors(X1, . . . ,Xm) and(Y1, . . . , Ym) have the same distribution.

Proof. Recall from Proposition 12.8 in the appendix that it sufficesto show that the

Laplace transforms converge. Letλ1, . . . , λm > 0. By assumption (2) we haveX(n)

1
d→

X1 and hence we may assume, by way of induction, that for some fixed k = 1, . . . ,m− 1,
we have

(X(n)

1 , . . . ,X(n)

k )
d−→ (X1, . . . ,Xk) .

This implies, in particular, that(X1, . . . ,Xk) and(Y1, . . . , Yk) have the same distribution.
Define

Φn : Ωn → [0, 1], Φn(y) = E
[
exp{−λk+1X

(n)

k+1}
∣∣X(n)

k = y
]

and

Φ: [0,∞) → [0, 1], Φ(y) = E
[
exp{−λk+1Xk+1}

∣∣Xk = y
]
.

Then, combining assumption (1) and (3),Φn(X
(n)

k ) → Φ(Yk) almost surely. Hence, using
this and once more assumption (1),

E
[
exp

{
−
k+1∑

j=1

λjX
(n)

j

}]
= E

[
exp

{
−

k∑

j=1

λjX
(n)

j

}
Φn(X

(n)

k )
]

→ E
[
exp

{
−

k∑

j=1

λjYj
}

Φ(Yk)
]
.

As the vectors(X1, . . . ,Xk) and(Y1, . . . , Yk) have the same distribution the limit can be
rewritten as

E
[
exp

{
−

k∑

j=1

λjXj

}
Φ(Xk)

]
= E

[
exp

{
−
k+1∑

j=1

λjXj

}]
,

and this completes the induction step.
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Finally, as(X(n)

1 , . . . ,X(n)
m ) converges almost surely, and hence also in distribution to

(Y1, . . . , Ym), this vector must have the same distribution as(X1, . . . ,Xm). This com-
pletes the proof.

Proof of Theorem 6.28. We use Lemma 6.37 withX(n)

k = 2
nDn(xk), Xk = |W (xk)|2

andYk = Lxk(T ). Then assumption (1) is satisfied by the downcrossing representa-
tion, assumption (2) follows from Lemma 6.30 and assumption(3) from Lemma 6.35.
Lemma 6.37 thus gives that the random vector(Lx1(T ), . . . , Lxm(T )) and the random
vector(|W (x1)|2, . . . , |W (xm)|2) have the same distribution, concluding the proof.

As an easy application of the Ray–Knight theorem, we answer the question whether, almost
surely,simultaneouslyfor all levelsx ∈ [0, a) the local times at levelx are positive.

Theorem 6.38 (Ray’s theorem)Supposea > 0 and {B(t) : 0 6 t 6 Ta} is a linear
Brownian motion started at zero and stopped at timeTa = inf{t > 0: B(t) = a}, when it
reaches levela for the first time. Then, almost surely,Lx(Ta) > 0 for all 0 6 x < a.

Proof. The statement can be reworded as saying that the process{La−x(Ta) : 0 <

x 6 a} almost surely does not hit zero. By the Ray–Knight theorem (applied to the
Brownian motion{a − B(t) : t > 0}) this process agrees with{|W (x)|2 : 0 < x 6 a}
for a standard planar Brownian motion{W (x) : x > 0} which, by Theorem 3.20, never
returns to the origin.

Ray’s theorem can be exploited to give a result on the Hausdorff dimension of the level
sets of the Brownian motion, which holdssimultaneouslyfor all levelsa ∈ R. We prepare
the proof by a lemma.

Lemma 6.39Almost surely, for alla ∈ R, we have
{
t > 0: B(t) = a andt is not locally extremal

}

=
{
t > 0: La(t+ h) − La(t− h) > 0 for all h > 0

}
.

Proof. The inclusion ‘⊃’ follows directly from Trotter’s theorem and the uniqueness of
local extrema, see Theorem 2.11. For the inclusion ‘⊂’ we note that, by the strong Markov
property and Ray’s theorem, almost surely for any rationalq > 0 andε > 0 and stopping
time τq(ε) := inf{t > q : B(t) = B(q) + ε} we have

Lx(τq(ε)) − Lx(q) > 0 for all B(q) 6 x < B(q) + ε.

SupposeB(t) = x andh > 0. If t is neither a local minimiser from the left nor a local
maximiser, there exist a rationalq ∈ (t−h, t) withB(q) 6 x < B(q)+ε andτq(ε) < t+h.
From the monotonicity of local time we infer thatLx(t + h) − Lx(t − h) > 0. A similar
argument for the time-reversed Brownian motion can be givento deal with thoset which
are neither a local minimiser from the right nor a local maximiser.
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Theorem 6.40Almost surely,dim{t > 0: B(t) = a
}

>
1
2 , for all a ∈ R.

Proof. Obviously, it suffices to show that, for every fixeda > 0, almost surely,

dim
{
0 6 t < Ta : B(t) = x

}
>

1
2 for all 0 6 x < a .

This can be achieved using the mass distribution principle.Considering the increasing
functionLx : [0, T a) → [0,∞) as distribution function of a measure`x, we infer from
Lemma 6.39 that, almost surely, for everyx ∈ [0, a), the measurèx is a mass distribution
on the set{0 6 t < Ta : B(t) = x}. By Theorem 6.19, for anyγ < 1/2, almost surely,
there exists a (random)C > 0 such that, for allx ∈ [0, a), t ∈ [0, Ta) andε ∈ (0, 1),

`x(t− ε, t+ ε) 6 |Lx(t+ ε) − Lx(t− ε)| 6 C (2ε)γ .

The claim therefore follows from the mass distribution principle, Theorem 4.19.

Remark 6.41Equality holds in Theorem 6.40. We will obtain the full result later as an
easy corollary of Kaufman’s dimension doubling theorem, see Theorem 9.28. �

6.4 Brownian local time as a Hausdorff measure

In this section we show that the local timeL0(t) can be obtained as an intrinsically defined
measure of the random setZeros∩ [0, t]. The only family of intrinsically defined measures
on metric spaces we have encountered so far in this book is thefamily of α-dimensional
Hausdorff measures. As theα-dimensional Hausdorff measure of the zero set is always
either zero (ifα >

1
2 ) or infinity (if α < 1

2 ) we need to look out for an alternative construc-
tion.

We need not look very far. The definition of Hausdorff dimension still makes sense if
we evaluate coverings by applying, instead of a simple power, an arbitrary non-decreasing
function to the diameters of the sets in a covering.

Definition 6.42. A non-decreasing functionφ : [0, ε) → [0,∞) with φ(0) = 0 defined on
a nonempty interval[0, ε) is called a(Hausdorff) gauge function.
LetX be a metric space andE ⊂ X. For every gauge functionφ andδ > 0 define

Hφ
δ (E) = inf

{ ∞∑

i=1

φ(|Ei|) : E1, E2, E3, . . . coverE, and|Ei| 6 δ
}
.

Then

Hφ(E) = sup
δ>0

Hφ
δ (E) = lim

δ↓0
Hφ
δ (E)

is thegeneralisedφ-Hausdorff measureof the setE. �
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Theorem* 6.43There exists a constantc > 0 such that, almost surely, for allt > 0,

L0(t) = Hϕ
(
Zeros ∩ [0, t]

)
,

for the gauge functionϕ(r) = c
√
r log log(1/r).

The remainder of this section is devoted to the proof of this theorem. The material devel-
oped here will not be used in the remainder of the book. An important tool in the proof is
the following classical theorem of Rogers and Taylor.

Proposition 6.44 (Rogers–Taylor Theorem)Letµ be a Borel measure onRd and letφ be
a Hausdorff gauge function.

(i) If Λ ⊂ Rd is a Borel set and

lim sup
r↓0

µB(x, r)

φ(r)
< α

for all x ∈ Λ, thenHφ(Λ) > α−1 µ(Λ).

(ii) If Λ ⊂ Rd is a Borel set and

lim sup
r↓0

µB(x, r)

φ(r)
> θ

for all x ∈ Λ, thenHφ(Λ) 6 κdθ
−1µ(V ) for any open setV ⊂ Rd that contains

Λ, whereκd depends only ond.

Moreover, ind = 1 one can also obtain an analogue of (i) for one-sided intervals.

(iii) If Λ ⊂ R is a closed set and

A :=
{
t ∈ Λ: lim sup

r↓0

µ[t, t+ r]

φ(r)
< α

}
,

thenHφ(A) > α−1 µ(A).

Remark 6.45 If µ is finite on compact sets, thenµ(Λ) is the infimum ofµ(V ) over all
open setsV ⊃ Λ, see for example Section 2.18 in [Ru87]. Henceµ(V ) can be replaced by
µ(Λ) on the right hand side of the inequality in (ii). �

Proof. (i) We write

Λε =
{
x ∈ Λ: sup

r∈(0,ε)

µB(x,r)
φ(r) < α

}

and note thatµ(Λε) → µ(Λ) asε ↓ 0.
Fix ε > 0 and consider a cover{Aj} of Λε. Suppose thatAj intersectsΛε andrj =
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|Aj | < ε for all j. Choosexj ∈ Aj ∩ Λε for eachj. ThenµB(xj , rj) < αφ(rj) for every
j, whence ∑

j > 1

φ(rj) > α−1
∑

j > 1

µB(xj , rj) > α−1µ(Λε) .

ThusHφ
ε (Λ) > Hφ

ε (Λε) > α−1µ(Λε). Lettingε ↓ 0 proves (i).

(ii) Let ε > 0. For eachx ∈ Λ, choose a positiverx < ε such thatB(x, 2rx) ⊂ V and
µB(x, rx) > θφ(rx); then among the dyadic cubes of diameter at mostrx that intersect
B(x, rx), letQx be a cube withµ(Qx) maximal. (We consider here dyadic cubes of the
form

∏d
i=1[ai/2

m, (ai+1)/2m) whereai are integers). In particular,Qx ⊂ V and|Qx| >
rx/2 so the side-length ofQx is at leastrx/(2

√
d). LetNd = 1 + 8d

√
de and letQ∗

x be
the cube with the same centerzx asQx, scaled byNd (i.e.,Q∗

x = zx + Nd(Qx − zx)).
Observe thatQ∗

x containsB(x, rx), soB(x, rx) is covered by at mostNd
d dyadic cubes that

are translates ofQx. Therefore, for everyx ∈ Λ, we have

µ(Qx) > N−d
d µB(x, rx) > N−d

d θφ(rx) .

Let {Qx(j) : j > 1} be any enumeration of the maximal dyadic cubes among{Qx : x ∈
Λ}. Then

µ(V ) >
∑

j > 1

µ(Qx(j)) > N−d
d θ

∑

j > 1

φ(rx(j)) .

The collection of cubes{Q∗
x(j) : j > 1} forms a cover ofΛ. Since each of these cubes is

covered byNd
d cubes of diameter at mostrx(j), we infer that

Hφ
ε (Λ) 6 Nd

d

∑

j > 1

φ(rx(j)) 6 N2d
d θ−1µ(V ).

Lettingε ↓ 0 proves (ii).

(iii) Without loss of generality we may assume thatµ has no atoms. Givenε > 0 we find
δ > 0 such that

Aδ(α) =
{
t ∈ Λ: sup

h<δ

µ[t,t+h]
ϕ(h) 6 α− δ

}

satisfiesµ(Aδ(α)) > (1 − ε)µ(A). Observe thatAδ(α) is closed. Given a cover{Ĩj} of
A with |Ĩj | < δ we look atIj = [aj , bj ] whereaj is the maximum andbj the minimum of
the compact setcl Ĩj ∩Aδ(α). Then{Ij} coversAδ(α) and hence

∑

j > 1

ϕ(|Ĩj |) >
∑

j > 1

ϕ(|Ij |) > (α− δ)−1
∑

j > 1

µ(Ij)

> (α− δ)−1 µ
(
Aδ(α)

)
> (α− δ)−1 (1 − ε)µ(A) ,

and (iii) follows for δ ↓ 0, asε > 0 was arbitrary.

For the proof of Theorem 6.43 we first note that, by Theorem 6.10, it is equivalent to show
that, for the maximum process{M(t) : t > 0} of a Brownian motion{B(t) : t > 0}, we
have, almost surely,

M(t) = Hϕ
(
Rec ∩ [0, t]

)
for all t > 0 , (6.4)
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whereRec denotes the set of record points of the Brownian motion. To show this, recall
from Exercise 4.12 thatRec = {s > 0: M(s + h) > M(s − h) for all 0 < h < s}. We
define the measureµ onRec as given by the distribution functionM , i.e.

µ(a, b] = M(b) −M(a) for all intervals(a, b] ⊂ R.

Thenµ is also the image measure of the Lebesgue measure on[0,∞) under the mapping

a 7→ Ta := inf{s > 0: B(s) = a}.
The main part is to show that, for closed setsΛ ⊂ [0,∞),

c µ(Λ) 6 Hφ
(
Λ ∩ Rec

)
6 C µ(Λ), (6.5)

whereφ(r) =
√
r log log(1/r) andc, C are positive constants.

The easier direction, the lower bound for the Hausdorff measure, follows from part(iii)
of the Rogers–Taylor theorem and the upper bound in the law ofthe iterated logarithm.
Indeed, for any levela > 0 let Ta = inf{s > 0: B(t) = a}. Observe that

lim sup
r↓0

M(Ta + r) −M(Ta)√
2r log log(1/r)

= lim sup
r↓0

B(Ta + r) −B(Ta)√
2r log log(1/r)

,

where we use thatM(Ta) = B(Ta) and that for anyr > 0 there exists0 < r̃ < r with
M(Ta + r) = B(Ta + r̃). Combining this with Corollary 5.3 applied to the standard
Brownian motion{B(Ta + t) −B(Ta) : t > 0} we get, almost surely,

lim sup
r↓0

M(Ta + r) −M(Ta)√
2r log log(1/r)

= 1 .

Defining the set

A =
{
s ∈ Rec : lim sup

r↓0
µ[s, s+ r]/φ(r) 6

√
2
}
,

this means that, for everya > 0, we haveTa ∈ A almost surely. By Fubini’s theorem,

Eµ(Ac) = E
∫ ∞

0

1{Ta 6∈ A} da =

∫ ∞

0

P{Ta 6∈ A} da = 0,

and hence, almost surely,µ(Ac) = 0. By part(iii) of the Rogers–Taylor theorem, for every
closed setΛ ⊂ [0,∞),

Hφ(Λ ∩ Rec) > Hφ(Λ ∩A) >
1√
2
µ(Λ ∩A) = 1√

2
µ(Λ) ,

showing the left inequality in (6.5).

For the harder direction, the upper bound for the Hausdorff measure, it is important to
note that the lower bound in Corollary 5.3 does not suffice. Instead, we need a law of the
iterated logarithm which holds simultaneously forHφ-almost all record times. Recall that
φ(r) =

√
r log log(1/r).

Lemma 6.46For everyϑ > 0 small enough, almost surely,

Hφ
{
s ∈ Rec : lim sup

h↓0

M(s+ h) −M(s− h)

φ(h)
< ϑ

}
= 0 .
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Proof. We only need to prove that, for someθ̃ > 0, the set

Λ(θ̃) =
{
s ∈ Rec ∩ (0, 1) : lim sup

h↓0

M(s+h)−M(s−h)
φ(h) < θ̃

}

satisfiesHφ(Λ(θ̃)) = 0. Moreover, denoting

Λδ(θ̃) =
{
s ∈ Rec ∩

[
δ, 1 − δ

]
: sup
h<δ

M(s+h)−M(s−h)
φ(h) < θ̃

}
,

we have

Λ(θ̃) =
⋃

δ>0

Λδ(θ̃) .

It thus suffices to show, for fixedδ > 0, that, almost surely,

lim inf
n↑∞

Hφ
1/n(Λδ(θ̃)) = 0 .

Fix δ > 0 and a positive integern such that1/
√
n < δ. For parameters

A > 1, θ > θ̃ andq > 2,

which we choose later, we say that an interval of the formI = [(k − 1)/n, k/n] with
k ∈ {1, . . . , n} is goodif

(i) I contains a record point, in other words,

τ := inf
{
t >

k−1
n : B(t) = M(t)} 6

k
n ,

and either of the following two conditions hold,

(ii) there existsj > 0 with 1 6 qj+1 6
√
n such that

B
(
τ + qj

n

)
−B(τ) < −Aφ

(
qj

n

)
;

(iii) for all j > 0 with 1 6 qj+1 6
√
n we have that

B
(
τ + qj+1

n

)
−B

(
τ + qj

n

)
< θ φ

(
qj+1−qj

n

)
.

We now argue pathwise, and show that, givenA > 1, θ > θ̃ we can findq > 2 such that
the good intervals cover the setΛδ(θ̃). Indeed, suppose thatI is not good but contains a
minimal record pointτ ∈ [(k − 1)/n, k/n]. Then there existsj > 0 with 1 6 qj+1 6

√
n

such that

B
(
τ + qj

n

)
−B(τ) > −Aφ

(
qj

n

)
and B

(
τ + qj+1

n

)
−B

(
τ + qj

n

)
> θ φ

(
qj+1−qj

n

)
.

This implies that, for anyt ∈ [(k − 1)/n, k/n] ∩ Rec,

M
(
t+ qj+1

n

)
−M

(
t− qj+1

n

)
> M

(
τ + qj+1

n

)
−M

(
τ
)

> B
(
τ + qj+1

n

)
−B

(
τ
)

> θ φ
(
qj+1−qj

n

)
−Aφ

(
qj

n

)
> θ̃ φ

(
qj+1

n

)
,

if q is chosen large enough. Hence the intervalI does not intersectΛδ(θ̃) and therefore the
good intervals cover this set.
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Next we show that, for anyA >
√

2 > θ and suitably chosenC > 0, for everyI =

[(k − 1)/n, k/n] with I ∩ [δ, 1 − δ] 6= ∅,

P
{[

k−1
n , kn

]
is good

}
6 C

1√
n

( 1

log n

)A2

2 −1

. (6.6)

By Lemma 4.22 in conjunction with Theorem 2.34 we get, for some constantC0 > 0

depending only onδ > 0,

P
{
τ < k

n

}
6 C0

1√
n
.

We further get, for some constantC1 > 0, for all j with qj+1 6
√
n,

P
{
B
(
τ + qj

n

)
−B(τ) < −Aφ

(
qj

n

)}
6 P

{
B(1) < −A

√
log log(n/qj)

}

6 exp
{
− A2

2 log log(
√
n)
}

6 C1

( 1

log n

)A2

2

.

Using the independence of these events and summing over allj > 0 with 1 6 qj+1 6
√
n,

of which there are no more thanC2 log n, we get that

P
{[

k−1
n , kn

]
satisfies (i) and (ii)

}
6 C0C1C2

1√
n

( 1

log n

)A2

2 −1

. (6.7)

To estimate the probability that[(k − 1)/n, k/n] satisfies (i) and (iii) we first note, for
sufficiently largen, that

P
{
B
(
qj+1−qj

n

)
< θ φ

(
qj+1−qj

n

)}
6 P

{
B(1) < θ

√
log log

(
n
q−1

)}

6 1 −
exp

{
− θ2

2 log log
(
n
q−1

)
}

θ
√

log log
(
n
q−1

) ,

using Lemma 12.9 of the appendix. From this we infer that, forsuitablec3 > 0,

P
{
B
(
τ+ qj+1

n

)
−B

(
τ + qj

n

)
< θ φ

(
qj+1−qj

n

)
for all 1 6 qj+1

6
√
n
}

6
∏

j6 log n
2 log q

(
1 − exp{− θ2

2 log log n}
θ
√

log log n

)
6
(
1 − 1

θ (log n)
θ2
2 (log log n)

1
2

) log n
2 log q

6 exp
{
− c3

(logn)1−
θ2

2

(log log n)
1
2

}
.

Combining this with the estimate forτ < k/n we get that

P
{[

k−1
n , kn

]
satisfies (i) and (iii)

}
6 C0

1√
n

exp
{
− c3

(log n)1−
θ2

2

(log log n)
1
2

}
. (6.8)

As θ <
√

2, the right hand side in (6.8) is of smaller order than the right hand side in (6.7)
and hence we have shown (6.6).
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Finally, we look at the expectedφ-values of our covering. We obtain that

EHφ
1/n(Λδ(θ̃)) 6

dn(1−δ)e∑

k=dδne
φ(1/n)P

{[
k−1
n , kn

]
is good

}
6 C

√
log log n

(logn)A2/2−1
−→ 0,

and, by Fatou’s lemma we get, almost surely,

lim inf
n↑∞

Hφ
1/n(Λδ(θ̃)) = 0 ,

as required to complete the proof.

The right inequality in (6.5) now follows easily from Lemma 6.46 and part (ii) of the
Rogers–Taylor theorem. We define the set

A =
{
s ∈ Rec : lim sup

r↓0
µB(s, r)/φ(r) > ϑ

}
,

and note thatHφ(Rec∩Ac) = 0, for ϑ sufficiently small. By part (ii) of the Rogers–Taylor
theorem we get, for every Borel setΛ ⊂ [0,∞),

Hφ(Λ ∩ Rec) = Hφ(Λ ∩A) 6 κ1ϑ
−1 µ(Λ ∩A) 6 κ1ϑ

−1 µ(Λ).

This implies the right inequality and hence completes the proof of (6.5).

To complete the proof of Theorem 6.43 we look at the process{X(a) : a > 0} defined by

X(a) = Hφ
(
Rec ∩ [0, Ta]

)
.

The next lemma will help us to show that this process is, in a suitable sense, degenerate.

Lemma 6.47Suppose{Y (t) : t > 0} is a stochastic process starting in zero with the
following properties,

• the paths are almost surely continuous,
• the increments are independent, nonnegative and stationary,
• there exists aC > 0 such that, almost surely,Y (t) 6 C t for all t > 0.

Then there exists̃c > 0 such that, almost surely,Y (t) = c̃ t for everyt > 0.

Proof. We first look at the functionm : [0,∞) → [0,∞) defined bym(t) = EY (t).
This function is continuous, as the paths of{Y (t) : t > 0} are continuous and bounded on
compact sets. Further, because the process{Y (t) : t > 0} has independent and stationary
increments, the functionm is linear and hence there existsc̃ > 0 with m(t) = c̃ t.
It thus suffices to show that the variance ofY (t) is zero. Indeed, for everyn > 0, we have

VarY (t) =

n∑

k=1

Var
(
Y
(
kt
n

)
− Y

( (k−1)t
n

))
= nVarY

(
t
n

)
6 nE

[
Y
(
t
n

)2]

6 nC2
(
t
n

)2 n→∞−→ 0,

and henceY (t) = EY (t) = c̃ t as claimed.
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Let us check that{X(a) : a > 0} satisfies the conditions of Lemma 6.47. We first note
that

X(a+ h) −X(a) = Hφ
(
Rec ∩ [0, Ta+h]

)
−Hφ

(
Rec ∩ [0, Ta]

)

= Hφ
(
Rec ∩ [Ta, Ta+h]

)
,

as can be seen easily from the definition of the Hausdorff measureHφ.
Using this, continuity of the paths follows from the fact that, by (6.5),

Hφ
(
Rec ∩ [Ta, Ta+h]

)
6 C

(
M(Ta+h) −M(Ta)

)
= C h .

The strong Markov property implies that the increments are independent and stationary,
and they are obviously nonnegative. And finally, by (6.5), almost surely, for anya > 0,

X(a) = Hφ
(
Rec ∩ [0, Ta]

)
6 CM(Ta) = C a .

Lemma 6.47 thus implies that there existsc̃ > 0 with

Hφ
(
Rec ∩ [0, Ta]

)
= c̃ a = c̃M(Ta)

for all a > 0. It remains to show that this holds not only for the stopping timesTa, but in
fact for all elements ofRec.

Lemma 6.48Almost surely, the set{Ta : a ∈ R} is dense inRec.

Proof. Obviously,{Ta : a ∈ R} ⊂ Rec. Conversely, ift ∈ Rec, then eitherB(s) < B(t)

for all 0 6 s < t, in which caset = Ta for a = B(t), or there exists a minimals < t with
B(s) = B(t). In the latter cases = Ta for a = B(t) by definition.
Because, by Theorem 2.11, every local maximum is a strict local maximum and no two
local maxima are the same, we have

t = lim
b→a
b>a

Tb,

in particulart is in the closure of the set{Ta : a ∈ R}.

Using this lemma and continuity of both sides, we infer that,almost surely,Hφ
(
Rec ∩

[0, t]
)

= c̃M(t) for all t ∈ Rec. For generalt > 0 we letτ = max(Rec ∩ [0, t]) and note
that

Hφ
(
Rec ∩ [0, t]

)
= Hφ

(
Rec ∩ [0, τ ]

)
= c̃M(τ) = c̃M(t) .

By the lower bound in (6.5) we must havec̃ > 0 and hence we can putc = 1/c̃ and get

M(t) = cHφ
(
Rec ∩ [0, t]

)
= Hcφ

(
Rec ∩ [0, t]

)
,

as required to complete the proof of Theorem 6.43.
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Exercises

Exercise 6.1.Using the downcrossing representation of the local time process{L(t) : t > 0}
given in Theorem 6.1, show that, almost surely,L(s) = L(t) for every interval(s, t) not
containing a zero of the Brownian motion. In other words, thelocal time at zero increases
only on the zero set of the Brownian motion.

Exercise 6.2. Show, by reviewing the argument in the proof of Theorem 6.10,that for
a standard linear Brownian motion the processes{(|B(t)|, L(t)) : t > 0} and{(M(t) −
B(t),M(t)) : t > 0} have the same distribution.
Hint. In Theorem 7.38 we give a proof of this result using stochastic integration.

Exercise 6.3. Show that, for a standard Brownian motion,EL(t) =

√
2t

π
.

Exercise 6.4.Show thatP0{L(t) > 0 for everyt > 0} = 1.
Hint. This follows easily from Theorem 6.10.

Exercise 6.5.Derive Theorem 6.10 from Theorem 2.34.
Hint. Show that the maximum process{M(t) : t > 0} can be computed from{M(t) −
B(t) : t > 0} by counting downcrossings, so that{L(t) : t > 0} is the same measurable
function of{|B(t)| : t > 0} as{M(t) : t > 0} is of {M(t) −B(t) : t > 0}.

Exercise 6.6.S Let {W (s) : s > 0} be a standard linear Brownian motion andτ1 its first
hitting time of level1. Use Exercise 2.17 to show that

E
∫ τ1

0

1{0 6 W (s) 6 1} ds = 1.

Exercise 6.7.S SupposeX1,X2, . . . are independent geometrically distributed random
variables on{1, 2, . . .} with mean2. Then, for sufficiently smallε > 0, for all nonnegative
integersk 6 m,

P
{∣∣∣

k∑

j=1

(Xj − 2)
∣∣∣ > εm

}
6 4 exp

{
− 1

5 ε
2m
}
.

Exercise 6.8.S Give an alternative proof of Lemma 6.33 by computing the densities of the
random variables(X + `)2 andX2 + 2

∑N
j=1 Zj .

Exercise 6.9. Use the Ray–Knight theorem and Lévy’s theorem, Theorem 6.10, to show
that, for a suitable constantc > 0, the function

ϕ(h) = c
√
h log(1/h) for 0 < h < 1,

is a modulus of continuity for the random field{La(t) : a ∈ R, t > 0}.
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Exercise 6.10. LetX be a metric space andϕ1, ϕ2 two gauge functions such that

0 < Hϕ1(X),Hϕ2(X) <∞.

Show that

lim sup
ε↓0

ϕ1(ε)

ϕ2(ε)
> 0 and lim inf

ε↓0

ϕ1(ε)

ϕ2(ε)
<∞.

Exercise 6.11. Show that, forφ(r) =
√
r log log(1/r), almost surely,

∫

A

dL(t) = 0

simultaneously for all setsA ⊂ [0,∞) with Hφ(A) = 0.

Notes and comments

The study of local times is crucial for the Brownian motion indimension one and good
references are Revuz and Yor [RY94] and the survey article Borodin [Bo89]. Brownian
local times were first introduced by Paul Lévy in [Le48] and a thorough investigation is
initiated in a paper by Trotter [Tr58] who showed that there is a version of local time
continuous in time and space. An alternative construction of local times can be given in
terms of stochastic integrals, using Tanaka’s formula as a definition. We shall explore this
direction in Section 7.3.

A crucial aspect which is not covered by our treatment is the relation of local times to
excursion theory and point processes, which allows a discussion of more general Markov
processes. An excellent reference for this is Williams [Wi77], his treatment appears also
in Rogers and Williams [RW00a]. Greenwood and Pitman [GP80] show how to use the
same kind of argument to construct local time for a recurrentpoint of a strong Markov
process. The basic insight comes from Lévy and Itô’s theory of Poisson point processes of
excursions, see Pitman and Yor [PY07] for a recent review. Walsh [Wa78] also discusses
downcrossings and local time, leading to the Ray Knight theorem.

The equality for the upcrossing numbers in Lemma 6.3 agrees with the functional equa-
tion for a branching process with immigration. The relationship between local times and
branching processes, which is underlying our entire treatment, can be exploited and ex-
tended in various ways. One example of this can be found in Neveu and Pitman [NP89],
for more recent progress in this direction, see Le Gall and LeJan, [LL98]. A good source
for further reading is the discussion of Lévy processes and trees by Duquesne and Le Gall
in [DL02]. For an introduction into branching processes with and without immigration,
see the classical book of Athreya and Ney [AN04].
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In a similar spirit, a result which is often called the secondRay–Knight theorem de-
scribes the process{LaT : a > 0} whenT = inf{t > 0: L0

t = x}, see [RY94] or the
original papers by Ray and Knight cited above. The resultingprocess is a Feller diffusion,
which is the canonical process describing critical branching with initial massx. The local
times of Brownian motion can therefore be used to encode the branching information for
a variety of processes describing the evolution of particles which undergo critical branch-
ing and spatial migration. For more information on this powerful link between Brownian
motion and the world of spatial branching processes, see forexample Le Gall [LG99].

The concept of local times can be extended to a variety of processes like continuous
semimartingales, see e.g. [RY94], or Markov processes [BG68]. The idea of introducing
local times as densities of occupation measure has been fruitful in a variety of contexts, in
particular in the introduction of local times on the intersection of Brownian paths. Impor-
tant papers in this direction are Geman and Horowitz [GH80] and Geman, Horowitz and
Rosen [GHR84].

The Ray–Knight theorem was discovered by D. Ray and F. Knightindependently by
different methods in 1963. The proof of Knight uses discretisation, see [Kn63] for the
original paper and [Kn81] for more information. Ray’s approach to Theorem 6.28 is less
intuitive but more versatile, and is based on the Feynman–Kac formula, see [Ra63b] for
the original paper. Our presentation is simpler than Knight’s method. The distributional
identity at its core, see Lemma 6.33, is yet to be explained probabilistically. The analytic
proof given in Exercise 6.8 is due to H. Robbins and E.J.G. Pitman [RP49].

Extensions of the Ray–Knight theorem includes a characterisation of{Lx(T ) : x > 0}
for parameters exceedinga. This is best discussed in the framework of Brownian excursion
theory, see for example [RY94]. The Ray–Knight theorem can be extended into a deep
relationship between the local times of symmetric Markov processes and an associated
Gaussian process, which is the subject of the famous Dynkin isomorphism theorem. See
Eisenbaum [Ei94] or the comprehensive monograph by Marcus and Rosen [MR06] for
more on this subject.

According to Taylor [Ta86], Hausdorff measures with arbitrary gauge functions were
introduced by A.S. Besicovitch. General theory of outer measures, as presented in Rogers
[Ro99] shows thatHφ indeed defines a measures on the Borel sets of a metric space.
The fact that, forφ(r) =

√
2r log log(1/r), the local time at zero agrees with a constant

multiple of theφ-Hausdorff measure of the zero set is due to Taylor and Wendel[TW66].
Perkins [Pe81] showed that the constant is one and further that the local timesLa(t) agree
with theφ-Hausdorff measure of the set{s ∈ [0, t] : B(s) = a} simultaneously for all
levelsa and timest. His proof uses nonstandard analysis.

The Rogers–Taylor theorem is due to C.A. Rogers and S.J. Taylor in [RT61]. The
original statement is slightly more general as it allows to replaceµ(V ) by µ(Λ) on the
right hand side without any regularity condition onµ. Most proofs in the literature of the
harder half, statement (ii) in our formulation, use the Besicovitch covering theorem. We
give a self-contained proof using dyadic cubes instead.
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Other natural measures related to Brownian motion can also be shown to agree with
Hausdorff measures with suitable gauge functions. The mostnotable example is the occu-
pation measure, whose gauge function is

ϕ(r) =

{
cd r

2 log log(1/r) if d > 3,
c2 r

2 log(1/r) log log log(1/r) if d = 2.

This result is due to Ciesielski and Taylor [CT62] in the firstcase, and to Ray [Ra63a] and
Taylor [Ta64] in the second case. A stimulating survey of this subject is Le Gall [LG85].
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Stochastic integrals and applications

In this chapter we first construct an integral with respect toBrownian motion. Amongst
the applications are the conformal invariance of Brownian motion, a short look at windings
of Brownian motion, the Tanaka formula for Brownian local times, and the Feynman–Kac
formula.

7.1 Stochastic integrals with respect to Brownian motion

7.1.1 Construction of the stochastic integral

We look at a Brownian motion in dimension one{B(t) : t > 0} considered as a random
continuous function. As we have found in Theorem 1.35, this function is almost surely of
unbounded variation, which is why we cannot useLebesgue–Stieltjes integrationto define
integrals of the form

∫ t
0
f(s) dB(s). There is however an escape from this dilemma, if

one is willing to take advantage of the fact that Brownian motions arerandomfunctions
and therefore one can make use of weaker forms of limits. Thisis the idea ofstochastic
integration.

Before explaining the procedure, we have a look at a reasonable class of integrands, as
we would like to go beyond the Paley–Wiener integral constructed in Lemma 1.41 and
admit random functions as integrands. A suitable class of random integrands is the class
of progressively measurable processes. We denote by(Ω,A,P) the probability space on
which our Brownian motion{B(t) : t > 0} is defined and suppose that(F(t) : t > 0) is
a filtration to which the Brownian motion is adapted such thatthe strong Markov property
holds.

Because we also want the integral up to timet to be adapted to our filtration, we assume
that the filtration(F(t) : t > 0) is complete, i.e. contains all sets of probability zero
in A. Note that every filtration can be completed simply by addingall these sets and their
complements, and that the completion preserves the strong Markov property.

Definition 7.1. A process{X(t, ω) : t > 0, ω ∈ Ω} is calledprogressively measurable
if for eacht > 0 the mappingX : [0, t] × Ω → R is measurable with respect to theσ-
algebraB([0, t]) ⊗F(t). �

190
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Lemma 7.2 Any processes{X(t) : t > 0}, which is adapted and either right- or left-
continuous is also progressively measurable.

Proof. Assume that{X(t) : t > 0} is right-continuous. Fixt > 0. For a positive
integern and0 6 s 6 t defineXn(0, ω) = X(0, ω) and

Xn(s, ω) = X
( (k+1)t

2n , ω
)
, for kt2−n < s 6 (k + 1)t2−n .

The mapping(s, ω) 7→ Xn(s, ω) is B([0, t]) ⊗ F(t) measurable. By right-continuity we
have limn↑∞Xn(s, ω) = X(s, ω) for all s ∈ [0, t] andω ∈ Ω, hence the limit map
(s, ω) 7→ X(s, ω) is alsoB([0, t]) ⊗F(t) measurable, proving progressive measurability.
The left-continuous case is analogous.

The construction of the integrals is quite straightforward. We start by integrating progres-
sively measurable step processes{H(t, ω) : t > 0, ω ∈ Ω} of the form

H(t, ω) =

k∑

i=1

Ai(ω)1(ti,ti+1](t), for 0 6 t1 6 . . . 6 tk+1, andF(ti)-measurableAi.

In complete analogy to the classical case we define the integral as

∫ ∞

0

H(s) dB(s) :=
k∑

i=1

Ai
(
B(ti+1) −B(ti)

)
.

Now letH be a progressively measurable process satisfyingE
∫∞
0
H(s)2 ds < ∞. Sup-

poseH can be approximated by a family of progressively measurablestep processesHn,
n > 1, then we define

∫ ∞

0

H(s) dB(s) := lim
n→∞

∫ ∞

0

Hn(s) dB(s). (7.1)

At this stage we focus onL2-convergence, though we shall see later that the stochasticinte-
gral can also be constructed as an almost sure limit, see Remark 7.7. For the approximation
of H by progressively measurable step processes we look at the norm

‖H‖2
2 := E

∫ ∞

0

H(s)2 ds.

What we have to show now to complete the definition is that,

(1) every progressively measurable process satisfyingE
∫∞
0
H(s)2 ds < ∞ can be

approximated in the‖ · ‖2 norm by progressively measurable step processes,
(2) for each approximating sequence the limit in (7.1) exists in theL2-sense,
(3) and this limit does not depend on the choice of the approximating step processes.

This is what we check now, beginning with item (1).

Lemma 7.3For every progressively measurable process{H(s, ω) : s > 0, ω ∈ Ω} satis-
fyingE

∫∞
0
H(s)2 ds <∞ there exists a sequence{Hn : n ∈ N} of progressively measur-

able step processes such thatlimn→∞ ‖Hn −H‖2 = 0.
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Proof. We approximate the progressively measurable process successively by

• a bounded progressively measurable process,

• a bounded, almost surely continuous progressively measurable process,

• and finally, by a progressively measurable step process.

Let {H(s, ω) : s > 0, ω ∈ Ω} be a progressively measurable process with‖H‖2 < ∞.
We first define the cut-off at a fixed timen > 0 by lettingHn(s, ω) = H(s, ω) for s 6 n

andHn(s, ω) = 0 otherwise. Clearlylimn↑∞ ‖Hn −H‖2 = 0.

Second, we approximate any progressively measurableH on a finite interval by truncating
its values, i.e. for largen we defineHn by lettingHn(s, ω) = H(s, ω)∧ n. ClearlyHn is
progressively measurable andlimn↑∞ ‖Hn −H‖2 = 0.

Third, we approximate any uniformly bounded progressively measurableH by a bounded,
almost-surely continuous, progressively measurable process. Leth = 1/n and, using the
conventionH(s, ω) = H(0, ω) for s < 0 we define

Hn(s, ω) =
1

h

∫ s

s−h
H(t, ω) dt.

Because we only take an average over the past,Hn is again progressively measurable. It
is almost surely continuous and it is a well-known fact that,for everyω ∈ Ω and almost
everys ∈ [0, t],

lim
h↓0

1

h

∫ s

s−h
H(t, ω) dt = H(s, ω) .

SinceH is uniformly bounded (and using progressive measurability) we can take expecta-
tions and an average over time, and obtain from the bounded convergence theorem that

lim
n↑∞

‖Hn −H‖2 = 0 .

Finally, a bounded, almost-surely continuous, progressively measurable process can be ap-
proximated by a step processHn by takingHn(s, ω) = H(j/n, ω) for j/n 6 s < (j +

1)/n. These functions are again progressively measurable and one easily seeslimn↑∞ ‖Hn−
H‖2 = 0. This completes the approximation.

The following lemma describes the crucial property of the integral of step processes.

Lemma 7.4LetH be a progressively measurable step process andE
∫∞
0
H(s)2 ds < ∞,

then

E
[( ∫ ∞

0

H(s) dB(s)
)2]

= E
∫ ∞

0

H(s)2 ds.

Proof. We use the Markov property to see that, for every progressively measurable step
processH =

∑k
i=1Ai1(ai,ai+1],

E
[( ∫ ∞

0

H(s) dB(s)
)2]

= E
[ k∑

i,j=1

AiAj
(
B(ai+1) −B(ai)

)(
B(aj+1) −B(aj)

)]
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= 2

k∑

i=1

k∑

j=i+1

E
[
AiAj

(
B(ai+1) −B(ai)

)
E
[
B(aj+1) −B(aj)

∣∣F(aj)
]]

+

k∑

i=1

E
[
A2
i

(
B(ai+1) −B(ai)

)2]

=

k∑

i=1

E
[
A2
i ]
(
ai+1 − ai

)
= E

∫ ∞

0

H(s)2 ds.

Corollary 7.5 Suppose{Hn : n ∈ N} is a sequence of progressively measurable step
processes such that

E
∫ ∞

0

(
Hn(s) −Hm(s)

)2
ds −→ 0, asn,m→ ∞,

then

E
[( ∫ ∞

0

Hn(s) −Hm(s) dB(s)
)2]

−→ 0, asn,m→ ∞.

Proof. Because the difference of two step processes is again a step process, Lemma 7.4
can be applied toHn −Hm and this gives the statement.

The following theorem addresses issues (2) and (3), thus completing our construction of
the stochastic integral.

Theorem 7.6Suppose{Hn : n ∈ N} is a sequence of progressively measurable step pro-
cesses andH a progressively measurable process such that

lim
n→∞

E
∫ ∞

0

(
Hn(s) −H(s)

)2
ds = 0,

then

lim
n→∞

∫ ∞

0

Hn(s) dB(s) =:

∫ ∞

0

H(s) dB(s)

exists as a limit in theL2-sense and is independent of the choice of{Hn : n ∈ N}. More-
over, we have

E
[( ∫ ∞

0

H(s) dB(s)
)2]

= E
∫ ∞

0

H(s)2 ds. (7.2)

Remark 7.7 If the sequence of step processes is chosen such that
∞∑

n=1

E
∫ ∞

0

(
Hn(s) −H(s)

)2
ds <∞,

then, by (7.2), we get
∑∞
n=1 E[(

∫∞
0
Hn(s) −H(s) dB(s))2] < ∞, and therefore, almost

surely,

∞∑

n=1

[ ∫ ∞

0

Hn(s) dB(s) −
∫ ∞

0

H(s) dB(s)
]2
<∞.
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This implies that, almost surely,

lim
n→∞

∫ ∞

0

Hn(s) dB(s) =

∫ ∞

0

H(s) dB(s) . �

Proof of Theorem 7.6. By the triangle inequality{Hn : n ∈ N} satisfies the assumption
of Corollary 7.5, and hence{

∫∞
0
Hn(s) dB(s) : n ∈ N} is a Cauchy sequence inL2. By

completeness of this space, the limit exists, and Corollary7.5 also shows that the limit is
independent of the choice of the approximating sequence. The last statement follows from
Lemma 7.4, applied toHn, by taking the limitn→ ∞.

Finally, we describe the stochastic integral as a stochastic process in time. The crucial
properties of this process are continuity and the martingale property.

Definition 7.8. Suppose{H(s, ω) : s > 0 , ω ∈ Ω} is progressively measurable with
E
∫ t
0
H(s, ω)2 ds < ∞. Define the progressively measurable process{Ht(s, ω) : s > 0,

ω ∈ Ω} by

Ht(s, ω) = H(s, ω) 1{s 6 t} .

Then thestochastic integral up tot is defined as,
∫ t

0

H(s) dB(s) :=

∫ ∞

0

Ht(s) dB(s) . �

Remark 7.9Provided they both exist, the Paley–Wiener integral agreeswith the stochastic
integral just defined, see Exercise 7.1 for more details. �

Definition 7.10. We say that a stochastic process{X(t) : t > 0} is amodification of a
process{Y (t) : t > 0} if, for every t > 0, we haveP{X(t) = Y (t)} = 1. �

The next result shows that we can modify stochastic integrals in such a way that they
become almost surely continuous in time. From this point on when referring to the process
{
∫ t
0
H(s) dB(s) : t > 0} we will always refer to this modification.

Theorem 7.11 Suppose the process{H(s, ω) : s > 0 , ω ∈ Ω} is progressively measur-
able with

E
∫ t

0

H(s, ω)2 ds <∞ for anyt > 0.

Then there exists an almost surely continuous modification of {
∫ t
0
H(s) dB(s) : t > 0}.

Moreover, this process is a martingale and hence

E
∫ t

0

H(s) dB(s) = 0 for everyt > 0.
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Proof. Fix a large integert0 and letHn be a sequence of step processes such that
‖Hn −Ht0‖2 → 0, and therefore

E
[( ∫ ∞

0

(
Hn(s) −Ht0(s)

)
dB(s)

)2]
→ 0 .

Obviously, for anys 6 t the random variable
∫ s
0
Hn(u) dB(u) is F(s)-measurable and∫ t

s
Hn(u) dB(u) is independent ofF(s), meaning that the process

{∫ t

0

Hn(u) dB(u) : 0 6 t 6 t0

}

is a martingale, for everyn. For any0 6 t 6 t0 define

X(t) = E
[ ∫ t0

0

H(s) dB(s)
∣∣∣F(t)

]
,

so that{X(t) : 0 6 t 6 t0} is also a martingale and

X(t0) =

∫ t0

0

H(s) dB(s).

By Doob’s maximal inequality, Proposition 2.43, forp = 2,

E
[

sup
0 6 t 6 t0

(∫ t

0

Hn(s) dB(s) −X(t)
)2
]

6 4 E
[(∫ t0

0

(
Hn(s) −H(s)

)
dB(s)

)2
]
,

which converges to zero, asn → ∞. This implies, in particular, that almost surely, the
process{X(t) : 0 6 t 6 t0} is a uniform limit of continuous processes, and hence contin-
uous. For fixed0 6 t 6 t0, by takingL

2-limits from the step process approximation, the
random variable

∫ t
0
H(s) dB(s) is F(t)-measurable and

∫ t0
t
H(s) dB(s) is independent

of F(t) with zero expectation. Therefore
∫ t
0
H(s) dB(s) is a conditional expectation of

X(t0) givenF(t), hence coinciding withX(t) almost surely.

We now have a basic stochastic integral at our disposal. Obviously, a lot of bells and
whistles can be added to this construction, but we refrain from doing so and keep focused
on the essential properties and eventually on the applications to Brownian motion.

7.1.2 Itô’s formula

For stochastic integration Itô’s formula plays the same rôle as the fundamental theorem of
calculus for classical integration. Letf be continuously differentiable andx : [0,∞) → R,
then the fundamental theorem can be written as

f(x(t)) − f(x(0)) =

∫ t

0

f ′(x(s)) dx(s) ,

and this formula holds whenx is continuous and of bounded variation. Itô’s formula offers
an analogue of this for the case thatx is a Brownian motion. The crucial difference is that
a third term enters, which makes the existence of a second derivative of f necessary. The
next result, a key step in the derivation of this formula, is an extension of Exercise 1.16.
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Theorem 7.12Supposef : R → R is continuous,t > 0, and0 = t(n)

1 < . . . < t(n)
n = t are

partitions of the interval[0, t], such that the mesh converges to zero. Then, in probability,

n−1∑

j=1

f
(
B(t(n)

j )
) (
B(t(n)

j+1) −B(t(n)

j )
)2 −→

∫ t

0

f(B(s)) ds .

Proof. Let T be the first exit time from a compact interval. It suffices to prove
the statement for Brownian motion stopped atT , as the interval may be chosen to make
P{T < t} arbitrarily small. By continuity off and the definition of the Riemann integral,
almost surely,

lim
n→∞

n−1∑

j=1

f
(
B(t(n)

j ∧ T )
) (
t(n)

j+1 ∧ T − t(n)

j ∧ T
)

=

∫ t∧T

0

f(B(s)) ds .

It thus suffices to show that

lim
n→∞

E
( n−1∑

j=1

f
(
B(t(n)

j ∧T )
) ((

B(t(n)

j+1∧T )−B(t(n)

j ∧T )
)2−

(
t(n)

j+1∧T−t(n)

j ∧T
)))2

= 0.

Recall that{B(t)2 − t : t > 0} is a martingale, by Lemma 2.47, and hence, for allr 6 s,

E
[(
B(s) −B(r)

)2 − (s− r)
∣∣F(r)

]
= 0 .

This allows us to simplify the previous expression as follows,

E
[( n−1∑

j=1

f
(
B(t(n)

j ∧ T )
) ((

B(t(n)

j+1 ∧ T ) −B(t(n)

j ∧ T )
)2 −

(
t(n)

j+1 ∧ T − t(n)

j ∧ T
)))2]

=

n−1∑

j=1

E
[
f
(
B(t(n)

j ∧ T )
)2((

B
(
t(n)

j+1 ∧ T
)
−B

(
t(n)

j ∧ T
))2 −

(
t(n)

j+1 ∧ T − t(n)

j ∧ T
))2]

.

We can now boundf by its maximum on the compact interval, and multiplying out the
square and dropping a negative cross term we get an upper bound, which is a constant
multiple of

n−1∑

j=1

E
[(
B(t(n)

j+1 ∧ T ) −B(t(n)

j ∧ T )
)4]

+

n−1∑

j=1

E
[(
t(n)

j+1 ∧ T − t(n)

j ∧ T
)2]

. (7.3)

Using Brownian scaling on the first term, we see that this expression is bounded by a
constant multiple of

n−1∑

j=1

(
t(n)

j+1 − t(n)

j

)2
6 t∆(n),

where∆(n) denotes the mesh, which goes to zero. This completes the proof.

We are now able to formulate and prove a first version of Itô’s formula.
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Theorem 7.13 (Itô’s formula I) Let f : R → R be twice continuously differentiable such
thatE

∫ t
0
f ′
(
B(s)

)2
ds <∞ for somet > 0. Then, almost surely, for all0 6 s 6 t,

f
(
B(s)

)
− f

(
B(0)

)
=

∫ s

0

f ′
(
B(u)

)
dB(u) + 1

2

∫ s

0

f ′′
(
B(u)

)
du.

Proof. We denote the modulus of continuity off ′′ on [−M,M ] by

ω(δ,M) := sup
x,y∈[−M,M]

|x−y|<δ

f ′′(x) − f ′′(y) .

Then, by Taylor’s formula, for anyx, y ∈ [−M,M ] with |x− y| < δ,
∣∣f(y) − f(x) − f ′(x)(y − x) − 1

2f
′′(x)(y − x)2

∣∣ 6 ω(δ,M) (y − x)2 .

Now, for any sequence0 = t1 < . . . < tn = twith δB := max16i6n−1

∣∣B(ti+1)−B(ti)
∣∣

andMB = max06s6t |B(s)|, we get

∣∣
n−1∑

i=1

(
f(B(ti+1)) − f(B(ti))

)
−
n−1∑

i=1

f ′
(
B(ti)

)(
B(ti+1) −B(ti)

)

−
n−1∑

i=1

1
2f

′′(B(ti)
)(
B(ti+1) −B(ti)

)2∣∣ 6 ω(δB ,MB)

n−1∑

i=1

(
B(ti+1) −B(ti)

)2
.

Note that the first sum is simplyf(B(t)) − f(B(0)). By the definition of the stochas-
tic integral and Theorem 7.12 we can choose a sequence of partitions with mesh go-
ing to zero, such that, almost surely, the first subtracted term on the left converges to∫ t
0
f ′
(
B(s)

)
dB(s), the second subtracted term converges to1

2

∫ t
0
f ′′
(
B(s)

)
ds, and the

sum on the right hand side converges tot. By continuity of the Brownian pathω(δB ,MB)

converges almost surely to zero. This proves Itô’s formula for fixed t, or indeed almost
surely for all rational times0 6 s 6 t. As all the terms in Itô’s formula are continuous
almost surely, we get the result simultaneously for all0 6 s 6 t.

Next, we provide an enhanced version of Itô’s formula, whichallows the functionf to
depend not only on the position of Brownian motion, but also on a second argument, which
is assumed to be increasing in time.

Theorem 7.14 (Itô’s formula II) Suppose{ζ(s) : s > 0} is an increasing, continuous
adapted stochastic process. Letf : R × R → R be twice continuously differentiable in the
x-coordinate, and once continuously differentiable in they-coordinate. Assume that

E
∫ t

0

[
∂xf(B(s), ζ(s))

]2
ds <∞,

for somet > 0. Then, almost surely, for all0 6 s 6 t,

f
(
B(s),ζ(s)

)
− f

(
B(0), ζ(0)

)
=

∫ s

0

∂xf
(
B(u), ζ(u)

)
dB(u)

+

∫ s

0

∂yf
(
B(u), ζ(u)

)
dζ(u) +

1

2

∫ s

0

∂xxf
(
B(u), ζ(u)

)
du.
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Proof. To begin with, we inspect the proof of Theorem 7.12 and see that it carries over
without difficulty to the situation, whenf is allowed to depend additionally on an adapted
process{ζ(s) : s > 0}, i.e. we have for any partitions0 = t(n)

1 < . . . < t(n)
n = t with mesh

going to zero, in probability,

n−1∑

j=1

f
(
B
(
t(n)

j

)
, ζ
(
t(n)

j

)) (
B
(
t(n)

j+1

)
−B

(
t(n)

j

))2

−→
∫ t

0

f(B(s), ζ(s)) ds . (7.4)

We denote the modulus of continuity of∂yf by

ω1(δ,M) = sup
−M6x1,x2,y1,y26M

|x1−x2|∨|y1−y2|<δ

∣∣∂yf(x1, y1) − ∂yf(x2, y2)
∣∣,

and the modulus of continuity of∂xxf by

ω2(δ,M) = sup
−M6x1,x2,y1,y26M

|x1−x2|∨|y1−y2|<δ

∣∣∂xxf(x1, y1) − ∂xxf(x2, y2)
∣∣.

Now takex, x0, y, y0 ∈ [−M,M ] with |x−x0|∨|y−y0| < δ. By the mean value theorem,
there exists a valuẽy ∈ [−M,M ] with the property that|ỹ − y| ∨ |ỹ − y0| < δ such that

f(x, y) − f(x, y0) = ∂yf(x, ỹ) (y − y0),

and hence

∣∣f(x, y) − f(x, y0) − ∂yf(x0, y0) (y − y0)
∣∣ 6 ω1(M, δ) (y − y0).

Taylor’s formula implies that

∣∣f(x, y0)−f(x0, y0)−∂xf(x0, y0)(x−x0)− 1
2 ∂xxf(x0, y0)(x−x0)

2
∣∣ 6 ω2(δ,M)(x−x0)

2.

Combining the last two formulas using the triangle inequality, we get that

∣∣f(x, y) − f(x0, y0) − ∂yf(x0, y0) (y − y0)

− ∂xf(x0, y0) (x− x0) − 1
2∂xxf(x0, y0)(x− x0)

2
∣∣

6 ω1(δ,M) (y − y0) + ω2(δ,M)(x− x0)
2.

(7.5)

Now, for any sequence0 = t1 < . . . < tn = t define

δ := max
16i6n−1

∣∣B(ti+1) −B(ti)
∣∣ ∧ max

16i6n−1

∣∣ζ(ti+1) − ζ(ti)
∣∣,

and

M := max
06s6t

|B(s)| ∧ max
06s6t

|ζ(s)|.
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We get from (7.5),

∣∣∣f
(
B(t), ζ(t)

)
− f

(
B(0), ζ(0)

)
−
n−1∑

i=1

∂xf
(
B(ti), ζ(ti)

) (
B(ti+1) −B(ti)

)

−
n−1∑

i=1

∂yf
(
B(ti), ζ(ti)

) (
ζ(ti+1) − ζ(ti)

)

− 1
2

n−1∑

i=1

∂xxf
(
B(ti), ζ(ti)

) (
B(ti+1) −B(ti)

)2∣∣∣

6 ω1(δ,M)
(
ζ(t) − ζ(0)

)
+ ω2(δ,M)

n−1∑

i=1

(
B(ti+1) −B(ti)

)2
.

We can choose a sequence of partitions with mesh going to zero, such that, almost surely,
the following convergence statements hold,

• the first sum on the left converges to
∫ t
0
∂xf

(
B(s), ζ(s)

)
dB(s) by the definition of the

stochastic integral,
• the second sum on the left converges to

∫ t
0
∂yf

(
B(s), ζ(s)

)
dζ(s) by definition of the

Stieltjes integral,
• the third sum on the left converges to1

2

∫ t
0
∂xxf

(
B(s), ζ(s)

)
ds by (7.4),

• the sum on the right hand side converges tot by Theorem 7.12.

By continuity of the Brownian pathω1(δ,M) andω2(δ,M) converge almost surely to zero.
This proves the enhanced Itô’s formula for fixedt, and looking at rationals and exploiting
continuity as before, we get the result simultaneously for all 0 6 s 6 t.

With exactly the same technique, we obtain a version of Itô’sformula for higher dimen-
sional Brownian motion. The detailed proof will be an exercise, see Exercise 7.4. To give
a pleasant formulation, we introduce some notation for functionsf : Rd+m → R, where
we interpret the argument as two vectors,x ∈ Rd andy ∈ Rm. We write∂j for the partial
derivative in direction of thejth coordinate, and

∇xf = (∂1f, . . . , ∂df) and ∇yf = (∂d+1f, . . . , ∂d+mf)

for the vector of derivatives in the directions ofx, respectivelyy. For integrals we use the
scalar product notation

∫ t

0

∇xf
(
B(u), ζ(u)

)
· dB(u) =

d∑

i=1

∫ t

0

∂if(B(u), ζ(u)) dBi(u),

and
∫ t

0

∇yf
(
B(u), ζ(u)

)
· dζ(u) =

m∑

i=1

∫ t

0

∂d+if(B(u), ζ(u)) dζi(u).

Finally, for the Laplacian in thex-variable we write

∆xf =

d∑

j=1

∂jjf .
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Theorem 7.15 (Multidimensional Itô’s formula) Let{B(t) : t > 0} be ad-dimensional
Brownian motion and suppose{ζ(s) : s > 0} is a continuous, adapted stochastic process
with values inRm and increasing components. Letf : Rd+m → R be such that the partial
derivatives∂if and∂jkf exist for all1 6 j, k 6 d, d+1 6 i 6 d+m and are continuous.
If, for somet > 0,

E
∫ t

0

∣∣∇xf
(
B(s), ζ(s)

)∣∣2 ds <∞,

then, almost surely, for all0 6 s 6 t,

f
(
B(s), ζ(s)

)
− f

(
B(0), ζ(0)

)
=

∫ s

0

∇xf
(
B(u), ζ(u)

)
· dB(u)

+

∫ s

0

∇yf
(
B(u), ζ(u)

)
· dζ(u) + 1

2

∫ s

0

∆xf
(
B(u), ζ(u)

)
du .

(7.6)

Remark 7.16As the Itô formula holds almost surely simultaneously for all timess ∈ [0, t],
it also holds for stopping times bounded byt. Suppose now thatf : U → R satisfies the
differentiability conditions on an open setU , andK ⊂ U is compact. Take a smooth
function g : Rm → [0, 1] with compact support insideU , such thatg ≡ 1 onK. Then
f∗ = fg : Rm → R satisfiesf∗ = f onK and all relevant derivatives are bounded, so that
the conditions of Theorem 7.15 are satisfied. LetT be the first exit time fromK. Applying
Theorem 7.15 tof∗ yields (7.6) forf , almost surely, for all timess ∧ T , for s 6 t. �

To appreciate the following discussion, we introduce a localisation of the notion of a mar-
tingale.

Definition 7.17. An adapted stochastic process{X(t) : 0 6 t 6 T} is called alocal
martingale if there exist stopping timesTn, which are almost surely increasing toT , such
that{X(t ∧ Tn) : t > 0} is a martingale, for everyn. �

The following theorem is a substantial extension of Corollary 2.53.

Theorem 7.18LetD ⊂ Rd be a domain andf : D → R be harmonic onD. Suppose
that{B(t) : 0 6 t 6 T} is a Brownian motion started insideD and stopped at the timeT
when it first exits the domainD.

(a) The process{f(B(t)) : 0 6 t 6 T} is a local martingale.

(b) If we have

E
∫ t∧T

0

∣∣∇f(B(s))
∣∣2 ds <∞ for all t > 0,

then{f(B(t ∧ T )) : t > 0} is a martingale.

Proof. Suppose thatKn, n ∈ N, is an increasing sequence of compact sets whose
union isD, and letTn be the associated exit times. By Theorem 7.15 in conjunctionwith
Remark 7.16,

f
(
B(t ∧ Tn)

)
= f

(
B(0)

)
+

∫ t∧Tn

0

∇f
(
B(s)

)
· dB(s) ,
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whence{f
(
B(t ∧ Tn)

)
: t > 0} is a martingale, which proves (a).

Obviously, almost surely,

f
(
B(t ∧ T )

)
= lim
n↑∞

f
(
B(t ∧ Tn)

)
. (7.7)

For anyt > 0, the process{f(B(t ∧ Tn)) : n ∈ N} is a discrete-time martingale by the
optional stopping theorem. By our integrability assumption,

E
[
f
(
B(t ∧ Tn)

)2]
= E

∫ Tn∧t

0

∣∣∇f
(
B(s)

)∣∣2 ds 6 E
∫ T∧t

0

∣∣∇f
(
B(s)

)∣∣2 ds <∞,

so that the martingale isL2-bounded and convergence in (7.7) holds in theL
1-sense. Tak-

ing limits in the equation

E
[
f
(
B(t ∧ Tm)

) ∣∣F(s ∧ Tn)
]

= f
(
B(s ∧ Tn)

)
, for m > n andt > s ,

first form ↑ ∞, thenn ↑ ∞, gives

E
[
f
(
B(t ∧ T )

) ∣∣F(s ∧ T )
]

= f
(
B(s ∧ T )

)
, for t > s.

This shows that{f(B(t ∧ T )) : t > 0} is a martingale and completes the proof.

Example 7.19The radially symmetric functions (related to the radial potential),

f(x) =

{
log |x| if d = 2,

|x|2−d if d > 3.

are harmonic on the domainRd\{0}. For ad-dimensional Brownian motion{B(t) : t > 0}
with B(0) 6= 0, the process{f(B(t)) : t > 0} is however not a martingale. Indeed, it is a
straightforward calculation to verify that

lim
t↑∞

E log |B(t)| = ∞, if d = 2,

and

lim
t↑∞

E[|B(t)|2−d] = 0, if d > 3,

contradicting the martingale property. Hence the integrability condition in Theorem 7.18(b)
cannot be dropped without replacement, in other words a local martingale is not necessar-
ily a martingale. �

7.2 Conformal invariance and winding numbers

We now focus on planar Brownian motion{B(t) : t > 0} and formulate an invariance
property which is at the heart of the rôle of Brownian motion in the context of planar
random curves. Throughout this section we use the identification of R2 andC and use
complex notation when it is convenient.
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To motivate the main result suppose thatf : C → C is analytic, i.e. everywhere complex
differentiable, and writef = f1 + if2 for the decomposition off into a real and an imag-
inary part. Then, by the Cauchy–Riemann equations∂1f1 = ∂2f2 and∂2f1 = −∂1f2,
we have∆f1 = ∆f2 = 0. Then Itô’s formula (if applicable) states that almost surely, for
everyt > 0,

f
(
B(t)

)
=

∫ t

0

f ′
(
B(s)

)
dB(s) ,

wheredB(s) is short fordB1(s) + i dB2(s) with B(s) = B1(s) + iB2(s). The right hand
side defines a continuous process with independent increments, and it is at least plausible
that they are Gaussian. Moreover, its expectation vanishesand

E
[( ∫ t

0

f ′
(
B(s)

)
dB(s)

)2]
= E

∫ t

0

∣∣f ′(B(s))
∣∣2 ds ,

suggesting that{f(B(t)) : t > 0} is a Brownian motion ‘travelling’ with the modified
speed

t 7→
∫ t

0

|f ′(B(s))|2 ds.

To turn this heuristic into a powerful theorem we allow the function to be an analytic map
f : U → V between domains in the plane. Recall that such a map is calledconformal if it
is a bijection.

Theorem 7.20Let U be a domain in the complex plane,x ∈ U , and letf : U → V be
analytic. Let{B(t) : t > 0} be a planar Brownian motion started inx and

τU = inf
{
t > 0: B(t) 6∈ U

}

its first exit time from the domainU . Then the process{f(B(t)) : 0 6 t 6 τU} is a time-
changed Brownian motion, i.e. there exists a planar Brownian motion{B̃(t) : t > 0} such
that, for anyt ∈ [0, τU ),

f(B(t)) = B̃(ζ(t)), where ζ(t) =

∫ t

0

∣∣f ′(B(s))
∣∣2 ds .

If, additionally,f is conformal, thenζ(τU ) is the first exit time fromV by{B̃(t) : t > 0}.

Remark 7.21Note that, asf is complex differentiable, the derivativeDf(x) is just multi-
plication by a complex numberf ′(x), andf can be approximated locally aroundx by its
tangentz 7→ f(x) + f ′(x)(z − x). The derivative of the time change is

∂tζ(t) = |f ′(B(t))|2 =
(
∂1f1(B(t))

)2
+
(
∂2f1(B(t))

)2
. �

Remark 7.22 The famousRiemann mapping theoremstates that for any pair of simply
connected open setsU, V ( C there exists a conformal mappingf : U → V , see, e.g.,
[Ru87] or [Ah78]. This ensures that there are plenty of examples for Theorem 7.20. �
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Proof. Note first that the derivative off is nonzero except for an at most countable set of
points, which does not have a limit point inU . As this set is not hit by Brownian motion,
we may remove it fromU and note that the resulting set is still open. We may therefore
assume thatf has nonvanishing derivative everywhere onU .

We may also assume, without loss of generality, thatf is a mapping betweenbounded
domains. Otherwise chooseUn ⊂ Kn ⊂ U such thatUn is open with

⋃
Un = U

andKn is compact, which implies thatVn = f(Un) is bounded. Then the process
{f(B(t)) : t 6 τUn

} is a time-changed Brownian motion for alln, and this extends imme-
diately to the process{f(B(t)) : t 6 τU}.

The main argument of the proof is based on stochastic integration. Recall that the Cauchy–
Riemann equations imply that the vectors∇f1 and∇f2 are orthogonal and|∇f1| =

|∇f2| = |f ′|. We start by defining for eacht > 0, a stopping time

σ(t) = inf
{
s > 0 : ζ(s) > t

}
,

which represents the inverse of the time change. Let{B̃(t) : t > 0} be a Brownian motion
independent of{B(t) : t > 0}, and define a process{W (t) : t > 0} by

W (t) = f
(
B(σ(t) ∧ τU )

)
+ B̃(t) − B̃(t ∧ ζ(τU )), for t > 0.

In rough words, at the random timeζ(τU ) an independent Brownian motion is attached at
the endpoint of the process{f(B(σ(t))) : 0 6 t 6 ζ(τU )}. Denote byG(t) theσ-algebra
generated by{W (s) : s 6 t}. It suffices to prove that the process{W (t) : t > 0} is a
Brownian motion.
It is obvious that the process is continuous almost surely and hence it suffices to show that
its finite dimensional distributions coincide with those ofa Brownian motion. Recalling
the Laplace transform of the bivariate normal distribution, this is equivalent to showing
that, for any0 6 s 6 t andλ ∈ C,

E
[
e〈λ,W (t)〉 ∣∣G(s)

]
= exp

(
1
2 |λ|2(t− s) + 〈λ,W (s)〉

)
.

where we have used〈 · , · 〉 to denote the scalar product. This follows directly once we
show that, forx ∈ U ,

E
[
e〈λ,W (t)〉 ∣∣W (s) = f(x)

]
= exp

(
1
2 |λ|2 (t− s) + 〈λ, f(x)〉

)
. (7.8)

For simplicity of notation we may assumes = 0. For the proof we first evaluate the
expectation with respect to the independent Brownian motion {B̃(t) : t > 0} inside, which
gives

E
[
e〈λ,W (t)〉 ∣∣W (0) = f(x)

]

= Ex exp
(
〈λ, f(B(σ(t) ∧ τU ))〉 + 1

2 |λ|2
(
t− ζ(σ(t) ∧ τU )

))
.

We use the multidimensional Itô’s formula for the bounded mapping

F (x, u) = exp
(
〈λ, f(x)〉 + 1

2 |λ|2(t− u)
)
,

which is defined onU × (−1,∞), see Remark 7.16. To prepare this, note that∂iie
g =

[∂iig + (∂ig)
2eg] and hence

∆eg =
[
∆g + |∇g|2

]
eg . (7.9)
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For g = 〈λ, f〉 we have∇g =
∑2
i=1 λi∇fi, which implies|∇g|2 = |λ|2 |f ′|2 as the

vectors∇fi are orthogonal with norm|f ′|. Moreover,∆g = 0 by the analyticity off .
Applying (7.9) gives

∆ e〈λ,f(x)〉 = |λ|2 |f ′(x)|2 e〈λ,f(x)〉 .

Moreover, we have

∂u exp
(

1
2 |λ|2 (t− u)

)
= − 1

2 |λ|2 exp
(

1
2 |λ|2 (t− u)

)
.

We now letUn = {x ∈ U : |x − y| >
1
n for all y ∈ ∂U}. Then |f ′(x)| is bounded

away from zero onUn and therefore the stopping timeT = σ(t) ∧ τUn
is bounded. The

multidimensional version of Itô’s formula gives, almost surely,

F
(
B(T ), ζ(T )

)
= F

(
B(0), ζ(0)

)
+

∫ T

0

∇xF
(
B(s), ζ(s)

)
· dB(s)

+

∫ T

0

∂uF
(
B(s), ζ(s)

)
dζ(s) + 1

2

∫ T

0

∆xF
(
B(s), ζ(s)

)
ds .

Looking back at the two preparatory displays and recalling thatdζ(u) = |f ′(B(u))|2 du
we see that the two terms in the second line cancel each other.Making use of bounded
convergence and the fact that the stochastic integral has zero expectation, see Exercise 7.2,
we obtain that

E
[
e〈λ,W (t)〉 ∣∣W (0) = f(x)

]
= Ex

[
F
(
B(σ(t) ∧ τU ), ζ(σ(t) ∧ τU )

)]

= lim
n→∞

Ex
[
F
(
B(T ), ζ(T )

)]
= F

(
x, 0
)

= exp
(

1
2 |λ|2t+ 〈λ, f(x)〉

)
.

This shows (7.8) and thus completes the proof of the main statement. It remains to note
that, iff is conformal then ast ↑ τu the pointf(B(t)) converges to a boundary point ofV .
Henceζ(τU ) is the first exit time fromV by the process{B̃(t) : t > 0}.

As a first application we look at harmonic measure and exploitits conformal invariance in
order to give an explicit formula in an interesting special case.

Theorem 7.23 SupposeU, V ⊂ R2 are domains andf : Ū → V̄ is continuous and maps
U conformally intoV .

(a) If x ∈ U , thenµ∂U (x, · ) ◦ f−1 = µ∂V (f(x), · ).

(b) Suppose additionally thatU = Kc andV = Lc are the complements of nonpolar
compact sets andlim

x→∞
f(x) = ∞. Then

µK ◦ f−1 = µL .

Proof. (a) follows from Theorem 7.20 together with the continuity of f on Ū , which
ensures that the first hitting point of∂U by a Brownian motion is mapped onto the first
hitting point of∂V by its conformal image. For (b) take the limitx → ∞ and recall The-
orem 3.46.
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Example 7.24We find the harmonic measure from infinity on the unit interval

[0, 1] =
{
x+ iy : y = 0, 0 6 x 6 1

}
.

The starting point is the harmonic measure on the circle∂B(0, 1), which we know is the
uniform distribution$. Let U be the complement of the unit ballB(0, 1) and V the
complement of the interval[−1, 1], and take the conformal mapping

f : U → V, f(z) =
1

2

(
z +

1

z

)
,

which satisfies our conditions. Hence$ ◦ f−1 is the harmonic measure on[−1, 1]. If
z = x+ iy = cos θ+ i sin θ ∈ ∂B(0, 1), then|f ′(z)|2 = sin2 θ, and hence|f ′(z)| = |y| =√

1 − x2. Recalling that everyx ∈ [−1, 1] has two preimages, we get that the density of
$ ◦ f−1 atx = cos θ is

2

2π|f ′(eiθ)| =
1

π

1√
1 − x2

.

MappingV via z 7→ z2 onto the complement of[0, 1], noting that|f ′(z)| = 2|z| and that
again we have two preimages, we obtain that the harmonic measure on[0, 1] is

dµ[0,1](x) =
1

π

1√
x(1 − x)

dx,

which is the Beta( 1
2 ,

1
2 ) distribution. �

As a further important application of conformal invariancewe calculate the probability that
a planar Brownian motion exits a cone before leaving a disc, see Figure 7.1.

0 x
1

r

Fig. 7.1. The Brownian path does not exit the cone before leaving the disc.

Theorem 7.25Letα ∈ (0, 2π] and denote byW [α] an open cone with vertex in the origin,
symmetric about thex-axis, with opening angleα. Let{B(t) : t > 0} be planar Brownian
motion started inx = (1, 0), and denoteT (r) = inf{t > 0: |B(t)| = r}. Then, forr > 1,

P
{
B[0, T (r)] ⊂W [α]

}
=

2

π
arctan

( 2r
π
α

r
2π
α − 1

)
.
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Proof. For ease of notation we identifyR2 with the complex plane. In the first step we
use the conformal mapf : W [α] → W [π] defined byf(x) = xπ/α to map the cone onto
a halfspace. LetB∗ = f ◦B, which by conformal invariance is a time-changed Brownian
motion started in the pointB∗(0) = 1. We thus have that

{
B[0, T (r)] ⊂W [α]

}
=
{
B∗[0, T (rπ/α)] ⊂W [π]

}
.

It therefore suffices to show the result in the caseα = π. So let{B(t) : t > 0} be a
Brownian motion started inB(0) = 1 and look at the stopping timeS = min{t>0:

Re(B(t))60}. We use reflection on the imaginary axis, i.e. forf(x, y) = (−x, y) we let

B̃(t) =

{
B(t) if t 6 S,

f(B(t)) if t > S.

Then B̃ is a Brownian motion started iñB(0) = 1 and, denotingT̃ (r) = inf{t>0:

|B̃(t)| = r}, we have

P{Re(B(T (r))) > 0}
= P{Re(B(T (r))) > 0, T (r) < S} + P{Re(B(T (r))) > 0, T (r) > S}
= P{T (r) < S} + P{Re(B̃(T̃ (r))) < 0}.

As {T (r) < S} is the event whose probability we need to bound, it just remains to find

P{Re(B(T (r))) > 0} − P{Re(B(T (r))) < 0}.

By Brownian scaling we may assume that the Brownian motion isstarted atB(0) = 1/r

andT = min{t > 0: |B(t)| = 1}. We apply the conformal map

f : B(0, 1) → B(0, 1), f(z) =
z − 1/r

1 − z/r
,

which is a Möbius transformation mapping the starting pointof the Brownian motion to
the origin and fixing the point1. As this maps the segment{z ∈ ∂B(0, 1) : Re(z) < 0}
onto a segment of length2 arctan r2−1

2r we obtain the result.

The next result represents planar Brownian motion in polar coordinates. Again we identify
R2 with the complex plane.

Theorem 7.26 (Skew-product representation)Suppose{B(t) : t > 0} is a planar Brow-
nian motion withB(0) = 1. Then there exist two independent linear Brownian motions
{Wi(t) : t > 0}, for i = 1, 2, such that

B(t) = exp
(
W1(H(t)) + iW2(H(t))

)
, for all t > 0,

where

H(t) =

∫ t

0

ds

|B(s)|2 = inf
{
u > 0:

∫ u

0

exp(2W1(s)) ds > t
}
.

Remark 7.27 By the result, both the logarithm of the radius, and the continuous deter-
mination of the angle of a planar Brownian motion are time-changed Brownian motions.
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The time-change itself depends only on the radius of the motion and ensures that the angle
changes slowly away from the origin, but rapidly near the origin. �

Proof. Note first thatH(t) itself is well-defined by Corollary 2.26. Moreover, the
claimed equality forH(t) follows easily from the fact that both sides have the same value
at t = 0 and the same derivative.

As the continuous processes{W1(t) : t > 0} and{W2(t) : t > 0} can be constructed
uniquely from{B(t) : t > 0} and vice versa we may start with a planar Brownian motion
{W (t) : t > 0} and letW (t) = W1(t) + iW2(t) be its decomposition into real and
imaginary part. It suffices to show that the process{B(t) : t > 0} constructed from this
pair of linear Brownian motions is a planar Brownian motion.By Theorem 7.20,

exp
(
W (t)

)
= B(ζ(t)), (7.10)

where{B(t) : t > 0} is a planar Brownian motion and

ζ(t) =

∫ t

0

exp(2W1(s)) ds.

By definitionH is the inverse function ofζ. Hence, using (7.10) fort = H(s), we get

B(s) = exp
(
W (H(s))

)
= exp

(
W1(H(s)) + iW2(H(s))

)
,

which is the desired result.

Example 7.28By the skew-product representation, for a planar Brownian motion{B(t) :

t > 0}, we havelog |B(t)| = W1(H(t)) and hence the process{log |B(t)| : t > 0} is
a time-changed Brownian motion in dimension one. However, recall from Example 7.19
that it isnot a martingale. �

For further applications, we need to study the asymptotics of the random clockH(t) more
carefully. To state the next result let{W1(t) : t > 0} be a linear Brownian motion as
in Theorem 7.26 and, fora > 0, let {W a

1 (t) : t > 0} be the Brownian motion given by
W a

1 (t) = a−1W1(a
2t). For each such Brownian motion we look at the first hitting time of

level b, defined asT ab = inf{t > 0: W a
1 (t) = b}.

Theorem 7.29For everyε > 0 we have

lim
t→∞

P
{∣∣∣

4H(t)

(log t)2
− T

1
2 log t
1

∣∣∣ > ε
}

= 0.

The proof uses the following simple fact, sometimes known asLaplace’s method.

Lemma 7.30For any continuousf : [0, t] → R andt > 0,

lim
a↑∞

1

a
log

∫ t

0

exp(af(v)) dv = max
06s6t

f(s).
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Proof. The upper bound is obvious, by replacingf by its maximum. For the lower
bound, lets ∈ [0, t] be a point where the maximum is taken. We use continuity to find, for
anyε > 0, some0 < δ < 1 such thatf(r) > f(s)−ε for all r ∈ (s−δ, s+δ). Restricting
the limit to this interval gives a lower bound ofmax06s6t f(s) − ε, and the result follows
asε > 0 was arbitrary.

Proof of Theorem 7.29. Recall thatW1(0) = 0. We abbreviatea = a(t) = 1
2 log t. As

we have, for anyδ > 0,

lim
ε↓0

P
{
T

1
2 log t
1+ε − T

1
2 log t
1−ε > δ

}
= lim

ε↓0
P
{
T 1

1+ε − T 1
1−ε > δ

}
= 0

it suffices to show that

lim
t↑∞

P
{ 4H(t)

(log t)2
> T

1
2 log t
1+ε

}
= 0, and lim

t↑∞
P
{ 4H(t)

(log t)2
< T

1
2 log t
1−ε

}
= 0.

We first show that

lim
t↑∞

P
{ 4H(t)

(log t)2
> T

1
2 log t
1+ε

}
= 0. (7.11)

We have

{ 4H(t)

(log t)2
> T

1
2 log t
1+ε

}
=
{∫ a2Ta

1+ε

0

exp(2W1(u)) du < t
}

=
{ 1

2a
log

∫ a2Ta
1+ε

0

exp(2W1(u)) du < 1
}
,

recalling thata = 1
2 log t. Note now that

1

2a
log

∫ a2Ta
1+ε

0

exp(2W1(u)) du =
log a

a
+

1

2a
log

∫ Ta
1+ε

0

exp(2aW a
1 (u)) du,

and the right hand side has the same distribution as

log a

a
+

1

2a
log

∫ T 1
1+ε

0

exp(2aW1(u)) du.

Laplace’s method gives that, almost surely,

lim
a↑∞

1

2a
log

∫ T 1
1+ε

0

exp(2aW1(u)) du = sup
06s6T 1

1+ε

W1(s) = 1 + ε.

Hence,

lim
a↑∞

P
{∣∣∣

log a

a
+

1

2a
log

∫ T 1
1+ε

0

exp(2aW1(u)) du− (1 + ε)
∣∣∣ > ε

}
= 0.

This proves (7.11). In the same way one can show that

lim
t↑∞

P
{ 4H(t)

(log t)2
< T

1
2 log t
1−ε

}
= 0,

and this completes the proof.
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Remark 7.31As {W a
1 (t) : t > 0} is a Brownian motion for everya > 0, the law ofT a1

does not depend ona > 0. Therefore, Theorem 7.29 implies that

4H(t)

(log t)2
d−→ T1,

whereT1 = inf{s > 0: W (s) = 1
}

. The distribution ofT1 is, by Theorem 2.35 given by
the density(2πs3)−1/2 exp(−1/(2s)). �

We are now able to determine the asymptotic law of the windingnumbersθ(t) = W2(H(t))

of a planar Brownian motion, ast→ ∞.

Theorem 7.32 (Spitzer’s law)For anyx ∈ R,

lim
t→∞

P
{ 2

log t
θ(t) 6 x

}
=

∫ x

−∞

dy

π(1 + y2)
.

In other words, the law of2θ(t)log t converges to a standard symmetric Cauchy distribution.

Proof. We define{W a
2 (t) : t > 0} byW a

2 (t) = (1/a)W2(a
2t). Then,

a−1θ(t) = a−1W2(H(t)) = W a
2 (a−2H(t)).

By Theorem 7.29 and the uniform continuity of{W a
2 (t) : t > 0} on compact sets we get,

for a = a(t) = 1
2 log t,

lim
t→∞

P
{∣∣∣

2θ(t)

log t
−W a

2

(
T a1
)∣∣∣ > ε

}
= lim
t→∞

P
{∣∣∣W a

2

( 4H(t)
(log t)2

)
−W a

2

(
T a1
)∣∣∣ > ε

}
= 0.

The law of the random variableW a
2 (T a1 ) does not depend on the choice ofa. By Theo-

rem 2.37, see also Exercise 7.5, it is Cauchy distributed.

7.3 Tanaka’s formula and Brownian local time

In this section we establish a deep connection between Itô’sformula and Brownian local
times for linear Brownian motion{B(t) : t > 0}. The basic idea is to give an analogue of
Itô’s formula for the functionf : R → R, f(t) = |t − a|. Note that this function is not
twice continuously differentiable, so Itô’s formula cannot be applied directly.

To see what we are aiming at, let’s apply Itô’s formula informally. We have in the distri-
butional sense thatf ′(x) = sign(x − a) andf ′′(x) = 2δa. Hence Itô’s formula would
give

|B(t) − a| − |B(0) − a| =

∫ t

0

sign(B(s) − a) dB(s) +

∫ t

0

δa(B(s)) ds,

The last integral can be interpreted as the time spent by Brownian motion at levela and
hence it is natural to expect that it is the local timeLa(t). Tanaka’s formula confirms this
intuition.
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Theorem 7.33 (Tanaka’s formula)Let {B(t) : t > 0} be linear Brownian motion. Then,
for everya ∈ R, almost surely, for allt > 0,

|B(t) − a| − |B(0) − a| =

∫ t

0

sign(B(s) − a) dB(s) + La(t),

wheresign x = 1{x>0} − 1{x<0}.

Remark 7.34There is an easy analogue of Tanaka’s formula for simple random walk on
the integers, see Exercise 7.8. �

Tanaka’s formula can be used to generalise Itô’s formula to functions which are not twice
continuously differentiable.

Corollary 7.35 Suppose thatf : R → R is twice differentiable such thatf ′ has compact
support, but do not assume thatf ′′ is continuous. Then

f
(
B(t)

)
− f

(
B(0)

)
=

∫ t

0

f ′
(
B(s)

)
dB(s) + 1

2

∫ t

0

f ′′
(
B(s)

)
ds .

Proof. Under our assumptions onf there exist constantsb, c such that

f ′(x) = 1
2

∫
sign(x− a) f ′′(a) da+ c andf(x) = 1

2

∫
|x− a| f ′′(a) da+ cx+ b.

Integrating Tanaka’s formula with respect to1
2 f

′′(a) da and exchanging this integral with
the stochastic integral, which is justified by Exercise 7.9,gives

f
(
B(t)

)
− f

(
B(0)

)
=

∫ t

0

f ′
(
B(s)

)
dB(s) + 1

2

∫
La(t) f ′′(a) da .

By Theorem 6.18 the last term equals1
2

∫ t
0
f ′′
(
B(s)

)
ds.

For the proof of Tanaka’s formula we define, for fixeda ∈ R,

L̃a(t) := |B(t) − a| − |B(0) − a| −
∫ t

0

sign(B(s) − a) dB(s) for t > 0,

and show that this represents the density at pointa of the occupation measure.

Lemma 7.36For everyt > 0 anda ∈ R,

L̃a(t) = lim
ε↓0

1

ε

∫ t

0

1(a,a+ε)(B(s)) ds, in probability.

Proof. Using the strong Markov property the statement can be reduced to the case
a = 0. The main idea of the proof is now to use convolution to make|x| smooth, and then
use Itô’s formula for the smooth function. For this purpose,recall that, for anyδ > 0 we
can find smooth functionsg, h : R → [0, 1] with compact support such thatg 6 1(0,1) 6 h

and
∫
g = 1 − δ,

∫
h = 1 + δ. This reduces the problem to showing that

L̃0(t) = lim
ε↓0

1

ε

∫ t

0

f
(
ε−1B(s)

)
ds, in probability,
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for f : R → [0, 1] smooth, with compact support in[−1, 2] and
∫
f = 1. Let

fε(x) = ε−1

∫
|x− a| f(ε−1a) da =

∫
|x− εa| f(a) da.

The functionfε is smooth. Moreover,f ′ε(x) =
∫

sign(x − εa)f(a) da and f ′′ε (x) =

2ε−1f(ε−1x).
Itô’s formula gives

fε(B(t)) − fε(B(0)) −
∫ t

0

f ′ε(B(s)) dB(s) = ε−1

∫ t

0

f
(
ε−1B(s)

)
ds. (7.12)

Now we letε ↓ 0 for each term. From the definition offε we infer that|fε(x)− |x|| 6 3ε.
In other words,fε(x) → |x| uniformly and this ensures convergence in probability of the
first two terms on the left hand side of (7.12). To deal with thethird term, we observe that,
for x 6= 0,

f ′ε(x) =

∫
sign

(
x− εa

)
f(a) da −→ sign(x) asε ↓ 0.

Now we use the isometry property (7.2) to infer that

E
[( ∫ t

0

sign(B(s)) dB(s) −
∫ t

0

f ′ε(B(s)) dB(s)
)2]

= E
∫ t

0

(sign(B(s)) − f ′ε(B(s)))2 ds.

The right hand side converges to zero by the bounded convergence theorem. Hence we
have shown that, in probability,

lim
ε↓0

ε−1

∫ t

0

g
(
ε−1B(s)

)
ds = lim

ε↓0
fε(B(t)) − fε(B(0)) −

∫ t

0

f ′ε(B(s)) dB(s)

= |B(t)| − |B(0)| −
∫ t

0

sign(B(s)) dB(s) = L̃0(t).

Proof of Theorem 7.33. First fix t > 0 and recall from Theorem 6.19 that, almost
surely, the occupation measureµt given byµt(A) =

∫ t
0

1A(B(s)) ds has a continuous
density given by{La(t) : a ∈ R}. Therefore, for everya ∈ R, we have

La(t) = lim
ε↓0

µt(a, a+ ε)

ε
= lim

ε↓0

1

ε

∫ t

0

1(a,a+ε)(B(s)) ds.

On the other hand, givena ∈ R, by Lemma 7.36 there exists a sequenceεn ↓ 0 such that,
almost surely,

L̃a(t) = lim
n↑∞

1

εn

∫ t

0

1(a,a+εn)(B(s)) ds.

Hence, for everya ∈ R andt > 0, we haveLa(t) = L̃a(t) almost surely. Finally, for
any a ∈ R, both the local time{La(t) : t > 0} and{L̃a(t) : t > 0} are almost surely
continuous and therefore they agree.
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Corollary 7.37 For everya ∈ R, almost surely, for allt > 0,

1
2L

a(t) = (B(t) − a)+ − (B(0) − a)+ −
∫ t

0

1{B(s)>a} dB(s),

and

1
2L

a(t) = (B(t) − a)− − (B(0) − a)− +

∫ t

0

1{B(s)6a} dB(s).

Proof. The right sides in these formulas add up toLa(t), while their difference is zero.

We now use Tanaka’s formula to prove Lévy’s theorem describing the joint law of the
modulus and local time of a Brownian motion.

Theorem 7.38 (Lévy)The processes

{ (|B(t)|, L0(t)) : t > 0} and { (M(t) −B(t),M(t)) : t > 0}
have the same distribution.

Remark 7.39This result extends both Theorem 2.34 where it was shown thatthe processes
{|B(t)| : t > 0} and{M(t)−B(t) : t > 0} have the same distribution, and Theorem 6.10
where it was shown that{L0(t) : t > 0} and{M(t) : t > 0} have the same distribution.
Exercise 6.2 suggests an alternative proof using random walk methods. �

As a preparation for the proof we find the law of the process given by integrating the sign
of a Brownian motion with respect to that Brownian motion.

Lemma 7.40For everya ∈ R, the process{W (t) : t > 0} given by

W (t) =

∫ t

0

sign(B(s) − a) dB(s)

is a standard Brownian motion.

Proof. Assume, without loss of generality, thata < 0. Suppose thatT = inf{t >
0: B(t) = a}. ThenW (t) = B(t) for all t 6 T and hence{W (t) : 0 6 t 6 T} is a
(stopped) Brownian motion. By the strong Markov property the process{B̃(t) : t > 0}
given by B̃(t) = B(t + T ) − a is a Brownian motion started in the origin, which is
independent of{W (t) : 0 6 t 6 T}. As

W (t+ T ) = W (T ) +

∫ t+T

T

sign(B(s) − a) dB(s) = B(T ) +

∫ t

0

sign(B̃(s)) dB̃(s),

it suffices to show that the second term is a Brownian motion tocomplete the proof. Hence
we may henceforth assume thata = 0. Now fix 0 6 s < t and recall thatW (t) −W (s)

is independent ofF(s). For the proof it hence suffices to show thatW (t) − W (s) has
a centred normal distribution with variancet − s. Chooses = t(n)

1 < . . . < t(n)
n = t

with mesh∆(n) ↓ 0, and approximate the progressively measurable processH(u) =

sign(B(u)) by the step processes

Hn(u) = sign
(
B(t(n)

j )
)

if t(n)

j < u 6 t(n)

j+1.
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It follows from the fact that the zero set of Brownian motion is a closed set of measure
zero, thatlim E

∫ t
s
(Hn(u) −H(u))2 du = 0, and hence

W (t) −W (s) =

∫ t

s

H(u) dB(u) = L
2 − lim

n→∞

∫ t

s

Hn(u) dB(u)

= L
2 − lim

n→∞

n−1∑

j=1

sign
(
B(t(n)

j )
) (
B(t(n)

j+1) −B(t(n)

j )
)
.

From the independence of the Brownian increments and elementary properties of the nor-
mal distribution, one can see that the random variables on the right all have a centred
normal distribution with variancet− s. Hence this also applies toW (t) −W (s).

Proof of Theorem 7.38. By Tanaka’s formula we have

|B(t)| =

∫ t

0

sign(B(s)) dB(s) + L0(t) = W (t) + L0(t) .

Define a standard Brownian motion{W̃ (t) : t > 0} by

W̃ (t) = −W (t) for all t > 0,

and let{M̃(t) : t > 0} be the associated maximum process. We show that

M̃(t) = L0(t) for all t > 0,

which implies that{(|B(t)|, L0(t)) : t > 0} and{(M̃(t) − W̃ (t), M̃(t)) : t > 0} agree
pointwise, and the result follows as the latter process agrees in distribution with

{(M(t) −B(t),M(t)) : t > 0}.

To show thatM̃(t) = L0(t) we first note that

W̃ (s) = L0(s) − |B(s)| 6 L0(s),

and hence, taking the maximum over alls 6 t, we getM̃(t) 6 L0(t). On the other hand,
the process{L0(t) : t > 0} increases only on{t : B(t) = 0}, and on this set we have
L0(t) = W̃ (t) 6 M̃(t). Hence the proof is complete, as{M̃(t) : t > 0} is increasing.

7.4 Feynman–Kac formulas and applications

In this section we answer some natural questions about Brownian motion that involve time.
For example, we find the probability that linear Brownian motion exits a given interval by a
fixed time. Our main tool is the close relationship between the expectation of certain func-
tionals of the Brownian path and the heat equation with dissipation term. This goes under
the name ofFeynman–Kac formula, and the theorems that make up this theory establish a
strong link between parabolic partial differential equations and Brownian motion.

Definition 7.41. Let U ⊂ Rd be either open and bounded, orU = Rd. A twice
differentiable functionu : (0,∞) × U → [0,∞) is said to solve theheat equation with
heat dissipation rateV : U → R and initial conditionf : U → [0,∞) onU if we have



214 Stochastic integrals and applications

• lim
x→x0

t↓0

u(t, x) = f(x0), wheneverx0 ∈ U ,

• lim
x→x0
t→t0

u(t, x) = 0, wheneverx0 ∈ ∂U ,

• ∂tu(t, x) = 1
2∆xu(t, x) + V (x)u(t, x) on (0,∞) × U ,

where the Laplacian∆x acts on the space variablesx. �

Remark 7.42The solutionu(t, x) describes the temperature at timet atx for a heat flow
with coolingwith rate−V (x) on the set{x ∈ U : V (x) < 0}, andheatingwith rateV (x)

on the set{x ∈ U : V (x) > 0}, where the initial temperature distribution is given byf(x)

and the boundary ofU is kept at zero temperature. �
Instead of going for the most general results linking the heat equation to Brownian motion,
we give some of the more basic forms of the Feynman–Kac formula together with appli-
cations. Our first theorem in this spirit, an existence result for the heat equation in the case
U = Rd, will lead to a new, more analytic proof of the second arcsinelaw, Theorem 5.28.

Theorem 7.43 SupposeV : Rd → R is bounded. Thenu : [0,∞) × Rd → R defined by

u(t, x) = Ex
{

exp
(∫ t

0

V
(
B(r)

)
dr
)}

,

solves the heat equation onRd with dissipation rateV and initial condition one.

Proof. The easiest proof is by a direct calculation. Expand the exponential in a power
series, then the terms in the expansion area0(x, t) := 1 and, forn > 1,

an(x, t) :=
1

n!
Ex
[ ∫ t

0

· · ·
∫ t

0

V (B(t1)) · · ·V (B(tn))dt1 . . . dtn

]

= Ex
[ ∫ t

0

dt1

∫ t

t1

dt2 · · ·
∫ t

tn−1

dtn V (B(t1)) · · ·V (B(tn))
]

=

∫
dx1 · · ·

∫
dxn

∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n∏

i=1

V (xi)

n∏

i=1

p(ti − ti−1, xi−1, xi) ,

with the conventionsx0 = x andt0 = 0. Using 1
2∆xp(t1, x, x1) = ∂t1p(t1, x, x1) and

then integration by parts we get

1

2
∆xan(x) =

∫
dx1V (x1)

∫ t

0

dt1∂t1p(t1, x, x1)an−1(x1, t− t1)

= −
∫
dx1V (x1)

∫ t

0

dt1p(t1, x, x1)∂t1an−1(x, t− t1) − V (x) an−1(x, t)

= ∂tan(x, t) − V (x) an−1(x, t).

Adding up all these terms, and noting that differentiation under the summation sign is
allowed, verifies the validity of the differential equation. The requirement on the initial
condition follows easily from the boundedness ofV .
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As an application we give a proof of the second arcsine law, Theorem 5.28, which does not
rely on the first arcsine law. We use Theorem 7.43 withV (x) = λ 1[0,∞)(x). Then

u(t, x) := Ex
[
exp

(
− λ

∫ t

0

1[0,∞)(B(s)) ds
)]

solves

∂tu(t, x) = 1
2 ∂xxu(t, x) − λ 1[0,∞)(x)u(t, x) , u(0, x) = 1 for all x ∈ R.

To turn this partial differential equation into ordinary differential equations, we take the
Laplace transform

g(x) =

∫ ∞

0

u(t, x) e−ρt dt ,

which satisfies the equation

ρ g(x) + λV (x) g(x) − 1
2 g

′′(x) = 1 .

This can be rewritten as

(ρ+ λ) g(x) − 1
2 g

′′(x) = 1 if x > 0 ,

ρ g(x) − 1
2 g

′′(x) = 1 if x < 0 .

Solving these two linear ordinary differential equations gives

g(x) = 1
λ+ρ +Ae

√
2ρx +Be−

√
2ρx if x > 0 ,

g(x) = 1
ρ + C e

√
2ρx +De−

√
2ρx if x < 0 .

As g must remain bounded asρ ↑ ∞, we must haveA = D = 0. Moreover,g must
be continuously differentiable in zero, henceC andB can be calculated from matching
conditions. After an elementary calculation we obtain

g(0) =
1√

ρ(ρ+ λ)
.

On the other hand, with

X(t) =
1

t

∫ t

0

1[0,∞)(B(s)) ds

we have, using Brownian scaling in the second step,

g(0) = E0

[ ∫ ∞

0

exp
(
− ρt− λtX(t)

)
dt
]

= E0

[ ∫ ∞

0

exp
(
− ρt− λtX(1)

)
dt
]

= E0

[ 1

ρ+ λX(1)

]
.

Now we letρ = 1 and from

E0

[ 1

1 + λX(1)

]
=

1√
1 + λ

and the expansions

1√
1 + λ

=

∞∑

n=0

(−λ)n
1
2

3
2 · · · 2n−1

2

n!
,



216 Stochastic integrals and applications

and
∫ 1

0

xn−
1
2 (1 − x)−

1
2 dx =

Γ( 2n+1
2 ) Γ( 1

2 )

Γ(n+ 1)
= π

1
2

3
2 · · · 2n−1

2

n!
,

we get for the moments ofX(1), by a comparison of coefficients,

E
[
X(1)n

]
=

1

π

∫ 1

0

xn
1√

x(1 − x)
dx,

which by (3.11) in Chapter 2 of [Du95] implies thatX(1) is arcsine distributed.

Our second version of the Feynman–Kac formula is a uniqueness result for the case of zero
dissipation rate, which will allow us to express the probability that linear Brownian motion
exits an interval before a fixed timet in two different ways.

Theorem 7.44 If u is a bounded, twice continuously differentiable solution of the heat
equation on the domainU , with zero dissipation rate and continuous initial condition g,
then

u(t, x) = Ex
[
g
(
B(t)

)
1{t < τ}

]
, (7.13)

whereτ is the first exit time from the domainU .

Proof. The proof is based on Itô’s formula, Theorem 7.15, and Remark7.16. We let
K ⊂ U be compact and denote byσ the first exit time fromK. Fixing t > 0 and applying
Itô’s formula withf(x, y) = u(t− y, x) andζ(s) = s gives, for alls < t,

u(t− s ∧ σ,B(s ∧ σ)) − u(t, B(0))

=

∫ s∧σ

0

∇xu(t− v,B(v)) · dB(v)

−
∫ s∧σ

0

∂tu(t− v,B(v)) dv + 1
2

∫ s∧σ

0

∆xu(t− v,B(v)) dv.

As u solves the heat equation, the last two terms on the right cancel. Hence, taking expec-
tations,

Ex
[
u(t− s ∧ σ,B(s ∧ σ))

]
= Ex

[
u(t, B(0))

]
= u(t, x),

using that the stochastic integral has vanishing expectation. ExhaustingU by compact
sets, i.e. lettingσ ↑ τ , and distinguishing the eventss < σ ands > σ leads toEx[u(t −
s,B(s)) 1{s < τ}] = u(t, x). Taking a limits ↑ t gives the required result.

As an application of Theorem 7.44 we calculate the probability that a linear Brownian
motion stays, up to timet, within an interval. As a warm-up we suggest to look at Exer-
cise 7.10 where the easy case of a halfline is treated. Here we focus on intervals[a, b], for
a < 0 < b, and give two different formulas for the probability of staying in [a, b] up to
time t. To motivate the first formula, we start with a heuristic approach, which gives the
correct result, and then base the rigorous proof on the Feynman–Kac formula.
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For our heuristics we think of the transition (sub-)density, qt : [0, a] × [0, a] → [0, 1] of a
Brownian motion, which is killed upon leaving the interval[0, a]. In a first approximation
we subtract from the transition densityp(t, x, y) of an unkilled Brownian motion the tran-
sition density for all the paths that reach level0. By the reflection principle (applied to the
first hitting time of level0) the latter is equal top(t, x,−y).
We then subtract the transition density of all the paths thatreach levela, which, again by
the reflection principle, equalsp(t, x, 2a − y), then add again the density of all the paths
that reach level0 after hittinga, as these have already been subtracted in the first step. This
gives the approximation termp(t, x, y) − p(t, x,−y) − p(t, x, 2a− y) + p(t, x, 2a+ y).

Of course the iteration does not stop here (for example we have double-counted some
paths that reach level0 after hittinga). Eventually we have to consider an infinite series of
alternating reflections at levels0 anda to obtain the density

qt(x, y) =

∞∑

k=−∞

{
p(t, x, 2ka+ y) − p(t, x, 2ka− y)

}
.

Integrating this overy ∈ [0, a] makes the following theorem plausible.

Theorem 7.45 Let0 < x < a. Then

Px
{
B(s) ∈ (0, a) for all 0 6 s 6 t

}

=

∞∑

k=−∞

{
Φ
(

2ka+a−x√
t

)
− Φ

(
2ka−x√

t

)
− Φ

(
2ka+a+x√

t

)
+ Φ

(
2ka+x√

t

)}
,

(7.14)

whereΦ(x) is the distribution function of a standard normal distribution.

Proof. The left hand side in (7.14) agrees with the right hand side inTheorem 7.44
for U = (0, a) andf = 1. The series on the right hand side is absolutely convergent,and
hence satisfies the boundary conditions atx = 0 andx = a. It is also not difficult to verify
that it is bounded. Elementary calculus gives

∂tΦ
(

2ka+a−x√
t

)
= − 2ka+a−x

2t3/2 p(t, x, 2ka+ a) = 1
2 ∂xxΦ

(
2ka+a−x√

t

)
,

and similarly for the other summands. Hence termwise differentiation shows that the right
hand side satisfies the heat equation. To see that the initialcondition is fulfilled, note that
(ast ↓ 0) the sums over allk > 0 andk < 0 converge to zero. Among the four terms
belonging tok = 0, two terms with positive sign and one term with negative signconverge
to one, whereas one term converges to zero.

The solution of the heat equation is not in the form one would get by a naïve separation
of variables approach. This approach yields a different, equally valuable, expression for
the probability of interest. Indeed, writingu(t, x) = v(t)w(x) one expectsw to be an
eigenfunction of12 ∂xx on (0, a) with zero boundary conditions. These eigenfunctions are

sin
(kπ(2x−a)

2a

)
, for k even, cos

(kπ(2x−a)
2a

)
, for k odd,

with eigenvalues−k2π2/(2a2). As we are only interested in solutions symmetric about
a/2 only the cosine terms will contribute. Forv we are looking for the eigenfunctions of
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∂t with the same eigenvalues, which are

exp
(
− k2π2

2a2 t
)
, for k odd,

and considering the initial condition (and shifting the cosine byπ/2) leads to the solution

u(t, x) =
4

π

∞∑

n=0

1

2n+ 1
exp

(
− (2n+1)2π2

2a2 t
)

sin
( (2n+1)πx

a

)
. (7.15)

Therefore (7.15) is an alternative representation of the probability in (7.14). For practical
purposes this series is more useful whent is large, as the convergence is faster, whereas
the series in the theorem converges fast only for small values of t > 0.

We now prove an elliptic, or time-stationary, version of theFeynman–Kac formula. This
will enable us to describe the distribution of the total timespent by a transient Brownian
motion in unit ball in terms of a Laplace transform.

Theorem 7.46Letd > 3 andV : Rd → [0,∞) be bounded. Define

h(x) := Ex
[
exp

(
−
∫ ∞

0

V (B(t)) dt
)]
.

Thenh : Rd → [0,∞) satisfies the equation

h(x) = 1 −
∫
G(x, y)V (y)h(y) dy for all x ∈ Rd .

Remark 7.47 Informally, the integral equation in Theorem 7.46 implies1
2 ∆h = V h,

which is also what one gets from lettingt ↑ ∞ in Theorem 7.43. See also Exercise 2.20
for a converse result in a similar spirit. �

Proof. Define the ‘resolvent operator’

RVλ f(x) :=

∫ ∞

0

e−λtEx
[
f(B(t)) e−

∫ t
0
V (B(s)) ds

]
dt .

Using the fundamental theorem of calculus in the second stepwe obtain

R0
λf(x)−RVλ f(x) = Ex

∫ ∞

0

dt e−λt−
∫ t
0
V (B(s)) ds f(B(t))

(
e
∫ t
0
V (B(s)) ds − 1

)

= Ex

∫ ∞

0

dt e−λt−
∫ t
0
V (B(s)) ds f(B(t))

∫ t

0

V (B(s)) e
∫ s
0
V (B(r)) dr ds .

Using Fubini’s theorem and the Markov property, we may continue with

= Ex

∫ ∞

0

ds e−λs V (B(s))

∫ ∞

0

dt exp
(
− λt−

∫ t

0

V (B(s+ u)) du
)
f(B(s+ t))

= Ex

∫ ∞

0

ds e−λsV (B(s))RVλ f(B(s)) = R0
λ

(
V RVλ f

)
(x) .

The functionh is related to the resolvent operator by the equation

h(x) = lim
λ↓0

λRVλ 1(x) .
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Lettingf ≡ 1 we obtain1 − λRVλ 1 = λR0
λ

(
V RVλ 1

)
, and asλ ↓ 0 we get

1 − h(x) = R0
0

(
V h
)
(x) =

∫
G(x, y)V (y)h(y) dy .

We use Theorem 7.46 to give an independent proof of the three-dimensional case of the
Ciesielski–Taylor identity, which we have obtained from random walk considerations in
Theorem 5.35. Key to this is the following proposition.

Proposition 7.48For a standard Brownian motion{B(t) : t > 0} in dimension three let
T =

∫∞
0

1{B(t) ∈ B(0, 1)} dt be the total occupation time of the unit ball. Then

E
[
e−λT

]
= sech(

√
2λ) .

Proof. Let V (x) = λ1B(0,1) and defineh(x) = Ex[e−λT ] as in Theorem 7.46. Then

h(x) = 1 − λ

∫

B(0,1)

G(x, y)h(y) dy for all x ∈ Rd .

Clearly, we are looking for a rotationally symmetric function h. The integral on the
right can therefore be split into two parts: First, the integral overB(0, |x|), which is the
Newtonian potential due to a symmetric mass distribution onB(0, |x|) and therefore re-
mains unchanged if the same mass is concentrated at the origin. Second, the integral over
B(0, 1)\B(0, |x|), which is harmonic on the open ballB(0, |x|) with constant value on the
boundary, so itself is constant. Hence, forx ∈ B(0, 1), to

1 − h(x) =
λ

2π|x|

∫

B(0,|x|)
h(y) dy + λ

∫

B(0,1)\B(0,|x|)

h(y)

2π|y| dy.

With u(r) = rh(x) for |x| = r we have, for0 < r < 1,

r − u(r) = 2λ

∫ r

0

su(s) ds+ 2λr

∫ 1

r

u(s) ds ,

and by differentiationu′′ = 2λu on (0, 1). Hence

u(r) = Ae
√

2λr +Be−
√

2λr .

The boundary conditionsu(0) = 0 andu′(1) = 1 giveA = 1/(
√

2λ(e
√

2λ + e−
√

2λ)) and
B = −A. Then

h(0) = lim
r↓0

u(r)

r
= 1 − 2λ

∫ 1

0

u(r) dr

= 1 −A
√

2λ
(
e
√

2λ + e−
√

2λ − 2
)

=
2

e
√

2λ + e−
√

2λ
= sech(

√
2λ) ,

as required to complete the proof.

Recall that the Ciesielski–Taylor identity, stated in Theorem 5.35, states that the first exit
time from the unit ball by a standard Brownian motion in dimension one and the total
occupation time of the unit ball by a standard Brownian motion in dimensiond = 3 have
the same distribution.
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Proof of the Ciesielski–Taylor identity. The Laplace transform of the first exit time
from the unit interval(−1, 1) is given in Exercise 2.18. It coincides with the Laplace trans-
form of T given in Proposition 7.48. Hence the two distributions coincide.

Exercises

Exercise 7.1.S Show that forF ∈ D[0, 1] the Paley–Wiener integral
∫ 1

0
F ′ dB of Lemma 1.41

almost surely agrees with the stochastic integral of Definition 7.8.

Exercise 7.2.S Suppose{H(s, ω) : s > 0 , ω ∈ Ω} is progressively measurable and
{B(t) : t > 0} a linear Brownian motion. Show that for any stopping timeT with

E
[ ∫ T

0

H(s)2 ds
]
<∞,

we have

(a) E
[ ∫ T

0

H(s) dB(s)
]

= 0,

(b) E
[( ∫ T

0

H(s) dB(s)
)2]

= E
[ ∫ T

0

H(s)2 ds
]
.

Exercise 7.3. Suppose thatf : [0, 1] → R is in the Dirichlet space, i.e.f(t) =
∫ t
0
f ′(s) ds

for all t ∈ [0, 1] andf ′ ∈ L
2(0, 1). Then, almost surely,

∫ 1

0

f ′(s) dB(s) = lim
n→∞

n

n∑

j=0

(
f
(
j+1
n

)
− f

(
j
n

))(
B
(
j+1
n

)
−B

(
j
n

))
.

Exercise 7.4.S Give a detailed proof of the multidimensional Itô formula, Theorem 7.15.

Exercise 7.5.S Give an alternative proof of Theorem 2.37 based on a conformal mapping
of the halfplanes{(x, y) : x > t} onto the unit disk, which exploits our knowledge of har-
monic measure on spheres.

Exercise 7.6.S Let {B(t) : t > 0} be a planar Brownian motion. Show that, ifθ(t) is the
continuous determination of the angle ofB(t), we have, almost surely,

lim inf
t↑∞

θ(t) = −∞ and lim sup
t↑∞

θ(t) = ∞.

Exercise 7.7.Formalise and prove the statement that, for everyε > 0, a planar Brownian
motion winds around its starting point infinitely often in any time interval[0, ε].
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Exercise 7.8.Show that, for simple random walk{Sn : n = 0, 1, . . .} on the integers we
have the following analogue of Tanaka’s formula: For everya ∈ Z, almost surely,

|Sn − a| − |S0 − a| =
n−1∑

j=0

sign(Sj − a)
[
Sj+1 − Sj

]
+ La(n),

whereLa(n) =
∑n−1
j=0 1{Sj = a} is the number of visits toa before timen.

Exercise 7.9.S Show that under suitable conditions, stochastic integralsand ordinary inte-
grals can be interchanged: Supposeh : R → [0,∞) is a continuous function with compact
support. Then, almost surely,
∫ ∞

−∞
h(a)

(∫ t

0

sign(B(s)− a) dB(s)
)
da =

∫ t

0

(∫ ∞

−∞
h(a) sign(B(s)− a) da

)
dB(s).

Hint. Write the outer integral on the left hand side as a limit of Riemann sums and use
that the integrand has a continuous modification.

Exercise 7.10.

(a) Show that the functionu : (0,∞) × (0,∞) → R given by

u(t, x) =

√
2

πt

∫ x

0

e−
z2

2t dz

solves the heat equation on the domain(0,∞) with zero dissipation rate and con-
stant initial conditionf = 1.

(b) Infer from this that, forx > 0,

Px
{
B(s) > 0 for all s 6 t

}
=

√
2

πt

∫ x

0

e−
z2

2t dz.

(c) Explain how the result of (b) could have been obtained from the reflection principle.

Exercise 7.11. Prove the Erd̋os–Kac theorem: LetX1,X2, . . . be a sequence of inde-
pendent identically distributed random variables with mean zero and variance one. Let
Sn = X1 + · · · +Xn andTn = max{|S1|, . . . , |Sn|}. Then

lim
n→∞

P{Tn < x} =
4

π

∞∑

n=0

(−1)n

2n+ 1
exp

(
− (2n+ 1)2π2

8x2

)
.

Exercise 7.12.S LetT be the total occupation time in the unit ball by a standard Brownian
motion inR3. Show that

(a) lim
x↓0

√
1
x e

1
2x P

{
T < x

}
=
√

8
π ,

(b) lim
x↑∞

e
π2

8 x P
{
T > x

}
= 4

π .
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Notes and comments

The first stochastic integral with a random integrand was defined by Itô [It44] but stochas-
tic integrals with respect to Brownian motion with deterministic integrands were known to
Paley, Wiener and Zygmund already in 1933, see [PWZ33] and Section 1.4. Our stochastic
integral is by far not the most general construction possible, the complete theory of Itô in-
tegration is one of the cornerstones of modern probability.Interesting further material can
be found, for example, in the books of McKean [McK69], Chung and Williams [CW90],
Rogers and Williams [RW00a, RW00b] or Durrett [Du96]. Itô’s formula, first proved in
[It51], plays a central rôle in stochastic analysis, quite like the fundamental theorem of
calculus does in real analysis. The version we give is designed to minimise the technical
effort to get to the desired applications, but a lot more can be said if the discussion is ex-
tended to the concept of semimartingales, the references above provide the background for
this. The formula is also at the heart of the theory of stochastic differential equations, a
recommended introduction into this theory is Øksendal [Ok03] and a standard reference is
Ikeda and Watanabe [IW89].

Conformal invariance was known to Lévy and a sketch of a proofis given in the book
[Le48]. This fact does not extend to higher dimensionsd > 3. There are not many
interesting conformally invariant maps anyway, but essentially the only one, inversion on a
sphere, fails. This is easy to see, as the image of Brownian motion stopped on the boundary
of the punctured domainB(0, 1) \ {0} has zero probability of not hittingB(0, 1).

There is rich interaction between complex analysis and Brownian motion, which re-
lies on conformal invariance. The conformal invariance of harmonic measure, which we
proved in Theorem 7.23, is not easy to obtain by purely analytical means. Another result
from complex analysis, which can be proved effectively using Brownian motion is Picard’s
theorem, see Davis [Da75] for the original paper or Durrett [Du84] for an exposition. The
theorem states that a nonconstant entire function has a range which omits at most one point
from the complex plane. Only very recently a completely new perspective on conformal
invariance has opened up through the theory of conformally invariant random curves de-
veloped by Lawler, Schramm, and Werner, see e.g. [We04].

The skew-product representation has many nice applications, for more examples see Le
Gall [LG92], which also served as the backbone of our exposition. The first result about the
windings of Brownian motion is Spitzer’s law, due to F. Spitzer in [Sp58]. There are plenty
of extensions of it, including pathwise laws, see Shi [Sh98]or [Mö02], windings around
more than one point, and joint laws of windings and additive functionals, see Pitman and
Yor [PY86]. A discussion of some problems related to this canbe found in Yor [Yo92].

Spitzer’s paper [Sp58] also initiated substantial research on Brownian motion in a cone.
He shows that, ifτ is the first exit time of a planar Brownian motion from a cone with
opening angleα, thenEτp < ∞ if and only if p < π

2α . This has been extended to higher
dimensions by Burkholder [Bu77] and to more general cones, for example, by Bañuelos
and Smits [BS97]. The skew-product representation plays animportant rôle in the latter
paper, which also contains a formula for the last time beforeone, when a Brownian motion
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was in a cone, having started at its vertex. This is a natural generalisation of the first arcsine
law to more than one dimension.

Tanaka’s formula offers many fruitful openings, among themthe Meyer–Tanaka for-
mula, which generalises Itô’s formula to general convex functions, see the original work of
Meyer [Me76] or the book by Durrett [Du96], and the theory of local times for semimartin-
gales, which is presented in [RY94]. The formula goes back tothe paper by Tanaka [Ta63].
Alternative to our approach, Tanaka’s formula can be taken as a definition of Brownian lo-
cal time. Then continuity can be obtained from the Kolmogorov-Čentsov theorem and
moment estimates based on the Burkholder–Davis–Gundy inequalities, see for example
the book by Karatzas and Shreve [KS91].

The Feynman–Kac formula is a classical application in stochastic calculus, which is
discussed in more detail in [KS91]. It can be exploited to obtain an enormous variety
of distributional properties of Brownian motion, see Borodin and Salminen [BS02] for
(literally!) thousands of examples. The converse, application of Brownian motion to study
equations, is of course equally natural. Del Moral [DM04] gives an impressive account of
the wide applicability of this formula and its variants.

The identity between the two formulas describing the probability that a Brownian mo-
tion stays between two barriers serves as a standard examplefor the Poisson summation
formula, see X.5 and XIX.5 in Feller [Fe66]. According to Feller it was discovered origi-
nally in connection with Jacobi’s theory of transformations of theta functions, see Satz 277
in Landau [La09]. The ‘iterated reflection’ argument, whichwe have used to determine
the transition density of a Brownian motion with absorbing barriers may also be used to
determine transition densities for a Brownian motion whichis reflected at the barriers, see
X.5 in [Fe66]. In higher dimensions Brownian motion reflected at the boundaries of a
domain is an interesting subject, not least because of its connections to partial differential
equations with Neumann boundary conditions, see, for example, Brosamler [Br76].

The Erd̋os–Kac law plays an important rôle for the Kolmogorov–Smirnov test known
from non-parametric statistics, see e.g. [Fe68]. Plenty ofproofs of the arcsine law are
known: Besides the two provided in this book, there is also anapproach of Kac [Ka51]
based on the Meyer–Tanaka formula, and Rogers and Williams,see III.24 in [RW00a],
provide a proof based on local time theory.

The Ciesielski–Taylor identity was found by Ciesielski andTaylor in 1962 by an ex-
plicit calculation, see [CT62]. It extends to arbitrary dimensionsd, stating that the law
of the exit times from the unit ball by a standard Brownian motion in dimensiond equals
the law of the total occupation time in the unit ball by the standard Brownian motion in
dimensiond + 2. The argument given here is taken from Spitzer [Sp76], see also III.20
in Rogers and Williams [RW00a]. Many proofs of this fact are known, see for example
Yor [Yo92], but none provides a geometrically intuitive explanation and it may well be that
none exists. The tail estimates in Exercise 7.12 are crucialingredients for the Hausdorff
dimension results of Dembo et al. [DPRZ00a, DPRZ00b].
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Potential theory of Brownian motion

In this chapter we develop the key facts of the potential theory of Brownian motion. This
theory is centred around the notions of a harmonic function,the energy of a measure, and
the capacity of a set. The probabilistic problem at the heartof this chapter is to find the
probability that Brownian motion visits a given set.

8.1 The Dirichlet problem revisited

We now take up the study of the Dirichlet problem again and askfor sharp conditions on the
domain which ensure the existence of solutions, which allowus to understand the problem
for domains with very irregular boundaries, like for example connected components of
the complement of a planar Brownian curve. For this task, stochastic integrals and Itô’s
formula will be a helpful tool. As a warm-up, we suggest to usethese tools to give a
probabilistic proof of the mean value property of harmonic functions, see Exercise 8.1.

Recall from Example 3.15 that the existence of a solution of the Dirichlet problem may be
in doubt by the fact that Brownian motion started at the boundary ∂U may not leave the
domainU immediately. Indeed, we show here that this is the only problem that can arise.

Definition 8.1. A point x ∈ A is calledregular for the closed setA ⊂ Rd if the first
hitting timeTA = inf{t > 0: B(t) ∈ A} satisfiesPx{TA = 0

}
= 1. A point which is not

regular is calledirregular . �

Remark 8.2 In the cased = 1 we have already seen that for any starting pointx ∈ R,
almost surely a Brownian motion started inx returns tox in every interval[0, ε) with
ε > 0. Hence every point is regular for any set containing it. �
We already know a condition which implies that a point is regular, namely the Poincaré
cone condition introduced in Chapter 3.

Theorem 8.3If the domainU ⊂ Rd satisfies the Poincaré cone condition atx ∈ ∂U , then
x is regular for the complement ofU .

Proof. Supposex ∈ ∂U satisfies the condition, then there is an open coneV with basex
and angleα > 0, such thatV ∩ B(x, r) ⊂ U c for a suitabler > 0. Then the first exit time
τU for the domain satisfies

224
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Px{τU 6 t} > Px{B(t) ∈ V ∩ B(x, r)}
> Px{B(t) ∈ V } − Px{B(t) 6∈ B(x, r)}
= Px{B(1) ∈ V } − Px{B(1) 6∈ B(x, r/

√
t)},

where Brownian scaling was used in the last step. Fort ↓ 0 the subtracted term goes to
zero, and hencePx{τU = 0} = limt↓0 Px{τU 6 t} > P{B(1) ∈ V } > 0. By Blumen-
thal’s zero-one law we havePx{τU = 0} = 1, in other wordsx is regular forU c.

Remark 8.4 An alternative criterion for regularity, with a similar proof, will be given in
Exercise 8.2. At the end of the present chapter we will give asharpcondition for a point
to be regular, namelyWiener’s testof regularity. �

Theorem 8.5 (Dirichlet Problem)SupposeU ⊂ Rd is a bounded domain and letϕ be a
continuous function on∂U . Defineτ = min{t > 0: B(t) ∈ ∂U}, and defineu : U → R
by

u(x) = Ex
[
ϕ(B(τ))

]
.

(a) A solution to the Dirichlet problem exists if and only if the functionu is a solution
to the Dirichlet problem with boundary conditionϕ.

(b) u is a harmonic function onU with u(x) = ϕ(x) for all x ∈ ∂U and is continuous
at every pointx ∈ ∂U that is regular for the complement ofU .

(c) If everyx ∈ ∂U is regular for the complement ofU , thenu is the unique continuous
functionu : U → R which is harmonic onU such thatu(x) = ϕ(x) for all x ∈ ∂U .

Proof. For the proof of (a) letv be any solution of the Dirichlet problem onU with
boundary conditionϕ. Define open setsUn ↑ U by

Un =
{
x ∈ U : |x− y| > 1

n for all y ∈ ∂U
}
.

Let τn be the first exit time ofUn andτ the first exit time fromU , which are stopping
times. By the multidimensional version of Itô’s formula, weobtain

v(B(t∧τn)) = v(B(0))+

d∑

i=1

∫ t∧τn

0

∂xi
v(B(s)) dBi(s)+

1
2

d∑

i=1

∫ t∧τn

0

∂xixi
v(B(s)) ds .

Note that∂xi
v is bounded on the closure ofUn, and thus everything is well-defined. The

last term vanishes as∆v(x) = 0 for all x ∈ U . Taking expectations the second term on
the right also vanishes, by Exercise 7.2, and we get that

Ex
[
v(B(t ∧ τn))

]
= Ex

[
v(B(0))

]
= v(x), for x ∈ Un .

Note thatv, and hence the integrand on the left hand side, are bounded. Moreover, it is
easy to check using boundedness ofU and a reduction to the one-dimensional case, thatτ

is almost surely finite. Hence, ast ↑ ∞ andn → ∞, bounded convergence yields that the
left hand side converges toEx[v(B(τ))] = Ex[ϕ(B(τ))]. The result follows, as the right
hand side depends neither ont nor onn.
The harmonicity statement of (b) is included in Theorem 3.8,andu = ϕ on∂U is obvious
from the definition. It remains to show the continuity claim.For a regularx ∈ ∂U we now
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show that if Brownian motion is started at a point inU , which is sufficiently close tox, then
with high probability the Brownian motion hitsU c, before leaving a given ballB(x, δ).
We start by noting that, for everyt > 0 andη > 0 the set

O(t, η) :=
{
z ∈ U : Pz{τ 6 t

}
> η

}

is open. Indeed, ifz ∈ O(t, η), then for some smalls > 0 andδ > 0 and largeM > 0, we
have

Pz
{
|B(s) − z| 6 M, B(u) ∈ U c for somes 6 u 6 t

}
> η + δ.

By the Markov property the left hand side above can be writtenas
∫

B(z,M)

Pξ
{
B(u) ∈ U c for some0 6 u 6 t− s

}
p(s, z, ξ) dξ.

Now let ε > 0 be sufficiently small, so that|p(s, z, ξ) − p(s, y, ξ)| < δ/L(B(0,M)) for
all |z − y| < ε andξ ∈ Rd. Then we have

Py{τ 6 t
}

> Py
{
B(u) ∈ U c for somes 6 u 6 t

}
> η,

hence the ballB(z, ε) is inO(t, η), which therefore must be open. Givenε > 0 andδ > 0

we now chooset > 0 small enough, such that forτ ′ = inf{s > 0: B(s) 6∈ B(x, δ)} we
have

Pz
{
τ ′ < t

}
< ε/2 for all |x− z| < δ/2.

By regularity we havex ∈ O(t, 1−ε/2), and hence we can choose0 < θ < δ/2 to achieve
B(x, θ) ⊂ O(t, 1 − ε/2). We have thus shown that,

|x− z| < θ ⇒ Pz
{
τ < τ ′

}
> 1 − ε. (8.1)

To complete the proof, letε > 0 be arbitrary. Then there is aδ > 0 such that|ϕ(x) −
ϕ(y)| < ε for all y ∈ ∂U with |x − y| < δ. Chooseθ as in (8.1). For allz ∈ U with
|z − x| < δ ∧ θ we get

|u(x) − u(z)| =
∣∣Ez[ϕ(x) − ϕ(B(τ))]

∣∣ 6 2‖ϕ‖∞ Pz
{
τ ′ < τ} + ε 6 ε (2‖ϕ‖∞ + 1).

As ε > 0 can be arbitrarily small,u is continuous atx ∈ ∂U . Finally, part (c) follows
easily from (b) and the maximum principle.

A further classical problem of partial differential equations, the Poisson problem, is related
to Brownian motion in a way quite similar to the Dirichlet problem.

Definition 8.6. Let U ⊂ Rd be a bounded domain andg : U → R be continuous. A
continuous functionu : U → R, which is twice continuously differentiable onU is said to
be thesolution of Poisson’s problem forg if

• u(x) = 0 for all x ∈ ∂U , and

• − 1
2∆u(x) = g(x) for all x ∈ U . �

A probabilistic approach to the Poisson problem will be developed in Exercises 8.3 and 8.4.



8.2 The equilibrium measure 227

Remark 8.7

(a) Forg bounded, any solutionu of Poisson’s problem forg equals

u(x) = Ex
[ ∫ T

0

g(B(t)) dt
]

for x ∈ U ,

whereT := inf{t > 0: B(t) 6∈ U}. Conversely, ifg is Hölder continuous and
everyx ∈ ∂U is regular for the complement ofU , then the functionu defined by
the displayed equation solves the Poisson problem forg.

(b) If u solves Poisson’s problem forg ≡ 1 in a domainU ⊂ Rd, thenu(x) = Ex[T ]

is the average time it takes a Brownian motion started inx to leave the setU . �

8.2 The equilibrium measure

In Chapter 3 we have studied the distribution of the locationof thefirst entryof a Brownian
motion into a closed setΛ, the harmonic measure. In the case of a transient (or killed)
Brownian motion there is a natural counterpart to this by looking at the distribution of
the position of thelast exit from a closed set. This leads to the notion of theequilibrium
measure, which we discuss and apply in this section.
To motivate the next steps we first look at a simple random walk{Xn : n ∈ N} in d > 3.
LetA ⊂ Zd be a bounded set, then by transience the last exit timeγ = max{n ∈ N : Xn ∈
A} is finite on the event that the random walk ever hitsA. Note thatγ is not a stopping
time. Then, for anyx ∈ Zd andy ∈ A,

Px
{
X hitsA andXγ = y

}
=

∞∑

k=0

Px
{
Xk = y,Xj 6∈ A for all j > k

}

=
∞∑

k=0

Px
{
Xk = y}Py{γ = 0},

and introducing the Green’s functionG(x, y) =
∑∞
k=0 Px

{
Xk = y} we get, for ally ∈ A,

Px
{
X hitsA andXγ = y

}
= G(x, y) Py{γ = 0}.

This holds also, obviously, for ally ∈ Zd \A. Summing over ally ∈ Zd gives

Px
{
X ever hitsA

}
=
∑

y∈Zd

G(x, y)Py{γ = 0}.

The formula allows us to describe the probability of ever hitting a set as a potential with
respect to the measurey 7→ Py{γ = 0}, which is supported onA. Our aim in this section
is to extend this to Brownian motion.
Note that the argument above relied heavily on the transience of the random walk. This is
no different in the case of Brownian motion. In order to include the two-dimensional case
we ‘kill’ the Brownian motion, either when it exits a large domain or at an independent
exponential stopping time. Note that both possibilities preserve the strong Markov prop-
erty, in the case of exponential killing this is due to the lack-of-memory property of the
exponential distribution.
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To formally explain our setup we now suppose that{B(t) : 0 6 t 6 T} is a transient
Brownian motion in the sense of Chapter 3. Recall that this means that{B(t) : 0 6 t 6 T}
is ad-dimensional Brownian motion killed at timeT , and one of the following holds:

(1) d > 3 andT = ∞,
(2) d > 2 andT is an independent exponential time,
(3) d > 2 andT is the first exit time from a bounded domainD containing0.

We use the convention thatD = Rd in cases (1) and (2). In all cases, transient Brownian
motion is a Markov process and, by Theorem 3.30 its transition kernel has a density, which
we denote byp∗(t, x, y). Note that in case (2,3) the functionp∗(t, x, y) is only a subprob-
ability density because of the killing, indeed it is strictly smaller than the corresponding
density without killing. The associated Green’s function

G(x, y) =

∫ ∞

0

p∗(t, x, y) dt,

is always well-defined and finite for allx 6= y.

Theorem 8.8 (Last exit formula) Suppose{B(t) : 0 6 t 6 T} is a transient Brownian
motion andΛ ⊂ Rd a compact set. Let

γ = sup
{
t ∈ (0, T ] : B(t) ∈ Λ

}

be thelast exit timefrom Λ, using the conventionγ = 0 if the path does not hitΛ. Then
there exists a finite measureν on Λ called theequilibrium measure, such that, for any
Borel setA ⊂ Λ andx ∈ D,

Px
{
B(γ) ∈ A, 0 < γ 6 T

}
=

∫

A

G(x, y) dν(y).

Remark 8.9 Observe that, givenΛ, the equilibrium measure is uniquely determined by
the last exit formula. The proof of Theorem 8.8 is similar to the simple calculation in the
discrete case, the equilibrium measure is constructed as limit of the measureε−1Py{0 <
γ 6 ε} dy. �

Proof of Theorem 8.8. LetUε be a uniform random variable on[0, ε], independent of the
Brownian motion and the killing time. Then, for any bounded and continuousf : D → R,

Ex
[
f(B(γ − Uε)) 1{Uε < γ}

]

= ε−1

∫ ∞

0

Ex
[
f(B(t))1{t < γ 6 t+ ε}

]
dt

= ε−1

∫ ∞

0

Ex
[
f(B(t))1{t 6 T}PB(t){0 < γ 6 ε}

]
dt .

Using the notationψε(x) = ε−1Px{0 < γ 6 ε} this equals
∫ ∞

0

Ex
[
f · ψε(B(t))1{t 6 T}

]
dt =

∫ ∞

0

∫

D

p∗(t, x, y) f · ψε(y) dy dt

=

∫

D

f(y)G(x, y)ψε(y) dy.
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This means that the subprobability measureηε defined by

ηε(A) = Px
{
B(γ − Uε) ∈ A, Uε < γ 6 T

}

has the densityG(x, y)ψε(y). Therefore also,

G(x, y)−1 dηε(y) = ψε(y) dy. (8.2)

Observe now that, by continuity of the Brownian path,limε↓0 ηε = η0 in the sense of weak
convergence, where the measureη0 onΛ is defined by

η0(A) = Px
{
B(γ) ∈ A, 0 < γ 6 T

}
,

for all Borel setsA ⊂ Λ. As, for fixedx ∈ D, the functiony 7→ G(x, y)−1 is continuous
and bounded onΛ, we infer that, in the sense of weak convergence

lim
ε↓0

G(x, y)−1 dηε = G(x, y)−1 dη0.

By (8.2) the measureψε(y) dy therefore converges weakly to a limit measureν, which
does not depend onx, and satisfiesG(x, y)−1 dη0(y) = dν(y) for all x ∈ D. As η0 has
no atom inx we therefore obtain thatdη0(y) = G(x, y) dν(y) for all x ∈ D. Integrating
over any Borel setA gives the statement.

A direct representation of the equilibrium measure as a lastexit distribution can be obtained
in cases (1) and (3) when the Brownian motion is started at a random point.

Theorem 8.10SupposeΛ is a compact nonpolar set and

Λ ⊂ B(z, r).

Let{B(t) : 0 6 t 6 T} be a transient Brownian motion started uniformly on∂B(z, r) and
stopped as in case (1) or as in (3) withD = B(z,R) for R > r. Let γ be the last exit
time fromΛ, as in Theorem 8.8. Then the equilibrium measureν satisfies, for any Borel
setA ⊂ Λ,

ν(A)

ν(Λ)
= P

{
B(γ) ∈ A

∣∣ 0 < γ 6 T
}
.

The proof follows from the following interesting lemma.

Lemma 8.11In the setup of Theorem 8.10, the value of the integral
∫
G(x, y) dσz,r(x)

is independent of the choice ofy ∈ B(z, r).

Proof. By Theorem 3.35 the mappingy 7→ I(y) =
∫
G(x, y) dσz,r(x) is harmonic on

B(z, r). Fix a pointy ∈ B(z, r) and lets = |y− z|, so thats < r. By rotational invariance
we haveI(w) = I(y) for all w ∈ ∂B(z, s). Hence,I(z) =

∫
I(w) d$z,s(w) = I(y).
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Proof of Theorem 8.10. Take the last exit formula from Theorem 8.8 and integrate the
variablex with respect toσz,r. Using Fubini’s theorem, we obtain

P
{
B(γ) ∈ A, 0 < γ 6 T

}
=

∫
Px
{
B(γ) ∈ A, 0 < γ 6 T

}
dσz,r(x)

=

∫

A

∫
G(x, y) dσz,r(x) dν(y) = c ν(A),

wherec is the joint value of the integrals in Lemma 8.11. Dividing both sides byP{0 <
γ 6 T} = c ν(Λ) gives the result.

As a first application we give an estimate for the probabilitythat Brownian motion inRd,
for d > 3, hits a set contained in an annulus aroundx.

Corollary 8.12 Suppose{B(t) : t > 0} is Brownian motion inRd, with d > 3, and
Λ ⊂ B(x,R) \ B(x, r) is compact. Then

R2−dν(Λ) 6 Px
{
{B(t) : t > 0} ever hitsΛ

}
6 r2−dν(Λ),

whereν is the equilibrium measure onΛ.

Proof. By Theorem 8.8 in the caseA = Λ we have

Px
{
{B(t) : t > 0} ever hitsΛ

}
=

∫

Λ

G(x, y) dν(y).

Recall thatG(x, y) = |x− y|2−d and use thatR2−d 6 G(x, y) 6 r2−d.

Theorem 8.5 makes us interested in statements claiming thatthe set of irregular points of
a setA is small. The following fundamental result will play an important rôle in the next
chapter.

Theorem 8.13SupposeA ⊂ Rd, d > 2, is a closed set and letAr be the set of regular
points forA. Then, for allx ∈ Rd,

Px
{
B(t) ∈ A \Ar for somet > 0

}
= 0,

in other words, the set of irregular points is polar for Brownian motion.

For the proof of Theorem 8.13 we have to develop a tool of independent interest, the
strong maximum principle. A special case of this is the following statement, from which
Theorem 8.13 follows without too much effort.

Theorem 8.14Let{B(t) : t > 0} be ad-dimensional Brownian motion, andT an indepen-
dent exponential time. LetΛ ⊂ Rd be a compact set and defineτ = inf{t > 0: B(t) ∈ Λ}.
If for someϑ < 1, we havePx

{
τ < T

}
6 ϑ for all x ∈ Λ, thenPx

{
τ < T

}
6 ϑ for all

x ∈ Rd.
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Proof of Theorem 8.13. We can write the set of irregular points ofA as a countable
union of compact sets

A \Ar =
∞⋃

`=1

∞⋃

m=1

∞⋃

n=1

{
x ∈ A ∩ B(0,m) : Px{τ(A) 6 T (n)

}
6 1 − 1

`

}
,

whereT (n) is an independent exponential time with mean1/n andτ(A) is the first hitting
time ofA. It suffices to prove that Brownian motion does not hit any fixed set in the union,
so let`,m, n be fixed and takeT = T (n), ϑ = 1 − 1/` and a compact set

Λ =
{
x ∈ A ∩ B(0,m) : Px{τ(A) 6 T

}
6 ϑ

}
.

If x ∈ Λ, then, writingτ for the first hitting time ofΛ ⊂ A,

Px{τ 6 T
}

6 Px{τ(A) 6 T
}

6 ϑ,

for all x ∈ Λ and therefore by Theorem 8.14 for allx ∈ Rd.
Now supposex ∈ Rd is the arbitrary starting point of a Brownian motion{B(t) : t > 0}
andΛ(ε) = {y ∈ Rd : |y − z| 6 ε for somez ∈ Λ}. Defineτε as the first hitting time of
Λ(ε). Clearly, asΛ is closed,

lim
ε↓0

Px
{
τε 6 T

}
= Px

{
τ 6 T

}
.

Moreover, by the strong Markov property applied at the stopping timeτε and the lack of
memory property of exponential random variables,

Px
{
τ 6 T

}
6 Px

{
τε 6 T

}
max
z∈Λε

Pz
{
τ 6 T

}
6 Px

{
τε 6 T

}
ϑ,

and lettingε ↓ 0 we obtain

Px
{
τ 6 T

}
6 Px

{
τ 6 T

}
ϑ.

As ϑ < 1 this impliesPx
{
τ 6 T

}
= 0, and asT is independent of the Brownian motion

and can take arbitrarily large values with positive probability, we infer that the Brownian
motion started inx never hitsΛ.

The idea in the proof of Theorem 8.14 is to use the equilibriummeasureν to express
Px
{
τ < T

}
as a potential, which means that, denoting the parameter of the exponential

by λ > 0,

Px
{
τ < T

}
=

∫
Gλ(x, y) dν(y),

whereGλ is the Green’s function for the Brownian motion stopped at timeT , i.e.

Gλ(x, y) =

∫ ∞

0

e−λt p(t, x, y) dt.

Recall that for any fixedy the functionx 7→ Gλ(x, y) is subharmonic onRd \ {y}, by
Theorem 3.35 (iii), and this implies that

Uλν(x) =

∫
Gλ(x, y)dν(y)
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is subharmonic onΛc. If Uλν was also continuous on the closure ofΛc, then the maximum
principle in Theorem 3.5 would tell us thatUλν has its maxima on the boundary∂Λ and
this would prove Theorem 8.14. However we do not know the continuity of Uλν on the
closure ofΛc, so we need a strengthening of the maximum principle.

We now letK be akernel, i.e. a measurable functionK : Rd×Rd → [0,∞]. Suppose that
x 7→ K(x, y) is subharmonic outside{y}, and thatK(x, y) is a continuous and decreasing
function of the distance|x− y|. For any finite measureµ without atoms let

Uµ(x) =

∫
K(x, y) dµ(y)

be the potential ofµ atx with respect to the kernelK.

Theorem 8.15 (Strong maximum principle)If µ is supported by the compact setΛ, then,
for anyϑ > 0, we have the equivalence

Uµ(x) 6 ϑ for all x ∈ Λ ⇔ Uµ(x) 6 ϑ for all x ∈ Rd.

Remark 8.16 Note that this completes the proof of Theorem 8.14 and hence of Theo-
rem 8.13 by applying it to the special case of the kernelK = Gλ and the equilibrium
measure. �

The proof we present relies on a beautiful geometric lemma.

Lemma 8.17There is a numberN depending only on the dimensiond such that the fol-
lowing holds: For everyx ∈ Rd and every closed setΛ there areN nonoverlapping closed
conesV1, . . . , VN with vertexx such that, ifξi is a point ofΛ ∩ Vi closest tox, then any
pointy ∈ Λ with y 6= x is no further to someξi than tox.

x

y

ξ
π

3

Λ

Fig. 8.1. The geometric argument in Lemma 8.17.
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Proof. The proof is elementary by looking at Figure 8.1: LetN be the number of closed
cones with circular base, vertex in the origin and opening angle π/3 needed to coverRd.
Replace each of the cones in this collection by a subcone (notnecessarily with circular
base) such that the collection still coversRd but the cones are non-overlapping. LetV be
a shift of such a cone with vertex inx, ξ be a point inV ∩ Λ which is closest tox, and
y ∈ Λ ∩ V be arbitrary. The triangle with vertices inx, ξ andy has at most angleπ/3 at
the vertexx, and hence by the geometry of triangles, the distance ofy andξ is no larger
than the distance ofy andx.

Proof of Theorem 8.15. Of course, only the implication⇒ needs proof. Takeµ
satisfyingUµ(x) 6 ϑ for all x ∈ Λ. Note that, by monotone convergence,

Uµ(x) = lim
δ↓0

∫

|x−y|>δ
K(x, y) dµ(y). (8.3)

Hence, for a givenη > 0, by Egorov’s theorem, there exists a compact subsetF ⊂ Λ such
that,µ(F ) > µ(Λ) − η and the convergence in (8.3) is uniform onF . If we defineµ1 to
be the restriction ofµ to F , then we can find, for everyε > 0 someδ > 0 such that

sup
x∈F

∫

|x−y|6δ
K(x, y) dµ1(y) < ε.

Now let {xn} ⊂ Rd be a sequence converging tox0 ∈ F . Then, as the kernelK is
bounded on sets bounded away from the diagonal,

lim sup
n→∞

Uµ1
(xn) 6

∫
K(x0, y) dµ1(y) + lim sup

n→∞

∫

|y−xn|6δ
K(xn, y) dµ1(y).

We now want to compareK(xn, y) with K(ξ, y) for ξ ∈ F . Here we use Lemma 8.17 for
the pointx = xn and obtainξ1, . . . , ξN ∈ F such that

K(xn, y) 6

N∑

i=1

K(ξi, y),

where we have used thatK depends only on the distance of the arguments and is decreasing
in it. We thus have

∫

|y−xn|6δ
K(xn, y) dµ1(y) 6

N∑

i=1

∫

|y−ξi|6δ
K(ξi, y) dµ1(y) 6 Nε.

As ε > 0 was arbitrary we get

lim sup
n→∞

Uµ1
(xn) 6 Uµ1

(x0).

As the converse statement

lim inf
n→∞

Uµ1
(xn) > Uµ1

(x0)

holds obviously by Fatou’s lemma, we obtain the continuity of Uµ1
on F . Continuity of

Uµ1
on F c is obvious from the properties of the kernel and the fact thatµ1 is supported

by F , so that we have continuity ofUµ1
on all of Rd. By the maximum principle, Theo-

rem 3.5, we infer thatUµ1
(x) 6 ϑ.
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To complete the proof letx 6∈ Λ be arbitrary, and denote its distance toΛ by %. Then
K(x, y) 6 C(%) for all y ∈ Λ. Therefore

Uµ(x) 6 Uµ1
(x) + ηC(%) 6 ϑ+ η C(%),

and the result follows by lettingη ↓ 0.

8.3 Polar sets and capacities

One of our ideas to measure the size of sets in Chapter 4 was based on the notion of
capacity. While this notion appeared to be useful, but maybe abit artificial at the time,
we can now understand its true meaning. This is linked to the notion of polarity, namely
whether a set has a positive probability of being hit by a suitably defined random set.

More precisely, we ask, which sets are polar for the range of ad-dimensional Brownian
motion{B(t) : t > 0}. Recall that a Borel setA ⊂ Rd is polar for Brownian motion if,
for all x,

Px
{
B(t) ∈ A for somet > 0

}
= 0.

In the cased = 1 we already know that only the empty set is polar, whereas by Corol-
lary 2.26 points are polar for Brownian motion in all dimensionsd > 2. The general
characterisation of polar sets requires an extension of thenotion of capacities to a bigger
class of kernels.

Definition 8.18. SupposeA ⊂ Rd is a Borel set andK : Rd × Rd → [0,∞] is a kernel.
Then theK-energy of a measureµ is defined to be

IK(µ) =

∫∫
K(x, y) dµ(x) dµ(y),

and theK-capacity ofA is defined as

CapK(A) =
[
inf
{
IK(µ) : µ a probability measure onA

}]−1
.

Recall that theα-energy of a measure and the Rieszα-capacityCapα of a set defined in
Chapter 4 correspond to the kernelK(x, y) = |x− y|−α. �

Remark 8.19In most of our applications the kernels are of the formK(x, y) = f(|x−y|)
for some decreasing functionf : [0,∞) → [0,∞]. In this case we simply writeIf instead
of IK and call this thef -energy. We also write Capf instead of CapK and call this the
f -capacity. �

Theorem 8.20 (Kakutani’s theorem) A closed setΛ is polar ford-dimensional Brownian
motion if and only if it has zerof -capacity for theradial potential f defined by

f(ε) :=

{ ∣∣ log(1/ε)
∣∣ if d = 2,

ε2−d if d > 3.
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Remark 8.21 We call the kernelK(x, y) = f(|x−y|), wheref is the radial potential, the
potential kernel. Up to constants, it agrees with the Green kernel ind > 3. �

Instead of proving Kakutani’s theorem directly, we aim for astronger, quantitative result
in the framework of transient Brownian motions given in Definition 3.28. Recall that this
means that{B(t) : 0 6 t 6 T} is ad-dimensional Brownian motion killed at timeT , and
either (1)d > 3 andT = ∞, (2) d > 2 andT is an independent exponential time, or
(3) d > 2 andT is the first exit time from a bounded domainD containing the origin. This
result gives, for compact setsΛ ⊂ Rd, a quantitative estimate of

P0

{
∃0 < t < T such thatB(t) ∈ Λ

}

in terms of capacities. However, even ifd = 3 andT = ∞, one cannot expect that

P0

{
∃t > 0 such thatB(t) ∈ Λ

}
� Capf (Λ)

for the radial potentialf in Theorem 8.20. Observe, for example, that the left hand side
depends strongly on the starting point of Brownian motion, whereas the right hand side is
translation invariant. Similarly, if Brownian motion is starting at the origin, the left hand
side is invariant under scaling, i.e. remains the same whenΛ is replaced byλΛ for any
λ > 0, whereas the right hand side is not. For a direct comparison of hitting probabilities
and capacities, it is therefore necessary to use a capacity function with respect to a scale-
invariant modification of the Green kernelG, called theMartin kernel, which we now
introduce.

Definition 8.22. We define the Martin kernelM : D ×D → [0,∞] by

M(x, y) :=
G(x, y)

G(0, y)
for x 6= y,

and otherwise byM(x, x) = ∞. �

We need the following technical proposition, which is easy to verify directly from the form
of the Green’s functionG in case (1). For the other two cases we give a conceptual proof.

Proposition 8.23For every compact setΛ ⊂ D ⊂ Rd there exists a constantC depending
only onΛ such that, for allx, y ∈ Λ and sufficiently smallε > 0,

sup
|x−z|<ε

ε−d
∫

B(y,ε)

G(z, ξ)

G(x, y)
dξ 6 C.

Proof. Fix a compact setΛ ⊂ D andε > 0 smaller than one tenth of the distance ofΛ

andDc and letx, y ∈ Λ. We abbreviate

hε(z, y) =

∫

B(y,ε)

G(z, ξ) dξ for z ∈ D.

We first assume that|x− y| > 4ε and show that in this case

sup
|x−x̃|<ε

sup
|y−ỹ|<ε

G(x̃, ỹ) 6 CG(x, y). (8.4)
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With τ = inf{0 < t 6 T : B(t) 6∈ B(x, 2ε)} we note that, for all̃x ∈ B(x, ε),

G(x̃, y) = Ex̃
[
G(B(τ), y), τ 6 T

]
.

This is the average ofG(· , y) with respect to the harmonic measureµ∂B(x,2ε)(x̃, · ). This
measure has a density with respect to the uniform measure on the sphere∂B(x, 2ε), which
is bounded from above by an absolute constant. In the cases (1) and (3) this can be seen
directly from Poisson’s formula. ThereforeG(x̃, y) 6 CG(x, y) and repetition of this
argument, introducing now̃y ∈ B(y, ε) and fixingx̃ gives the claim.
Now look at the case|x − y| 6 4ε. We first observe that, for some constantc > 0,
G(x, y) > cε2−d, which is obvious in all cases. Now letz ∈ B(x, ε). Decomposing the
Brownian path on its first exit timeτ from B(x, 8ε) and denoting the uniform distribution
on∂B(x, 8ε) by$ we obtain for constantsC1, C2 > 0,

hε(z, y) 6 Ez[τ ∧ T ] + Ez
[
hε(B(τ), y), τ 6 T

]

6 C1ε
2 + C2ε

d

∫
G(w, y) d$(w),

where we have used (8.4). As
∫
G(w, y) d$(w) 6 C3G(x, y) putting all facts together

giveshε(z, y) 6 C4ε
dG(x, y), as required.

The following theorem shows that (in all three cases of transient Brownian motions) Martin
capacity is indeed a good estimate of the hitting probability.

Theorem 8.24 Let {B(t) : 0 6 t 6 T} be a transient Brownian motion andA ⊂ D

closed. Then

1
2 CapM (A) 6 P0{∃0 < t 6 T such thatB(t) ∈ A} 6 CapM (A) (8.5)

Proof. Let µ be the (possibly sub-probability) distribution ofB(τ) for the stopping time
τ = inf{0 < t 6 T : B(t) ∈ A}. Note that the total mass ofµ is

µ(A) = P0{τ 6 T} = P0{B(t) ∈ A for some0 < t 6 T}. (8.6)

The idea for the upper bound is that if the harmonic measureµ is nonzero, it is an obvious
candidate for a measure of finiteM -energy. Recall from the definition of the Green’s
function, for anyy ∈ D,

E0

∫ T

0

1{|B(t) − y| < ε} dt =

∫

B(y,ε)

G(0, z) dz. (8.7)

By the strong Markov property applied to the first hitting time τ of A,

P0

{
|B(t) − y| < ε andt 6 T

}
> P0

{
|B(t) − y| < ε andτ 6 t 6 T

}

= EP
{
|B(t− τ) − y| < ε | F(τ)

}
.

Integrating overt and using Fubini’s theorem yields

E0

∫ T

0

1{|B(t) − y| < ε} dt >

∫

A

∫

B(y,ε)

G(x, z) dz dµ(x).
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Combining this with (8.7) we infer that
∫

B(y,ε)

∫

A

G(x, z) dµ(x) dz 6

∫

B(y,ε)

G(0, z) dz .

Dividing byL(B(0, ε)) and lettingε ↓ 0 we obtain
∫

A

G(x, y) dµ(x) 6 G(0, y),

i.e.
∫
A
M(x, y) dµ(x) 6 1 for all y ∈ D. Therefore,IM (µ) 6 µ(A) and thus if we use

µ/µ(A) as a probability measure we get

CapM (A) > [IM (µ/µ(A))]−1
> µ(A),

which by (8.6) yields the upper bound on the probability of hittingA.
To obtain a lower bound for this probability, a second momentestimate is used. It is easily
seen that the Martin capacity ofA is the supremum of the capacities of its compact subsets,
so we may assume thatA is a compact subset of the domainD\{0}. We takeε > 0 smaller
than half the distance ofA toDc ∪ {0}. Forx, y ∈ A let

hε(x, y) =

∫

B(y,ε)

G(x, ξ) dξ

denote the expected time which a Brownian motion started inx spends in the ballB(y, ε).
Also define

h∗ε(x, y) = sup
|x−z|<ε

∫

B(y,ε)

G(z, ξ) dξ.

Given a probability measureν onA, andε > 0, consider the random variable

Zε =

∫

A

∫ T

0

1{B(t) ∈ B(y, ε)}
hε(0, y)

dt dν(y) .

ClearlyE0Zε = 1. By symmetry, the second moment ofZε can be written as

E0Z
2
ε = 2E0

∫ T

0

ds

∫ T

s

dt

∫∫
1{B(s) ∈ B(x, ε), B(t) ∈ B(y, ε)}

hε(0, x)hε(0, y)
dν(x) dν(y)

6 2E0

∫∫ ∫ T

0

ds 1{B(s) ∈ B(x, ε)} h∗ε(x, y)

hε(0, x)hε(0, y)
dν(x) dν(y)

= 2

∫∫
h∗ε(x, y)

hε(0, y)
dν(x) dν(y).

(8.8)

Observe that, for all fixedx, y ∈ A we havelimε↓0 L(B(0, ε))−1 h∗ε(x, y) = G(x, y) and
limε↓0 L(B(0, ε))−1 hε(0, y) = G(0, y). Moreover, by Proposition 8.23 and the fact that
G(0, y) is bounded away from zero and infinity for ally ∈ A, for 0 < ε < 1 and some
constantC,

h∗ε(x, y)

hε(0, y)
6 C

G(x, y)

G(0, y)
= CM(x, y).

Hence, ifν is a measure of finite energy, we can use dominated convergence and obtain,

lim
ε↓0

EZ2
ε 6 2

∫∫
G(x, y)

G(0, y)
dν(x) dν(y) = 2IM (ν). (8.9)
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Clearly, the hitting probabilityP{∃t > 0, y ∈ A such thatB(t) ∈ B(y, ε)} is at least

P{Zε > 0} >
(EZε)2

EZ2
ε

= (EZ2
ε )

−1 ,

where we have used the Paley–Zygmund inequality in the second step. Compactness of
A, together with transience and continuity of Brownian motion, imply that if the Brow-
nian path visits everyε-neighbourhood of the compact setA then it intersectsA itself.
Therefore, by (8.9),

P{∃t > 0 such thatB(t) ∈ A}> lim
ε↓0

(EZ2
ε )

−1
>

1

2IM (ν)
.

Since this is true for all probability measuresν onA, we get the desired conclusion.

Remark 8.25The right hand inequality in (8.5) can be an equality: look atthe cased = 3,
T = ∞, our case (1), and take a sphere inRd centred at the origin, which has hitting
probability and capacity both equal to one. Exercise 8.7 shows that the constant 1/2 on the
left cannot be increased. �
Proof of Theorem 8.20. It suffices, by taking countable unions, to consider compact
setsΛ which have positive distance from the origin. First consider the cased > 3. Then
G(0, x) is bounded away from zero and infinity. Hence the setΛ is polar if and only if its
f -capacity vanishes, wheref(ε) = ε2−d.
In the cased = 2 we choose a large ballB(0, R) containingΛ. By Lemma 3.37 the Green’s
function for the Brownian motion stopped upon leavingB(0, R) satisfies

G(x, y) = − 1
π log |x− y| + Ex

[
1
π log |B(T ) − y|

]
.

The second summand ofG(x, y) is bounded from above ifx, y ∈ Λ, andG(0, y) is
bounded from zero. Hence only the contribution from− log |x − y| decides about finite-
ness of the Martin energy of a probability measure. Therefore, any probability measure on
Λ with finite Martin energy has finitef -energy forf(ε) = − log ε, and vice versa. This
completes the proof.

The estimates in Theorem 8.24 are valid beyond the Brownian motion case. The following
proposition, which has a very similar proof to Theorem 8.24,shows that one has an anal-
ogous result in a discrete setup. We will see a surprising application of this in Chapter 9.

Proposition 8.26Let {Xn : n ∈ N} be a transient Markov chain on a countable state
spaceS, and, for any initial stateρ, set

G(x, y) = Ex

[ ∞∑

n=0

1{y}(Xn)

]
and M(x, y) =

G(x, y)

G(ρ, y)
.

Then, for any subsetΛ of S,

1
2 CapM (Λ) 6 Pρ

{
{Xn : n ∈ N} hitsΛ

}
6 CapM (Λ) .
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Proof. To prove the right hand inequality, we may assume that the hitting probabil-
ity is positive. Letτ = inf{n : Xn ∈ Λ} and letν be the measureν(A) = Pρ{τ <

∞ andXτ ∈ A}. In general,ν is a sub-probability measure, asτ may be infinite. By the
Markov property, fory ∈ Λ,

∫

Λ

G(x, y) dν(x) =
∑

x∈Λ

Pρ{Xτ = x}G(x, y) = G(ρ, y) ,

whence
∫
Λ
M(x, y) dν(x) = 1. ThereforeIM (ν) = ν(Λ), IM

(
ν/ν(Λ)

)
= [ν(Λ)]−1;

consequently, sinceν/ν(Λ) is a probability measure,

CapM (Λ) > ν(Λ) = Pρ
{
{Xn} hits Λ

}
.

This yields one inequality. Note that the Markov property was used here.
For the reverse inequality, we use the second moment method.Given a probability measure
µ onΛ, set

Z =

∫

Λ

∞∑

n=0

1{y}(Xn)
dµ(y)

G(ρ, y)
.

Eρ[Z] = 1, and the second moment satisfies

Eρ[Z2] = Eρ

∫

Λ

∫

Λ

∞∑

m=0

∞∑

n=0

1{x}(Xm)1{y}(Xn)
dµ(x)dµ(y)

G(ρ, x)G(ρ, y)

6 2Eρ

∫

Λ

∫

Λ

∑

m6n

1{x}(Xm)1{y}(Xn)
dµ(x)dµ(y)

G(ρ, x)G(ρ, y)
.

Observe that

∞∑

m=0

Eρ
∞∑

n=m

1{x}(Xm)1{y}(Xn) =

∞∑

m=0

Pρ{Xm = x}G(x, y) = G(ρ, x)G(x, y) .

Hence

Eρ[Z2] 6 2

∫

Λ

∫

Λ

G(x, y)

G(ρ, y)
dµ(x) dµ(y) = 2IM (µ) ,

and therefore

Pρ
{
{Xn} hitsΛ

}
> Pρ{Z > 0} >

(
Eρ[Z]

)2

Eρ[Z2]
>

1

2IM (µ)
.

We conclude thatPρ
{
{Xn} hitsΛ

}
>

1
2CapM (Λ).

Recall from Corollary 8.12 that we have already seen estimates for the probability that
Brownian motion hits a set, which were given in terms of the total mass of the equilibrium
measure. The following theorem reveals the relationship between the equilibrium measure
and capacities.



240 Potential theory of Brownian motion

Theorem 8.27Let Λ ⊂ Rd be a nonpolar, compact set andG : Rd × Rd → [0,∞] the
Green’s function of a transient Brownian motion. Then

CapG(Λ) =
{
IG

( ν

ν(Λ)

)}−1

= ν(Λ).

whereν is the equilibrium measure ofΛ. Moreover, the probability measureν/ν(Λ) is the
unique minimiser of theG-energy over the set of all probability measures onΛ.

Remark 8.28If Λ is polar, we haveCapG(Λ) = 0 = ν(Λ). �

For the proof we first note that, for the Green’s functionG of a transient Brownian motion,
theG-energy of asignedmeasure is always nonnegative.

Lemma 8.29Letµ, ν be finite measures onRd andG the Green’s functionG of a transient
Brownian motion. Then, forσ = µ− ν, we have

∫∫
G(x, y) dσ(x) dσ(y) > 0.

Equality holds if and only ifν = µ.

Proof. From the Chapman–Kolmogorov equation we have

p∗(t, x, y) =

∫
p∗(t/2, x, z) p∗(t/2, z, y) dz.

Integrating with respect todσ(x) dσ(y) and using the symmetry ofp∗(t, · , · ) gives

∫∫
p∗(t, x, y) dσ(x) dσ(y) =

∫ (∫
p∗(t/2, x, z) dσ(x)

)2

dz > 0.

Integrating over time shows that
∫∫

G(x, y) dσ(x) dσ(y) > 0.
Equality in the last formula implies that

∫
p∗(t/2, x, z) dσ(x) = 0 for L-almost everyz andt.

Now fix a continuous functionf : Rd → [0,∞) with compact support. We have

f(x) = lim
t↓0

∫
f(z) p∗(t/2, x, z) dz,

and therefore
∫
f(x) dσ(x) = lim

t↓0

∫∫
f(z) p∗(t/2, x, z) dz dσ(x) = 0,

and thereforeσ = 0 as required.
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Proof of Theorem 8.27. Let ν be the equilibrium measure and defineϕ(x) =∫
G(x, y) dν(y). By the last exit formula, Theorem 8.8,ϕ(x) is the probability that a

Brownian motion started atx hits Λ before timeT . Henceϕ(x) 6 1 for everyx and, if
x is a regular point forΛ, thenϕ(x) = 1. Also by the last exit formula, because irregu-
lar points are never hit by a Brownian motion, see Theorem 8.13, we haveϕ(x) = 1 for
ν-almost every point. This implies that

IG(ν) =

∫

Λ

ϕ(x) dν(x) = ν(Λ).

Suppose now thatµ is an arbitrary measure onΛ with µ(Λ) = ν(Λ) and assume thatµ has
finite energy. Note thatµ does not charge the set of irregular points, as otherwise this set
would have positive capacity with respect to the Green and hence also the Martin kernel
and so would be nonpolar by Theorem 8.24. Then, starting withLemma 8.29 and using
also the symmetry ofG,

0 6

∫∫
G(x, y) d(ν − µ)(x) d(ν − µ)(y)

= IG(µ) + IG(ν) − 2

∫∫
G(x, y) dν(x) dµ(y)

= IG(µ) + ν(Λ) − 2

∫

Λ

ϕ(y) dµ(y) 6 IG(µ) − ν(Λ),

using in the last step thatϕ(y) = 1 on the set of regular points, and thusµ-almost every-
where. This implies thatIG(µ) > ν(Λ) = IG(ν), so thatν/ν(Λ) is a minimiser in the
definition of CapG. Conversely, ifIG(µ) = IG(ν) andµ(Λ) = ν(Λ), the same calculation
shows that ∫∫

G(x, y) d(ν − µ)(x) d(ν − µ)(y) = 0,

and hence, by Lemma 8.29, we haveµ = ν. This completes the proof.

If d > 3, Theorem 8.27 shows that the normalised equilibrium measure νΛ := ν
ν(Λ) min-

imises the energy with respect to the potential kernel, which is
∫∫

f(|x− y|) dµ(x) dµ(y)

for the radial potentialf(r) = r2−d, over the set of all probability measuresµ on Λ. We
now show an analogous statement ind = 2, recall that in this case the radial potential
equalsf(r) = − log(r) for r < 1.

Theorem 8.30LetΛ ⊂ R2 be a nonpolar, compact set andνR be the equilibrium measure
of Λ for planar Brownian motion stopped at∂B(0, R). Then the limit

νΛ = lim
R↑∞

νR
νR(Λ)

exists and minimises the energy

−
∫∫

log |x− y| dµ(x) dµ(y)

over the set of all probability measuresµ onΛ.
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Remark 8.31For a compact, nonpolar setΛ ⊂ Rd the probability measureνΛ is defined
in the cased = 2 by Theorem 8.30 and in the cased > 3 as the normalised equilibrium
measure onΛ. We have shown that it minimises the energy

∫∫
f(|x− y|) dµ(x) dµ(y)

for the radial potentialf , over the set of all probability measuresµ onΛ. We therefore call
νΛ theenergy–minimising measureonΛ. Only in the cased > 3 we have proved that this
measure is theuniqueminimiser of the energy with respect to the radial potential, but in
d = 2 this will follow from Theorem 8.33 below. �

We postpone the proof of theexistenceof the limit of νR/νR(Λ) until the proof of Theo-
rem 8.33, and first show the energy–minimisation property for arbitrary sequential limits.

First fixR > 0 and recall from Theorem 8.27 thatνR/νR(Λ) minimises the energy
∫∫

G(R)(x, y) dµ(x) dµ(y)

over all probability measureµ on Λ, whereG(R) is the Green’s function associated with
the Brownian motion stopped upon leavingB(0, R). Our first step shows convergence of
these Green’s functions to the potential kernel.

Lemma 8.32For x, y ∈ R2 we have

lim
R↑∞

G(R)(x, y) − 1

π
logR = − 1

π
log |x− y|,

and the convergence is uniform on compact subsets onR2 × R2.

Proof. Recall from Lemma 3.37 that

G(R)(x, y) = −1
π log |x− y| + 1

π Ex
[
log
∣∣B(T (R)) − y

∣∣],

whereT (R) is the first exit time fromB(0, R). Note that, for any compact setK ⊂ R2,

log
∣∣∣z − y

R

∣∣∣ −→ 0, asR ↑ ∞,

uniformly in z ∈ ∂B(0, 1) andy ∈ K. Using this, we see that

G(R)(x, y) − 1
π logR = − 1

π log |x− y| + 1
π Ex

[
log
∣∣B(T (R))

R − y
R

∣∣
]

−→− 1
π log |x− y|,

uniformly in x, y ∈ K.
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Proof of Theorem 8.30. Let µ be an arbitrary probability measure onΛ. For a
radiusR > 0 and thresholdM > 0 we define

G(R)

M (x, y) =
(
G(R)(x, y) − 1

π logR
)
∧M.

Then
∫∫

G(R)

M (x, y) dνR(x) dνR(y)
νR(Λ)2 6

∫∫
G(R)(x, y) dνR(x) dνR(y)

νR(Λ)2 − 1
π logR

6

∫∫
G(R)(x, y) dµ(x) dµ(y) − 1

π logR.

Hence, for anyM > 0, using Lemma 8.32,

lim sup
R↑∞

∫∫
G(R)

M (x, y) dνR(x) dνR(y)
νR(Λ)2 6 − 1

π

∫∫
log |x− y| dµ(x) dµ(y). (8.10)

To analyse the limsup first note that, by Lemma 8.32,

lim
R↑∞

∫∫ [−1
π log |x− y| ∧M

] dνR(x) dνR(y)
νR(Λ)2 −

∫∫
G(R)

M (x, y) dνR(x) dνR(y)
νR(Λ)2 = 0.

If a sequenceRn ↑ ∞ is chosen such that, in the sense of weak convergence,

lim
n↑∞

νRn

νRn
(Λ)

= νΛ,

then, by Exercise 8.10, we have

lim
n↑∞

∫∫ [−1
π log |x−y|∧M

]dνRn (x) dνRn (y)
νRn (Λ)2 =

∫∫ [−1
π log |x−y|∧M

]
dνΛ(x) dνΛ(y).

Combining this and inserting the limit in (8.10), we obtain
∫∫ [−1

π log |x− y| ∧M
]
dνΛ(x) dνΛ(y) 6 − 1

π

∫∫
log |x− y| dµ(x) dµ(y).

Now letM ↑ ∞ and use monotone convergence to obtain

−
∫∫

log |x− y| dνΛ(x) dνΛ(y) 6 −
∫∫

log |x− y| dµ(x) dµ(y).

As µ was arbitrary, this proves the minimality property ofνΛ.

We conclude this section by showing that the energy–minimising measure agrees with the
harmonic measure from infinity, which was introduced in Chapter 3. In the course of
the proof we also add the missing part to Theorem 8.30, the existence of the limit in the
cased = 2.

Theorem 8.33LetΛ ⊂ Rd, for d > 2, be a compact, nonpolar set. Then

νΛ = µΛ,

i.e. the energy–minimising measure for the radial potential agrees with the harmonic mea-
sure from infinity.
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We first give a proof of Theorem 8.33 for the cased = 2, which uses the skew-product rep-
resentation, see Theorem 7.26. Fix0 < r < R and let{B(t) : t > 0} be a Brownian mo-
tion started uniformly on the sphere∂B(0, R). Letτr := τ(B(0, r)) be the first hitting time
of the small ball inside, which is finite almost surely, andτr,R := τ(B(0, r), ∂B(0, R)) the
time of first return to the starting sphere afterwards. Moreover, let

σR := sup
{
0 6 t < τr : B(t) ∈ ∂B(0, R)

}
,

the time of the last visit to∂B(0, R) before the smaller ball is visited. We call the path
{e(t) : 0 6 t 6 τr,R − σR} given by

e(t) := B(σR + t)

aBrownian excursionin B(0, R) conditioned to hitB(0, r). We denote byτe := τr,R−σR
thelifetimeof the excursion. Note that this is also the first positive time when the excursion
returns to its starting sphere. The main ingredient of the proof is the following time-reversal
property of the excursions.

Lemma 8.34The laws of the paths{e(t) : 0 6 t 6 τe} and {e(τe − t) : 0 6 t 6 τe}
coincide.

Proof. We invoke the skew-product representation of{B(t) : t > 0} established in
Theorem 7.26. This allows us to write

B(t) = exp
(
W1(H(t)) + iW2(H(t))

)
, for all t > 0,

where{W1(t) : t > 0}, withW1(0) = logR, and{W2(t) : t > 0}, withW2(0) uniformly
distributed on[0, 2π), are two independent linear Brownian motions. We further have

H−1(u) =

∫ u

0

e2W1(s) ds,

so that{H−1(t) : t > 0} is a continuous, strictly increasing process adapted to thenatural
filtration of {W1(t) : t > 0}. Hence,H(τr) = inf{u > 0: W1(u) = log r}, H(σR) =

sup{0 6 u < H(τr) : W1(u) = logR} andH(τr,R) = inf{u > H(τr) : W1(u) =

logR}. By Exercise 5.12 (b) the one-dimensional excursions{e1(s) : 0 6 s 6 τe1} defined
by

e1(s) = W1(H(σR) + s), τe1 = H(τr,R) −H(σR),

are time-reversible in law. Marking quantities defined withrespect to the time-reversed
excursion bỹ , we obtain for all0 6 s 6 τe1 ,

H−1
(
H(σR) + s

)
− σR =

∫ H(σR)+s

H(σR)

e2W1(u) du =

∫ s

0

e2e1(u) du

d
=

∫ s

0

e2e1(τ
e
1−u) du = H̃−1(s).

For any0 6 t 6 τr,R−σR we writes = H(σR+t)−H(σR), or equivalentlyt = H̃−1(s).
Hence

∣∣B(σR + t)
∣∣ = exp

(
W1(H(σR + t))

)
= exp

(
e1(s)

)

d
= exp

(
e1(τ

e
1 − s)

)
= exp

(
e1(τ

e
1 − H̃(t))

)
=
∣∣B̃(t)

∣∣.
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AsH(σr + t) =
∫ t
0
|B(σr + u)|−2 du, this implies thatH(σR + t)

d
= H̃(t) and therefore,

B(σR + t) = exp
(
W1(H(σR + t)) + iW2(H(σR + t))

)

d
= exp

(
W1(H̃(t)) + iW2(H̃(t))

)
= B̃(t),

as required.

Proof of Theorem 8.33 ford = 2. Let νΛ = lim νRn
/νRn

(Λ) be any subsequential
limit taken along a sequenceRn ↑ ∞. Fix r > 0 so thatΛ ⊂ B(0, r). ForR > r, let
γR = 0 if the Brownian motion{B(t) : t > 0} does not hitΛ before timeτr,R, and

γR := sup
{
0 6 t 6 τr,R : B(t) ∈ Λ

}
,

otherwise. By Theorem 8.10, for any Borel setA ⊂ Λ,

νΛ(A) = lim
n→∞

νRn
(A)

νRn
(Λ)

= lim
n→∞

P
{
B(γRn

) ∈ A
∣∣ γRn

> 0
}

= lim
n→∞

P
{
e(γRn

− σRn
) ∈ A

∣∣ {e(t) : 0 6 t 6 τe} hitsΛ
}

= lim
n→∞

P
{
e(τr,Rn

− γRn
) ∈ A

∣∣ {e(t) : 0 6 t 6 τe} hitsΛ
}
,

where we have used Lemma 8.34 in the last step. Now, fixingRn, let {B∗(t) : t > 0} be a
Brownian motion started uniformly on∂B(0, Rn) whose associated excursion inB(0, Rn)

conditioned to hitB(0, r) is {e(τe − t) : 0 6 t 6 τe}. Note thate(τr,Rn
− γRn

) =

B∗(τ∗(Λ)), whereτ∗(Λ) is the first hitting time ofΛ by {B∗(t) : t > 0}. Hence the last
line in the previous display equals

lim
n→∞

P
{
B∗(τ∗(Λ)) ∈ A

∣∣ {B∗(t) : 0 6 t 6 τ∗r,Rn
} hitsΛ

}
,

whereτ∗r,Rn
is the time of first return of{B∗(t) : t > 0} after hittingB(0, r). Asn → ∞,

the probability of the conditioning event goes to one, so that we can conclude that

νΛ(A) = lim
n→∞

P
{
B∗(τ∗(Λ)) ∈ A

}
= µΛ(A),

where we used the definition of the harmonic measure from infinity in the final step.

We now give a proof of Theorem 8.33 for the cased > 3. Again a ‘time-reversal’ argument
is crucial. We start by constructing a family of probabilitymeasuresµt, for t > 0, on the
spaceC(R,Rd) of continuous functions from the reals toRd by

µt(A) =
1

ct

∫
Px
{
{B(s) : s ∈ R} ∈ A, τB(0,r) < t

}
dx, for A ⊂ C(R,Rd) Borel,

where{B(s) : s ∈ R} underPx is a two-sided Brownian motion withB(0) = x,

τB(0,r) = inf{s > 0: B(s) ∈ B(0, r)}

is the first hitting time of the fixed ballB(0, r) after time zero, andct =
∫

Px{τB(0,r) <
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t} dx is the normalising constant. Observe thatct < ∞ for any t > 0, see Exercise 8.11.
The following lemma contains the required time-reversal property.

Lemma 8.35

(a) The laws of{B(s) : s > 0} and{B(t− s) : s > 0} underµt agree;

(b) as t ↑ ∞, the law of{B(τB(0,r) + s) : s > 0} underµt converges in the to-
tal variation distance to the law of a Brownian motion started uniformly on the
sphere∂B(0, r).

Proof. (a) From Fubini’s theorem, we obtain that
∫

Px
{
{B(s) : s ∈ R} ∈ A, τB(0,r) < t

}
dx

= E0

∫
1
{
{x+B(s) : s ∈ R} ∈ A, τB(−x,r) < t

}
dx.

AbbreviateσB(x,r) = inf{s > 0: B(t − s) ∈ B(x, r)}. Using first the Markov property
and then the shift-invariance of the Lebesgue measure, we continue

= E0

∫
1
{
{x+B(t− s) −B(t) : s ∈ R} ∈ A, σB(B(t)−x,r) < t

}
dx

= E0

∫
1
{
{x+B(t− s) : s ∈ R} ∈ A, σB(−x,r) < t

}
dx.

Finally, using Fubini’s theorem again and then observing that σB(0,r) < t if and only if
τB(0,r) < t, we can continue,

=

∫
Px
{
{B(t− s) : s ∈ R} ∈ A, σB(0,r) < t

}
dx

=

∫
Px
{
{B(t− s) : s ∈ R} ∈ A, τB(0,r) < t

}
dx.

(b) It is clear from the symmetry of the Lebesgue measure, that the law of{B(τB(0,r) +

s) : s > 0} under the probability measureµ∗
t , given by

µ∗
t (A) =

1

c∗t

∫

B(0,r)c
Px
{
{B(s) : s ∈ R} ∈ A, τB(0,r) < t

}
dx, for A ⊂ C(R,Rd) Borel,

is the law of a Brownian motion started uniformly on the sphere ∂B(0, r). Here the nor-
malising constant isc∗t =

∫
B(0,r)c

Px{τB(0,r) < t} dx. The total variation distance ofµt
andµ∗

t is

sup
A

∣∣µ∗
t (A) − µt(A)

∣∣

6

∣∣∣
1

c∗t
− 1

ct

∣∣∣
∫

B(0,r)c
Px
{
τB(0,r) < t

}
dx+

1

ct

∫

B(0,r)

Px
{
τB(0,r) < t

}
dx

6

∣∣∣
1

c∗t
− 1

ct

∣∣∣ c∗t +
1

ct
L
(
B(0, r)

)
.

As ct = c∗t + L(B(0, r)), it suffices to show thatc∗t → ∞. This follows from the hitting
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estimate of Corollary 3.19 as

lim
t↑∞

c∗t =

∫

B(0,r)c
Px{τB(0,r) <∞} dx =

∫

B(0,r)c

rd−2

|x|d−2
dx

= rd
∫

B(0,1)c
|x|2−d dx = ∞,

and this completes the proof.

Proof of Theorem 8.33 ford > 2. Let r > 0 such thatΛ ⊂ B(0, r), and look at a
Brownian motion started uniformly on∂B(0, r). Defineγ > 0 asγ = 0, if the Brownian
motion never hitsΛ, andγ = sup{t > 0: B(t) ∈ Λ} otherwise. By Theorem 8.10 and
Lemma 8.35(b), for any Borel setA ⊂ Λ,

νΛ(A) = P
{
B(γ) ∈ A

∣∣ γ > 0
}

= lim
t↑∞

µt
{
B(γt) ∈ A

∣∣ γt > 0
}
,

whereγt = 0 if {B(t) : t > 0} does not hitΛ during the time[0, t] and otherwise is the
last times ∈ [0, t] with B(s) ∈ Λ. We now express all the events in terms of the time
reversed Brownian motion{B∗(s) : s > 0} defined byB∗(s) = B(t − s). Recall from
Lemma 8.35(a) that, underµt, this process has the same law as{B(t) : t > 0}. Let τ∗ be
the first hitting time ofΛ by {B∗(s) : s > 0} and note thatτ∗ < t if and only if γt > 0. If
this is the case, thenτ∗ = t− γt. Hence

νΛ(A) = lim
t↑∞

µt
{
B∗(τ∗) ∈ A

∣∣ τ∗ < t
}
.

Define τ∗B(0,r) = inf{s > 0: B∗(s) ∈ B(0, r)} and look at the embedded Brownian
motion{B∗∗(s) : s > 0} defined byB∗∗(s) = B∗(τ∗B(0,r) + s). If B(t) 6∈ B(0, r) its first
hitting time ofΛ equals

τ∗∗ := inf{s : B∗∗(s) ∈ Λ} = τ∗ − τ∗B(0,r).

Hence, we obtain

νΛ(A) = lim
t↑∞

µt
{
B∗∗(τ∗∗) ∈ A

∣∣ τ∗ < t
}

= P
{
B(τ) ∈ A

∣∣ τ <∞
}

= µΛ(A),

whereτ is the first hitting time ofΛ by the Brownian motion{B(t) : t > 0}, which is
started uniformly on∂B(0, r), and we have used Theorem 3.50 in the last step.

Example 8.36Recall from Example 7.24 that the Beta( 1
2 ,

1
2 ) distribution on[0, 1] given

by the density

g(x) = 1
π

1√
x(1−x)

dx,

is the harmonic measure of the unit interval embedded in the plane. By Theorem 8.33 the
functiong therefore maximises the expression

∫ 1

0

∫ 1

0

f(x) log |x− y| f(y) dx dy

over all probability densitiesf on [0, 1]. �
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8.4 Wiener’s test of regularity

In this section we concentrate ond > 3 and find a sharp criterion for a point to be regular
for a closed setΛ ⊂ Rd. This criterion is given in terms of the capacity of the intersection
of Λ with annuli, or shells, concentric aboutx.
To fix some notation letk > ` be integers andx ∈ Rd, and define the annulus

Ax(k, `) :=
{
y ∈ Rd : 2−k 6 |y − x| 6 2−`

}
.

AbbreviateAx(k) := Ax(k + 1, k) and let

Λkx := Λ ∩Ax(k) .

We aim to prove the following result.

Theorem 8.37 (Wiener’s test)A pointx ∈ Rd is regular for the closed setΛ ⊂ Rd, d > 3,
if and only if

∞∑

k=1

2k(d−2)Cd−2

(
Λkx
)

= ∞ ,

whereCd−2 is the Newtonian capacity introduced in Definition 4.31.

In the proof, we may assume, without loss of generality, thatx = 0. We start the proof
with an easy observation.

Lemma 8.38There exists a constantc > 0, which depends only on the dimensiond, such
that, for all k, we have

c 2k(d−2)Cd−2(Λ
k
0)6CapM (Λk0) 6 c 2(k+1)(d−2)Cd−2(Λ

k
0).

Proof. Observe that, asz ∈ Λk0 implies2−k−1 6 |z| 6 2−k, we obtain the statement by
estimating the denominator in the Martin kernelM .

The crucial step in the proof is a quantitative estimate, from which Wiener’s test follows
quickly.

Lemma 8.39There exists a constantc > 0, depending only on the dimensiond, such that

1−exp
(
−c

k−1∑

j=`

CapM (Λj0)
)

6 P0

{
{B(t) : t > 0} hitsΛ∩A0(k, `)

}
6

k−1∑

j=`

CapM (Λj0) .

Proof. For theupperbound we look at the eventD(j) that a Brownian motion started
in 0 hitsΛj0. Then, using Theorem 8.24, we getP0

(
D(j)

)
6 CapM

(
Λj0
)
. Therefore

P0

{
{B(t) : t > 0} hitsΛ ∩A0(k, `)

}
6 P0

( k−1⋃

j=`

D(j)
)
6

k−1∑

j=`

CapM (Λj0),

and this completes the proof of the upper bound.
For thelower bound we look at the eventE(z, j) that a Brownian motion started in some
point z ∈ ∂B(0, 2−j) and stopped upon hitting∂B(0, 2−j+4) hits Λj−2

0 . Again we use
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either Theorem 8.24, or Corollary 8.12 in conjunction with Theorem 8.27, to get, for con-
stantsc1, c2 > 0 depending only on the dimensiond,

Pz
{
{B(t) : t > 0} ever hitsΛj−2

0

}
> c1

(
2−(j−1) − 2−j

)2−d
Cd−2

(
Λj−2

0

)
,

and, for anyy ∈ ∂B(0, 2−j+4),

Py
{
{B(t) : t > 0} ever hitsΛj−2

0

}
6 c2

(
2−(j−4) − 2−(j−2)

)2−d
Cd−2

(
Λj−2

0

)
.

Therefore, for a constantc > 0 depending only on the dimensiond,

P
(
E(z, j)

)
> Pz

{
{B(t)} ever hitsΛj−2

0

}
− max
y∈∂B(0,2−j+4)

Py
{
{B(t)} ever hitsΛj−2

0

}

> c 2j(d−2)Cd−2

(
Λj−2

0

)
.

Now divide{`+ 2, . . . , k + 1} into (at most) four subsets such that each subsetI satisfies
|i− j| > 4 for all i 6= j ∈ I. Choose a subsetI which satisfies

∑

j∈I
2(j−2)(d−2)Cd−2(Λ

j−2
0 ) >

1
4

k−1∑

j=`

2j(d−2) Cd−2(Λ
j
0). (8.11)

Now we have withτj = inf{t > 0: |B(t)| = 2−j},

P0

{
{B(t) : t > 0} avoidsΛ ∩A0(k, `)

}
6 P0

( ⋂

j∈I
E
(
B(τj), j

)c)

6
∏

j∈I
sup

z∈∂B(0,2−j)

P
(
E(z, j)c

)
6
∏

j∈I

(
1 − c 2j(d−2)Cd−2

(
Λj−2

0

) )

6 exp
(
− c

∑

j∈I
2j(d−2) Cd−2(Λ

j−2
0 )

)
,

using the estimatelog(1 − x) 6 − x in the last step. The lower bound now follows from
(8.11) and Lemma 8.38 when we pass to the complement.

Proof of Wiener’s test. Suppose
∑∞
k=1 2k(d−2)Cd−2

(
Λk0
)

= ∞. Therefore, by
Lemma 8.39 and Lemma 8.38, for allk ∈ N,

P0

{
{B(t) : t > 0} hitsΛ ∩ B(0, 2−k)

}
> 1 − exp

(
− c

∞∑

j=k

CapM (Λj0)
)

= 1.

Since points are polar, for anyε, δ > 0 there exists a largek such that

P0

{
{B(t) : t > ε} hitsB(0, 2−k)

}
< δ .

Combining these two facts we get for the first hitting timeτ = τ(Λ) of the setΛ,

P0

{
τ < ε

}
> P0

{
{B(t) : t > 0} hitsΛ ∩ B(0, 2−k)

}

− P0

{
{B(t) : t > ε} hitsB(0, 2−k)} > 1 − δ.

As ε, δ > 0 were arbitrary, the point0 must be regular.
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Now suppose that
∑∞
k=1 2k(d−2)Cd−2

(
Λk0
)
<∞. Then

∞∑

k=1

P0

{
{B(t) : t > 0} hitsΛ ∩A0(k)

}
6

∞∑

k=1

CapM (Λk0) <∞.

Hence, by the Borel Cantelli lemma, almost surely there exists a ballB(0, ε) such that
{B(t) : t > 0} does not hitB(0, ε) ∩ Λ. By continuity we therefore must haveinf{t >
0: B(t) ∈ Λ} > 0 almost surely, hence the point0 is irregular.

x1-1 10

-1

1

x2, x3

Λ

G

Fig. 8.2. Lebesgue’s thorn.

Example 8.40The following example is due to Lebesgue [Le24], and is usually called
Lebesgue’s thorn. For anyα > 0 we define an open subsetG ⊂ (−1, 1)3 with a cuspat
zero by

G :=
{
(x1, x2, x3) ∈ (−1, 1)3 :

√
x2

2 + x2
3 > xα1 if x1 > 0

}
,

see Figure 8.2. Now the origin is anirregular point forΛ = Gc if α > 1. For the proof it
suffices, by Wiener’s test, to check that

∞∑

k=1

2kC1

(
Λk0
)
<∞.

Note that, for any probability measureµ onΛk0 , we haveI1(µ) > 2αk and, hence,

∞∑

k=1

2kC1

(
Λk0
)

6

∞∑

k=1

2k(1−α) <∞ ,

verifying Wiener’s test of irregularity. Conversely, the Poincaré cone condition, see Theo-
rem 8.3, shows that forα 6 1 the origin isregular for Λ = Gc. �
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Exercises

Exercise 8.1.S Let U ⊂ Rd be a domain andu : U → R subharmonic. Use Itô’s formula
to show that, for any ballB(x, r) ⊂ U ,

u(x) 6
1

L(B(x, r))

∫

B(x,r)

u(y) dy.

Exercise 8.2.Let x ∈ U ⊂ Rd be a domain and suppose that

lim inf
r↓0

L(B(x, r) ∩ U c)

rd
> 0.

Show thatx is regular for the complement ofU .

Exercise 8.3.S Supposeg is bounded andu a solution of Poisson’s problem forg. Show
that this solution has the form

u(x) = Ex
[ ∫ T

0

g(B(t)) dt
]
, for x ∈ U ,

whereT := inf{t > 0: B(t) 6∈ U}. Observe that this implies that the solution, if it exists,
is always uniquely determined.

Exercise 8.4.Let

u(x) = Ex
[ ∫ T

0

g(B(t)) dt
]
, for x ∈ U ,

whereT := inf{t > 0: B(t) 6∈ U}. Show that,

(a) If g is Hölder continuous, then the functionu : U → R solves− 1
2∆u = g.

(b) If every pointx ∈ ∂U is regular for the complement ofU , thenu(x) = 0 for all
x ∈ ∂U .

Exercise 8.5.S Let a > 0 and τ a standard exponential random variable independent
of the standard Brownian motion{B(t) : t > 0} in Rd. Show that there exist constants
0 < c < C depending only ona andd, such that for any compact setA ⊂ B(0, a), we
have

cP0

{
B[0, 1] ∩A 6= ∅

}
6 P0

{
B[0, τ ] ∩A 6= ∅

}
6 C P0

{
B[0, 1] ∩A 6= ∅

}
.

Exercise 8.6. SupposeΛ ⊂ Rd, for d > 3, is compact andγ the last exit time fromΛ

defined as in Theorem 8.8. Show that

lim
x→∞

Px
{
B(γ) ∈ A | γ > 0

}
=
ν(A)

ν(Λ)
.
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Exercise 8.7.Ford > 3 consider the spherical shell

ΛR = {x ∈ Rd : 1 6 |x| 6 R}.

Show thatlimR→∞ CapM (ΛR) = 2.

Exercise 8.8. Let {X(a) : a > 0} be a stable subordinator of index12 as defined in
Theorem 2.35, and

K(s, t) : =

{
(t− s)−1/2 0 6 s 6 t ,

0 s > t > 0 .

LetM(s, t) = K(s, t)/K(0, t), then for any subsetΛ of (0,∞),

1
2 CapM (Λ) 6 P0

{
{X(a) : a > 0} hitsΛ

}
6 CapM (Λ) .

Exercise 8.9. Let {B(t) : t > 0} be a standard linear Brownian motion.

(a) For the kernelM of Exercise 8.8, show thatCapM (Zeros) = 0 almost surely.

(b) LetA ⊂ (0,∞). Show that

P0

{
∃t ∈ A with B(t) = 0

}
{

> 0 if dimA > 1
2 ,

= 0 if dimA < 1
2 .

Exercise 8.10.S Let µn, µ be Borel probability measures on a compact metric spaceX.
Supposeµn → µ in the sense of weak convergence, as defined in Section 12.1 ofthe ap-
pendix. Show thatµn ⊗ µn → µ ⊗ µ in the sense of weak convergence of probability
measures onX ×X.

Exercise 8.11.S Let {B(s) : s > 0} underPx be a Brownian motion inRd, d > 3, with
B(0) = x, and denote by

τB(0,1) = inf{s > 0: B(s) ∈ B(0, 1)}

the first hitting time of the unit ball after time zero. Show that there exist constants0 <
c < C <∞ such that, fort > 1,

c t 6

∫
Px{τB(0,1) < t} dx 6 C t .

Exercise 8.12. Show that exactly one of the probability measuresµ on the closed unit
disc in the plane that minimise the energies

∫∫
log

1

|x− y| dµ(x) dµ(y) and
∫∫

1

|x− y| dµ(x) dµ(y)

is concentrated on the boundary of the disc.
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Exercise 8.13. Let Λ ⊂ R2 be a nonpolar, compact set andνλ be the equilibrium measure
for planar Brownian motion stopped at an independent exponential time with parameterλ.
Then the limit

lim
λ↓0

νλ

νλ(Λ)

exists and is equal to the energy-minimising measureνΛ.
Hint. Use ideas from Theorem 3.34 and Theorem 8.30.

Notes and comments

The proof of the last exit formula is taken from Chung’s beautiful paper [Ch73], but the
existence of an energy-minimising measure is a much older fact. For the case of the Newto-
nian potential (d = 3) it was determined by Gauss as the charge distribution on thesurface
of a conductor which minimises the electrostatic energy. Classically, the equilibrium mea-
sure is defined as the measureν on Λ that maximisesν(Λ) among those with potential
bounded by one. Thenν/ν(Λ) is the energy-minimising probability measure, see Car-
leson [Ca67]. Rigorous results and extensions to general Riesz-potentials are due to Frost-
man in his ground-breaking thesis [Fr35]. Our discussion ofthe strong maximum princi-
ple follows Carleson [Ca67], Bass [Ba95] describes an alternative approach. The classical
proof of Lemma 8.29 uses Fourier transform and Plancherel’stheorem, see [Ca67].

Characterising the polar sets for Brownian motion is related to the following question:
for which setsA ⊂ Rd are there nonconstant bounded harmonic functions onRd \ A?
Such sets are calledremovablefor bounded harmonic functions. Consider the simplest
case first. WhenA is the empty set, it is obviously polar, and by Liouville’s theorem there
is no bounded harmonic function on its complement. Nevanlinna [Ne70] proved in the
1920s that ford > 3 there exist nonconstant bounded harmonic functions onRd \A if and
only if CapG(A) > 0, whereG(x, y) = f(|x−y|) for the radial potentialf as before. Just
to make this result more plausible, note that the functionh(x) =

∫
G(x, y)µ(dy), where

µ is a measure onA of finiteG-energy, would make a good candidate for such a function,
see Theorem 3.35.

Loosely speaking,G-capacity measures whether a setA is big enough to hide a pole
of a harmonic function inside. Recall from Theorem 4.32 thatdimA > d − 2 implies
existence of such functions, anddimA < d − 2 implies nonexistence. Kakutani [Ka44b]
showed that there exist bounded harmonic functions onRd \ A if and only if A is polar
for Brownian motion. The precise hitting estimates we give are fairly recent, our proof is
a variant of the original proof by Benjamini et al. in [BPP95]. Proposition 8.26 goes back
to the same paper.



254 Potential theory of Brownian motion

An interesting question is, which subsets of compact sets are charged by the harmonic
measureµA. ClearlyµA does not charge polar sets, and in particular, ind > 3, we have
µA(B) = 0 for all Borel sets with dim(B) < d− 2. In the plane, by a famous theorem of
Makarov, see [Ma85], we have that

• any setB of dimension< 1 hasµA(B) = 0,
• there is a setS ⊂ A with dimS = 1 such thatµA(Sc) = 0.

However, the outer boundary, which supports the harmonic measure, may have a dimension
much bigger than one. An interesting question arising in thecontext of self-avoiding curves
asks for the dimension of the outer boundary of the imageB[0, 1] of a Brownian motion.
Based on scaling arguments from polymer physics, Benoit Mandelbrot conjectured in 1982
that this set should have fractal dimension4/3. Bishop et al. [BJPP97] showed that the
outer boundary has dimension> 1. In 2001 Mandelbrot’s conjecture was finally proved
by Lawler, Schramm and Werner [LSW01c], see Chapter 11 for more information.

There are some fine results about the hitting probabilities of small balls within a given
time in the literature. Le Gall [LG86b] shows, using a classical diffusion argument, that
for d > 3 we have, asε ↓ 0,

P0

{
τ(B(x, ε)) 6 t

}
∼
(
d
2 − 1

)
L(B(0, 1)) εd−2

∫ t

0

ps(0, y) ds.

This should be compared to the result of Exercise 8.11. The analogous result for the planar
case is due to Spitzer [Sp58]. Further fine results from [LG86b] refer to the hitting of
several small balls in a given time, and some asymptotic results for the volume of Wiener
sausages, the neighbourhoods of the Brownian path.
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Intersections and self-intersections of Brownian paths

In this chapter we study multiple points ofd-dimensional Brownian motion. We shall
see, for example, in which dimensions the Brownian path has double points and explore
how many double points there are. This chapter also containssome of the highlights of
the book: a proof that planar Brownian motion has points of infinite multiplicity, the in-
tersection equivalence of Brownian motion and percolationlimit sets, and the surprising
dimension-doubling theorem of Kaufman.

9.1 Intersection of paths: Existence and Hausdorff dimension

9.1.1 Existence of intersections

Suppose that{B1(t) : t > 0} and{B2(t) : t > 0} are two independentd-dimensional
Brownian motions started in arbitrary points. The questionwe ask in this section is, in
which dimensions the ranges, or paths, of the two motions have a nontrivial intersection,
in other words whether there exist timest1, t2 > 0 such thatB1(t1) = B2(t2). As this
question is easy ifd = 1 we assumed > 2 throughout this section.

We have developed the tools to decide this question in Chapter 4 and Chapter 8. Keeping
the path{B1(t) : t > 0} fixed, we have to decide whether it is a polar set for the second
Brownian motion. By Kakutani’s theorem, Theorem 8.20, thisquestion depends on its
capacity with respect to the potential kernel. As the capacity is again related to Hausdorff
measure and dimension, the results of Chapter 4 are crucial in the proof of the following
result.

Theorem 9.1

(a) For d > 4, almost surely, two independent Brownian paths inRd have an empty
intersection, except for a possible common starting point.

(b) For d 6 3, almost surely, the intersection of two independent Brownian paths inRd

is nontrivial, i.e. contains points other than a possible common starting point.

255
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Remark 9.2 In the cased 6 3, if the Brownian paths are started at the same point, then
almost surely, the paths intersect before any positive timet > 0, see Exercise 9.1 (a). �

Proof of (a). Note that it suffices to look at one Brownian motion and show that its path
is, almost surely, a set of capacity zero with respect to the potential kernel. Ifd > 4, the
capacity with respect to the potential kernel is a multiple of the Riesz(d− 2)-capacity. By
Theorem 4.27 this capacity is zero for sets of finite(d−2)-dimensional Hausdorff measure.
Now note that ifd > 5 the dimension of a Brownian path is two, and hence strictly smaller
thand − 2, so that the(d − 2)-dimensional Hausdorff measure is zero, which shows that
the capacity must be zero.

If d = 4 the situation is only marginally more complicated, although the dimension of the
Brownian path is2 = d − 2 and the simple argument above does not apply. However,
we know from (4.2) in Chapter 4 thatH2(B[0, 1]) < ∞ almost surely, which implies that
Cap2(B[0, 1]) = 0 by Theorem 4.27. This implies that an independent Brownian motion
almost surely does not hit any of the segmentsB[n, n + 1], and therefore avoids the path
entirely.

Proof of (b). If d = 3, the capacity with respect to the potential kernel is a multiple of the
Riesz1-capacity. As the Hausdorff dimension of a path is two, this capacity is positive by
Theorem 4.32. Therefore two Brownian paths ind = 3 intersect with positive probability.

Suppose now the two Brownian motions start at different points. We may assume that one
is the origin and the other one is denotedx. By rotational invariance, the probability that
the paths do not intersect depends only on|x|, and by Brownian scaling we see that it is
completely independent of the choice ofx 6= 0. Denote this probability byq and, given
anyε > 0, choose a large timet such that

P
{
B1(t1) 6= B2(t2) for all 0 < t1, t2 6 t

}
6 q + ε.

Then, using the Markov property,

q 6 P
{
B1(t1) 6= B2(t2) for all t1, t2 6 t

}
P
{
B1(t1) 6= B2(t2) for all t1, t2 > t

}

6 q(q + ε).

As ε > 0 was arbitrary, we getq 6 q2, and as we know thatq < 1 we obtain thatq = 0.
This shows that two Brownian paths started in different points intersect almost surely. If
they start in the same point, by the Markov property,

P
{
B1(t1) 6= B2(t2) for all t1, t2 > 0

}
= lim

t↓0
t>0

P
{
B1(t1) 6= B2(t2) for all t1, t2 > t

}
= 0,

as required to complete the argument in the cased = 3. A path ind 6 2 is the projection
of a three dimensional path on a lower dimensional subspace,hence if two paths ind = 3

intersect almost surely, then so do two paths ind = 2.
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It is equally natural to ask, for integersp > 2 andd 6 3, whether a collection ofp inde-
pendentd-dimensional Brownian motions

{B1(t) : t > 0}, . . . , {Bp(t) : t > 0}

intersect, i.e. whether there exist timest1, . . . , tp > 0 such thatB1(t1) = · · · = Bp(tp).

Theorem 9.3

(a) For d > 3, almost surely, three independent Brownian paths inRd have an empty
intersection, except for a possible common starting point.

(b) For d = 2, almost surely, the intersection of any finite numberp of independent
Brownian paths inRd is nontrivial, i.e. contains points other than a possible com-
mon starting point.

In the light of our discussion of the casep = 2, it is natural to approach the question
about the existence of intersections ofp paths, by asking for the Hausdorff dimension and
measure of the intersection ofp− 1 paths. This leads to an easy proof of (a).

Lemma 9.4Suppose{Bi(t) : t > 0}, for i = 1, 2, are two independent Brownian motions
in d = 3. Then, almost surely, for every compact setΛ ⊂ R3 not containing the starting
points of the Brownian motions, we haveH1(B1[0,∞) ∩B2[0,∞) ∩ Λ) <∞.

Proof. Fix a cubeCube ⊂ R3 of unit side length not containing the starting points.
It suffices to show that, almost surely,H1(B1[0,∞) ∩ B2[0,∞) ∩ Cube) < ∞. For this
purpose letCn be the collection of dyadic subcubes ofCube of side length2−n, andIn

be the collection of cubes inCn which are hit by both motions. By our hitting estimates,
Corollary 3.19, there existsC > 0 such that, for any cubeE ∈ Cn,

P
{
E ∈ In

}
= P

{
∃s > 0 with B(s) ∈ E

}2
6 C2−2n.

Now, for everyn, the collectionIn is a covering ofB1[0,∞) ∩B2[0,∞) ∩ Cube, and

E
[ ∑

E∈In

|E|
]

= 23n P
{
E ∈ In

}√
32−n 6 C

√
3.

Therefore, by Fatou’s lemma, we obtain

E
[
lim inf
n→∞

∑

E∈In

|E|
]

6 lim inf
n→∞

E
[ ∑

E∈In

|E|
]

6 C
√

3.

Hence the liminf is finite almost surely, and we infer from this thatH1(B1[0,∞)∩B2[0,∞)∩
Cube) is finite almost surely.

Proof of Theorem 9.3 (a). It suffices to show that, for any cubeCube of unit side length
which does not contain the origin, we haveCap1(B1[0,∞)∩B2[0,∞)∩Cube) = 0. This
follows directly from Lemma 9.4 and the energy method, Theorem 4.27.
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For Theorem 9.3 (b) it would suffice to show that the Hausdorffdimension of the set
B1(0,∞) ∩ . . . ∩Bp−1(0,∞) is positive in the cased = 2. In fact, it is a natural question
to ask for the Hausdorff dimension of the intersection of Brownian paths in any case when
the set is nonempty. The problem was raised by Itô and McKean in the first edition of their
influential book [IM74], and has since been resolved by Taylor [Ta66] and Fristedt [Fr67].
The substantial problem of finding lower bounds for the Hausdorff dimension of the inter-
section sets is best approached using the technique ofstochastic co-dimension, which we
discuss now.

9.1.2 Stochastic co-dimension and percolation limit sets

Given a setA, the idea behind the stochastic co-dimension approach is totake a suitable
random test setΘ, and check whetherP{Θ ∩ A 6= ∅} is zero or positive. In the latter
case this indicates that the set is large, and we should therefore get a lower bound on
the dimension ofA. A natural choice of such a random test set would be the range of
Brownian motion. Recall that, for example in the cased = 3, if P{B[0,∞)∩A 6= ∅} > 0,
this implies thatdimA > 1.

Of course, in order to turn this idea into a systematic technique for finding lower bounds
for the Hausdorff dimension, an entire family of test sets isneeded to tune the size of the
test set in order to give sharp bounds. For this purpose, Taylor [Ta66] used stable processes
instead of Brownian motion. This is not the easiest way and also limited, because stable
processes only exist across a limited range of parameters. The approach we use in this
book is based on using the family of percolation limit sets astest sets.

Suppose thatC ⊂ Rd is a fixed compact unit cube. We denote byCn the collection of
compact dyadic subcubes (relative toC) of side length2−n. We also let

C =

∞⋃

n=0

Cn.

Givenγ ∈ [0, d] we construct a random compact setΓ[γ] ⊂ C inductively as follows: We
keep each of the2d compact cubes inC1 independently with probabilityp = 2−γ . Let S1

be the collection of cubes kept in this procedure andS(1) their union. Pass fromSn to
Sn+1 by keeping each cube ofCn+1, which is not contained in a previously rejected cube,
independently with probabilityp. Denote byS =

⋃∞
n=1 Sn and letS(n+ 1) be the union

of the cubes inSn+1. Then the random set

Γ[γ] :=
∞⋂

n=1

S(n)

is called apercolation limit set. The usefulness of percolation limit sets in fractal geome-
try comes from the following theorem.
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Theorem 9.5 (Hawkes 1981)For everyγ ∈ [0, d] and every closed setA ⊂ C the
following properties hold

(i) if dimA < γ, then almost surely,A ∩ Γ[γ] = ∅,

(ii) if dimA > γ, thenA ∩ Γ[γ] 6= ∅ with positive probability,

(iii) if dimA > γ, then

(a) almost surelydim
(
A ∩ Γ[γ]

)
6 dimA− γ and,

(b) for all ε > 0, with positive probabilitydim
(
A ∩ Γ[γ]

)
> dimA− γ − ε.

Remark 9.6Observe that the first part of the theorem gives alower boundγ for the Haus-
dorff dimension of a setA, if we can show thatA∩ Γ[γ] 6= ∅ with positive probability. As
with so many ideas in fractal geometry one of the roots of thismethod lies in the study of
trees, more precisely percolation on trees, see [Ly90]. �

Remark 9.7

(a) The stochastic co-dimension technique and the energy method are closely related:
A setA is calledpolar for the percolation limit set, if

P{A ∩ Γ[γ] 6= ∅} = 0.

We shall see in Theorem 9.18 that a set is polar for the percolation limit set if and
only if it hasγ-capacity zero.

(b) For d > 3, the criterion for polarity of a percolation limit set withγ = d − 2

therefore agrees with the criterion for the polarity for Brownian motion, recall The-
orem 8.20. This ‘equivalence’ between percolation limit sets and Brownian motion
has a quantitative strengthening which is discussed in Section 9.2 of this chapter.�

Proof of (i) in Hawkes’ theorem. The proof of part (i) is based on thefirst mo-
ment method, which means that we essentially only have to calculate an expectation. Be-
causedimA < γ there exists, for everyε > 0, a covering ofA by countably many sets
D1,D2, . . . with

∑∞
i=1 |Di|γ < ε. As each set is contained in no more than a constant

number of dyadic cubes of smaller diameter, we may even assume thatD1,D2, . . . ∈ C.
Suppose that the side length ofDi is 2−n, then the probability thatDi ∈ Sn is 2−nγ . By
picking fromD1,D2, . . . those cubes which are inS we get a covering ofA ∩ Γ[γ]. Let
N be the number of cubes picked in this procedure, then

P{A ∩ Γ[γ] 6= ∅} 6 P{N > 0} 6 EN =

∞∑

i=1

P{Di ∈ S} =

∞∑

i=1

|Di|γ < ε.

As this holds for allε > 0 we infer that, almost surely, we haveA ∩ Γ[γ] = ∅.
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Proof of (ii) in Hawkes’ theorem. The proof of part (ii) is based on thesecond moment
method, which means that a variance has to be calculated. We also usethe easy part of
Frostman’s lemma in the form of Theorem 4.32, which states that, asdimA > γ, there
exists a probability measureµ onA such thatIγ(µ) <∞.
Now letn be a positive integer and define the random variables

Yn =
∑

C∈Sn

µ(C)

|C|γ =
∑

C∈Cn

µ(C)2nγ 1{C∈Sn}.

Note thatYn > 0 impliesS(n) ∩A 6= ∅ and, by compactness, ifYn > 0 for all n we even
haveA ∩ Γ[γ] 6= ∅. AsYn+1 > 0 impliesYn > 0, we get that

P
{
A ∩ Γ[γ] 6= ∅

}
> P

{
Yn > 0 for all n

}
= lim
n→∞

P
{
Yn > 0

}
.

It therefore suffices to give a positive lower bound forP{Yn > 0} independent ofn.
A straightforward calculation gives for the first momentE[Yn] =

∑
C∈Cn

µ(C) = 1. For
the second moment we find

E[Y 2
n ] =

∑

C∈Cn

∑

D∈Cn

µ(C)µ(D) 22nγ P{C ∈ Sn andD ∈ Sn}.

The latter probability depends on the dyadic distance of thecubesC andD: if 2−m is the
side length of the smallest dyadic cube which contains bothC andD, then the probability
in question is2−2γ(n−m)2−γm. The valuem can be estimated in terms of the Euclidean
distance of the cubes, indeed ifx ∈ C andy ∈ D then

|x− y| 6
√
d2−m.

This gives a handle to estimate the second moment in terms of the energy ofµ. We find
that

E[Y 2
n ] =

∑

C∈Cn

∑

D∈Cn

µ(C)µ(D)2γm 6 dγ/2
∫∫

dµ(x) dµ(y)

|x− y|γ = dγ/2Iγ(µ).

Plugging these moment estimates into the easy form of the Paley–Zygmund inequality,
Lemma 3.23, givesP{Yn > 0} > d−γ/2Iγ(µ)−1, as required.

Proof of (iii) in Hawkes’ theorem. For part (iii) note that the intersectionΓ[γ] ∩ Γ[δ]

of two independent percolation limit sets has the same distribution asΓ[γ + δ]. Suppose
first that δ > dimA − γ. Then, by part (i),A ∩ Γ[γ] ∩ Γ[δ] = ∅ almost surely, and
hence, by part (ii),dimA ∩ Γ[γ] 6 δ almost surely. Lettingδ ↓ dimA − γ completes
the proof of part (a). Now suppose thatδ < dimA − γ. Then, with positive probability,
(A ∩ Γ[γ]) ∩ Γ[δ] 6= ∅, by part (ii). And using again part (i) we get thatdimA ∩ Γ[γ] > δ

with positive probability, completing the proof of part (b).

9.1.3 Hausdorff dimension of intersections

We can now use the stochastic codimension approach to find theHausdorff dimension of
the intersection of two Brownian paths, whenever it is nonempty. Note that the following
theorem also implies Theorem 9.3 (b).
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Theorem 9.8Supposed > 2 andp > 2 are integers such thatp(d− 2) < d. Suppose that

{B1(t) : t > 0}, . . . , {Bp(t) : t > 0}

arep independentd-dimensional Brownian motions. LetRangei = Bi[0,∞) be the range
of the process{Bi(t) : t > 0}, for 1 6 i 6 p. Then, almost surely,

dim
(
Range1 ∩ . . . ∩ Rangep

)
= d− p(d− 2).

Remark 9.9A good way to make this result plausible is by recalling the situation for the
intersection of linear subspaces ofRd: If the spaces are in general position, then the co-
dimension of the intersection is the sum of the co-dimensions of the subspaces. As the
Hausdorff dimension of a Brownian path is two, the plausiblecodimension of the intersec-
tion of p paths isp(d− 2), and hence the dimension isd− p (d− 2). �

Remark 9.10Assuming the theorem, if the Brownian paths are started in the same point,
then almost surely,dim(B1[0, t1]∩· · ·∩Bp[0, tp]) = d−p(d−2), for anyt1, . . . , tp > 0,
see Exercise 9.1 (b). �

For the proofs of the lower bounds in Theorem 9.8 we use the stochastic codimension
method, but first we provide a useful zero-one law.

Lemma 9.11For anyγ > 0 the probability of the event
{

dim
(
Range1 ∩ . . . ∩ Rangep

)
> γ

}

is either zero or one, and independent of the starting pointsof the Brownian motions.

Proof. For t ∈ (0,∞] denoteS(t) = B1(0, t) ∩ · · · ∩Bp(0, t) and let

p(t) = P{dimS(t) > γ}.

We start by considering the case that all Brownian motions start at the origin. Then, by
monotonicity of the events,

P
{

dimS(t) > γ for all t > 0
}

= lim
t↓0

p(t).

The event on the left hand side is in the germ-σ-algebra and hence, by Blumenthal’s zero-
one law, has probability zero or one. By scaling, however,p(t) does not depend ont at all,
so we have eitherp(t) = 0 for all t > 0 or p(t) = 1 for all t > 0.

In the first case we note that, by the Markov property applied at time t,

0 = P
{

dimS(∞) > γ
}

=

∫
P
{

dimS(∞) > γ | B1(t) = x1, . . . , Bp(t) = xp
}
dµ(x1, . . . , xp),
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whereµ is the product ofp independent centred, normally distributed random variables
with variancest. As µ � Lpd, we haveP{dimS(∞) > γ} = 0 for Lpd-almost every
vector of starting points. Finally, for an arbitrary configuration of starting points,

P
{

dimS(∞) > γ
}

= lim
t↓0

P
{

dim{x ∈ Rd : ∃ti > t such thatx = B1(t1) = · · · = Bp(tp)} > γ
}

= 0.

A completely analogous argument can be carried out for the second case.

Proof of Theorem 9.8. First we look atd = 3 (and hencep = 2) and note that,
by Lemma 9.4, we havedim(Range1 ∩ Range2) 6 1, and hence only the lower bound
remains to be proved. Supposeγ < 1 is arbitrary, and pickβ > 1 such thatγ + β < 2.
Let Γ[γ] andΓ[β] be two independent percolation limit sets, independent of the Brownian
motions. Note thatΓ[γ] ∩ Γ[β] is a percolation limit set with parameterγ + β. Hence, by
Theorem 9.5 (ii) and the fact thatdim(Range1) = 2 > γ + β, we have

P
{
Range1 ∩ Γ[γ] ∩ Γ[β] 6= ∅

}
> 0.

InterpretingΓ[β] as the test set and using Theorem 9.5 (i) we obtain

dim
(
Range1 ∩ Γ[γ]

)
> β with positive probability.

As β > 1, given this event, the setRange1 ∩ Γ[γ] has positive capacity with respect to the
potential kernel inR3 and is therefore nonpolar with respect to the independent Brownian
motion{B2(t) : t > 0}. We therefore have

P
{
Range1 ∩ Range2 ∩ Γ[γ] 6= ∅

}
> 0.

Using Theorem 9.5 (i) we infer thatdim(Range1 ∩Range2) > γ with positive probability.
Lemma 9.11 shows that this must in fact hold almost surely, and the result follows asγ < 1

was arbitrary.

Next, we look atd = 2 and anyp > 2. Note that the upper bounds are trivial. For the lower
bounds, supposeγ < 2 is arbitrary, and pickβ1, . . . , βp > 0 such thatγ+β1+· · ·+βp < 2.
Let Γ[γ] andΓ[β1], . . . ,Γ[βp] be independent percolation limit sets, independent of thep

Brownian motions. Then

Γ[γ] ∩
p⋂

i=1

Γ[βi]

is a percolation limit set with parameterγ+β1 + · · ·+βp. Hence, by Theorem 9.5 (ii) and
the fact thatdim(Range1) = 2 > γ + β1 + · · · + βp, we have

P
{

Range1 ∩ Γ[γ] ∩
p⋂

i=1

Γ[βi] 6= ∅
}
> 0.

InterpretingΓ[βp] as the test set and using Theorem 9.5 (i) we obtain

dim
(
Range1 ∩ Γ[γ] ∩

p−1⋂

i=1

Γ[βi]
)

> βp with positive probability.
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As βp > 0, given this event, the set

Range1 ∩ Γ[γ] ∩
p−1⋂

i=1

Γ[βi]

has positive capacity with respect to the potential kernel in R2 and is therefore nonpolar
with respect to the independent Brownian motion{B2(t) : t > 0}. We therefore have

P
{
Range1 ∩ Range2 ∩ Γ[γ] ∩

p−1⋂

i=1

Γ[βi] 6= ∅
}
> 0.

Iterating this procedurep− 1 times we obtain

P
{ p⋂

i=1

Rangei ∩ Γ[γ] 6= ∅
}
> 0.

Using Theorem 9.5 (i) we infer thatdim(
⋂p
i=1 Rangei) > γ with positive probability.

Lemma 9.11 shows that this must in fact hold almost surely, and the result follows as
γ < 2 was arbitrary.

9.2 Intersection equivalence of Brownian motion and percolation limit sets

The idea of quantitative estimates of hitting probabilities has a natural extension: two ran-
dom sets may be calledintersection-equivalentif their hitting probabilities for a large class
of test sets are comparable. This concept of equivalence allows surprising relationships be-
tween random sets which, at first sight, might not have much incommon. In this section we
establish intersection equivalence between Brownian motion and suitably defined percola-
tion limit sets, and use this to characterise the polar sets for the intersection of Brownian
paths. We start the discussion by formalising the idea of intersection equivalence.

Definition 9.12. Two random closed setsA andB in Rd are intersection-equivalent
in the compact setU if there exist two positive constantsc, C such that, for any closed
setΛ ⊂ U ,

cP{A ∩ Λ 6= ∅} 6 P{B ∩ Λ 6= ∅} 6 CP{A ∩ Λ 6= ∅}. (9.1)

Using the symbola � b to indicate that the ratio ofa andb is bounded from above and
below by positive constants which do not depend onΛ we can write this as

P{A ∩ Λ 6= ∅} � P{B ∩ Λ 6= ∅}.
�

Remark 9.13Let G be the collection of all closed subsets ofRd. Formally, we define a
random closed set as a mappingA : Ω → G such that, for every compactΛ ⊂ Rd, the set
{ω : A(ω) ∩ Λ = ∅} is measurable. �

The philosophy of the main result of this section is that we would like to find a class of
particularly simple sets which are intersection-equivalent to the paths of transient Brownian
motion. If these sets are easier to study, we can ‘translate’easy results about the simple sets
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into hard ones for Brownian motion. A good candidate for these simple sets are percolation
limit sets: they have excellent features ofself-similarityandindependencebetween the fine
structures in different parts. Many of their properties canbe obtained from classical facts
about Galton–Watson branching processes.

We introduce percolation limit sets withgeneration dependentretention probabilities. De-
note byCn the compact dyadic cubes of side length2−n. For any sequencep1, p2, . . . in
(0, 1) we define familiesSn of compact dyadic cubes inductively by including any cube in
Cn which is not contained in a previously rejected cube, independently with probabilitypn.
Define

Γ =

∞⋂

n=1

⋃

S∈Sn

S,

to be thepercolation limit set for the sequencep1, p2, . . ..
To find a suitable sequence of retention probabilities we compare the hitting probabilities
of dyadic cubes by a percolation limit set on the one hand and atransient Brownian on the
other. (This is obviously necessary to establish intersection equivalence). We assume that
percolation is performed in a cubeCube at positive distance from the origin, at which a
transient Brownian motion is started. Supposing for the moment that the retention proba-
bilities are such that the survival probability of any retained cube is bounded from below,
for any cubeQ ∈ Cn, the hitting estimates for the percolation limit set are

P
{
Γ ∩Q 6= ∅

}
� p1 · · · pn .

By Theorem 8.24, on the other hand,

P
{
B[0, T ] ∩Q 6= ∅

}
� CapM (Q) � 1/f(2−n) ,

for the radial potential

f(ε) =

{
log2(1/ε) for d = 2,

ε2−d for d > 3 ,

where we have chosen basis2 for the logarithm for convenience of this argument. Then we
choose the sequencep1, p2, . . . of retention probabilities such thatp1 · · · pn = 1/f(2−n).
More explicitly, we choosep1 = 22−d and, forn > 2,

pn =
f(2−n+1)

f(2−n)
=

{
n−1
n for d = 2,

22−d for d > 3 .
(9.2)

The retention probabilities are constant ford > 3, but generation dependent ford = 2.

Theorem 9.14Let {B(t) : 0 6 t 6 T} denote transient Brownian motion started at the
origin andCube ⊂ Rd a compact cube of unit side length not containing the origin.Let
Γ be a percolation limit set inCube with retention probabilities chosen as in(9.2). Then
the range of the Brownian motion is intersection-equivalent to the percolation limit setΓ
in the cubeCube.
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Before discussing the proof, we look at an application of Theorem 9.14 to our understand-
ing of Brownian motion. We first make two easy observations.

Lemma 9.15Suppose thatA1, . . . , Ak, F1, . . . , Fk are independent random closed sets,
with Ai intersection-equivalent toFi for 1 6 i 6 k. Then A1 ∩ A2 ∩ . . . ∩ Ak is
intersection-equivalent toF1 ∩ F2 ∩ . . . ∩ Fk.

Proof. By induction, we can reduce this to the casek = 2. It then clearly suffices
to show thatA1 ∩ A2 is intersection-equivalent toF1 ∩ A2. This is done by conditioning
onA2,

P
{
A1 ∩A2 ∩ Λ 6= ∅

}
= E

[
P{A1 ∩A2 ∩ Λ 6= ∅ |A2}

]

� E
[
P{F1 ∩A2 ∩ Λ 6= ∅ |A2}

]

= P{F1 ∩A2 ∩ Λ 6= ∅}.

Lemma 9.16For independent percolation limit setsΓ1 andΓ2 with retention probabilities
p1, p2, . . . andq1, q2, . . ., respectively, their intersectionΓ1 ∩ Γ2 is a percolation limit set
with retention probabilitiesp1q1, p2q2, . . ..

Proof. This is obvious from the definition of percolation limit setsand independence.

These results enable us to recover the results about existence of nontrivial intersections of
Brownian paths from the survival criteria of Galton–Watsontrees, see Section 12.4 of the
appendix.

As an example, we take a look at the intersection of two Brownian paths inRd, d > 3. By
Theorem 9.14 and Lemma 9.15, the intersection of these pathsis intersection-equivalent
(in any unit cube not containing the starting points) to the intersection of two independent
percolation limit sets with constant retention parametersp = 22−d. This intersection, by
Lemma 9.16, is another percolation limit set, but now with parameterp2 = 24−2d. Now
observe that this set has a positive probability of being nonempty if and only if a Galton–
Watson process with binomial offspring distribution with parametersn = 2d andp =

24−2d has a positive survival probability. Recalling the criterion for survival of Galton–
Watson trees from Proposition 12.37 in the appendix, we see that this is the case if and
only if the mean offspring numbernp strictly exceeds1, i.e. if 4 − d > 0. In other words,
in d = 3 the two paths intersect with positive probability, in all higher dimensions they
almost surely do not intersect.

We now give the proof of Theorem 9.14. A key rôle in the proof isplayed by a fundamental
result of Russell Lyons concerning survival probabilitiesof general trees under the perco-
lation process, which has great formal similarity with the quantitative hitting estimates for
Brownian paths of Theorem 8.24.

Recall the notation for trees from Section 12.4 in the appendix. As usual we define, for
any kernelK : ∂T × ∂T → [0,∞], theK-energy of the measureµ on∂T as

IK(µ) =

∫∫
K(x, y) dµ(x) dµ(y),
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and theK-capacity of the boundary of the tree by

CapK(∂T ) =
[
inf
{
IK(µ) : µ a probability measure on∂T

}]−1
.

Given a sequencep1, p2, . . . of probabilities,percolationon T is obtained by removing
each edge ofT of ordern independently with probability1−pn and retaining it otherwise,
with mutual independence among edges. Say that a rayξ survives the percolationif all
the edges onξ are retained, and say that the tree boundary∂T survives if some ray ofT
survives.

Theorem 9.17 (Lyons) If percolation with retention probabilitiesp1, p2, . . . is performed
on a rooted treeT , then

CapK(∂T ) 6 P
{
∂T survives the percolation

}
6 2CapK(∂T ) , (9.3)

where the kernelK is defined byK(x, y) =
∏|x∧y|
i=1 p−1

i .

Proof. For two verticesv, w we writev ↔ w if the shortest path between the vertices
is retained in the percolation. We also writev ↔ ∂T if a ray through vertexv survives the
percolation andv ↔ Tn if there is a self-avoiding path of retained edges connecting v to a
vertex of generationn. Note that, withρ denoting the root of the tree,K(x, y) = P{ρ ↔
x ∧ y}−1 by definition of the kernelK. By the finiteness of the degrees,

{ρ↔ ∂T} =
⋂

n

{ρ↔ Tn} .

We start with the left inequality in (9.3) and consider the case of a finite treeT first. We
extend the definition of the boundary∂T to finite trees by letting∂T be the set of leaves,
i.e., the vertices with no offspring. Letµ be a probability measure on∂T and set

Y =
∑

x∈∂T
µ(x)

1{ρ↔ x}
P{ρ↔ x} .

ThenE[Y ] =
∑
x∈∂T

µ(x) = 1, and

E[Y 2] = E



∑

x∈∂T

∑

y∈∂T
µ(x)µ(y)

1{ρ↔ x, ρ↔ y}
P{ρ↔ x}P{ρ↔ y}




=
∑

x∈∂T

∑

y∈∂T
µ(x)µ(y)

P{ρ↔ x andρ↔ y}
P{ρ↔ x}P{ρ↔ y} .

Thus,

E[Y 2] =
∑

x,y∈∂T
µ(x)µ(y)

1

P{ρ↔ x ∧ y} = IK(µ).

Using the Paley–Zygmund inequality in the second step, we obtain

P{ρ↔ ∂T} > P{Y > 0} >

(
E[Y ]

)2

E[Y 2]
=

1

IK(µ)
.
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The left hand side does not depend onµ, so optimising the right hand side overµ yields

P{ρ↔ ∂T} > sup
µ

1

IK(µ)
= CapK(∂T ) ,

which proves the lower bound for finite trees. ForT infinite, let µ be any probability
measure on∂T . This induces a probability measurẽµ on the setTn, consisting of those
vertices which become leaves when the treeT is cut off after thenth generation, by letting

µ̃(v) = µ
{
ξ ∈ ∂T : v ∈ ξ

}
, for any vertexv ∈ Tn .

By the finite case considered above,

P{ρ↔ Tn} >

( ∑

x,y∈Tn

K(x, y)µ̃(x)µ̃(y)
)−1

.

Each rayξ must pass through some vertexx ∈ Tn. This implies thatK(x, y) 6 K(ξ, η)

for x ∈ ξ andy ∈ η. Therefore,
∫

∂T

∫

∂T

K(ξ, η) dµ(ξ) dµ(η) >
∑

x,y∈Tn

K(x, y)µ̃(x)µ̃(y) >
1

P{ρ↔ Tn}
.

HenceP{ρ ↔ Tn} > IK(µ)
−1 for any probability measureµ on∂T . Optimising overµ

and passing to the limit asn→ ∞, we getP{ρ↔ ∂T} > CapK(∂T ) .

It remains to prove the right hand inequality in (9.3). Assume first thatT is finite. There
is a Markov chain{Vk : k ∈ N} hiding here: Suppose the offspring of each individual is
ordered from left to right, and note that this imposes a natural order on all vertices of the
tree by saying thatx is to the left ofy if there are siblingsv, w with v to the left ofw,
such thatx is a descendant ofv andy is a descendant ofw. The random set of leaves that
survive the percolation may thus be enumerated from left to right asV1, V2, . . . , Vr. The
key observation is that the random sequenceρ, V1, V2, . . . , Vr,∆,∆, . . . is a Markov chain
on the state space∂T ∪ {ρ,∆}, whereρ is the root and∆ is a formal absorbing cemetery.
Indeed, given thatVk = x, all the edges on the unique path fromρ to x are retained, so
that survival of leaves to the right ofx is determined by the edges strictly to the right of the
path fromρ to x, and is thus conditionally independent ofV1, . . . , Vk−1, see Figure 9.1.

This verifies the Markov property, so Proposition 8.26 may beapplied. The transition
probabilities for the Markov chain above are complicated, but it is easy to write down the
Green kernelG. For any vertexx let path(x) be the set of edges on the shortest path from
ρ to x. Clearly,G(ρ, y) equals the probability thaty survives percolation, so

G(ρ, y) =

|y|∏

n=1

pn .

If x is to the left ofy, thenG(x, y) is equal to the probability that the range of the Markov
chain containsy given that it containsx, which is just the probability ofy surviving given
thatx survives. Therefore,

G(x, y) =

|y|∏

n=|x∧y|+1

pn ,
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ρ

Fig. 9.1. The Markov chain embedded in the tree.

and hence

M(x, y) =
G(x, y)

G(ρ, y)
=

|x∧y|∏

n=1

p−1
n .

NowG(x, y) = 0 for x on the right ofy; thus (keeping the diagonal in mind)

K(x, y) 6 M(x, y) +M(y, x)

for all x, y ∈ ∂T , and thereforeIK(µ) 6 2IM (µ) . Now apply Proposition 8.26 toΛ =

∂T :

CapK(∂T ) >
1
2CapM (∂T ) >

1
2 P
{
{Vk : k ∈ N} hits∂T

}
= 1

2 P{ρ↔ ∂T} .

This establishes the upper bound for finiteT . The inequality for generalT follows from
the finite case by taking limits.

The main remaining task is to translate Lyons’ theorem, Theorem 9.17, into hitting esti-
mates for percolation limit sets using a ‘tree representation’ as in Figure 9.2, and relating
the capacity of the tree boundary to the capacity of the percolation limit set.

Theorem 9.18LetΓ be a percolation limit set in the unit cubeCube with retention param-
etersp1, p2, . . .. Then, for any closed setΛ ⊂ Cube we have

P
{
Γ ∩ Λ 6= ∅

}
� Capf (Λ) ,

for any decreasingf satisfyingf(2−k) = p−1
1 · · · p−1

k .

Remark 9.19This result extends parts (i) and (ii) of Hawkes’ theorem, Theorem 9.5, in
two ways: It includes generation dependent retention and gives a quantitative estimate.�

The key to this theorem is the following representation for the f -energy of a measure.
Recall thatDn denotes the collection of half-open dyadic cubes of side length2−n.
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Fig. 9.2. Percolation limit set and associated tree

Lemma 9.20Supposef : (0,∞) → (0,∞) is a decreasing function, and denoteh(n) =

f(2−n) − f(21−n) for n > 1, andh(0) = f(1). Then, for any measureµ on the unit
cube[0, 1)d,

If (µ) �
∞∑

n=0

h(n)
( ∑

Q∈Dn

µ(Q)2
)
,

where the implied constants depend only ond.

Proof of the lower bound in Lemma 9.20. Fix an integer̀ such that
√
d 6 2`. For

anyx, y ∈ [0, 1]d we writen(x, y) = max
{
n : x, y ∈ Q for someQ ∈ Dn

}
. Note that

n(x, y) = n+ ` implies|x− y| 6
√
d2−n−` 6 2−n and hencef(|x− y|) > f(2−n). We

thus get

If (µ) =

∫∫
f( |x− y|) dµ(x) dµ(y)

>

∞∑

n=0

f(2−n)µ⊗ µ
{
(x, y) : n(x, y) = n+ `

}

=
∞∑

n=0

f(2−n)
[
Sn+`(µ) − Sn+`+1(µ)

]
,

whereSn(µ) =
∑
Q∈Dn

µ(Q)2. Note that, by the Cauchy–Schwarz inequality,

Sn(µ) =
∑

Q∈Dn

µ(Q)2 =
∑

Q∈Dn

( ∑

V ∈Dn+1
V ⊂Q

µ(V )
)2

6 2d
∑

V ∈Dn+1

µ(V )2 = 2d Sn+1(µ) .

(9.4)
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Rearranging the sum and using this` times, we obtain that
∞∑

n=0

f(2−n)
[
Sn+`(µ) − Sn+`+1(µ)

]
=

∞∑

n=0

h(n)Sn+`(µ) >

∞∑

n=0

h(n) 2−d` Sn(µ) ,

which is our statement withc = 2−d`.

Proof of the upper bound in Lemma 9.20. For
√
d 21−n > |x − y| >

√
d 2−n, we

have
∞∑

k=0

h(k)1{
√
d 21−k

> |x− y|} = f(
√
d 2−n) > f(|x− y|) ,

and hence we can decompose the integral as

If (µ) =

∫∫
f(|x− y|) dµ(x) dµ(y)

6

∫∫ ∞∑

k=0

h(k)1{
√
d 21−k

> |x− y|} dµ(x) dµ(y) .

For cubesQ1, Q2 ∈ Dn we writeQ1 ∼ Q2 if there existq1 ∈ Q1 andq2 ∈ Q2 with
|q1 − q2| 6

√
d2−n (though note that∼ is not an equivalence relation). Then

∫∫
1{
√
d 21−k

> |x− y|} dµ(x) dµ(y) = µ⊗ µ
{
(x, y) : |x− y| 6

√
d 21−k}

6
∑

Q1,Q2∈Dk−1
Q1∼Q2

µ(Q1)µ(Q2) 6
1
2

∑

Q1,Q2∈Dk−1
Q1∼Q2

(
µ(Q1)

2 + µ(Q2)
2
)
,

using the inequality of the geometric and arithmetic mean inthe last step. As, for each
cubeQ1, the number of cubesQ2 with Q1 ∼ Q2 is bounded by some constantCd > 0,
we obtain that

If (µ) 6
Cd+1

2

∞∑

k=0

h(k)
∑

Q∈Dk−1

µ(Q)2 6 (Cd + 1) 2d−1
∞∑

k=0

h(k)
∑

Q∈Dk

µ(Q)2 ,

using (9.4) from above. This completes the proof of the upperbound.

Proof of Theorem 9.18. Denote the coordinatewise minimum ofCube by x0. We
employ the canonical mappingR from the boundary of a2d-ary treeΥ, where every ver-
tex has2d children, to the cubeCube. Formally, label the edges from each vertex to its
children in a one-to-one manner with the vectors inΘ = {0, 1}d. Then the boundary∂Υ

is identified with the sequence spaceΘZ+

and we defineR : ∂Υ = ΘZ+ → Cube by

R(ω1, ω2, . . .) = x0 +
∞∑

n=1

2−nωn.

We now use the representation given in Lemma 9.20 to relate theK-energy of a measure
µ on ∂Υ (with K as in Theorem 9.17) to thef -energy of its image measureµ ◦ R−1 on
Cube, showing that

IK(µ) � If (µ ◦ R−1) (9.5)
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where the implied constants depend only on the dimensiond. Indeed theK-energy of a
measureµ on∂Υ satisfies, by definition,

IK(µ) =

∫∫ |x∧y|∏

i=1

p−1
i dµ(x) dµ(y) =

∫∫ ∑

v6x∧y

( |v|∏

i=1

p−1
i −

|v|−1∏

i=1

p−1
i

)
dµ(x) dµ(y),

where we count all ancestorsv of x∧ y and we interpret the contribution of the rootv = ρ

as one. Interchanging summation and integration we obtain

IK(µ) =
∑

v∈Υ

( |v|∏

i=1

p−1
i −

|v|−1∏

i=1

p−1
i

)∫∫
1{x > v, y > v} dµ(x) dµ(y)

=
∑

v∈Υ

( |v|∏

i=1

p−1
i −

|v|−1∏

i=1

p−1
i

)
µ
(
{ξ ∈ ∂T : v ∈ ξ

})2
,

whereas thef -energy of the measureµ ◦ R−1 satisfies, by Lemma 9.20,

If
(
µ ◦ R−1

)
�

∞∑

k=0

h(k)
∑

D∈Dk

µ
(
R−1(D)

)2
,

where

h(k) = f(2−k) − f(2−k+1) = p−1
1 · · · p−1

k − p−1
1 · · · p−1

k−1

by our assumptions onf . NowR−1(D) is contained in no more than3d sets of the form
{ξ ∈ ∂T : v ∈ ξ

}
, for |v| = k, in such a way that over all cubesD ∈ Dk no such set is

used in more than3d covers. Conversely each setR−1(D) contains an individual set of
this form entirely, so that we obtain (9.5).
Any closed setΛ in the unit cubeCube can be written as the imageR(∂T ) of the bound-
ary of some subtreeT of the regular2d-ary tree. As any measureν on R(∂T ) ⊂ Cube

can be written asµ ◦ R−1 for an appropriate measureµ on ∂T it follows from (9.5)
that CapK(∂T ) � Capf (R(∂T )). We perform percolation with retention parameters
p1, p2, . . . on the treeT . Then, by Theorem 9.17,

P
{
Γ ∩ Λ 6= ∅

}
= P

{
∂T survives the percolation

}

� CapK(∂T ) � Capf (Λ) .

Proof of Theorem 9.14. As the cubeCube has positive distance to the starting point
of Brownian motion, we can remove the denominator and smaller order terms from the
Martin kernel in Theorem 8.24, as in the proof of Theorem 8.20. We thus obtain

P
{
B[0, T ] ∩ Λ 6= ∅

}
� Capf (Λ) ,

wheref is the radial potential. For the choice of retention probabilities in (9.2) we can
apply Theorem 9.18, which implies

Capf (Λ) � P
{
Γ ∩ Λ 6= ∅

}
,

and combining the two displays gives the result.



272 Intersections and self-intersections of Brownian paths

The intersection equivalence approach enables us to characterise the polar sets for the
intersection ofp independent Brownian motions inRd and give a quantitative estimate of
the hitting probabilities.

Theorem 9.21LetB1, . . . , Bp be independent Brownian motions inRd starting in arbi-
trary fixed points and supposep(d− 2) < d. Let

S =
{
x ∈ Rd : ∃ t1, . . . , tp > 0 with x = B1(t1) = · · · = Bp(tp)

}
.

Then, for any closed setΛ, we have

P
{
S ∩ Λ 6= ∅

}
> 0 if and only if Capfp(Λ) > 0 ,

wheref is the radial potential.

Proof. We may assume thatΛ is contained in a unit cube at positive distance from
the starting points. LetΓ be a percolation limit set in that cube, with retention probabil-
ities p1, p2, . . . satisfyingp1 · · · pn = 1/fp(2−n). By Theorem 9.14, Lemma 9.15 and
Lemma 9.16, the random setS is intersection-equivalent toΓ in that cube. Theorem 9.18
characterises the polar sets forΓ, completing the argument.

9.3 Multiple points of Brownian paths

A point x ∈ Rd hasmultiplicity p, or is ap-fold multiple point , for a Brownian motion
{B(t) : t > 0} in Rd, if there exist times0 < t1 < · · · < tp with

x = B(t1) = · · · = B(tp).

The results of the previous section also provide the complete answer to the question of the
existence of such points.

Theorem 9.22Supposed > 2 and{B(t) : t ∈ [0, 1]} is ad-dimensional Brownian motion.
Then, almost surely,

• if d > 4 no double points exist, i.e. Brownian motion is injective,

• if d = 3 double points exist, but triple points fail to exist,

• if d = 2 points of any finite multiplicity exist.

Proof. To shownonexistenceof double points ind > 4 it suffices to show that for
any rationalα ∈ (0, 1), almost surely, there exists no times0 6 t1 < α < t2 6 1 with
B(t1) = B(t2). Fixing such anα, the Brownian motions{B1(t) : 0 6 t 6 1 − α} and
{B2(t) : 0 6 t 6 α} given by

B1(t) = B(α+ t) −B(α) and B2(t) = B(α− t) −B(α)

are independent and hence, by Theorem 9.1, they do not intersect, almost surely, proving
the statement.
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To showexistenceof double points ind 6 3 we apply Theorem 9.1 in conjunction with
Remark 9.2, to the independent Brownian motions{B1(t) : 0 6 t 6

1
2} and{B2(t) :

0 6 t 6
1
2} given by

B1(t) = B
(

1
2 + t

)
−B

(
1
2

)
and B2(t) = B

(
1
2 − t

)
−B

(
1
2

)
,

to see that, almost surely, the two ranges intersect.

To show nonexistence oftriple points ind = 3 we observe that it suffices to show that for
any three rationals0 < α1 < α2 < α3 andε < (α3 − α2) ∧ (α2 − α1), almost surely
there are no timesti ∈ (αi, αi + ε) such thatB(t1) = B(t2) = B(t3). By conditioning
the Brownian motion on its values at the timesαi andαi + ε, for i ∈ {1, 2, 3}, we obtain
three Brownian bridges{Bi(t) : 0 6 t 6 ε} given by

Bi(t) = B(αi + t) −B(αi), for i ∈ {1, 2, 3}.

By Exercise 9.2 the probability that these three bridges intersect is zero, for any values
B(αi),B(αi + ε). Taking an expectation over these values we obtain the result.

To show the existence ofp-multiplepoints inR2 fix δ > 0 and numbers

0 < α1 < α2 < · · · < αp < αp+1 = δ.

Let ε > 0 small enough thatαi+ ε < αi+1 for i ∈ {1, . . . , p} and condition the Brownian
motion on its values at the timesαi andαi + ε, for i ∈ {1, . . . , p}. We obtainp Brownian
bridges{Bi(t) : 0 6 t 6 ε} given by

Bi(t) = B(αi + t) −B(αi), for i ∈ {1, . . . , p}.

By Exercise 9.2 these bridges intersect with positive probability, for any valuesB(αi),
B(αi + ε). Taking an expectation over these values we obtain that, forδ > 0, the path
{B(t) : 0 6 t 6 δ} has ap-multiple point with positive probability. By Brownian scaling
this probability is independent of the choice ofδ, and lettingδ ↓ 0, we obtain

Prob
{

for all δ > 0 exist0 < t1 < · · · < tp < δ with B(t1) = · · · = B(tp)
}
> 0.

By Blumenthal’s zero–one law this probability must be one, so that we have ap-multiple
point almost surely, which completes the proof.

Theorem 9.23Let{B(t) : 0 6 t 6 1} be a planar Brownian motion. Then, almost surely,
for every positive integerp, there exist pointsx ∈ R2 which are visitedexactlyp times by
the Brownian motion.

Proof. Note first that it suffices to show this with positive probability. Indeed, by Brow-
nian scaling, the probability that the path{B(t) : 0 6 t 6 r} has points of multiplicity
exactlyp does not depend onr. By Blumenthal’s zero-one law it therefore must be zero
or one. The idea of the proof is now to construct a setΛ such that Capfp(Λ) > 0 but
Capfp+1(Λ) = 0 for the radial potentialf . By Exercise 9.3 the first condition implies
that the probability thatΛ contains ap-fold multiple point is positive. The second condi-
tion ensures that it almost surely does not contain ap + 1-fold multiple point. Hence the
p-multiple points found inΛ must be strictlyp-multiple.
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We construct the setΛ by iteration, starting from a compact unit cubeCube. In thenth

construction step we divide each cube retained in the previous step into its four nonover-
lapping dyadic subcubes and retain only one of them, say the bottom left cube, except at
the steps with number

n = d4 k
p+1 e, for k = p+ 1, p+ 2, . . .,

when we retain all four subcubes. The numberk(n) of times within the firstn steps when
we have retained all four cubes satisfiesk(n) � (log n) p+1

log 4 . Denoting bySn the set of

all dyadic cubes retained in thenth step, we define the compact set

Λ =

∞⋂

n=1

⋃

S∈Sn

S .

The calculation of the capacity ofΛ will be based on the formula given in Lemma 9.20.
Observe that, iffp(ε) = logp(1/ε) is thepth power of the2-dimensional radial potential,
then the associated function is

h(p)(n) = fp(2−n) − fp(21−n) � np − (n− 1)p � np−1 .

Note that the numberg(n) of cubes kept in the firstn steps of the construction satisfies
g(n) � 4k(n) � np+1. By our construction

∑∞
n=0 n

p−1 g(n)−1 <∞, but
∑∞
n=0 n

p g(n)−1 =

∞. For the measureµ distributing the unit mass equally among the retained cubesof the
same side length (hence giving massg(n)−1 to each retained cube), we have

Ifp(µ) �
∞∑

n=0

h(p)(n)
( ∑

Q∈Dn

µ(Q)2
)
�

∞∑

n=0

np−1 g(n)−1 <∞ ,

and hence Capfp(Λ) > 0. For the converse statement, note that
( ∑

Q∈Dn

ν(Q)2
)( ∑

Q∈Dn

1{Q retained}
)

> 1,

for any probability measureν onΛ, by the Cauchy–Schwarz inequality. Hence,

Ifp+1(ν) �
∞∑

n=0

h(p+1)(n)
( ∑

Q∈Dn

ν(Q)2
)

>

∞∑

n=0

h(p+1)(n) g(n)−1

�
∞∑

n=0

np g(n)−1 = ∞ ,

verifying that Capfp+1(Λ) = 0. This completes the proof.

Knowing that planar Brownian motion has points of arbitrarily largefinite multiplicity, it
is an interesting question whether there are points ofinfinitemultiplicity.

Theorem* 9.24Let {B(t) : t > 0} be a planar Brownian motion. Then, almost surely,
there exists a pointx ∈ R2 such that the set{t > 0: B(t) = x} is uncountable.
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The rest of this section is devoted to the proof of this interesting result and will not be used
in the remainder of the book. It may be skipped on first reading.

Let us first describe the rough strategy of the proof: We startby finding two disjoint in-
tervalsI1 and I2 with B(I1) ∩ B(I2) 6= ∅. Inside these we find disjoint subintervals
I11, I12 ⊂ I1 andI21, I22 ⊂ I2 such that the four Brownian imagesB(Iij) intersect. Con-
tinuing this way, we construct a binary treeT of time intervals where rays inT represent
sequences of nested intervals and the intersection of each such sequence will be mapped to
the same point by the Brownian motion.

Throughout the proof we use the following notation. For any open or closed setsA1, A2, . . .

and a Brownian motionB : [0,∞) → R2 define stopping times

τ(A1) := inf{t > 0: B(t) ∈ A1},
τ(A1, . . . , An) := inf{t > τ(A1, . . . , An−1) : B(t) ∈ An}, for n > 2,

where, as usual, the infimum of the empty set is taken to be infinity. We say the Brownian
motionupcrosses the shellB(x, 2r) \ B(x, r) twicebefore a stopping timeT if,

τ
(
B(x, r),B(x, 2r)c,B(x, r),B(x, 2r)c

)
< T.

We call the paths of Brownian motion betweenτ(B(x, r)) andτ(B(x, r), B(x, 2r)c), and
betweenτ(B(x, r),B(x, 2r)c,B(x, r)) and τ(B(x, r),B(x, 2r)c,B(x, r), B(x, 2r)c) the
upcrossing excursions, see Figure 9.3.

B

(2)

(1)

B

B

Fig. 9.3. The pathB : [0,∞) → R2 upcrosses the shell twice; the upcrossing excursions are bold
and markedB(1),B(2).

From now on letT be the first exit time of Brownian motion from the unit ball.

Lemma 9.25There exist constants0 < c0 < C0 such that, if2 < m < n are two integers
andB a ball of radius2−n with centre at distance at least2−m and at most3× 2−m from
the origin, we have

c0
m

n
6 P0

{
τ(B) < T

}
6 C0

m

n
.
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Proof. For the lower bound we note that the disk of radius1
2 around the centre ofB

is contained in the unit disk, so that the first exit timeT ′ from this disk satisfiesT ′ 6 T .
Theorem 3.18 gives the lower bound forP0{τ(B) < T ′}. Similarly, for the upper bound
we look at the disk of radius2 around the centre ofB, which contains the unit disk.

Recall from Theorem 3.44 that the density ofB(T ) underPz is given by the Poisson kernel,
which is

P(z, w) =
1 − |z|2
|z − w|2 for anyz ∈ B(0, 1) andw ∈ ∂B(0, 1).

Lemma 9.26Consider Brownian motion started atz ∈ B(0, r) wherer < 1, and stopped
at timeT when it exits the unit ball. Letτ 6 T be a stopping time, and letA ∈ F(τ).
Then we have

(i) Pz
(
A
∣∣B(T )

)
= Pz(A)

Ez
[
P(B(τ), B(T ))

∣∣A
]

P(z,B(T ))
.

(ii) If Pz
(
{B(τ) ∈ B(0, r)}

∣∣A
)

= 1, then
(1 − r

1 + r

)2

Pz(A) 6 Pz
(
A
∣∣B(T )

)
6

(1 + r

1 − r

)2

Pz(A) almost surely.

Proof. (i) Let I ⊂ ∂B(0, 1) be a Borel set. Using the strong Markov property and the
assumptionA ∈ F(τ) in the second step, we get

Pz
(
A
∣∣ {B(T ) ∈ I}

)
Pz{B(T ) ∈ I} = Pz(A) Pz

(
{B(T ) ∈ I}

∣∣A
)

= Pz(A) Ez
[
PB(τ)

{
B(T ) ∈ I

} ∣∣A
]
.

As a function ofI, both sides of the equation define a finite measure with total massPz(A).
Comparing the densities of the measures with respect to the surface measure on∂B(0, 1)

gives

Pz
(
A
∣∣B(T )

)
P(z,B(T )) = Pz(A) Ez

[
P(B(τ), B(T ))

∣∣A
]
.

(ii) The assumption of this part and (i) imply that the ratioPz(A|B(T ))/Pz(A) can be
written as an average of ratiosP(u,w)/P(z, w) wherew = B(T ) ∈ ∂B(0, 1) and
u, z ∈ B(0, r). The assertion follows by finding the minimum and maximum ofP(u,w)

asu ranges overB(0, r).

The following lemma, concerning the common upcrossings ofLBrownian excursions, will
be the engine driving the proof of Theorem 9.24.

Lemma 9.27Letn > 5 and let{x1, . . . , x4n−5} be points such that the ballsB(xi, 2
1−n)

are disjoint and contained in the shell{z : 1
4 6 |z| 6

3
4}. ConsiderL independent Brow-

nian upcrossing excursionsW1, . . . ,WL, started at prescribed points on∂B(0, 1) and
stopped when they reach∂B(0, 2). LetS denote the number of centresxi, 1 6 i 6 4n−5

such that the shellB(xi, 2
−n+1) \ B(xi, 2

−n) is upcrossed twice by each ofW1, . . . ,WL.
Then there exist constantsc, c∗ > 0 such that

P
{
S > 4n(c/n)L

}
>
cL∗
L!
. (9.6)
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Moreover, the same estimate (with a suitable constantc∗) is valid if we condition on the
end points of the excursionsW1, . . . ,WL.

Proof of Lemma 9.27. By Lemma 9.25, for anyz ∈ ∂B(0, 1), the probability of Brow-
nian motion starting atz hitting the ballB(xi, 2

−n) before reaching∂B(0, 2) is at leastc0n ,
and the probability of the second upcrossing excursion ofB(xi, 2

−n+1)\B(xi, 2
−n), when

starting at∂B(xi, 2
1−n) is at least1/2. Thus

ES > 4n−5
( c0

2n

)L
. (9.7)

We now estimate the second moment ofS. Consider a pair of centresxi, xj such that
2−m 6 |xi−xj | 6 21−m for somem < n−1. For eachk 6 L, letVk = Vk(xi, xj) denote
the event that the ballsB(xi, 2

−n) andB(xj , 2
−n) are both visited byWk. Given that

B(xi, 2
−n) is reached first, the conditional probability thatWk will also visit B(xj , 2

−n)
is at mostC0

m
n , by Lemma 9.25. We conclude thatP(Vk) 6 2C2

0
m
n2 whence

P
( L⋂

k=1

Vk

)
6

(
2C2

0

m

n2

)L
.

For eachm < n − 1 and i 6 4n−5, the number of centresxj such that2−m 6 |xi −
xj | 6 21−m is at most a constant multiple of4n−m. Using that the diagonal terms are of
lower order, we deduce that there existsC1 > 0 such that

ES2
6
CL1 42n

n2L

n∑

m=1

mL4−m 6
(2C1)

L42nL!

n2L
, (9.8)

where the last inequality follows, e.g., from takingx = 1/4 in the binomial identity

∞∑

m=0

(
m+ L

L

)
xm = (1 − x)−L−1 .

Now (9.7), (9.8) and the Paley–Zygmund inequality, see Exercise 3.5, yield (9.6). The final
statement of the lemma follows from Lemma9.26.

Proof of Theorem 9.24. Fix an increasing sequence{ni : i > 1} to be chosen later,
and letN` =

∑`
i=1 ni with N0 = 0. Denoteqi = 4ni−5 andQi = 4Ni−5i. We begin by

constructing a nested sequence of centres with which we associate a forest, i.e. a collection
of trees, in the following manner. The first level of the forest consists ofQ1 centres,
{x(1)

1 , . . . , x(1)

Q1
}, chosen such that the balls{B(x(1)

k , 2
−N1+1) : 1 6 k 6 Q1} are disjoint

and contained in the annulus{z : 1
4 6 |z| 6

3
4}.

Continue this construction recursively. For` > 1 suppose that level̀− 1 of the forest
has been constructed. Level` consists ofQ` vertices{x(`)

1 , . . . , x(`)

Q`
}. Each vertexx(`−1)

i ,
1 6 i 6 Q(`−1), at level` − 1 hasq` children{x(`)

j : (i − 1)q` < j 6 iq`} at level`; the
balls of radius2−N`+1 around these children are disjoint and contained in the annulus

{
z : 1

42−N`−1 6 |z − x(`−1)

i | 6
3
42−N`−1

}
.

Recall thatT = inf{t > 0: |B(t)| = 1}. We say that a level one vertexx(1)

k survivedif
the Brownian motion upcrosses the shellB(x(1)

k , 2
−N1+1) \ B(x(1)

k , 2
−N1) twice beforeT .
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A vertex at the second levelx(2)

k is said to havesurvivedif its parent vertex survived,
and in each upcrossing excursion of its parent, the Brownianmotion upcrosses the shell
B(x(2)

k , 2
−N2+1) \ B(x(2)

k , 2
−N2) twice. Recursively, we say a vertexx(`)

k , at level` of the
forest,survivedif its parent vertex survived, and in each of the2`−1 upcrossing excursions
of its parent, the Brownian motion upcrosses the shell

B(x(`)

k , 2
−N`+1) \ B(x(`)

k , 2
−N`)

twice. Note at this point that if there is an infinite ray of surviving vertices

x(1)

k(1), x
(2)

k(2), x
(3)

k(3), . . .

such thatx(`+1)

k(`+1) is a child ofx(`)

k(`), for ` = 1, 2, . . ., then the sequence of compact balls

centred inx(`)

k(`) with radius2−N` is nested. Therefore there exists exactly one pointx in

the intersection of these balls. For any level`, there are2` disjoint upcrossing excursions of
the shellB(x(`)

k(`), 2
−N`+1)\B(x(`)

k(`), 2
−N`). Each of these contains two disjoint excursions

at level`+1. Thus the time intervals corresponding to these excursionsform a binary tree,
where the children of an interval at level` are the two intervals at level` + 1 it contains.
An infinite ray in this tree is a nested sequence of compact intervals and their intersection
is a timet with B(t) = x. Since there are uncountably many rays,x has uncountable
multiplicity.

Now, for any ` > 1, let S` denote the number of vertices at level` of the forest that
survived. Using the notation of Lemma 9.27, let

Γ` = 4n`

( c
n`

)L
andp` =

cL∗
L!
,

whereL = L(`) = 2`−1. Lemma 9.27 withn = n1 states that

P{S1 > Γ1} > p1 = c∗ . (9.9)

For ` > 1, the same lemma, and independence of excursions in disjointshells given their
endpoints, yield

P
(
{S`+1 6 Γ`+1}

∣∣ {S` > Γ`}
)

6 (1 − p`+1)
Γ`6 exp(−p`+1Γ`) . (9.10)

By pickingn` large enough, we can ensure thatp`+1Γ` > `, whence the right hand side of
(9.10) is summable iǹ. Consequently

α = P
( ∞⋂

`=1

{S` > Γ`}
)

= P{S1 > Γ1}
∞∏

`=1

P
(
{S`+1 > Γ`+1}

∣∣ {S` > Γ`}
)
> 0 .

(9.11)

Thus with probability at leastα, there is a ray of surviving verticesx(`)

k(`) and, as seen
above, this yields a point visited by Brownian motion uncountably many times before it
exits the unit disk.



9.4 Kaufman’s dimension doubling theorem 279

Let Hr denote the event that Brownian motion, killed on exitingB(0, r), has a point of
uncountable multiplicity. As explained above, (9.11) implies thatP(H1) > α > 0. By
Brownian scaling,P(Hr) does not depend onr, whence

P
( ∞⋂

n=1

H1/n

)
> α .

The Blumenthal zero-one law implies that this intersectionhas probability 1, so there are
points of uncountable multiplicity almost surely.

9.4 Kaufman’s dimension doubling theorem

In Theorem 4.33 we have seen thatd-dimensional Brownian motion maps any set of di-
mensionα almost surely into a set of dimension2α. Surprisingly, by a famous result of
Kaufman, the dimension doubling property holds almost surely simultaneouslyfor all sets.

Theorem 9.28 (Kaufman 1969)Let {B(t) : t > 0} be Brownian motion in dimension
d > 2. Almost surely, for any setA ⊂ [0,∞), we have

dimB(A) = 2 dimA.

Before discussing the proof, let us look at some consequences of Theorem 9.28. The
power of this result lies in the fact that the dimension doubling formula can now be applied
to arbitrary random sets.

As a first application we ask, how big the sets

T (x) =
{
t > 0: B(t) = x

}

of times mapped byd-dimensional Brownian motion onto the same pointx can possibly
be. We have seen so far in this chapter and Theorem 6.40 that, almost surely,

• in dimensiond > 4 all setsT (x) consist of at most one point,
• in dimensiond = 3 all setsT (x) consist of at most two points,
• in dimensiond = 2 at least one of the setsT (x) is uncountable,
• in dimensiond = 1 all setsT (x) have at least Hausdorff dimension1

2 .

We use Kaufman’s theorem to determine the Hausdorff dimension of the setsT (x) in the
case of planar and linear Brownian motion.

Corollary 9.29 Suppose{B(t) : t > 0} is a planar Brownian motion. Then, almost surely,
for all x ∈ R2, we havedimT (x) = 0.

Proof. By Kaufman’s theorem, almost surely,dimT (x) = 1
2 dim{x} = 0 for all x.

Corollary 9.30 Suppose{B(t) : t > 0} is a linear Brownian motion. Then, almost surely,
for all x ∈ R, we havedimT (x) = 1

2 .
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Proof. The lower bound was shown in Theorem 6.40. For the upper boundlet
{W (t) : t > 0} be a Brownian motion independent of{B(t) : t > 0}. Applying Kauf-
man’s theorem for the planar Brownian motion given byB̃(t) = (B(t),W (t)) we get,
almost surely, for everyx,

dimT (x) = dim B̃−1({x} × R) 6
1
2 dim({x} × R) = 1

2 ,

which proves the upper bound.

We now prove Kaufman’s theorem. Recall that, by Corollary 1.20, almost surely, the func-
tion {B(t) : t > 0} is α-Hölder continuous for anyα < 1

2 . Hence, by Proposition 4.14,
irrespective of the dimensiond, almost surely,

dimB(A) 6 2 dimA and for all setsA ⊂ [0,∞).

Hence only the lower bounddimB(A) > 2 dimA requires proof. We first focus on the
cased > 3. The crucial idea here is that one uses a standardised covering ofB(A) by
dyadic cubes and ensures that, simultaneously for all possible covering cubes the preim-
ages allow an efficient covering. An upper bound fordimA follows by selecting from the
coverings of all preimages.

Lemma 9.31Consider a cubeQ ⊂ Rd centred at a pointx and having diameter2r. Let
{B(t) : t > 0} bed-dimensional Brownian motion, withd > 3. Define recursively

τQ1 = inf{t > 0 : B(t) ∈ Q} ,
τQk+1 = inf{t > τQk + r2 : B(t) ∈ Q}, for k > 1,

with the usual convention thatinf ∅ = ∞. Then there exists0 < θ < 1 depending only on
the dimensiond, such thatPz{τQn+1 <∞} 6 θn for all z ∈ Rd andn ∈ N.

Proof. It is sufficient to show that for someθ as above,

Pz
{
τQk+1 = ∞

∣∣ τQk <∞
}
> 1 − θ.

Observe that the quantity on the left can be bounded from below by

Pz
{
τQk+1 = ∞

∣∣ |B(τQk +r2)−x| > 3r, τQk <∞
}
Pz
{
|B(τQk +r2)−x| > 3r

∣∣ τQk <∞
}
.

The second factor is bounded from below byinfy∈Q Py{|B(r2)− x| > 3r}, by the strong
Markov property. Using transience of Brownian motion ind > 3, the first factor is bounded
from below byinfy 6∈B(x,3r) Py{τ(Q) = ∞

}
, where, as before,τ(Q) denotes the first hit-

ting time ofQ. Both bounds are positive and do not depend on the scaling factor r.

Recall thatCm denotes the set of dyadic cubes of side length2−m insideCube = [− 1
2 ,

1
2 ]d.

Lemma 9.32In the setup of Lemma 9.31, there exists a random variableC = C(ω) such
that, almost surely, for allm and for all cubesQ ∈ Cm we haveτQdmC+1e = ∞.
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Proof. From Lemma 9.31 we get that

∞∑

m=1

∑

Q∈Cm

P
{
τQdcm+1e <∞

}
6

∞∑

m=1

2dmθcm.

Now choosec so large that2dθc < 1. Then, by the Borel–Cantelli lemma, for all but
finitely manym we haveτQdcm+1e = ∞ for all Q ∈ Cm. Finally, we can choose a random
C(ω) > c to handle the finitely many exceptional cubes.

Proof of Theorem 9.28 ford > 2. As mentioned before we can focus on the ‘>’
direction. We fixL and show that, almost surely, for all subsetsS of [−L,L]d we have

dimB−1(S) 6
1
2 dimS. (9.12)

Applying this toS = B(A)∩[−L,L]d successively for a countable unbounded set ofLwe
get the desired conclusion. By scaling, it is sufficient to prove (9.12) forL = 1/2. The idea
now is to verify (9.12) for all paths satisfying Lemma 9.32 using completely deterministic
reasoning. As this set of paths has full measure, this verifies the statement.
Hence fix a path{B(t) : t > 0} satisfying Lemma 9.32 for a constantC > 0. If β > dimS

andε > 0 there exists a covering ofS by binary cubes{Qj : j ∈ N} ⊂ ⋃∞
m=1 Cm such

that
∑ |Qj |β < ε. If Nm denotes the number of cubes fromCm in such a covering, then

∞∑

m=1

Nm 2−mβ < ε.

Consider the inverse image of these cubes under{B(t) : t > 0}. Since we chose this path
so that Lemma 9.32 is satisfied, this yields a covering ofB−1(S), which for eachm > 1

uses at mostCmNm intervals of lengthr2 = d2−2m.
Forγ > β we can bound theγ/2-dimensional Hausdorff content ofB−1(S) from above by

∞∑

m=1

CmNm(d2−2m)γ/2 = C dγ/2
∞∑

m=1

mNm 2−mγ .

This can be made small by choosing a suitableε > 0. ThusB−1(S) has Hausdorff dimen-
sion at mostγ/2 for all γ > β > dimS, and thereforedimB−1(S) 6 dimS/2.

In d = 2 we cannot rely on transience of Brownian motion. To get around this problem,
we can look at the Brownian path up to a stopping time. A convenient choice of stopping
time for this purpose isτ∗R = min

{
t : |B(t)| = R

}
. For the two dimensional version of

Kaufman’s theorem it is sufficient to show that, almost surely,

dimB(A) > 2 dim(A ∩ [0, τ∗R]) for all A ⊂ [0,∞).

Lemma 9.31 has to be changed accordingly.

Lemma 9.33Consider a cubeQ ⊂ R2 centred at a pointx and having diameter2r, and
assume that the cubeQ is inside the ball of radiusR about the origin. Let{B(t) : t > 0}
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be planar Brownian motion. DefineτQk as in Lemma 9.31. Then there existsc = c(R) > 0

such that, with2−m−1 < r < 2−m, for anyz ∈ R2,

Pz
{
τQk < τ∗R

}
6

(
1 − c

m

)k
6 e−ck/m. (9.13)

Proof. It suffices to boundPz{τQk+1 > τ∗R | τQk < τ∗R} from below by

Pz
{
τQk+1 > τ∗R

∣∣ |B(τQk +r2)−x| > 2r, τQk < τ∗R
}

Pz
{
|B(τQk +r2)−x| > 2r

∣∣ τQk < τ∗R
}
.

The second factor can be bounded from below by a positive constant, which does not
depend onr andR. The first factor is bounded from below by the probability that planar
Brownian motion started at any point in∂B(0, 2r) hits∂B(0, 2R) before∂B(0, r). Using
Theorem 3.18 this probability is given by

log 2r − log r

log 2R− log r
>

1

log2R+ 2 +m
.

This is at leastc/m for somec > 0 which depends onR only.

The bound (9.13) onP{τQk < τ∗R} in two dimensions is worse by a linear factor than the
corresponding bound in higher dimensions. This, however, does not make a significant
difference in the proof of the two dimensional version of Theorem 9.28, which can now be
completed in the same way, see Exercise 9.9.

There is also a version of Kaufman’s theorem for Brownian motion in dimension one.

Theorem 9.34Suppose{B(t) : t > 0} is a linear Brownian motion. Then, almost surely,
for all nonempty closed setsS ⊂ R, we have

dimB−1(S) = 1
2 + 1

2 dimS.

Remark 9.35Note that here it is essential to run Brownian motion on an unbounded time
interval. For example, for the pointx = max06t61B(t) the set{t ∈ [0, 1] : B(t) = x}
is a singleton almost surely. The restriction to closed setscomes from Frostman’s lemma,
which we have proved for closed sets only, and can be relaxed accordingly. �

Proof. For the proof of the upper bound let{W (t) : t > 0} be a Brownian motion
independent of{B(t) : t > 0}. Applying Kaufman’s theorem for the planar Brownian
motion given byB̃(t) = (B(t),W (t)) we get almost surely, for allS ⊂ R,

dimB−1(S) = dim B̃−1(S × R) 6
1
2 dim(S × R) = 1

2 + 1
2 dimS,

where we have used the straightforward fact thatdim(S × R) = 1 + dimS.
The lower bound requires a more complicated argument, basedon Frostman’s lemma. For
this purpose we may suppose thatS ⊂ (−M,M) is closed anddimS > α. Then there
exists a measureµ supported byS such that

µ(B(x, r)) 6 rα for all x ∈ S, 0 < r < 1.
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Let `a be the measure with cumulative distribution function givenby the local time at level
a. Let ν be the measure onB−1(S) given by

ν(A) =

∫
µ(da) `a(A), for A ⊂ [0,∞) Borel.

Then, by Theorem 6.19, for a givenε > 0, one can find a constantC > 0 such that

`a(B(x, r)) = La(x+ r) − La(x− r) 6 Cr
1
2−ε

for all a ∈ [−M,M ] and0 < r < 1. By Hölder continuity of Brownian motion there
exists, for givenε > 0, a constantc > 0 such that, for everyx ∈ [0, 1],

|B(x+ s) −B(x)| 6 cr
1
2−ε for all s ∈ [−r, r].

From this we get the estimate

ν(B(x, r)) =

∫
µ(da)

[
La(x+ r) − La(x− r)

]

6

∫ B(x)+cr
1
2
−ε

B(x)−cr
1
2
−ε

µ(da)
[
La(x+ r) − La(x− r)

]

6 cαr
α
2 −εαCr

1
2−ε for all x ∈ S, 0 < r < 1.

Hence, by the mass distribution principle, we get the lower boundα/2 + 1/2 − ε(1 + α)

for the dimension and the result follows whenε ↓ 0 andα ↑ dimS.

As briefly remarked in the discussion following Theorem 4.33, Brownian motion is also
‘capacity-doubling’. This fact holds for a very general class of kernels, we give an elegant
proof of this fact here.

Theorem 9.36Let{B(t) : t ∈ [0, 1]} bed-dimensional Brownian motion andA ⊂ [0, 1] a
closed set. Supposef is decreasing and there is a constantC > 0 with

∫ 1

0

f(r2x)

f(x)
rd−1 dr 6 C for all x ∈ (0, 1) , (9.14)

and letφ(x) = x2. Then, almost surely,

Capf
(
A
)
> 0 if and only if Capf◦φ

(
B(A)

)
> 0 .

Remark 9.37Condition (9.14) is only used in the ‘only if’ part of the statement. Note that
if f(x) = x−α is a power law, then (9.14) holds if and only if2α < d. �

Proof. We start with the ‘only if’ direction, which is easier. Suppose Capf (A) > 0. This
implies that there is a mass distributionµ onA such that thef -energy ofµ is finite. Then
µ ◦ B−1 is a mass distribution onB(A) and we will show that it has finitef ◦ φ-energy.
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Indeed,

If◦φ
(
µ ◦B−1

)
=

∫∫
f ◦ φ

(
|x− y|

)
µ ◦B−1(dx)µ ◦B−1(dy)

=

∫∫
f
(
|B(s) −B(t)|2

)
µ(ds)µ(dt) .

Hence,

EIf◦φ
(
µ ◦B−1

)
=

∫∫
Ef
(
|X|2 |s− t|

)
µ(ds)µ(dt) ,

whereX is a d-dimensional standard normal random variable. Using polarcoordinates
and the monotonicity off we get, for a constantκ(d) depending only on the dimension,

E
[
f
(
|X|2 |s− t|

)]
= κ(d)

∫ ∞

0

f(r2 |s− t|) e−r2/2 rd−1 dr

6 f(|s− t|)κ(d)
(∫ 1

0

f(r2 |s− t|)
f(|s− t|) r1−d dr +

∫ ∞

1

e−r
2/2 rd−1 dr

)
.

By (9.14) the bracket on the right hand side is bounded by a constant independent of|s−t|,
and henceE[If◦φ(µ◦B−1)] <∞, which in particular impliesIf◦φ(µ◦B−1) <∞ almost
surely.

The difficulty in the ‘if’ direction is that a measure onB(A) with finite f ◦ φ-energy
cannot easily be transported backwards ontoA. To circumvent this problem we use the
characterisation of capacity in terms of polarity with respect to percolation limit sets, recall
Theorem 9.18. We may assume, without loss of generality, that f(1/4) = 1.

Fix a unit cubeCube such that Capf◦φ(B(A) ∩ Cube) > 0 with positive probability, and
let Γ be a percolation limit set with retention probabilities associated to the decreasing
functionf(x2/4) as in Theorem 9.18, which is independent of Brownian motion.Then,
by Theorem 9.18, we haveB(A) ∩ Γ 6= ∅ with positive probability. Define a random
variable

T = inf
{
t ∈ A : B(t) ∈ Γ

}
,

which is finite with positive probability. Hence the measureµ given by

µ(B) = P
{
T ∈ B, T <∞

}

is a mass distribution onA. We shall show that it has finitef -energy, which completes the
proof. Again we use the polarity criterion of Theorem 9.18 todo this. LetSn =

⋃
S∈Sn

S

be the union of all cubes retained in the construction up to stepn. Then, by looking at the
retention probability of any fixed point inCube, we have, for anys ∈ A,

P
{
B(s) ∈ Sn

}
6 p1 · · · pn =

1

f ◦ φ(2−n−1)
. (9.15)

Conversely, by a first entrance decomposition,

P
{
B(s) ∈ Sn

}
> P

{
B(s) ∈ Sn, B(T ) ∈ Sn, T <∞

}

=

∫ s

0

µ(dt) P
{
B(s) ∈ Sn

∣∣B(t) ∈ Sn
}



Exercises 285

GivenB(t) ∈ Sn and
√
s− t 6 2−n+k for somek ∈ {0, . . . , n}, the probability thatB(s)

andB(t) are contained in the same dyadic cubeQ ∈ Cn−k is bounded from below by a
constant. Given this event, we know thatQ is retained in the percolation (otherwise we
could not haveB(t) ∈ Sn) and the probability that the cube inCn, that containsB(s), is
retained in the percolation is at leastpn−k+1 · · · pn (interpreted as1 if k = 0). Therefore

∫ s

0

µ(dt) P
{
B(s) ∈ Sn

∣∣B(t) ∈ Sn
}

> c

n∑

k=0

µ
(
[s− 2−2n+2k, s− 2−2n+2k−2)

)
pn−k+1 · · · pn

> c

n∑

k=0

µ
(
[s− 2−2n+2k, s− 2−2n+2k−2)

) f ◦ φ(2−n+k−1)

f ◦ φ(2−n−1)

> c
1

f ◦ φ(2−n−1)

∫ s−2−2n−2

0

µ(dt) f
(
s− t

)
,

using the monotonicity off in the last step. Finiteness of thef -energy follows by compar-
ing this with (9.15), cancelling the factor1/f ◦φ(2−n), integrating overµ(ds), and letting
n→ ∞. This completes the proof.

Exercises

Exercise 9.1.
(a) Suppose that{B1(t) : t > 0}, {B2(t) : t > 0} are independent standard Brownian

motions inR3. Then, almost surely,B1[0, t] ∩B2[0, t] 6= {0} for anyt > 0.

(b) Suppose that{B1(t) : t > 0}, . . . , {Bp(t) : t > 0} are p independent standard
Brownian motions inRd, andd > p(d− 2). Then, almost surely,

dim
(
B1[0, t1] ∩ · · · ∩Bp[0, tp]

)
= d− p(d− 2) for anyt1, . . . , tp > 0.

Exercise 9.2. Let {X(1)(t) : 0 6 t 6 1}, . . . , {X(p)(t) : 0 6 t 6 1} bep independent
d-dimensional Brownian bridges withX(i)(0) = xi ∈ Rd andX(p)(1) = yi ∈ Rd.

(a) Show that ifd = 3 andp = 3, almost surely, the intersection of the ranges of the
Brownian bridges is empty (except possibly at the start and end points).

(b) Show that ifd = 2 andp arbitrary, with positive probability, the intersection ofthe
ranges of the independent Brownian bridges is nonempty.

Exercise 9.3.S For ad-dimensional Brownian motion{B(t) : t > 0} we denote by

S(p) =
{
x ∈ Rd : ∃0 < t1 < · · · < tp < 1 with x = B(t1) = · · · = B(tp)

}

the set ofp-fold multiple points. Show that, ford > p (d− 2),

(a) dim S(p) = d− p (d− 2), almost surely.
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(b) for any closed setΛ, we have

P
{
S(p) ∩ Λ 6= ∅

}
> 0 if and only if Capfp(Λ) > 0 ,

where the decreasing functionf is the radial potential.

Exercise 9.4. In the situation of Exercise 9.3, show that the ratio

P{S(p) ∩ Λ 6= ∅}
Capfp(Λ)

may be unbounded.

Exercise 9.5. Let {B(t) : t > 0} be a standard linear Brownian motion. Show that its zero
set is intersection-equivalent toΓ[ 12 ] in any compact unit interval not containing the origin.
Hint. Use Exercise 8.8.

Exercise 9.6.

(a) LetA be a set of rooted trees. We say thatA is inheritedif every finite tree is inA,
and ifT ∈ A andv ∈ V is a vertex of the tree then the treeT (v), consisting of all
successors ofv, is inA.

Prove theGalton–Watson 0–1 law: For a Galton–Watson tree, conditional on sur-
vival, every inherited set has probability zero or one.

(b) Show that for the percolation limit setsΓ[γ] ⊂ Rd with 0 < γ < d we have

P
{

dim Γ[γ] = d− γ | Γ[γ] 6= ∅
}

= 1.

Exercise 9.7.Consider a linear Brownian motion{B(t) : t > 0} and letA1, A2 ⊂ [0,∞).

(a) Show that ifdim(A1 ×A2) < 1/2 thenP{B(A1) intersectsB(A2)} = 0.

(b) Derive the same conclusion under the weaker assumption thatA1 ×A2 has vanish-
ing 1/2-dimensional Hausdorff measure.

(c) Show that ifCap1/2(A1 ×A2) > 0, thenP{B(A1) intersectsB(A2)} > 0.

Exercise 9.8.S Use Exercise 9.7 to find a setA ⊂ [0,∞) such that the probability that a
linear Brownian motion{B(t) : t > 0} is one-to-one onA is strictly between zero and one.

Exercise 9.9.Complete the proof of Theorem 9.28 in the cased = 2.

Exercise 9.10.S Let {B(t) : 0 6 t 6 1} be a planar Brownian motion. For everya ∈ R
define the setsS(a) = {y ∈ R : (a, y) ∈ B[0, t]}, consisting of the vertical slices of
the path. Show that, almost surely,dimS(a) = 1, for every a ∈ (min{x : (x, y) ∈
B[0, t]},max{x : (x, y) ∈ B[0, t]}).
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Notes and comments

The question whether there existp-multiple points of ad-dimensional Brownian motion
was solved in various stages in the early 1950s. First, Lévy showed in [Le40] that almost
all paths of a planar Brownian motion have double points, andKakutani [Ka44a] showed
that if n > 5 almost no paths have double points. The cases ofd = 3, 4 where added by
Dvoretzky, Erd̋os and Kakutani in [DEK50] and the same authors showed in [DEK54] that
planar Brownian motion has points of arbitrary multiplicity. Finally, Dvoretzky, Erd̋os,
Kakutani and Taylor showed in [DEKT57] that there are no triple points ind = 3. Clearly
the existence ofp-fold multiple points is essentially equivalent to the problem whetherp
independent Brownian motions have a common intersection.

The problem of finding the Hausdorff dimension of the set ofp-fold multiple points
in the plane, and of double points inR3, was still open when Itô and McKean wrote their
influential book on the sample paths of diffusions in 1964, see p.261 in [IM74], but was
solved soon after by Taylor [Ta66] and Fristedt [Fr67]. Perkins and Taylor [PT88] provide
fine results when Brownian paths in higher dimensions ‘come close’ to self-intersecting.
The method of stochastic codimension, which we use to find these dimensions, is due to
Taylor [Ta66], who used the range of stable processes as ‘test sets’. The restriction of the
stable indices to the rangeα ∈ (0, 2] leads to complications, which can be overcome by
a projection method of Fristedt [Fr67] or by using multiparameter processes, see Khosh-
nevisan [Kh02]. The use of percolation limit sets as test sets is much more recent and
due to Khoshnevisan et al. [KPX00], though similar ideas areused in the context of trees
at least since the pioneering work of Lyons [Ly90]. The latter paper is also the essential
source for our proof of Hawkes’ theorem.

Some very elegant proofs of these classical facts were givenlater: Rosen [Ro83] pro-
vides a local time approach, and Kahane [Ka86] proves a general formula for the inter-
section of independent random sets satisfying suitable conditions. The bottom line of Ka-
hane’s approach is that the formula ‘codimension of the intersection is equal to the sum of
codimensions of the intersected sets’ which is well-known from linear subspaces in general
position can be extended to the Hausdorff dimension of a large class of random sets, which
includes the paths of Brownian motion, see also Falconer [Fa97a] and Mattila [Ma95].
The intersection equivalence approach we describe in Section 9.2 is taken from [Pe96a],
[Pe96b]. The proof of Lyons’ theorem we give is taken from Benjamini et al. [BPP95].
See Theorem 2.1 in Lyons [Ly92] for the original proof.

Exact Hausdorff gauges allow a distinction of the sizes of the set ofp-multiple points
of a planar Brownian motion for different values ofp. Le Gall [LG87b] showed that, for
d = 2, the set ofp-multiple points has positive andσ-finite Hausdorff measure for the
gauge function

ψp(r) = r2
[
log(1/r) log log log(1/r)

]p
,

and ind = 3 the set of double points has positive and finite Hausdorff measure for

ψ(r) = r
[
log log(1/r)

]2
.
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Turning to packing measures, which we will introduce properly in Chapter 10, results for
the packing gauge of the double points were given by Le Gall in[LG87c] in d = 2, where
it turns out that theφ-packing measure is either zero or infinite, depending whether

∫

0+

φ(r)

r3[log(1/r)]p+1
<∞.

The case ofd = 3 turned out to be quite different and was only recently resolved in [MS09],
where it turns out that theφ-packing measure is either zero or infinite, and the integraltest
distinguishing between these cases depends on anintersection exponent, see for example
Chapter 11 for a definition. These dimension gauges imply in particular thatH2(Sp) =

P2(Sp) = 0 almost surely, ifSp is the set ofp-multiple points of a planar Brownian
motion, and thatH1(S2) = 0, P1(S2) = ∞ almost surely, ifS2 is the set of double points
of Brownian motion inR3.

An interesting line of generalisation is whether almost-sure properties of Brownian
motion also hold quasi-everywhere, a stronger notion due toFukushima [Fu80]. Roughly
speaking, a property holds quasi-everywhere if an Ornstein-Uhlenbeck process on path
space, whose stationary measure is the Wiener measure, never fails to have the property.
For example, in the context of intersections, Lyons [Ly86] showed that Brownian motion
has no double points quasi-everywhere if and only ifd > 6, and Penrose [Pe89] that the
set of double points of quasi-every Brownian motion in dimension three has Hausdorff
dimension one. A similar line of research are the dynamical theories of Brownian motion
initiated by Nelson [Ne67].

Hendricks and Taylor conjectured in 1976 a characterisation of the polar sets for the
multiple points of a Brownian motion or a more general Markovprocess, which included
the statement of Theorem 9.21. Sufficiency of the capacity criterion in Theorem 9.21 was
proved by Evans [Ev87a, Ev87b] and independently by Tongring [To88], see also Le Gall,
Rosen and Shieh [LRS89]. The full equivalence was later proved in a much more general
setting by Fitzsimmons and Salisbury [FS89]. A quantitative treatment of the question,
which sets contain double points of Brownian motion is givenin [PP07].

Points of multiplicity strictlyn where identified by Adelman and Dvoretzky [AD85]
and the result is also an immediate consequence of the exact Hausdorff gauge function
identified by Le Gall [LG86a]. The existence of points of infinite multiplicity in the planar
case was first stated in Dvoretzky et al. [DEK58] though theirproof seems to have a gap.
Le Gall [LG87a] proves a stronger result: Two setsA,B ⊂ R are said to be of the same
order typeif there exists an increasing homeomorphismφ of R such thatφ(A) = B. Le
Gall shows that, for any totally disconnected, compactA ⊂ R, almost surely there exists
a pointx ∈ R2 such that the set{t > 0: B(t) = x} has the same order type asA. In
particular, there exist points of countably infinite and uncountable multiplicity. Le Gall’s
proof is based on the properties of natural measures on the intersection of Brownian paths.
Our proof avoids this and seems to be new.
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Substantial generalisations of Exercise 9.7 can be found inpapers by Khoshnevisan
[Kh99] and Khoshnevisan and Xiao [KX05]. For example, in Theorem 8.2 of [Kh99] it
is shown that the condition in part (c) is an equivalence. Thequestion of the Hausdorff
dimension of the intersection of a Brownian imageB(A) with a given setF ⊂ Rd has
been open for a while. It seems that at the time of writing a solution has been achieved by
Khoshnevisan and Xiao.

Kaufman proved his dimension doubling theorem in [Ka69]. The version for Brown-
ian motion in dimension one is due to Serlet [Se95]. The capacity-doubling result in the
given generality is new, but Khoshnevisan and Xiao, see Question 1.1 and Theorem 7.1
in [KX05], prove the special case whenf is a power law using a different method. Their
argument is based on the investigation of additive Lévy processes and works for a class
of processes much more general than Brownian motion. Theorem 9.36 does not hold
uniformly for all setsA. Examples can be constructed along the lines in Perkins and Tay-
lor [PT87].

In this book we do not construct a measure on the intersectionof p Brownian paths.
However this is possible and yields theintersection local timefirst studied by Geman,
Horowitz and Rosen [GHR84], see also Rosen [Ro83]. This quantity plays a key rôle in
the analysis of Brownian paths and Le Gall [LG92] gives a veryaccessible account of
the state of research in 1991, which is still worth reading. Recent research deals with
the Hausdorff dimension of subsets of the intersections with special properties, like thick
times, see [DPRZ02] and [KM02], or thin times, see [KM05].
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Exceptional sets for Brownian motion

The techniques developed in this book so far give a fairly satisfactory picture of the be-
haviour of a Brownian motion at a typical time, like a fixed time or a stopping time. In this
chapter we explore exceptional times, for example times where the path moves slower or
faster than in the law of the iterated logarithm, or does not wind as in Spitzer’s law. Again
Hausdorff dimension is the right tool to describe just how rare an exceptional behaviour
is, but we shall see that another notion of dimension, the packing dimension, can provide
additional insight.

10.1 The fast times of Brownian motion

In a famous paper from 1974, Orey and Taylor raise the question how often on a Brownian
path the law of the iterated logarithm fails. To understand this, recall that, by Corollary 5.3
and the Markov property, for a linear Brownian motion{B(t) : t > 0} and for every
t ∈ [0, 1], almost surely,

lim sup
h↓0

|B(t+ h) −B(t)|√
2h log log(1/h)

= 1.

This contrasts sharply with the following result (note the absence of the iterated loga-
rithm!).

Theorem 10.1Almost surely, we have

max
06t61

lim sup
h↓0

|B(t+ h) −B(t)|√
2h log(1/h)

= 1.

Remark 10.2At the timet ∈ [0, 1] where the maximum in Theorem 10.1 is attained, the
law of the iterated logarithm fails and it is therefore anexceptionaltime. �

Proof. The upper bound follows from Lévy’s modulus of continuity, Theorem 1.14, as

sup
06t<1

lim sup
h↓0

|B(t+ h) −B(t)|√
2h log(1/h)

6 lim sup
h↓0

sup
06t61−h

|B(t+ h) −B(t)|√
2h log(1/h)

= 1.

290
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Readers who have skipped the proof of Theorem 1.14 given in Chapter 1 will be able to
infer the upper bound directly from Remark 10.5 below. It remains to show that there exists
a timet ∈ [0, 1] such that

lim sup
h↓0

|B(t+ h) −B(t)|√
2h log(1/h)

> 1.

Recall from Theorem 1.13 and scaling that, almost surely, for every constantc <
√

2 and
everyε > 0 there exist0 < h < ε andt ∈ [0, 1 − h] with

∣∣B(t+ h) −B(t)
∣∣ > c

√
h log(1/h).

Using the Markov property this implies that, forc <
√

2, the sets

M(c, ε) =
{
t ∈ [0, 1] : there ish ∈ (0, ε) such that

∣∣B(t+h)−B(t)
∣∣ > c

√
h log(1/h)

}

are almost surely dense in[0, 1]. By continuity of Brownian motion they are open, and
clearlyM(c, ε) ⊂ M(d, δ) wheneverc > d andε < δ. Hence, by Baire’s (category)
theorem, the intersection

⋂

c<
√

2,ε>0
c,ε∈Q

M(c, ε) =
{
t ∈ [0, 1] : lim sup

h↓0

∣∣B(t+ h) −B(t)
∣∣

√
2h log(1/h)

> 1
}

is dense and hence nonempty almost surely.

To explore how often we come close to the exceptional behaviour described in Theo-
rem 10.1 we introduce a spectrum of exceptional points. Given a > 0 we call a time
t ∈ [0, 1] ana-fast time if

lim sup
h↓0

|B(t+ h) −B(t)|√
2h log(1/h)

> a ,

andt ∈ [0, 1] is a fast time if it is a-fast for somea > 0. By Theorem 10.1 fast times
exist, in fact the proof even shows that the set of fast times is the intersection of countably
many open dense sets in[0, 1] and hence is dense and uncountable. Conversely it is imme-
diate from the law of the iterated logarithm that the set has Lebesgue measure zero, recall
Remark 1.28. The appropriate notion to measure the quantityof a-fast times is, again,
Hausdorff dimension.

Theorem 10.3 (Orey and Taylor 1974) Suppose{B(t) : t > 0} is a linear Brownian
motion. Then, for everya ∈ [0, 1], we have almost surely,

dim
{
t ∈ [0, 1] : lim sup

h↓0

|B(t+ h) −B(t)|√
2h log(1/h)

> a
}

= 1 − a2 .

The rest of this section is devoted to the proof of this result. We start with a proof of the
upper bound, which also shows that there are almost surely noa-fast times fora > 1.

So fix an arbitrarya > 0. Let ε > 0 andη > 1, having in mind that we later letη ↓ 1

andε ↓ 0. The basic idea is to cover the interval[0, 1) by a collection of intervals of the
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form [jη−k, (j + 1)η−k) with j = 0, . . . , dηk − 1e andk > 1. Any such interval of length
h := η−k is included in the covering if, forh′ := kη−k,

|B(jh+ h′) −B(jh)| > a(1 − 4ε)
√

2h′ log(1/h′).

Let Ik = Ik(η, ε) be the collection of intervals of lengthη−k chosen in this procedure.

Lemma 10.4Almost surely, for everyε > 0 andδ > 0, there is anη > 1 andm ∈ N such
that the collectionI = I(ε, δ) =

{
I ∈ Ik(η, ε) : k > m

}
is a covering of the set ofa-fast

times consisting of intervals of diameter no bigger thanδ.

Proof. We first note that by Theorem 1.12 there exists a constantC > 0 such that,
almost surely, there existsρ > 0 such that, for alls, t ∈ [0, 2] with |s− t| 6 ρ,

∣∣B(s) −B(t)
∣∣ 6 C

√
|s− t| log(1/|s− t|). (10.1)

Chooseη > 1 such that
√
η − 1 6 aε/C. LetM be the minimal integer withMη−M 6 ρ

andm > M such thatmη−m < δ (to ensure that our covering sets have diameter no bigger
thanδ) andkη−k < `η−` for all k > ` > m. Now suppose thatt ∈ [0, 1] is ana-fast time.
By definition there exists0 < u < mη−m such that

|B(t+ u) −B(t)| > a(1 − ε)
√

2u log(1/u).

We pick the uniquek > m such thatkη−k < u 6 (k − 1)η−k+1, and leth′ = kη−k. By
(10.1), we have

|B(t+ h′) −B(t)| > |B(t+ u) −B(t)| − |B(t+ u) −B(t+ h′)|
> a(1 − ε)

√
2u log(1/u) − C

√
(u− h′) log(1/(u− h′)).

As 0 6 u − h′ 6 (η − 1)kη−k, and by our choice ofη and by choosingm sufficiently
large, the subtracted term can be made smaller thanaε

√
2h′ log(1/h′). Hence there exists

k > m such that

|B(t+ h′) −B(t)| > a(1 − 2ε)
√

2h′ log(1/h′).

Now let j be such thatt ∈ [jη−k, (j + 1)η−k). As before leth = η−k. Then, by the
triangle inequality and using (10.1) twice, we have

|B(jh+ h′) −B(jh)|
> |B(t+ h′) −B(t)| − |B(t) −B(jh)| − |B(jh+ h′) −B(t+ h′)|
> a(1 − 2ε)

√
2h′ log(1/h′) − 2C

√
h log(1/h)

> a(1 − 4ε)
√

2h′ log(1/h′),

using in the last step that, by choosingm sufficiently large, the subtracted term can be
made smaller than2aε

√
2h′ log(1/h′).

Proof of the upper bound in Theorem 10.3. This involves only a first moment
calculation. All there is to show is that, for anyγ > 1−a2 there existsε > 0 such that, for
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any δ > 0 sufficiently small, the random variable
∑
I∈I(ε,δ) |I|γ is finite, almost surely.

For this it suffices to verify that its expectation is finite. Note that

E
[ ∑

I∈I(ε,δ)

|I|γ
]

=

∞∑

k=m

dηk−1e∑

j=0

η−kγ P
{ |B(jη−k+kη−k)−B(jη−k)|√

2 kη−k log(ηk/k)
> a(1 − 4ε)

}
.

So it all boils down to an estimate of a single probability, which is very simple as it involves
just one normal random variable, namelyB(jη−k + kη−k) − B(jη−k). More precisely,
for X standard normal,

P
{ |B(jη−k + kη−k) −B(jη−k)|√

2kη−k log(ηk/k)
> a(1 − 4ε)

}

= P
{
|X| > a(1 − 4ε)

√
2 log(ηk/k)

}

6
1

a(1−4ε)
√

log(ηk/k)π
exp

{
− a2 (1 − 4ε)2 log(ηk/k)

}
6 η−ka

2 (1−4ε)3 ,

(10.2)

for all sufficiently largek and all0 6 j < 2k, using the estimate for normal random
variables of Lemma 12.9 in the penultimate step. Givenγ > 1 − a2 we can finally find
ε > 0 such thatγ + a2 (1 − 4ε)3 > 1, so that

∞∑

k=m

ηk−1∑

j=0

η−kγ P
{ |B(jη−k + kη−k) −B(jη−k)|√

2kη−k log(ηk/k)
> a(1 − 4ε)

}

6

∞∑

k=1

ηkη−kγ η−ka
2 (1−4ε)3 <∞,

completing the proof of the upper bound in Theorem 10.3.

Remark 10.5If a > 1 one can chooseγ < 0 in the previous proof, which shows that there
are noa-fast times as the empty collection is suitable to cover the set ofa-fast times. �

For the lower boundwe have to work harder. We divide, for any positive integerk,
the interval[0, 1] into nonoverlapping dyadic subintervals[j2−k, (j + 1)2−k] for j =

0, . . . , 2k − 1. As before, we denote this collection of intervals byCk and byC the union
over all collectionsCk for k > 1. To each intervalI ∈ C we associate a{0, 1}-valued
random variableZ(I) and then define sets

A(k) :=
⋃

I∈Ck
Z(I)=1

I and A :=

∞⋂

n=1

∞⋃

k=n

A(k) .

Because1A = lim sup 1A(k) the setA is often called thelimsup fractal associated with
the family(Z(I) : I ∈ C). We shall see below that the set ofa-fast times contains a large
limsup fractal and derive the lower bound from the followinggeneral result on limsup
fractals.
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Theorem 10.6Suppose that(Z(I) : I ∈ C) is a collection of random variables with values
in {0, 1} such thatpk := P{Z(I) = 1} is the same for allI ∈ Ck. For I ∈ Cm, with
m 6 n, define

Mn(I) :=
∑

J∈Cn
J⊂I

Z(J) .

Let ζ(n) > 1 and0 < γ < 1 be such that

(1) Var(Mn(I)) 6 ζ(n) E[Mn(I)] = ζ(n) pn2
n−m,

(2) lim
n↑∞

2n(γ−1) ζ(n) p−1
n = 0,

thendimA > γ almost surely for the limsup fractalA associated with(Z(I) : I ∈ C).

The idea of the proofof Theorem 10.6 is to construct a probability measureµ onA and
then use the energy method. To this end, we choose an increasing sequencè0, `1, . . . such
thatM`k(D) > 0 for all D ∈ C`k−1

. We then define a (random) probability measureµ

in the following manner: Assign mass2−`0 to each of the intervalsI ∈ C`0 . Proceed
inductively: if J ∈ Cm with `k−1 < m 6 `k andJ ⊂ D for D ∈ C`k−1

define

µ(J) =
M`k(J)µ(D)

M`k(D)
. (10.3)

Thenµ is consistently defined on all intervals inC and therefore can be extended to a
probability measure on[0, 1] by the measure extension theorem. Note thatµ(Ac) = 0, so
thatµ is supported byA. The crucial part of the proof is then to show that, for a suitable
choice of`0, `1, . . . the measureµ has finiteγ-energy.

For the proof of Theorem 10.6 we need two lemmas. The first one is a simple combination
of two facts, which have been established at other places in the book: The bounds for
the energy of a measure established in Lemma 9.20, and the lower bound of Hausdorff
dimension in terms of capacity which follows from the energymethod, see Theorem 4.27.

Lemma 10.7SupposeB ⊂ [0, 1] is a Borel set andµ is a probability measure onB. Then

∞∑

m=1

∑

J∈Cm

µ(J)2

2−αm
<∞ implies dimB > α.

Proof. By Lemma 9.20 withf(x) = x−α andh(n) = 2nα(1 − 2−α) we obtain, for a
suitable constantC > 0 that

Iα(µ) 6 C

∞∑

m=1

∑

J∈Cm

µ(J)2

2−αm
.

If the right hand side is finite, then so is theα-energy of the measureµ. We thus obtain
dimB > α by Theorem 4.27.

For the formulation of the second lemma we use (2) to pick, forany ` ∈ N an integer
n = n(`) > ` such that2n(γ−1) ζ(n) 6 pn 2−3`.
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Lemma 10.8There exists an almost surely finite random variable`0 such that, for all
` > `0 andD ∈ C`, withn = n(`),

• for all D ∈ C` we have
∣∣Mn(D) − EMn(D)

∣∣ < 1
2EMn(D),

and, in particular,Mn(D) > 0;

• for a constantC depending only onγ,
n∑

m=`

2γm
∑

J∈Cm
J⊂D

Mn(J)2

(2n−`pn)2
6 C2γ`.

Remark 10.9The first statement in the lemma says intuitively that the variance of the ran-
dom variablesMn(D) is small, i.e. they are always close to their mean. This is essentially
what makes this proof work. �

Proof of Lemma 10.8. Form 6 n, J ∈ Cm we denote∆n(J) := Mn(J) − EMn(J)

and, for` 6 n andD ∈ C`, set

Υn(D) :=

n∑

m=`

2mγ
∑

J∈Cm
J⊂D

∆n(J)2.

By assumption (1) in Theorem 10.6 we haveE
[
∆n(J)2

]
6 ζ(n)pn2

n−m and therefore,
for all D ∈ C`,

EΥn(D) 6

n∑

m=`

2mγ
∑

J∈Cm
J⊂D

E[∆n(J)2] 6

n∑

m=`

2mγζ(n) pn 2n−` 6
2(n+1)γ

2γ − 1
ζ(n) pn 2n−`.

By our choice ofn = n(`) we thus obtain

E
[ ∑

D∈C`

Υn(D)

(2n−`pn)2

]
6

2γ

2γ − 1
ζ(n) 22`−n+nγp−1

n 6
2γ

2γ − 1
2−`.

Since the right hand side is summable in` we conclude that, almost surely, the summands
inside the last expectation converge to zero as` ↑ ∞. In particular, there exists̀0 < ∞
such that, for all̀ > `0 we have2−`γ 6 1/4 and, forn = n(`) andD ∈ C`,

Υn(D) 6
(
2n−`pn

)2
=
(
EMn(D)

)2
.

The first statement follows from this very easily: For any` > `0 andn = n(`) we have
(recalling the definition ofΥn(D)),

∆n(D)2 6 2−`γΥn(D) 6 2−`γ
(
EMn(D)

)2
6

1
4

(
EMn(D)

)2
.

In order to get the second statement we calculate,

∑

J∈Cm
J⊂D

(EMn(J))2

(2n−`pn)2
=
∑

J∈Cm
J⊂D

22(`−m) = 2`−m.
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Therefore
n∑

m=`

2mγ
∑

J∈Cm
J⊂D

(EMn(J))2

(2n−`pn)2
= 2`

n∑

m=`

2−m(1−γ)
6

2`γ

1 − 2−(1−γ) . (10.4)

Now, recalling the choice ofn,
n∑

m=`

2mγ
∑

J∈Cm
J⊂D

∆n(J)2

(2n−`pn)2
=

Υn(D)

(2n−`pn)2
6 1. (10.5)

SinceMn(J)2 =
(
EMn(J)+∆n(J)

)2
6 2
(
EMn(J)

)2
+2
(
∆n(J)

)2
, adding (10.4) and

(10.5) and settingC := 2 + 2/(1 − 2−(1−γ)) proves the second statement.

We now definè k+1 = n(`k) for all integersk > 0. The first statement of Lemma 10.8
ensures thatµ is well defined by (10.3), and together with the second statement will enable
us to check thatµ has finiteγ-energy.

Proof of Theorem 10.6. We can now use Lemma 10.8 to verify the condition of
Lemma 10.7 and finish the proof of Theorem 10.6. Indeed, by definition of µ,

∞∑

m=`0+1

∑

J∈Cm

µ(J)2

2−γm
=

∞∑

k=0

`k+1∑

m=`k+1

2γm
∑

D∈C`k

µ(D)2

M`k+1
(D)2

∑

J∈Cm
J⊂D

M`k+1
(J)2. (10.6)

Recall thatqk+1 := EM`k+1
(D) = 2`k+1−`kp`k+1

and, by the first statement of Lemma 10.8,
for everyk ∈ N andD ∈ C`k ,

1
2 qk+1 6 M`k+1

(D) 6 2qk+1. (10.7)

Now, from the definition of the measureµ we get, withD ⊂ D′ ∈ C`k−1
,

µ(D) =
M`k(D)µ(D′)

M`k(D′)
6 2Z(D)/qk,

and therefore we can continue (10.6) with the upper bound

16

∞∑

k=0

1

q2k

∑

D∈C`k

Z(D)

`k+1∑

m=`k+1

2γm
∑

J∈Cm
J⊂D

M`k+1
(J)2

q2k+1

6 16C

∞∑

k=0

1

q2k

∑

D∈C`k

Z(D) 2γ`k ,

using the second statement of Lemma 10.8 and the definition ofqk+1. Recall that the sum
of the indicator variables above is, by definition, equal toM`k([0, 1]). Finally, using (10.7)
and the definition of̀k = n(`k−1) we note that,

∞∑

k=1

1

q2k
M`k([0, 1]) 2γ`k 6 2

∞∑

k=1

2`k−1

qk
2γ`k = 2

∞∑

k=1

22`k−1−`k 2γ`k

p`k

6

∞∑

k=1

2−`k−1+1 <∞.

This ensures convergence of the sequence (10.6) and thus completes the proof.
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Coming back to the lower bound in Theorem 10.3 we fixε > 0. GivenI = [jh, (j + 1)h]

with h := 2−k we letZ(I) = 1 if and only if

|B(jh+ h′) −B(jh)| > a(1 + ε)
√

2h′ log(1/h′), for h′ := k2−k.

Lemma 10.10Almost surely, the setA associated with this family(Z(I) : I ∈ C) of
random variables is contained in the set ofa-fast times.

Proof. Recall that by Theorem 1.12 there exists a constantC > 0 such that, almost
surely,

|B(s) −B(t)| 6 C
√
|t− s| log(1/|t− s|), for all s, t ∈ [0, 2].

Now assume thatk is large enough that( 2C
aε

)2
log 2 + log k 6 k log 2. Let t ∈ A and

suppose thatt ∈ I ∈ Ck with Z(I) = 1. Then, by the triangle equality,

|B(t+ h′) −B(t)|
> |B(jh+ h′) −B(jh)| − |B(t+ h′) −B(jh+ h′)| − |B(jh) −B(t)|
> a(1 + ε)

√
2h′ log(1/h′) − 2C

√
h log(1/h)

> a
√

2h′ log(1/h′).

As this happens for infinitely manyk, this proves thatt is ana-fast time.

The next lemma singles out the crucial estimates of expectation and variance needed to
apply Theorem 10.6. The first is based on the upper tail estimate for a standard normal
distribution, the second on the ‘short range dependence’ ofthe family(Z(I) : I ∈ C).

Lemma 10.11Definepn = E[Z(I)] for I ∈ Cn, andη(n) := 2n+ 1. Then,

(a) for I ∈ Ck we haveE[Z(I)] > 2−k a
2 (1+ε)3 ;

(b) for m 6 n andJ ∈ Cm, we haveVarMn(J) 6 pn 2n−m η(n).

Proof. For part (a), denoting byX a standard normal random variable,

P
{
|B(jh+ h′) −B(jh)| > a(1 + ε)

√
2h′ log(1/h′)

}

= P
{
|X| > a(1 + ε)

√
2 log(1/h′)

}

>
a(1+ε)

√
2 log(1/h′)

1+2a2(1+ε)2 log(1/h′)
1√
2π

exp
{
− a2 (1 + ε)2 log(1/h′)

}
> 2−k a

2 (1+ε)3 ,

(10.8)
for all sufficiently largek and all0 6 j < 2k, using the lower estimate for normal random
variables of Lemma 12.9 in the penultimate step.

For part (b) note that for two intervalsJ1, J2 ∈ Cn the associated random variablesZ(J1)

andZ(J2) are independent if their distance is at leastn2−n. Using this whenever possible
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and the trivial estimateE[Z(J1)Z(J2)] 6 EZ(J1) otherwise, we get

EMn(J)2 =
∑

J1,J2∈Cn
J1,J2⊂J

E
[
Z(J1)Z(J2)

]

6
∑

J1∈Cn
J1⊂J

{
(2n+ 1)EZ(J1) + EZ(J1)

∑

J2∈Cn
J2⊂J

EZ(J2)
}
.

Hence we obtain

E
[
(Mn(J) − EMn(J))2

]
6

∑

J1∈Cn
J1⊂J

(2n+ 1)pn = pn2
n−m(2n+ 1),

which proves the lemma.

Proof of the lower bound in Theorem 10.3. By Lemma 10.11 the conditions of
Theorem 10.6 hold for anyγ < 1 − a2 (1 + ε)3. As, for ε > 0, the setA associated to
(Z(I) : I ∈ C) is contained in the set ofa-fast times, the latter has dimension> 1− a2.

10.2 Packing dimension and limsup fractals

In this section we ask for a precise criterion, whether a setE containsa-fast times for var-
ious values ofa. It turns out that such a criterion depends not on the Hausdorff, but on the
packing dimension of the setE. We therefore begin this section by introducing the concept
of packing dimension, which was briefly mentioned in the beginning of Chapter 4, insome
detail. We choose to define packing dimension in a way which indicates its conceptual na-
ture as adual to the notion of Hausdorff dimension. The naturaldualoperation to covering
a set with balls, as in the case of Hausdorff dimension, is theoperation ofpackingballs
disjointly into the set.

Definition 10.12. SupposeE is a metric space. For everyδ > 0, aδ-packing of A ⊂ E

is a countable collection ofdisjoint balls

B(x1, r1),B(x2, r2),B(x3, r3), . . .

with centresxi ∈ A and radii0 6 ri 6 δ. For everys > 0 we introduce thes-valueof the
packing as

∑∞
i=1 r

s
i . Thes-packing number of A is defined as

P s(A) = lim
δ↓0

P sδ (A) for P sδ (A) = sup
{ ∞∑

i=1

rsi : (B(xi, ri)) a δ-packing ofA
}
. �

Note that the packing number is defined in the same way as the Hausdorff measure with
efficient (small) coverings replaced by efficient (large) packings. A difference is that the
packing numbers donot define a reasonable measure. However a small modification gives
the so-called packing measure,

Ps(A) = inf
{ ∞∑

i=1

P s(Ai) : A =

∞⋃

i=1

Ai

}
.
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The packing dimension has a definition analogous to the definition of Hausdorff dimension
with Hausdorff measures replaced by packing measures.

Definition 10.13. Thepacking dimensionof E is dimP E = inf{s : Ps(E) = 0}. �

Remark 10.14It is not hard to see that

dimP E = inf{s : Ps(E) <∞} = sup{s : Ps(E) > 0} = sup{s : Ps(E) = ∞},
a proof of this fact is suggested as Exercise 10.1. �

An alternative approach to packing dimension is to use a suitable regularisationof the
upper Minkowski dimension, recall Remark 4.4 where we have hinted at this possibility.

Theorem 10.15For every metric spaceE we have

dimP E = inf
{ ∞

sup
i=1

dimMEi : E =

∞⋃

i=1

Ei , Ei bounded
}
.

Remark 10.16This characterisation of the packing dimension shows thatdimP E 6

dimME for all bounded setsE, and, of course, strict inequality may hold. Every countable
set has packing dimension0, compare with the example in Exercise 4.2. Moreover, it is
not hard to see that the countable stability property is satisfied. �

Proof. Define, for everyA ⊂ E andε > 0,

P (A, ε) = max
{
k : there are disjoint ballsB(x1, ε), . . . ,B(xk, ε) with xi ∈ A

}
.

Recall from (4.1) the definition of the numbersM(A, ε) giving the number of sets of
diameter at mostε needed to coverA. We first show that

P (A, 4ε) 6 M(A, 2ε) 6 P (A, ε) .

Indeed, ifk = P (A, ε) let B(x1, ε), . . . ,B(xk, ε) be disjoint balls withxi ∈ A. Suppose
x ∈ A \ ⋃ki=1 B(xi, 2ε), thenB(x, ε) is disjoint from all ballsB(xi, ε) contradicting
the choice ofk. HenceB(x1, 2ε), . . . ,B(xk, 2ε) is a covering ofA and we have shown
M(A, 2ε) 6 P (A, ε). For the other inequality letm = M(A, 2ε) andk = P (A, 4ε) and
choosex1, . . . , xm ∈ A andy1, . . . , yk ∈ A such that

A ⊂
m⋃

i=1

B(xi, 2ε) andB(y1, 4ε), . . . ,B(yk, 4ε) disjoint.

Then eachyj belongs to someB(xi, 2ε) and no such ball contains more than one such
point. Thusk 6 m, which provesP (A, 4ε) 6 M(A, 2ε).

Suppose now thatinf{t : Pt(E) = 0} < s. Then there ist < s andE =
⋃∞
i=1Ai such

that, for every setA = Ai, we haveP t(A) < 1. Obviously,P tε(A) > P (A, ε)εt. Letting
ε ↓ 0 gives

lim sup
ε↓0

M(A, ε)εt 6 lim sup
ε↓0

P (A, ε/2)εt 6 2tP t(A) < 2t.

HencedimMA 6 t and by definitionsup∞
i=1 dimMAi 6 t < s.
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To prove the opposite inequality, let0 < t < s < dimP(E), andAi ⊂ E be bounded
with E =

⋃∞
i=1Ai. It suffices to show thatdimM (Ai) > t for somei. SincePs(E) > 0

there isi such thatP s(Ai) > 0. Let 0 < α < P s(Ai), then for allδ ∈ (0, 1) we have
P sδ (Ai) > α and there exist disjoint ballsB(x1, r1),B(x2, r2), B(x3, r3), . . . with centres
xj ∈ Ai and radiirj smaller thanδ with

∞∑

j=1

rsj > α .

For everym let km be the number of balls with radius2−m−1 < rj 6 2−m. Then,
∞∑

m=0

km2−ms >

∞∑

j=1

rsj > α .

This yields, for some integerN > 0, 2Nt(1 − 2t−s)α 6 kN , since otherwise
∞∑

m=0

km2−ms <
∞∑

m=0

2mt(1 − 2t−s)2−msα = α .

Sincerj 6 δ for all j, we have2−N−1 < δ. Moreover,

P (Ai, 2
−N−1) > kN > 2Nt(1 − 2t−s)α ,

which gives

sup
06ε6δ

P (Ai, ε)ε
t
> P (Ai, 2

−N−1)2−Nt−t > 2−t(1 − 2t−s)α .

Letting δ ↓ 0, and recalling the relation ofM(A, ε) andP (A, ε) established at the begin-
ning of the proof, we obtain

lim sup
ε↓0

M(Ai, ε)ε
t
> lim sup

ε↓0
P (Ai, 2ε)ε

t > 0 ,

and thusdimMAi > t, as required.

Remark 10.17It is easy to see that, for every metric space,dimP E > dimE. This is
suggested as Exercise 10.2. �
The following result shows that every closed subset ofRd has a large subset, which is
‘regular’ in a suitable sense. It will be used in the proof of Theorem 10.28 below.

Lemma 10.18LetA ⊂ Rd be closed.

(i) If any open setV intersectingA satisfiesdimM (A ∩ V ) > α, thendimP(A) > α.
(ii) If dimP (A) > α, then there is a (relatively closed) nonempty subsetÃ ofA, such

that, for any open setV which intersects̃A, we havedimP (Ã ∩ V ) > α.

Proof. Let A ⊂ ⋃∞
j=1Aj , where theAj are closed. We are going to show that there

exist an open setV and an indexj such thatV ∩A ⊂ Aj . For thisV andj we have,

dimM (Aj) > dimM (Aj ∩ V ) > dimM (A ∩ V ) > α.

This in turn implies thatdimP (A) > α.



10.2 Packing dimension and limsup fractals 301

Suppose now that for anyV open such thatV ∩ A 6= ∅, it holds thatV ∩ A 6⊂ Aj . Then
Acj is a dense open set relative toA. By Baire’s (category) theoremA∩⋂j Acj 6= ∅, which
means thatA 6⊂ ⋃j Aj , contradicting our assumption and proving (i).
Now choose a countable basisB of the topology ofRd and define

Ã = A \
⋃{

B ∈ B : dimP(B ∩A) 6 α
}
.

Then,dimP (A\ Ã) 6 α using stability of packing dimension. From this we concludethat

dimP Ã = dimP A > α.

If for someV open,V ∩ Ã 6= ∅ anddimP (Ã ∩ V ) 6 α thenV contains some setB ∈ B
such thatÃ ∩ B 6= ∅. For that set we havedimP (A ∩ B) 6 dimP (A \ Ã) ∨ dimP (Ã ∩
B) 6 α, contradicting the construction of̃A.

Example 10.19 An example of a result demonstrating the duality between Hausdorff and
packing dimension is theproduct formula, see [BP96]. In the dimension theory of smooth
sets (manifolds, linear spaces) we have the following formula for product sets

dim(E × F ) = dimE + dimF .

The example discussed in Exercise 10.3 shows that this formula fails for Hausdorff dimen-
sion, a reasonable formula for the Hausdorff dimension of product sets necessarily involves
information about the packing dimension of one of the factorsets. In [BP96] it is shown
that, for every Borel setA ⊂ Rd,

dimP (A) = sup
B

{
dim(A×B) − dim(B)

}

where the supremum is over all compact setsB ⊂ Rd. One can also show that, ifA satis-
fiesdimA = dimP A, then the product formuladim(A×B) = dimA+ dimB holds.�

Before moving back to our study of Brownian paths we study thepacking dimension of
the ‘test sets’ we have used in the stochastic codimension method, see Section 9.9.1.

Theorem 10.20Let γ ∈ [0, d] and Γ[γ] be a percolation limit set inRd with retention
parameter2−γ . Then

• dimP Γ[γ] 6 d− γ almost surely,

• dimP Γ[γ] = d− γ almost surely onΓ[γ] 6= ∅.

Proof. For the first item, as packing dimension is bounded from aboveby the upper
Minkowski dimension, it suffices to show thatdimM Γ[γ] 6 d− γ almost surely. For this
purpose we use the formula for the upper Minkowski dimensiongiven in Remark 4.2. For
a givenn, we cover the percolation limit set bySn, the collection of cubes retained in
thenth construction step. The probability that a given cube of side length2−n is in Sn is
2−nγ and hence the expected number of cubes inSn is 2n(d−γ). Hence, for anyε > 0,

P
{
2n(γ−d−ε) #Sn > 1

}
6 2n(γ−d−ε)E#Sn 6 2−nε,
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which is summable. Hence, almost surely,2n(γ−d−ε) #Sn 6 1 for all but finitely manyn.
Thus, almost surely,

dimM 6 lim sup
n↑∞

log #Sn

n log 2
6 d− γ + ε for everyε > 0.

For the second item recall the corresponding statement for Hausdorff dimension from Exer-
cise 9.6. The result follows, as packing dimension is bounded from below by the Hausdorff
dimension, see Remark 10.17.

Remark 10.21Simple modifications of the corresponding proofs for the upper bounds in
the case of Hausdorff dimension, see Exercise 10.4, show that

• dimP Range[0, 1] = 2, for Brownian motion ind > 2,

• dimP Graph[0, 1] = 3
2 , for Brownian motion ind = 1,

• dimP Zeros = 1
2 , for Brownian motion ind = 1.

Hence, at a first glance the concept of packing dimension doesnot seem to add a substan-
tial contribution to the discussion of fine properties ofd-dimensional Brownian motion.
However, a first sign that something interesting might be going on can be found in Exer-
cise 10.5, where we show that the Hausdorff and packing dimension of the sets ofa-fast
times differ. This is indicative of the fact that optimal coverings of these sets use covering
sets of widely differing size, and that optimal packings usesets of quite different scale.�

Given a setE ⊂ [0, 1] we now ask for the maximal value ofa such thatE contains ana-
fast time with positive probability. This notion of size is most intimately linked to packing
dimension as the following theorem shows. We denote byF (a) ⊂ [0, 1] the set ofa-fast
times.

Theorem 10.22 (Khoshnevisan, Peres and Xiao)For any compact setE ⊂ [0, 1], almost
surely,

sup
t∈E

lim sup
h↓0

|B(t+ h) −B(t)|√
2h log(1/h)

=
√

dimP (E).

Moreover, if dimP (E) > a2, then dimP (F (a) ∩ E) = dimP (E).

Remark 10.23The result can be extended from compact setsE to more general classes of
sets, more precisely theanalyticsets, see [KPX00]. �

Remark 10.24An equivalent formulation of the theorem is that, for any compactE ⊂
[0, 1], almost surely,

P
{
F (a) ∩E 6= ∅

}
=

{
1 if dimP (E) > a2,
0 if dimP (E) < a2.
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Using the compact percolation limit setsE = Γ[γ] in this result and Hawkes’ theorem,
Theorem 9.5, one can obtain an alternative proof of the Orey–Taylor theorem. Indeed, by
Theorem 10.20, ifγ < 1−a2 we have dimP (E) > a2 with positive probability, and there-
fore, P

{
F (a) ∩ E 6= ∅

}
> 0. Hence, by Hawkes’ theorem, dimF (a) > γ with positive

probability. Brownian scaling mapsa-fast times ontoa-fast times. Therefore there exists
ε > 0 such that, for anyn ∈ N and0 6 j 6 n− 1,

P
{

dim(F (a) ∩ [j/n, (j + 1)/n]) > γ
}

> ε,

and hence

P
{

dimF (a) > γ
}

> 1 − (1 − ε)n → 1.

Lettingγ ↑ 1−a2 givesdimF (a) > 1−a2 almost surely. Conversely, by Theorem 10.20,
if γ > 1−a2 we have dimP (E) < a2 almost surely, and therefore,P

{
F (a)∩E 6= ∅

}
= 0.

Hence, by Hawkes’ theorem, we havedimF (a) 6 1 − a2 almost surely. �
Theorem 10.22 can be seen as a probabilistic interpretationof packing dimension. The
upper and lower Minkowski dimensions allow a similar definition when the order of sup
and lim are interchanged.

Theorem 10.25For any compactE ⊂ [0, 1], almost surely,

lim sup
h↓0

sup
t∈E

|B(t+ h) −B(t)|√
2h log(1/h)

=

√
dimM (E). (10.9)

Proof of the upper bounds in Theorems 10.22 and 10.25. SupposeE ⊂ [0, 1] is
compact. We assume thatdimM (E) < λ < a2 and show that

lim sup
h↓0

sup
t∈E

|B(t+ h) −B(t)|√
2h log(1/h)

6 a almost surely. (10.10)

Note that this is the upper bound in Theorem 10.25. Once this is shown it immediately
implies

sup
t∈E

lim sup
h↓0

|B(t+ h) −B(t)|√
2h log(1/h)

6

√
dimM (E) almost surely.

Now, for any decompositionE =
⋃∞
i=1Ei, we have

sup
t∈E

lim sup
h↓0

|B(t+ h) −B(t)|√
2h log(1/h)

=
∞

sup
i=1

sup
t∈cl(Ei)

lim sup
h↓0

|B(t+ h) −B(t)|√
2h log(1/h)

6
∞

sup
i=1

√
dimM (Ei),

where we have made use of the fact that the upper Minkowski dimension is insensitive
under taking the closure of a set. Theorem 10.15 now implies that

sup
t∈E

lim sup
h↓0

|B(t+ h) −B(t)|√
2h log(1/h)

6
√

dimP (E) almost surely,

which is the upper bound in Theorem 10.22.
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For the proof of (10.10) coverE by disjoint subintervalsI = [(j/k)η−k, ((j + 1)/k)η−k)
for j = 0, . . . , dkηk − 1e, of equal lengthh = η−k/k such thatI ∩ E 6= ∅. By definition
of the upper Minkowski dimension there exists anm such that, for allk > m, no more
thanηλk different such intervals of lengthh = η−k/k intersectE.

Now fix ε > 0 such thatλ < a2 (1 − 4ε)3, which is possible by our condition onλ. Let
Z(I) = 1 if , for h′ = η−k,

|B(jh+ h′) −B(jh)| > a(1 − 4ε)
√

2h′ log(1/h′).

Recall from the proof of Lemma 10.4 that there is anη > 1 such that, for anym ∈ N, the
collection

{
I = [(j/k)η−k, ((j + 1)/k)η−k) : Z(I) = 1, I ∩ E 6= ∅, k > m

}

is a covering of the set

M(m) :=
{
t ∈ E : sup

η−k<u 6 η−k+1

|B(t+ u) −B(t)|√
2u log(1/u)

> a(1 − ε) for somek > m
}
.

Moreover, we recall from (10.2), that

P{Z(I) = 1} 6 η−ka
2 (1−4ε)3 ,

and, sticking to our notationI = [(j/k)η−k, ((j + 1)/k)η−k) for a little while longer,

∞∑

k=0

dkηk−1e∑

j=0

P
{
Z(I) = 1

}
1{I ∩ E 6= ∅} 6

∞∑

k=0

ηλkη−ka
2 (1−4ε)3 <∞,

and hence by the Borel–Cantelli lemma there exists anm such thatZ(I) = 0 whenever
I = [(j/k)η−k, ((j + 1)/k)η−k) for somek > m. This means that the setM(m) can be
covered by the empty covering, so it must itself be empty. This shows (10.10) and com-
pletes the proof.

We embed the proof of the lower bound into a more general framework, including the
discussion of limsup fractals in ad-dimensional cube.

Definition 10.26. Fix an open unit cubeCube = x0 +(0, 1)d ⊂ Rd. For any nonnegative
integerk, denote byCk the collection of dyadic cubes

x0 +
d∏

i=1

[ji2
−k, (ji + 1)2−k] with ji ∈ {0, . . . , 2k − 1} for all i ∈ {1, . . . , d},

andC =
⋃
k>0 Ck. Denote by(Z(I) : I ∈ C) a collection of random variables each taking

values in{0, 1}. Thelimsup fractal associated to this collection is the random set

A :=

∞⋂

n=1

∞⋃

k=n

⋃

I∈Ck
Z(I)=1

int(I),

whereint(I) is the interior of the cubeI. �
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Remark 10.27Compared with the setup of the previous section we have switched to the
use ofopencubes in the definition of limsup fractals. This choice is more convenient when
we prove hitting estimates, whereas in Theorem 10.6 the choice of closed cubes was more
convenient when constructing random measures onA. �

The key to our result is the hitting probabilities for the discrete limsup fractalA under
some conditions on the random variables(Z(I) : I ∈ C).

Theorem 10.28Suppose that

(i) the meanspn = E[Z(I)] are independent of the choice ofI ∈ Cn and satisfy

lim inf
n↑∞

log pn
n log 2

> − γ, for someγ > 0;

(ii) there existsc > 0 such that the random variablesZ(I) andZ(J) are independent
wheneverI, J ∈ Cn and the distance ofI andJ exceedscn2−n.

Then, for any compactE ⊂ Cube with dimP (E) > γ, we have

P
{
A ∩ E 6= ∅

}
= 1.

Remark 10.29The second assumption, which gives us the necessary independence for the
lower bound, can be weakened, see [KPX00]. Note that no assumption is made concerning
the dependence of random variablesZ(I) for intervalsI of different size. �

Proof of Theorem 10.28. Let E ⊂ Cube be compact withdimP E > γ. Let Ẽ be
defined as in Lemma 10.18 for example as

Ẽ = E \
⋃

ai<bi
rational

{ d∏

i=1

(ai, bi) : dimM

(
E ∩

d∏

i=1

(ai, bi)
)
< γ

}
.

From the proof of Lemma 10.18 we havedimP E = dimP Ẽ. Define open sets

An =
⋃

I∈Cn

{
int(I) : Z(I) = 1

}
,

and

A∗
n =

⋃

m>n

Am =
⋃

m>n

⋃

I∈Cm

{
int(I) : Z(I) = 1

}
.

By definitionA∗
n∩ Ẽ is open inẼ. We will show that it is also dense iñE with probability

one. This, by Baire’s category theorem, will imply that

A ∩ Ẽ =
∞⋂

n=1

A∗
n ∩ Ẽ 6= ∅, almost surely,

as required. To show thatA∗
n ∩ Ẽ is dense inẼ, we need to show that for any open binary

cubeJ which intersects̃E, the setA∗
n ∩ Ẽ ∩ J is almost surely nonempty.



306 Exceptional sets for Brownian motion

For the rest of the proof, fixJ and recall thatdimM (Ẽ ∩ J) > dimP (Ẽ ∩ J) > γ. Take
ε > 0 small andn large enough so that̃E ∩ J intersects more than2n(γ+2ε) binary cubes
of side length2−n, and so that(log pn)/n > −(log 2)(γ + ε). LetSn be the set of cubes
in Cn that intersect̃E ∩ J . Define

Tn =
∑

I∈Sn

Z(I),

so thatP
{
An ∩ Ẽ ∩ J = ∅

}
= P{Tn = 0}. To show that this probability converges to

zero, by the Paley–Zygmund inequality, it suffices to prove that (VarTn)/(ETn)2 does.
The first moment ofTn is given by

ETn = sn pn > 2(γ+2ε)n2−γn−εn = 2εn,

wheresn denotes the cardinality ofSn. The variance can be written as

VarTn = Var
∑

I∈Sn

Z(I) =
∑

I∈Sn

∑

J∈Sn

Cov(Z(I), Z(J)).

Here each summand is at mostpn, and the summands for whichI andJ have distance at
leastcn2−n vanish by assumption. Thus

∑

I∈Sn

∑

J∈Sn

Cov(Z(I), Z(J)) 6 pn #
{
(I, J) ∈ Sn × Sn : dist(I, J) 6 cn 2−n

}

6 pnsn (2cn+ 1)d = c(2cn+ 1)d ETn.

This implies that(Var Tn)/(ETn)2 → 0. Hence, almost surely,A∗
n is an open dense set,

concluding the proof.

We now show how the main statement of Theorem 10.22 follows from this, and how the
ideas in the proof also lead to the lower bound in Theorem 10.25.

Proof of the lower bound in Theorem 10.22 and 10.25. For the lower bound we look at
a compact setE ⊂ (0, 1) with dimP (E) > a2 and first go for the result in Theorem 10.22.
Chooseε > 0 such thatdimP (E) > a2 (1 + ε)3. Associate to every dyadic interval
I = [jh, (j + 1)h] ∈ Ck with h = 2−k the random variableZ(I), which takes the value
one if and only if, forh′ = k2−k,

|B(jh+ h′) −B(jh)| > a(1 + ε)
√

2h′ log(1/h′),

and note that by Lemma 10.10 the limsup fractal associated tothese random variables is
contained in the set ofa-fast times. It remains to note that the collection{Z(I) : I ∈
Ck , k > 0} satisfies the condition (i) withγ = a2 (1 + ε)3 by (10.8) and condition (ii)
with c = 1. Theorem 10.28 now gives that

P
{
A ∩ E 6= ∅

}
= 1,

and therefore

sup
t∈E

lim sup
h↓0

|B(t+ h) −B(t)|√
2h log(1/h)

>
√

dimP (E).
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For the lower bound in Theorem 10.25 we look at a compact setE ⊂ (0, 1) with dimM (E)

> a2 and fix ε > 0 such thatdimM (E) > a2 (1 + ε)6. Hence there exists a sequence
(nk : k ∈ N) such that

#
{
I ∈ Cnk

: I ∩ E 6= ∅
}

> 2nk a
2(1+ε)5 .

With Z(I) defined as above we obtain, using notation and proof of Theorem 10.28, that

P{Z(I) = 1} > 2−nkγ , with γ = a2 (1 + ε)4,

and

VarTnk
6 (2nk + 1)d ETnk

, for Tn =
∑

I∈Cn

Z(I) 1{I ∩ E 6= ∅}.

By Chebyshev’s inequality we get, for1/2 < η < 1,

P
{
|Tnk

− ETnk
| > (ETnk

)η
}

6 (2nk + 1)d (ETnk
)1−2η.

As ETnk
is exponentially increasing innk we can infer, using the Borel–Cantelli lemma,

that

lim
k↑∞

Tnk

ETnk

= 1 almost surely.

This implies thatTnk
6= 0 for all sufficiently largek. Hence, asZ(I) = 1 andI ∩ E 6= ∅

imply that there existst ∈ I ∩ E with |B(t + h′) − B(t)| > a
√

2h′ log(1/h′) for
h′ = nk2

nk , completing the proof of Theorem 10.25.

10.3 Slow times of Brownian motion

At the fast times Brownian motion has, in infinitely many small scales, unusually large
growth. Conversely, one may ask whether there are times where a Brownian path has,
at all small scales, unusually small growth. The notion of aslow timefor the Brownian
motion is related to the nondifferentiability of the Brownian path. Indeed, in our proof of
non-differentiability, we showed that almost surely,

lim sup
h↓0

|B(t+ h) −B(t)|
h

= ∞, for all t ∈ [0, 1],

and in 1963 Dvoretzky showed that there exists a constantδ > 0 such that almost surely,

lim sup
h↓0

|B(t+ h) −B(t)|√
h

> δ, for all t ∈ [0, 1].

In 1983 Davis and, independently, Perkins and Greenwood, found that the optimal constant
in this result is equal to one.

Theorem 10.30 (Davis, Perkins and Greenwood)Almost surely,

inf
t∈[0,1]

lim sup
h↓0

|B(t+ h) −B(t)|√
h

= 1.
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Remark 10.31We callt ∈ [0, 1] ana-slow time if

lim sup
h↓0

|B(t+ h) −B(t)|√
h

6 a. (10.11)

The result shows thata-slow times exist fora > 1 but not fora < 1. The Hausdorff
dimension of the set ofa-slow times is studied in Perkins [Pe83]. �

For the proof of Theorem 10.30 we need to investigate the probability that the graph of a
Brownian motion stays within a parabola open to the right. The following lemma is what
we need for a lower bound.

Lemma 10.32LetM := max06t61 |B(t)| and, forr < 1, define the stopping time

T = inf{t > 1: |B(t)| = M + r
√
t}.

ThenET <∞.

Proof. By Theorem 2.48, for everyt > 1, we have

E[T ∧ t] = E[B(T ∧ t)2]6E
[
(M + r

√
T ∧ t)2

]

= EM2 + 2rE
[
M

√
T ∧ t

]
+ r2E[T ∧ t]

6 EM2 + 2r(EM2)1/2(E[T ∧ t])1/2 + r2E[T ∧ t],
where Hölder’s inequality was used in the last step. This gives

(1 − r2)E[T ∧ t] 6 E[M2] + 2r
(
EM2

)1/2(
E[T ∧ t]

)1/2
,

and asE[M2] <∞ we get thatE[T ∧ t] is bounded and henceET <∞.

Proof of the lower bound in Theorem 10.30. It suffices to show that, for any fixed
r < 1 andh0 > 0, the set

A =
{
t ∈ [0, h0] : |B(t+ h) −B(t)| < r

√
h for all 0 < h 6 h0

}

is empty almost surely. By Brownian scaling we may further assume thath0 = 1. For any
intervalI = [a, b] ⊂ [0, 1], we have, by the triangle inequality and Brownian scaling, for
M = max{|B(t) −B(a)| : a 6 t 6 b}, that

P
{
∃t ∈ I : |B(t+ h) −B(t)| < r

√
h for all 0 < h 6 1

}

6 P
{
|B(a+ h) −B(a)| < M + r

√
h for all b− a < h 6 1

}

6 P
{
T >

1
b−a
}
,

whereT is as in Lemma 10.32. Dividing[0, 1] into n intervals of length1/n we get

P{A 6= ∅} 6

n−1∑

k=0

P{A ∩ [k/n, (k + 1)/n] 6= ∅} 6 nP
{
T > n

}

= E
[
n1{T > n}

]
→ 0,

using in the final step thatn1{T > n} is dominated by the integrable random variableT .
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We turn to the proof of the upper bound. Again we start by studying exit times from a
parabola. For0 < r <∞ anda > 0 let

T (r, a) := inf{t > 0: |B(t)| = r
√
t+ a}.

For the moment it suffices to note the following property ofT (1, a).

Lemma 10.33We haveET (1, a) = ∞.

Proof. Suppose thatET (1, a) < ∞. Then, by Theorem 2.48, we have thatET (1, a) =

EB(T (1, a))2 = ET (1, a) + a, which is a contradiction. HenceET (1, a) = ∞.

For0 < r <∞ anda > 0 we now define further stopping times

S(r, a) := inf{t > a : |B(t)| > r
√
t}.

Lemma 10.34If r > 1 there is ap = p(r) < 1 such thatE[S(r, 1)p] = ∞. In particular,

lim sup
n↑∞

n
P{S(r, 1) > n}
E[S(r, 1) ∧ n]

> 0.

The proof uses the following general lemma.

Lemma 10.35SupposeX is a nonnegative random variable andEXp = ∞ for some
p < 1. Then

lim sup
n↑∞

nP{X > n}/E[X ∧ n] > 0.

Proof. Let p < 1 and suppose for contradiction that, for someε < 1−p
2 ,

nP{X > n} < εE[X ∧ n] for all integersn > y0 > 2. (10.12)

For allN > 1, using Fubini’s theorem in the first and substitution of variables in the second
step, we get that

E[(X ∧N)p] =

∫ Np

0

P{Xp > x} dx = p

∫ N

0

yp−1 P{X > y} dy ,

and hence, using (10.12) forn = byc, we obtain

E[(X ∧N)p] 6 p

∫ y0

0

yp−1 dy + ε y0
y0−1 p

∫ N

by0c
yp−2 E[X ∧ y] dy

6 yp0 + 2εp

∫ N

by0c
yp−2

∫ y

0

P{X > z} dz dy

6 yp0 + 2εp

∫ N

0

P{X > z}
∫ ∞

z

yp−2 dy dz

6 yp0 + ε 2
1−p E[(X ∧N)p],
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and hence, by choice ofε,

E[(X ∧N)p] 6
yp0

1 − 2ε
1−p

.

This impliesE[Xp] = sup E[(X ∧N)p] <∞, which contradicts to our assumption.

Proof of Lemma 10.34. Define a sequence of stopping times byτ0 = 1 and, fork > 1,

τk =

{
inf{t > τk−1 : B(t) = 0 or |B(t)| > r

√
t
}

if k is odd,
inf{t > τk−1 : |B(t)| >

√
t
}

if k is even.

For any fixedλ > 0 let ϕ(a) = P{T (1, a) > λa} and note that, by Brownian scaling,
ϕ(a) = ϕ(1) for all a > 0. Hence, by the strong Markov property,

P
{
τ2k − τ2k−1 > λτ2k−1

∣∣B(τ2k−1) = 0
}

= E
[
ϕ(τ2k−1)

∣∣B(τ2k−1) = 0
]

= P{T (1, 1) > λ}.
Definec := P{S(0, 1) < S(r, 1)}. Now, for k > 2 andλ > 0, on{τ2k−2 < S(r, 1)},

P
{
τ2k − τ2k−1 > λτ2k−2

∣∣F(τ2k−2)
}

> P
{
τ2k − τ2k−1 > λτ2k−1

∣∣F(τ2k−2), B(τ2k−1) = 0
}

P
{
B(τ2k−1) = 0

∣∣F(τ2k−2)
}

= cP{T (1, 1) > λ}.

To pass from this estimate to thepth moments we use that, for any nonnegative random
variableX, we haveEXp =

∫∞
0

P{Xp > λ} dλ. This gives

E
[
(τ2k − τ2k−1)

p
]

= E
∫ ∞

0

τp2k−2 P
{
(τ2k − τ2k−1)

p > λτp2k−2

∣∣F(τ2k−2)
}
dλ

> E
∫ ∞

0

τp2k−2 P
{
τ2k − τ2k−1 > λ1/pτ2k−2

∣∣F(τ2k−2)
}

1{τ2k−2 < S(r, 1)} dλ

> cE
∫ ∞

0

τp2k−2 P
{
T (1, 1) > λ1/p

}
1{τ2k−2 < S(r, 1)} dλ.

Now, using the formula forEXp again, but forX = T (1, 1) and noting that{τ2k−2 <

S(r, 1)} = {τ2k−3 < τ2k−2}, we obtain

E
[
(τ2k − τ2k−1)

p
]

> cE[T (1, 1)p] E
[
τp2k−21{τ2k−2 < S(r, 1)}

]

> cE[T (1, 1)p] E
[
(τ2k−2 − τ2k−3)

p
]
,

and by iterating this,

E
[
(τ2k − τ2k−1)

p
]

>

(
cE[T (1, 1)p]

)k−1

E
[
(τ2 − τ1)

p
]
.

Note that, by Fatou’s lemma and by Lemma 10.33,lim infp↑1 E[T (1, 1)p] > ET (1, 1) =

∞. Hence we may pickp < 1 such thatE[T (1, 1)p] > 1/c. Then

E[S(r, 1)p] > E[τp2k] > E
[
(τ2k − τ2k−1)

p
]
−→ ∞,

ask ↑ ∞, which is the first statement we wanted to prove. The second statement follows
directly from the general fact stated as Lemma 10.35.
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Proof of the upper bound in Theorem 10.30. Fix r > 1 and let

A(n) =
{
t ∈ [0, 1] : |B(t+ h) −B(t)| < r

√
h, for all 1

n 6 h 6 1}.

Note thatn > m impliesA(n) ⊂ A(m). We show that

P
{ ∞⋂

n=1

A(n) 6= ∅
}

= lim
n→∞

P
{
A(n) 6= ∅

}
> 0. (10.13)

Fix n ∈ N and letv(0, n) = 0 and, fori > 1,

v(i, n) := (v(i− 1, n) + 1)

∧ inf
{
t > v(i− 1, n) + 1

n : |B(t) −B(v(i− 1, n))| > r
√
t− v(i− 1, n)

}
.

ThenP{v(i + 1, n) − v(i, n) = 1 | F(v(i, n))} = P{S(r, 1) > n}, and by Brownian
scaling,

E[v(i+ 1, n) − v(i, n) | F(v(i, n))] = 1
nE[S(r, 1) ∧ n]. (10.14)

Of coursev(k, n) > 1 if v(i, n) − v(i− 1, n) = 1 for somei 6 k. Thus, for anym,

P{v(i+ 1, n) − v(i, n) = 1 for somei 6 m such thatv(i, n) 6 1
}

=
m∑

i=1

P{S(r, 1) > n}P{v(i, n) 6 1}

> mP{S(r, 1) > n}P{v(m,n) 6 1}.
Let (nk : k ∈ N) be an increasing sequence of integers such that

nk
P{S(r, 1) > nk}
E[S(r, 1) ∧ nk]

> ε > 0,

andE[S(r, 1) ∧ nk] 6 nk/6 for all k, which is possible by Lemma 10.34.
Choose the integersmk so that they satisfy

1

3
6
mk

nk
E[S(r, 1) ∧ nk] 6

1

2
.

Summing (10.14) over alli = 0, . . . ,mk − 1 and taking the expectation,

Ev(mk, nk) =
mk

nk
E[S(r, 1) ∧ nk],

henceP{v(mk, nk) > 1} 6 1/2. Now we get, putting all our ingredients together,

P{A(nk) 6= ∅}
> P{v(i+ 1, nk) − v(i, nk) = 1 for somei 6 mk such thatv(i, nk) 6 1

}

> mkP{S(r, 1) > nk}P{v(mk, nk) 6 1}
> mkP{S(r, 1) > nk}/2 >

mk

2nk
εE[S(r, 1) ∧ nk] >

ε

6
.

This proves (10.13). It remains to observe that, by Brownianscaling, there existsδ > 0

such that, for alln ∈ N,

P
{
∃t ∈ [0, 1/n] : lim sup

h↓0
|B(t+ h) −B(t)|/

√
h 6 r} > δ.
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Hence, by independence,

P
{
∃t ∈ [0, 1] : lim sup

h↓0
|B(t+ h) −B(t)|/

√
h 6 r}>1 − (1 − δ)n −→ 1.

This completes the proof of the upper bound, and hence the proof of Theorem 10.30.

10.4 Cone points of planar Brownian motion

We now focus on a planar Brownian motion{B(t) : t > 0}. Recall from Section 7.2 that
around atypical pointon the path this motion performs an infinite number of windings in
both directions. It is easy to see that there are exceptionalpoints to this behaviour: Let

x0 = min{x : (x, 0) ∈ B[0, 1]}.

Then the Brownian motion does not performanywindings around(x0, 0), as this would
necessarily imply that it crosses the half-line{(x, 0) : x < x0} contradicting the minimal-
ity of x0. More generally, each point(x0, y0) ∈ R2 with x0 = min{x : (x, y0) ∈ B[0, 1]}
has this property, if the set is nonempty. Hence, the set of such points has dimension at
least one, as the projection onto they-axis gives a nondegenerate interval. We shall see
below that this set has indeed Hausdorff dimension one.

We now look at points where a cone-shaped area with the tip of the cone placed in the point
is avoided by the Brownian motion. These points are called cone points.

Definition 10.36. Let {B(t) : t > 0} be a planar Brownian motion. For any angle
α ∈ (0, 2π) and directionξ ∈ [0, 2π), define the closedcone

W [α, ξ] :=
{
rei(θ−ξ) : |θ| 6 α/2, r > 0

}
⊂ R2.

Given a conex + W [α, ξ] we call itsdual the reflection of its complement about the tip,
i.e. the conex +W [2π − α, ξ + π]. A point x = B(t), 0 < t < 1, is anα-cone point if
there existsε > 0 andξ ∈ [0, 2π) such that

B(0, 1) ∩ B(x, ε) ⊂ x+W [α, ξ] . �

Remark 10.37Clearly, if x = B(t) is a cone point, then there exists a smallδ > 0 such
thatB(t − δ, t + δ) ⊂ x +W [α, ξ]. Hence the path{B(t) : 0 6 t 6 1} performs only a
finite number of windings aroundx. �

We now identify the opening anglesα for which there existα-cone points. In the cases
where they exist, we determine the Hausdorff dimension of the set ofα-cone points.
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Theorem 10.38 (Evans 1985)Let {B(t) : 0 6 t 6 1} be a planar Brownian motion.
Then, almost surely,α-cone points exist for anyα > π but not forα < π. Moreover, if
α ∈ [π, 2π), then

dim
{
x ∈ R2 : x is anα-cone point

}
= 2 − 2π

α .

In the proof of Theorem 10.38 we identifyR2 with the complex plane and use complex
notation wherever convenient. Suppose that{B(t) : t > 0} is a planar Brownian motion
defined for all positive times. We first fix an angleα ∈ (0, 2π) and a directionξ ∈ [0, 2π)

and define the notion of an approximate cone point as follows:For any0 < δ < ε we let

Tδ(z) := inf
{
s > 0: B(s) ∈ B(z, δ)

}

and

Sδ,ε(z) := inf
{
s > Tδ/2(z) : B(s) 6∈ B(z, ε)

}
.

We say thatz ∈ R2 is a(δ, ε)-approximate cone pointif

B(0, Tδ(z)) ⊂ z +W [α, ξ], and B(Tδ/2(z), Sδ,ε(z)) ⊂ z +W [α, ξ] .

Note that we do not require(δ, ε)-approximate cone points to belong to the Brownian path.
The relation between cone points and approximate cone points will become clear later, we
first collect the necessary information about the probability that a given point is a(δ, ε)-
approximate cone point. The strong Markov property allows us to consider the events
happening during the intervals[0, Tδ(z)] and[Tδ/2(z), 1] separately.

Lemma 10.39There exist0 < c < C (depending onα) such that, for everyδ > 0,

(a) for all z ∈ R2,

P
{
B(0, Tδ(z)) ⊂ z +W [α, ξ]

}
6 C

(
δ
|z|
) π

α ,

(b) for all z ∈ R2 with 0 ∈ z +W [α/2, ξ],

P
{
B(0, Tδ(z)) ⊂ z +W [α, ξ]

}
> c

(
δ
|z|
) π

α .

Proof. We writez = |z| eiθ and apply the skew-product representation, Theorem 7.26,
to the Brownian motion{z −B(t) : t > 0} and obtain

B(t) = z −R(t) exp(i θ(t)
)
, for all t > 0,

for R(t) = exp(W1(H(t)) andθ(t) = W2(H(t)), where{W1(t) : t > 0} and{W2(t) :

t > 0} are independent linear Brownian motions started inlog |z|, resp. inθ, and a strictly
increasing time-change{H(t) : t > 0} which depends only on the first of these motions.
This implies thatTδ(z) = inf{s > 0: R(s) 6 δ} and therefore

H(Tδ(z)) = inf
{
u > 0: W1(u) 6 log δ

}
=: τlog δ .
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We infer that
{
B(0, Tδ(z)) ⊂ z +W [α, ξ]

}
=
{
|W2(u) + π − ξ| 6

α
2 for all u ∈ [0, τlog δ]

}
.

The latter event means that a linear Brownian motion startedin θ stays inside the interval
[ξ−π−α/2, ξ−π+α/2] up to the independent random timeτlog δ. For the probability of
such events we have found two formulas, (7.14) and (7.15) in Chapter 7. The latter formula
gives

P
{
|W2(u) + π − ξ| 6

α
2 for all u ∈ [0, τlog δ]

}

=

∞∑

k=0

4
(2k+1)π sin

( (2k+1)π(α/2+ξ−π−θ)
α

)
E
[
exp

(
− (2k+1)2π2

2α2 τlog δ
)]

=

∞∑

k=0

4
(2k+1)π sin

( (2k+1)π(α/2+ξ−π−θ)
α

) (
δ
|z|
)(2k+1) π

α ,

using Exercise 2.18 (a) to evaluate the Laplace transform ofthe first hitting times of a point
by linear Brownian motion. Now note that the upper bound, part (a) of the lemma, is easy
if |z| 6 2δ, and otherwise one can bound the exact formula from above by

(
δ
|z|
) π

α

∞∑

k=0

4
(2k+1)π 2−2k π

α .

The lower bound, part (b) of the lemma, follows from Brownianscaling ifδ/|z| is bounded
from below. Otherwise note that, under our assumption0 ∈ z + W [α/2, ξ], we have
|θ + π − ξ| 6

α
4 and thus the sine term corresponding tok = 0 is bounded from below by

sin(π/4) > 0. Thus we get a lower bound of

(
δ
|z|
) π

α

[
4
π sin(π/4) −

∞∑

k=1

4
(2k+1)π

(
δ
|z|
)2k π

α

]
,

and the term in the square bracket is bounded from zero, ifδ/|z| is sufficiently small.

An entirely analogous argument also provides the estimatesneeded for the events imposed
after the Brownian motion has hit the ballB(z, δ/2). Define, for later reference,

S(t)

ε (z) := inf
{
s > t : B(s) 6∈ B(z, ε)

}
.

Lemma 10.40There exist constantsC > c > 0 such that, for every0 < δ < ε,

(a) for all x, z ∈ R2 with |x− z| = δ/2,

Px
{
B(0, S(0)

ε (z)) ⊂ z +W [α, ξ]
}

6 C
(
δ
ε

) π
α .

(b) for all x, z ∈ R2 with |x− z| = δ/2 andx− z ∈W [α/2, ξ],

Px
{
B(0, S(0)

ε (z)) ⊂ z +W [α, ξ]
}

> c
(
δ
ε

) π
α .

We now focus on theupper boundin Theorem 10.38. Using the strong Markov property
we may combine Lemmas 10.39 (a) and 10.40 (a) to obtain the following lemma.
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Lemma 10.41There exists a constantC0 > 0 such that, for anyz ∈ R2,

P
{
z is a (δ, ε)-approximate cone point

}
6 C0 |z|−

π
α ε−

π
α δ

2π
α .

Proof. By the strong Markov property applied at the stopping timeTδ/2(z) we get

P
{
z is a(δ, ε)-approximate cone point

}

6 E
[
1{B(0, Tδ(z)) ⊂ z +W [α, ξ]}PB(Tδ/2(z)) {B(0, S(0)

ε (z)) ⊂ z +W [α, ξ]}
]

6 C2
(
δ
|z|
) π

α
(
δ
ε

) π
α ,

where we have used Lemmas 10.39 (a) and 10.40 (a). The result follows withC0 := C2.

LetM(α, ξ, ε) be the set of all points in the plane which are(δ, ε)-approximate cone points
for all δ > 0. Obviouslyz ∈M(α, ξ, ε) if and only if there existst > 0 such thatz = B(t)

andB(0, t) ⊂ z +W [α, ξ], andB(t, S(t)
ε (z)) ⊂ z +W [α, ξ].

Lemma 10.42Almost surely,

(a) if α ∈ (0, π) thenM(α, ξ, ε) = ∅,

(b) if α ∈ [π, 2π) thendimM(α, ξ, ε) 6 2 − 2π
α .

Proof. Take a compact cubeCube of unit side length not containing the origin. It suffices
to show thatM(α, ξ, ε)∩Cube = ∅ if α ∈ (0, π) anddimM(α, ξ, ε)∩Cube 6 2− 2π

α if
α ∈ (π, 2π).

Given a dyadic subcubeD ∈ Dk of Cube of side length2−k letD∗ ⊃ D be a concentric
ball aroundD with radius(1 +

√
2)2−k. Define thefocal pointx = x(D) of D to be

• if α < π the tip of the conex+W [α, ξ] whose boundary halflines are tangent toD∗,

• if α > π the tip of the cone whose dual has boundary halflines tangent toD∗.

The following properties are easy to check: For everyε > 0 andα ∈ [0, 2π), there exists
k0 ∈ N such that for allk > k0 andD ∈ Dk andy ∈ D, we haveB(y, ε) ⊃ B(x, ε/2),

andy +W [α, ξ] ⊂ x+W [α, ξ]. Moreover there exist constantsC1 > c1 > 0 depending
only onα, such that

• B(y, C12
−k) ⊂ B(x,C2

12−k),

• B(y, 1
2 C12

−k) ⊃ B(x, c1C12
−k), and

• |x− y| < c1C12
−k.

Altogether, these properties imply that, fork large enough, if the cubeD ∈ Dk contains a
(C1 2−k, ε)-approximate cone point, then its focal pointx satisfies

• B(0, TC2
12−k(x)) ⊂ x+W [α, ξ], and

• B(Tc1C12−k(x), Sc1C12−k,ε/2(x)) ⊂ x+W [α, ξ].

See Figure 10.1 for an illustration.
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x

c1C12
−k

y

1

2
C12

−k C12
−k

C2

1
2
−k

Fig. 10.1. Position of the points in Lemma 10.42.

Hence, by combining Lemma 10.39 (a) and Lemma 10.40 (a) as in Lemma 10.41, we find
a constantC2 > 0,

P
{
D contains a(C1 2−k, ε)-approximate cone point

}
6 C2 |x(D)|− π

α ε−
π
α 2−k

2π
α .

Note that, givenCube andε > 0 we can findk1 > k0 such that|x(D)| is bounded away
from zero over allD ∈ Dk andk > k1. Hence we obtainC3 > 0 such that, for allk > k1,

P
{
D contains a(C1 2−k, ε)-approximate cone point

}
6 C3 2−k

2π
α .

Then, ifα ∈ (0, π),

P{M(α, ξ, ε) 6= ∅} 6
∑

D∈Dk

P
{
D contains a(C1 2−k, ε)-approximate cone point

}

6 C3 22k 2−k
2π
α

k→∞−→ 0 ,

proving part (a). Moreover, ifα ∈ (π, 2π) andk > k1, we may coverM(α, ξ, ε) ∩ Cube

by the collection of cubesD ∈ Dk which contain a(C12
−k, ε)-approximate cone point.

Then, for anyγ > 2 − 2π
α the expectedγ-value of this covering is

E
∑

D∈Dk

2−kγ+
1
2γ1{D contains a(C1 2−k, ε)-approximate cone point}

6 2
1
2γ

∑

D∈Dk

2−kγ P
{
D contains a(C1 2−k, ε)-approximate cone point

}

6 C3 2k(2−
2π
α −γ) k→∞−→ 0 ,

and this proves that, almost surely,dimM(α, ξ, ε) 6 γ.
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Proof of the upper bound in Theorem 10.38. Supposeδ > 0 is arbitrary andz ∈ R2

is anα-cone point. Then there exist a rational numberq ∈ [0, 1), a rational direction
ξ ∈ [0, 2π), and a rationalε > 0, such thatz = B(t) for somet ∈ (q, 1) and

B(q, t) ⊂ z +W [α+ δ, ξ], and B(t, S(t)

ε (z)) ⊂ z +W [α+ δ, ξ] .

By Lemma 10.42 for every fixed choice of rational parameters this set is empty almost
surely if α + δ < π. For anyα < π we can pickδ > 0 with α + δ < π and hence
there are noα-cone points almost surely. Similarly, ifα > π, we use Lemma 10.42 and
the countable stability of Hausdorff dimension to obtain analmost sure upper bound of
2 − 2π/(α+ δ) for the set ofα-cone points. The result follows asδ > 0 was arbitrary.

We now establish the framework to prove the lower bound in Theorem 10.38. Again we
fix x0 ∈ Rd and a cubeCube = x0 + [0, 1)d. Recall the definition of the collectionDk

of dyadic half-open subcubes of side length2−k and letD =
⋃∞
k=1 Dk. Suppose that

{Z(I) : I ∈ D} is a collection of random variables each taking values in{0, 1}. With this
collection we associate the random set

A :=

∞⋂

k=1

⋃

I∈Dk
Z(I)=1

I .

Theorem 10.43Suppose that the random variables{Z(I) : I ∈ D} satisfy the monotonic-
ity condition

I ⊂ J andZ(I) = 1 ⇒ Z(J) = 1.

Assume that, for some positive constantsγ, c1 andC1,

(i) c1 |I|γ 6 EZ(I) 6 C1 |I|γ for all I ∈ D,

(ii) E
[
Z(I)Z(J)

]
6 C1 |I|2γ dist(I, J)−γ for all I, J ∈ Dk, dist(I, J) > 0, k > 1.

Then, forλ > γ andΛ ⊂ Cube closed withHλ(Λ) > 0, there exists ap > 0, such that

P
{

dim(A ∩ Λ) > λ− γ
}

> p .

Remark 10.44Though formally, if the monotonicity condition holds,A is a limsup fractal,
the monotonicity establishes a strong dependence of the random variables{Z(I) : I ∈ Dk}
which in general invalidates the second assumption of Theorem 10.28. We therefore need
a result which deals specifically with this situation. �

We prepare the proof with a little lemma, based on Fubini’s theorem.

Lemma 10.45Supposeν is a probability measure onRd such thatνB(x, r) 6 Crλ for all
x ∈ Rd, r > 0. Then, for all0 < β < λ there existsC2 > 0 such that,

∫

B(x,r)

|x− y|−β ν(dy) 6 C2 r
λ−β , for everyx ∈ Rd andr > 0.
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This implies, in particular, that
∫∫

|x− y|−β dν(x) dν(y) <∞ .

Proof. Fubini’s theorem gives
∫

B(x,r)

|x− y|−β ν(dy) =

∫ ∞

0

ν
{
y ∈ B(x, r) : |x− y|−β > s

}
ds

6

∫ ∞

r−β

νB(x, s−1/β) ds+ C rλ−β

6 C

∫ ∞

r−β

s−λ/β ds+ C rλ−β ,

which implies the first statement. Moreover,
∫∫

|x− y|−β dν(x) dν(y) 6

∫
dν(x)

∫

B(x,1)

|x− y|−β dν(y) + 1 6 C2 + 1 .

Proof of Theorem 10.43. We show that there existsp > 0 such that, for every
0 < β < λ−γ, with probability at leastp, there exists a positive measureµ onΛ∩A such
that itsβ-energyIβ(µ) is finite. This impliesdim(A ∩ Λ) > β by the energy method, see
Theorem 4.27.

First, givenΛ ⊂ Cube with Hλ(Λ) > 0, we use Frostman’s lemma to find a Borel proba-
bility measureν onΛ and a positive constantC such thatν(D) 6 C|D|λ for all Borel sets
D ⊂ Rd. Writing

An :=
⋃

I∈Dn
Z(I)=1

I ,

we defineµn to be the measure supported onΛ given by

µn(B) = 2nγ ν(B ∩An) for any Borel setB ⊂ Rd.

Then, using (i), we get

E
[
µn(An)

]
= 2nγ

∑

I∈Dn

ν(I) EZ(I) > c1 d
γ/2

∑

I∈Dn

ν(I) = c1 d
γ/2 .

Moreover, using (ii), we obtain

E
[
µn(An)

2
]

= 22nγ
∑

I∈Dn

∑

J∈Dn

E[Z(I)Z(J)]ν(I)ν(J)

6 C1d
γ
∑

I∈Dn

∑

J∈Dn
dist(I,J)>0

dist(I, J)−γν(I)ν(J)

+ C3d
√
d
λ

22nγ 2−nλ
∑

I∈Dn

E[Z(I)]ν(I),

since for every cubeI there are3d cubesJ with dist(I, J) = 0. Hence

E
[
µn(An)

2
]

6 C1

(
(1 + 2

√
d)d
)γ
∫∫

|x− y|−γ dν(x) dν(y) + C 3d
√
d
λ
dγ/2,
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where we use that forx ∈ I, y ∈ J with dist(I, J) > 0 we have|x − y| 6 (1 +

2
√
d) dist(I, J). Finiteness of the right hand side, denotedC3, follows from the second

statement of Lemma 10.45. We now show that, forβ < λ− γ we can findk(β) such that
EIβ(µn) 6 k(β). Indeed,

EIβ(µn) = 22nγ
∑

I,J∈Dn

E[Z(I)Z(J)]

∫

I

dν(x)

∫

J

dν(y) |x− y|−β

6 C1 d
γ
∑

I∈Dn

∑

J∈Dn
dist(I,J)>0

dist(I, J)−γ
∫

I

dν(x)

∫

J

dν(y) |x− y|−β

+ C1 d
γ/2 2nγ

∑

I∈Dn

∑

J∈Dn
dist(I,J)=0

∫

I

dν(x)

∫

J

dν(y) |x− y|−β .

For the first summand, we use thatdist(I, J)−γ 6 (3
√
d)γ |x− y|−γ wheneverx ∈ I and

y ∈ J , and infer boundedness from the second statement of Lemma 10.45. For the second
summand, the first statement of Lemma 10.45 gives a bound of

C1C2 d
γ/2 2nγ (3

√
d2−n)λ−β

∑

I∈Dn

ν(I) 6 C1 C2 d
γ/2 (3

√
d)λ−β .

Hence,EIβ(µn) is bounded uniformly inn, as claimed. We thus find̀(β) > 0 such that

P
{
Iβ(µn) > `(β)

}
6
k(β)

`(β)
6

c21
8C3

.

Now, by the Paley–Zygmund inequality, see Lemma 3.23,

P
{
µn(An) >

c1
2

}
>P
{
µn(An) >

1
2 E[µn(An)]

}
>

1

4

E[µn(An)]
2

E[µn(An)2]
>

c21
4C3

.

Hence we obtain that

P
{
µn(An) >

c1
2 , Iβ(µn) < `(β)

}
> p :=

c21
8C3

.

Using Fatou’s lemma we infer that

P
{
µn(An) >

c1
2 , Iβ(µn) < `(β) infinitely often

}

> lim inf
n→∞

P
{
µn(An) >

c1
2 , Iβ(µn) < `(β)

}
> p .

On this event we can pick a subsequence along whichµn converges to some measureµ.
Thenµ is supported byA andµ(Cube) > lim inf µn(Cube) = lim inf µn(An) > c1/2.
Finally, for eachε > 0, where the limit is taken along the chosen subsequence,

∫∫

|x−y|>ε
|x− y|−βdµ(x) dµ(y) = lim

∫∫

|x−y|>ε
|x− y|−βdµn(x) dµn(y)

6 lim Iβ(µn) 6 `(β),

and forε ↓ 0 we getIβ(µ) 6 `(β).
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We now use Theorem 10.43 to give alower boundfor the dimension of the set of cone
points. Fixα ∈ (π, 2π) and a unit cube

Cube = x0 + [0, 1]2 ⊂W [α/2, 0] ,

and recall the definition of the classesC andCk of compact dyadic subcubes. Choose a
large radiusR > 2 such thatCube ⊂ B(0, R/2) and define

rk := R−
k∑

j=1

2−j > R/2 .

Given a cubeI ∈ Ck we denote byz its centre and letZ(I) = 1 if z is a (2−k, rk)-
approximate cone point with directionξ = π, i.e. if

B(0, T2−k(z)) ⊂ z +W [α, π], and B(T2−k−1(z), S2−k,rk
(z)) ⊂ z +W [α, π] ,

and otherwise letZ(I) = 0. By our choice of the sequence(rk) we have

I ⊂ J andZ(I) = 1 ⇒ Z(J) = 1.

Lemma 10.46There are constants0 < c1 < C1 < ∞ such that, for any cubeI ∈ C, we
have

c1 |I|
2π
α 6 P

{
Z(I) = 1

}
6 C1 |I|

2π
α .

Proof. The upper bound is immediate from Lemma 10.41. For the lower bound we use
that, for anyz ∈ Cube andδ > 0,

inf
|x−z|=δ

Px
{
B(Tδ/2(z)) ∈ z +W [α/2, π]

}

= inf
|x|=1

Px
{
B(T1/2(0)) ∈W [α/2, π]

}
=: c0 > 0 ,

and hence, ifz is the centre ofI ∈ Ck andδ = 2−k, using Lemmas 10.39 (b) and 10.40 (b),

P
{
Z(I) = 1

}

> E
[
1{B(0, Tδ(z)) ⊂ z +W [α, π]}EB(Tδ(z))

[
1{B(Tδ/2(z)) ∈ z +W [α/2, π]

}

× PB(Tδ/2(z)){B(0, S(0)

rk
(z)) ⊂ z +W [α, π]}

]]

> c0 c
2 δ

2π
α

(
R|z|

)− π
α ,

which gives the desired statement, as|z| is bounded away from infinity.

Lemma 10.47There is a constant0 < C1 <∞ such that, for any cubesI, J ∈ Ck, k > 1,
we have

E
[
Z(I)Z(J)

]
6 C1 |I|

4π
α dist(I, J)−

2π
α .
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Proof. Let zI , zJ be the centres ofI, resp.J , and abbreviateη := |zI−zJ | andδ := 2−k.
Then, forη > 2δ, using the strong Markov property and Lemmas 10.39 (a) and 10.40 (a),

E
[
Z(I)Z(J) 1{Tδ/2(zI) < Tδ/2(zJ)}v

]

6 E
[
1{B(0, Tδ(zI)) ⊂ zI +W [α, π]}

× EB(Tδ/2(zI))

[
1{B(0, S(0)

η/2(zI)) ⊂ zI +W [α, π]}

× EB(Tη/2(zJ ))

[
1{B(0, Tδ(zJ)) ⊂ zJ +W [α, π]

}

× PB(Tδ/2(zJ )){B(0, S(0)

rk
(zJ )) ⊂ zJ +W [α, π]}

]]]

6 C4
(
δ

|zI |
) π

α
(
δ
η

) 2π
α
(

2δ
R

) π
α 6 C2 |I|

4π
α dist(I, J)

− 2π
α ,

where we recall thatCube does not contain the origin and letC2 > 0 be an appropriate
constant. Suppose now thatη 6 2δ. Then, by a simpler argument,

E
[
Z(I)Z(J) 1{Tδ/2(zI) < Tδ/2(zJ )}

]

6 E
[
1{B(0, Tδ(zI)) ⊂ zI +W [α, π]}
× PB(Tδ/2(zJ )){B(0, S(0)

rk
(zJ )) ⊂ zJ +W [α, π]}

]

6 C2
(
δ

|zI |
) π

α
(

2δ
R

) π
α 6 C3 |I|

4π
α dist(I, J)

− 2π
α .

Exchanging the rôle ofI andJ gives the corresponding estimate

E[Z(I)Z(J)1{Tδ/2(zI) > Tδ/2(zJ )}] 6 C3 |I|
4π
α dist(I, J)

− 2π
α ,

and the proof is completed by adding the two estimates.

Proof of the lower bound in Theorem 10.38. The setA which we obtain from our
choice of{Z(I) : I ∈ C} is contained in the set

Ã :=
{
B(t) : t > 0 andB(0, S(t)

R/2(B(t))) ⊂ B(t) +W [α, π]
}
.

Therefore, by Theorem 10.43, we havedim Ã > 2−2π/αwith positive probability. Given
any0 < δ < 1/2 andr > 0, we define a sequenceτ (δ)

1 6 τ (δ)

2 6 . . . of stopping times by
τ (δ)

1 = 0 and, fork > 1,

τ (δ)

k := S
(τ

(δ)
k−1

)

δr

(
B(τ (δ)

k−1)
)
.

Denotingη = R/(2r) and

A(δ)

k :=
{
B(t) : τ (δ)

k−1 6 t 6 τ (δ)

k andB(τ (δ)

k−1, S
(t)

ηr (B(t))) ⊂ B(t) +W [α, π]
}

we have that

Ã ⊂
∞⋃

k=1

A(δ)

k .

Now fix β < 2 − 2π/α. The events{dimA(δ)

k > β} all have the same probability,
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which cannot be zero as this would contradict the lower boundon the dimension of̃A. In
particular, there existsp(δ)

R > 0 such that

P
{

dim
{
B(t) : 0 6 t 6 S(0)

δr (0) andB(0, S(t)

ηr (B(t))) ⊂ B(t) +W [α, π]
}

> β
}

> p(δ)

R .

By scaling we get thatp(δ)

R does not depend onr. Hence, by Blumenthal’s zero-one law,
we have thatp(δ)

R = 1 for all δ > 0, R > 0. Lettingβ ↑ 2 − 2π/α we get, almost surely,

dim
{
B(t) : 0 6 t 6 S(0)

δ (0), B(0, S(t)

η (B(t))) ⊂ B(t) +W [α, π]
}

> 2 − 2π
α

for everyδ > 0, η > 0.

Given ε > 0, we may chooseδ, η > 0 such that, with probability> 1 − ε, we have
S(0)

δ (0) < 1 andS(t)
η (B(t)) > 1 for all 0 6 t 6 1. This implies that

dim
{
B(t) : 0 6 t 6 1, B(0, 1) ⊂ B(t) +W [α, π]

}
> 2 − 2π

α

with probability> 1 − ε, and the result follows asε > 0 was arbitrary.

A surprising consequence of the non-existence of cone points for angles smaller thenπ is
that the convex hull of the planar Brownian curve is a fairly smooth set.

Theorem 10.48 (Adelman)Almost surely, the convex hull of{B(s) : 0 6 s 6 1} has a
differentiable boundary.

Proof. A compact, convex subsetH ⊂ R2 is said to have acorner at x ∈ ∂H if
there exists a cone with vertexx and opening angleα > π which avoidsH \ {x}. If H
does not have corners, the supporting hyperplanes are unique at each pointx ∈ ∂H and
thus∂H is a differentiable boundary. So all we have to show is that the convex hullH
of {B(s) : 0 6 s 6 1} has no corners. Clearly, by Spitzer’s theorem,B(0) andB(1) are
not corners almost surely. Suppose any other pointx ∈ ∂H is a corner, then obviously it
is contained in the path, and therefore it is a(2π − α)-cone point for someα > π. By
Theorem 10.38, almost surely, such points do not exist and this is a contradiction.

Exercises

Exercise 10.1.Show that, for every metric spaceE,

dimP E = inf{s : Ps(E) <∞} = sup{s : Ps(E) > 0} = sup{s : Ps(E) = ∞}.

Exercise 10.2.S Show that, for every metric spaceE, we have

dimP E > dimE.

Exercise 10.3.Let {mk : k > 1} be a rapidly increasing sequence of positive integers such
that

lim
k→∞

mk

mk+1
= 0.
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Define two subsets of[0, 1] by

E =
{ ∞∑

i=1

xi
2i

: xi ∈ {0, 1} andxi = 0 if mk + 1 6 i 6 mk+1 for some evenk
}

and

F =
{ ∞∑

i=1

xi
2i

: xi ∈ {0, 1} andxi = 0 if mk + 1 6 i 6 mk+1 for some oddk
}
.

Show that

(a) dimE = dimME = 0 anddimF = dimMF = 0,

(b) dimP E = dimME = 1 anddimP F = dimMF = 1,

(c) dim(E × F ) > 1.

Exercise 10.4.Show that, almost surely,

(a) dimP Range[0, 1] = 2, for Brownian motion ind > 2,

(b) dimP Graph[0, 1] = 3
2 , for Brownian motion ind = 1,

(c) dimP Zeros = 1
2 , for Brownian motion ind = 1.

Exercise 10.5.Show that, for everya ∈ [0, 1], we have almost surely,

dimP

{
t ∈ [0, 1] : lim sup

h↓0

|B(t+ h) −B(t)|√
2h log(1/h)

> a
}

= 1.

Hint. This can be done directly, but it can also be derived from moregeneral ideas, as
formulated for example in Exercise 10.9.

Exercise 10.6.Show that

lim inf
h↓0

sup
t∈E

|B(t+ h) −B(t)|√
2h log(1/h)

=
√

dimM (E).

Exercise 10.7.S Use Theorem 10.43 to prove once more that the zero set of linear Brow-
nian motion has Hausdorff dimension12 almost surely.

Exercise 10.8. Show that, if

lim sup
n↑∞

log pn
n log 2

6 − γ, for someγ > 0,

then, for any compactE ⊂ [0, 1] with dimP (E) < γ, we have

P
{
A ∩ E 6= ∅

}
= 0.

Note that no independence assumption is needed for this statement.
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Exercise 10.9.S

(a) SupposeA is a discrete limsup fractal associated to random variables{Z(I) : I ∈
Ck, k > 1} satisfying the conditions of Theorem 10.28. Then, if dimP (E) > γ,
we have almost surely,dimP (A ∩ E) = dimP (E).

(b) Show that, if dimP (E) > a2, then almost surely

dimP (F (a) ∩ E) = dimP (E),

whereF (a) is the set ofa-fast times.

Exercise 10.10.S Give a proof of Lemma 10.40 (a) based on Theorem 7.25.

Exercise 10.11. SupposeK ⊂ R2 is a compact set andx ∈ R2 \K a point outside the
set. ImagineK as a solid body, andx as the position of an observer. This observer can
only see a part of the body, which can be formally described as

K(x) =
{
y ∈ K : [x, y] ∩K = {y}

}
,

where[x, y] denotes the compact line segment connectingx andy. It is natural to ask for
the Hausdorff dimension of the visible part of a setK. Assuming that dimK > 1, an
unresolved conjecture in geometric measure theory claims that, for Lebesgue-almost every
x 6∈ K, the Hausdorff dimension ofK(x) is one.
Show that this conjecture holds for the path of planar Brownian motion,K = B[0, 1], in
other words, almost surely, for Lebesgue-almost everyx ∈ R2, the Hausdorff dimension
of the visible partB[0, 1](x) is one.

Exercise 10.12. Let {B(t) : t > 0} be a planar Brownian motion andα ∈ [π, 2π). Show
that, almost surely, no double points areα-cone points.

Exercise 10.13.S Let {B(t) : t > 0} be a planar Brownian motion andα ∈ (0, π]. A point
x = B(t), 0 < t < 1, is aone-sidedα-cone point if there existsξ ∈ [0, 2π) such that

B(0, t) ⊂ x+W [α, ξ] .

(a) Show that forα 6
π
2 , almost surely, there are no one-sidedα-cone points.

(b) Show that forα ∈ (π2 , π], almost surely, the set of one-sidedα-cone points has
Hausdorff dimension2 − π

α .

Notes and comments

The paper [OT74] by Orey and Taylor is a seminal work in the study of dimension spectra
for exceptional points of Brownian motion. It contains a proof of Theorem 10.3 using the
mass distribution principle and direct construction of theFrostman measure. This approach
can be extended to other limsup fractals, but this method requires quite strong indepen-
dence assumptions which make this method difficult in many more general situations. In
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[OT74] the question how often on a Brownian path the law of theiterated logarithm fails
is also answered in the sense that, forθ > 1, almost surely, the set

{
t > 0: lim sup

h↓0

B(t+h)−B(t)√
2h log log(1/h)

> θ
}

has zero or infinite Hausdorff measure for the gauge functionφ(r) = r log(1/r)γ depend-
ing whetherγ < θ2 − 1 or γ > θ2 − 1. Finer results do not seem to be known at the
moment.

Our proof of Theorem 10.3 is based on estimates of energy integrals. This method was
used by Hu and Taylor [HT97] and Shieh and Taylor [ST99], and our exposition follows
Dembo et al. [DPRZ00a] closely. In the latter paper an interesting class of exceptional
times for the Brownian motion is treated, thethick timesof Brownian motion in dimen-
siond > 3. For any timet ∈ (0, 1) we letU(t, ε) = L{s ∈ (0, 1) : |B(s) − B(t)| 6 ε}
the set of times where the Brownian is up toε near to its position at timet. It is shown that,
for all 0 6 a 6

16
π2 , almost surely,

dim
{
t ∈ [0, 1] : lim sup

ε↓0

U(t,ε)
ε2 log(1/ε) > a

}
= 1 − a π

2

16 .

This paper should be very accessible to anyone who followed the arguments of Sec-
tion 10.1. The method of Dembo et al. [DPRZ00a] can be extended to limsup fractals
with somewhat weaker independence properties and also extends to the study of dimen-
sion spectra with strict equality.

A third way to prove Theorem 10.3 is the method of stochastic codimension explored
in Section 10.10.2. An early reference for this method is Taylor [Ta66] who suggested
to use the range of stable processes as test sets, and made useof the potential theory of
stable processes to obtain lower bounds for Hausdorff dimension. This class of test sets is
not big enough for all problems: the Hausdorff dimension of astable process is bounded
from above by its index, hence cannot exceed2, and therefore these test sets can only
test dimensions in the range[d − 2, d]. A possible remedy is to pass to multiparameter
processes, see the recent book of Khoshnevisan [Kh02] for a survey. Later, initiated by
seminal papers of Hawkes [Ha81] and R. Lyons [Ly90], it was discovered that percolation
limit sets are a very suitable class of test functions, see Khoshnevisan et al. [KPX00]. Our
exposition closely follows the latter reference.

The result about the thick times of Brownian motion stated above can be interpreted
as a multifractal analysis of the occupation measure. Such an analysis can also be per-
formed in two dimensions, but the result and techniques are entirely different, see Dembo et
al. [DPRZ01]. Times at whichU(t, ε) is exceptionally small for infinitely many scalesε >
0, thethin times, are investigated in Dembo et al. [DPRZ00b]. Other measuresassociated
with Brownian paths that have been studied from a multifractal point of view are the local
times, see Hu and Taylor [HT97] and Shieh and Taylor [ST99], and the intersection local
times of several Brownian paths, see [KM02] and [KM05].
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Kaufman [Ka75] showed that every compact setE ⊂ [0, 1] with dim(E) > a2 al-
most surely contains ana-fast time, but the more precise result involving the packing
dimension is due to Khoshnevisan et al. [KPX00]. The conceptof packing dimension
was introduced surprisingly late by Tricot in [Tr82] and in [TT85] it was investigated to-
gether with the packing measure and applied to the Brownian path by Taylor and Tricot.
Lemma 10.18(i) is from [Tr82], Lemma 10.18(ii) for trees canbe found in [BP94], see
Proposition 4.2(b), the general version given is in Falconer and Howroyd [FH96] and in
Mattila and Mauldin [MM97].

Several people contributed to the investigation of slow points, for example Dvoretzky
[Dv63], Kahane [Ka76], Davis [Da83], Greenwood and Perkins[GP83] and Perkins [Pe83].
There are a number of variants, for example one can allowh < 0 in (10.11) or omit the
modulus signs. The Hausdorff dimension ofa-slow points is discussed in [Pe83], this class
of exceptional sets is not tractable with the limsup-method: note that an exceptional be-
haviour is required at all small scales. The crucial ingredient, the finiteness criterion for
moments of the stopping timesT (r, a) is due to Shepp [Sh67].

Cone points were discussed by Evans in [Ev85], an alternative discussion can be found
in Lawler’s survey paper [La99]. Our argument essentially follows the latter paper. The
correlation condition in Theorem 10.43 appears in the strongly related context of quasi-
Bernoulli percolation on trees, see Lyons [Ly92]. An alternative notion ofglobal cone
points requires that the entire path of the Brownian motion{B(t) : t > 0} stays inside the
cone with tip in the cone point. The same dimension formula holds for this concept. The
upper bound follows of course from our consideration of local cone points, and our proof
gives the lower bound with positive probability. The difficult part is to show that the lower
bound holds with probability one. A solution to this problemis contained in Burdzy and
San Martín [BSM89], and this technique has also been successfully used in the study of
the outer boundary, or frontier, of Brownian motion, see Lawler [La96b] and Bishop et
al. [BJPP97].

A discussion of the smoothness of the boundary of the convex hull can be found in
Cranston, Hsu and March [CHM89], but our Theorem 10.48 is older. The result was stated
by Lévy [Le48] and was probably first proved by Adelman in 1982, though this does not
seem to be published.

It is conjectured in geometric measure theory that for any set of Hausdorff dimension
dimK > 1, for Lebesgue-almost everyx 6∈ K, the Hausdorff dimension of the visible part
K(x) is one. For upper bounds on the dimension and the state of the art on this conjecture,
see O’Neil [ON07]. It is natural to compare this to Makarov’stheorem on the support of
harmonic measure: if the rays of light were following Brownian paths rather than straight
lines, the conjecture would hold by Makarov’s theorem, see [Ma85].
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Stochastic Loewner evolution and planar Brownian
motion

by Oded Schramm and Wendelin Werner

Appendix A: Further developments

This chapter presents an overview over some aspects of the recent development of the
stochastic Loewner evolution from the point of view of Brownian motion. Stochastic
Loewner evolution allows to address a variety of important questions on the geometry
of planar Brownian motion that cannot be answered otherwise. This chapter is intended
as an invitation to further study, and therefore does not intend to provide the same level of
detail as the chapters in the main body of the book.

11.1 Some subsets of planar Brownian paths

11.1.1 The questions

The conformal invariance of planar Brownian motion and the powerful tools of one-di-
mensional complex analysis open the way to a deep understanding of some aspects of the
geometry of the Brownian curve. For the sake of concreteness, let us begin by presenting
a couple of motivating questions.

Question 11.1 (Intersection exponent)Let {Z1(t) : t > 0} and{Z2(t) : t > 0} be two
independent planar Brownian motions started at distinct points. What is the asymptotic
decay rate ast→ ∞ of P{Z1[0, t] ∩ Z2[0, t] = ∅}?

Fig. 11.1. Non-intersecting Brownian motions

327
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Let us insist on the fact that we are looking at the probability that (simultaneously) for all
t1, t2 6 t we haveZ1(t1) 6= Z2(t2), and that this is quite different from questions about
the process{Z1(t) − Z2(t) : t > 0}.

Clearly, recurrence of planar Brownian motion implies thatthis probability goes to0 as
t → ∞. In fact, one can easily deduce from a subadditivity argument that the answer to
the question ist−ξ+o(1) for some positive constantξ, and the problem is really about the
identification ofξ. The exponentξ is often called theintersection exponentof planar
Brownian motion. As we will later discuss, knowing its valueis instrumental in studying
the set ofcut points in the Brownian pathZ[0, 1], i.e. the set of pointsx ∈ R2 such that
Z[0, 1] \ {x} is disconnected:

Question 11.2 (Cut points)Are there cut points on a planar Brownian path? If so, what
is the Hausdorff dimension of the set of cut points?

Another interesting subset of the planar Brownian pathZ[0, t] is its outer boundary, de-
fined as the boundary of the unbounded connected component ofR2 \ Z[0, t]; see Fig-
ure 11.2.

Fig. 11.2. A Brownian path and its outer boundary.

Question 11.3 (Outer boundary)What is the Hausdorff dimension of the outer boundary
of the Brownian path?

Chris Burdzy showed that cut points do indeed exist on planarBrownian paths [Bu89,
Bu95], but direct attempts to compute these dimensions (andexponents) through the study
of Brownian motion have not been successful (some estimateshave however been obtained,
see the historical notes at the end of this chapter). But, as we shall now try to explain, the
study of SLE (Stochastic Loewner Evolution) paths does allow to determine these values.
The goal of this chapter is to explain the main steps (with partial proofs only) that lead
to these answers. We will focus mainly on the intersection exponentξ and the related
question about cut points. A more complete and detailed presentation of the results and
their proofs can be found in the original papers [LSW01a, LSW01b, LSW03], and are also
discussed in [We04, La05, La09].
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11.1.2 Reformulation in terms of Brownian hulls

We recall from Theorem 7.20 that conformal invariance is nicely expressed for Brownian
paths that are stopped at their exit times from given domains. For example, consider a
planar Brownian motion{Z(t) : t > 0} started from the origin, and stopped at its first exit
time T = TD of a given bounded simply connected domainD that contains the origin.
Consider the conformal mappingΦ = ΦD from D onto the unit discU = B(0, 1) such
that Φ(0) = 0 andΦ′(0) is a positive real (this map exists and is unique by Riemann’s
mapping theorem, see for instance [Ah78] for basic background in complex analysis).
Then, the law of{Φ(Z(t)) : 0 6 t 6 T} is that of a time-changed Brownian motion
started at the origin and stopped at its first exit time from the unit disc. In other words, if
we forget about the time parametrisation and worry only about the ‘trace’ of the paths (i.e.
the set of points that the Brownian motion has visited), we get an identity in law between
{Φ(Z(t)) : 0 6 t 6 T} and{Z(t) : 0 6 t 6 σ}, whereσ = TU is the exit time from the
unit disc.

As we shall see, it is useful to consider the random setK defined as follows: We look at
the traceZ[0, σ] and we fill in its ‘holes’. In other words, we say thatK is the complement
of the unbounded connected component of the complement ofZ[0, σ] in the plane. We call
K thehull of Z[0, σ].

Let us now explain why the previous two questions can be reformulated in terms of the law
of the hullK.

• Let us first focus on the question about the outer boundary of the Brownian motion.
We can expect that if we can determine the Hausdorff dimension of the outer boundary
of Z[0, σ] and prove that it is almost surely equal to some valued, then the Hausdorff
dimension of the outer boundary ofZ[0, 1] will also be equal tod almost surely. But the
boundary of the hullK is exactly the outer boundary ofZ[0, σ]. Hence, Question 11.3
reduces to: ‘What is the Hausdorff dimension of the boundary of K?’

• A similar and slightly more involved argument applies to theset of cut points. The goal
is therefore first to determine the Hausdorff dimensions of the set of cut points ofK, i.e.
of the set of pointsp in K such thatK \ {p} is disconnected.

• Consider now two independent Brownian paths{Z1(t) : t > 0} and {Z2(t) : t>0}
started at the two pointsZ1(0) = 0 andZ2(0) = 1 (here0 and1 are viewed as ele-
ments of the complex plane). Define for eachR > 1, the respective exit timesT 1

R and
T 2
R of Z1 andZ2 from the discB(0, R). It is easy to see that for eachε > 0, the prob-

ability thatT 1
R does not belong to[R2−ε, R2+ε] does decay rapidly asR → ∞. More

precisely, we get that for some positiveβ and all sufficiently largeR,

P
{
T 1
R /∈ [R2−ε, R2+ε] or T 2

R /∈ [R2−ε, R2+ε]
}

6 e−βR
ε

.

Indeed, because of scaling, the left hand side is equal toP{σ /∈ [R−ε, Rε]}, and on the
one hand,

P
{
σ < R−ε}

6 P
{

max
s6R−ε

|Re(Z(s))| > 1/
√

2
}

+ P
{

max
s6R−ε

|Im(Z(s))| > 1/
√

2
}

6 8 P
{
Re(Z(R−ε)) > 1/

√
2
}
,
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while, on the other hand,

P{σ > N} 6 P
{
|Z(j + 1) − Z(j)| 6 2∀j = 0, 1, . . . , N − 1

}
6 P

{
|Z(1)| 6 2

}N
.

Hence, up to a small error, estimating the probability that

Z1[0, t] ∩ Z2[0, t] = ∅

boils down to estimating the probability that

Z1[0, T 1
R] ∩ Z2[0, T 2

R] = ∅

for R =
√
t whenR→ ∞. More precisely, if we can show that the second one behaves

like R−2ξ+o(1) asR→ ∞, then it will follow that the first one is equivalent tot−ξ+o(1)

ast→ ∞.

Let us now define the hullsK1
R andK2

R of Z1[0, T 1
R] andZ2[0, T 2

R]. We can note
thatZ1[0, T 1

R] ∩ Z2[0, T 2
R] = ∅ if and only ifK1

R ∩K2
R = ∅. Furthermore, conformal

invariance of planar Brownian motion shows readily that thelaw ofK2
R is just the image

of the law ofK1
R under the conformal transformation fromB(0, R) onto itself that sends

the starting point ofZ2 onto the origin. Hence, we have also reformulated Question 11.1
in terms of the law ofK.

11.1.3 An alternative characterisation of Brownian hulls

We now explain why conformal invariance makes it possible togive a simple description
of the law ofK that does seemingly not involve Brownian motion.

Let U denote the set of simply connected open subsetsU ′ of the unit discU such that
0 ∈ U ′. For any two suchU ′ andU ′′ in U , we defineU ′ ∧ U ′′ to be the connected
component ofU ′ ∩ U ′′ that contains the origin. Clearly,U ′ ∧ U ′′ ∈ U .

For anyU ′ ∈ U , we denote bym(U ′) the harmonic measure of∂U ∩ ∂U ′ in U ′ at the
origin. This is just the probability that a Brownian path started at the origin does exitU ′

via a point on the unit circle. BecauseU ′ is simply connected, this happens exactly if the
hull of this Brownian motion stays inU ′ up to the timeσ. Hence, if we defineK as before
and setK∗ = K \ {Zσ}, we get immediately that

P
{
K∗ ⊂ U ′} = m(U ′). (11.1)

Now suppose thatK is the hull of some other continuous random path(ηt, t 6 τ) stopped
at its first hitting of the unit disc; this second random path is not necessarily a Brownian
motion, but we suppose that it also satisfies

P
{
K∗ ⊂ U ′} = m(U ′), (11.2)

for all U ′ ∈ U , whereK∗ = K \ {ητ}.

We can note that the set of events of the type{K : K ⊂ U ′} (for such hulls) whenU ′

spansU is stable under finite intersections, and in fact generate the σ-algebra on which
we can define the measure on hulls. Hence, it follows from standard measure-theoretical
arguments that the laws ofK and ofK are identical. In other words,K (or rather its law)
is the only ‘random hull’ that has the property that for anyU ′ ∈ U , (11.1) holds.
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Note that (11.2) can be also expressed in terms of the pathη directly. Suppose that for
anyU ′, the exit point ofU ′ by η is distributed according to harmonic measure from0

in U ′, then (11.2) follows.

Let us sum up our analysis so far: We have first reformulated our questions in terms of the
random hullK, and we have now given a simple characterisation of the law ofK. The
plan will now be the following:

• Construct a random curveη that exits every domainU ′ in U according to harmonic
measure. We have just argued that this implies that the laws of K andK are identical.

• Using the construction of this other random curveη, compute the exponents and dimen-
sions that we are looking for.

It turns out that such a random pathη indeed exists, and that it is one of the stochastic
Loewner evolutions, more precisely SLE(6).

11.2 Paths of stochastic Loewner evolution

11.2.1 Heuristic description

Suppose that one wishes to describe a ‘continuously growing’ curve {ηt : t > 0} that is
always ‘growing towards infinity’. More precisely, let us first suppose that{ηt : t > 0} is
a simple random curve starting at the origin.

At each timet > 0, we define the conformal mapψt from R2 \ η[0, t] into the complement
of the unit disc, such thatψt(∞) = ∞ andψt(ηt) = 1. By Riemann’s mapping theorem,
this mapψt is unique.

Fig. 11.3. The conformal mapψt.

The crucial assumption that we will make is that for eacht > 0, the random path

{ψt(ηt+s) : s > 0}
(or rather its trace) is independent ofη[0, t], and that its law is independent oft. In other
words, the curve is growing towards infinity fromηt in the setR2 \η[0, t] in a ‘conformally
invariant way’.

This suggests that it is possible to define the curve{ηt : t > 0} progressively, by iterating
independent identically distributed pieces. Suppose for instance that we have already de-
finedη[0, 1] and that we wish to define what happens after time1. The curveψ1(η[1, u])

is independent ofη[0, 1]. It is a piece of curve inR2 \ U that starts atψ1(η1) = 1. The
conformal mapψu◦ψ−1

1 mapsR2\(U∪ψ1(η[1, u])) ontoR2\U. It therefore characterises
the setη[1, u] and it is characterised by it. Hence, it is independent fromη[0, 1].
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It follows that foru1 < u2 < . . . < un, the conformal maps

ψun
◦ ψ−1

un−1
, . . . , ψu2

◦ ψ−1
u1

are independent. Furthermore, if we choose the time-parametrisation correctly, then they
will be identically distributed. This leads to the idea thatψt are obtained via iterations of
i.i.d. random conformal maps.

11.2.2 Loewner’s equation

Suppose now that{ηt : t > 0} is a given continuous simple curve (with no double points)
in the plane starting at the origin such thatlimt→∞ ηt = ∞. We define as in the previous
paragraph the conformal mapψt from R2 \ η[0, t] ontoR2 \ U such thatψt(∞) = ∞ and
ψt(ηt) = 1. Recall thatz 7→ 1/ψt(1/z) extends analytically to the origin (one can for
instance first define this analytic map via Riemann’s mappingtheorem and then defineψt),
so thatψt can be expanded as a power series in the neighbourhood of infinity. In particular,

ψt(z) ∼ a(t)z

whenz → ∞ for somea(t). It is not difficult to see thatt 7→ a(t) is a continuous function,
and thatt 7→ |a(t)| is decreasing (because the setR2 \ η[0, t] is decreasing). Furthermore,
simple estimates imply thatlimt→0 |a(t)| = ∞ andlimt→∞ |a(t)| = 0.

It is therefore possible (and natural) to reparametrise thecurve{ηt : t > 0} in such a way
that the parametert now lives inR, that limt→−∞ ηt = 0 and that|a(t)| = exp(−t).
We then define the conformal mapft from R2 \ η[−∞, t] ontoR2 \ U, but this time, we
normalise it in such a way thatft(z) ∼ e−tz asz → ∞. In other words,ft is just obtained
fromψt by a rotation, and the image ofηt underft is nowwt := |a(t)|/a(t).

Theorem 11.4 (Loewner’s equation)In the previous setup, for allt > 0, one has

∂

∂t
ft(z) = −ft(z)

ft(z) + wt
ft(z) − wt

. (11.3)

Loewner’s equation has been introduced in the context of Bieberbach’s conjecture for har-
monic functions, see for instance [Du83] for a derivation ofthis equation.

Let us give a brief indication of where this ordinary differential equation comes from.
Recall first that the Poisson representation theorem shows that the only harmonic function
in the unit disc such thatG(0) = 1 andG(z) → 0 on ∂U \ {1} is the functionz 7→
Re((1 + z)/(1 − z)).

A first step is to prove directly (using harmonic measure estimates) that the mapt 7→ wt
is continuous. Then, one notes that (for instance because ofscaling) it suffices to consider
the case wheret = 1. Whens > 1, the functionfs ◦f−1

1 is analytic fromR2 \ (U∪η[1, s])
ontoR2 \ U (where we view these sets as subsets of the Riemann sphere). If we define

hs(z) = − log
(
fs ◦ f−1

1 (z)/z
)
,

we get a bounded analytic function onR2 \ (U ∪ η[1, s]). The boundary values ofRe(hs)

are zero on∂U andlog |z| onf1(η(1, s]), and moreover,hs(∞) = s− 1. Hence it follows
(for instance from the maximum principle) thatRe(hs) is nonnegative onR2\(U\η[1, s]).
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Consider the limitlims↓1 hs/(s − 1). Existence of this limit can be justified as follows:
First, standard compactness properties of analytic functions imply that subsequential limits
exist. Leth : R2 \ U → R denote one such subsequential limit. Clearly,h(∞) = 1

and Re(h) > 0. It is then not too hard to verify thatRe(h) is continuous up to the
boundary except nearw1 = f1(η1) and thatRe(h) = 0 on∂U \ {w1}. Hence, the Poisson
representation theorem (applied toz 7→ h(w1/z)) implies that

Re
(
h(z)

)
= −Re

(
z + w1

z − w1

)
,

and sinceIm(h(∞)) = 0, we conclude that

h(z) = −z + w1

z − w1
.

As this limit does not depend on the choice of subsequence, itfollows that ass ↓ 1,

fs ◦ f−1
1 (z)

z
− 1 ∼ log

(
fs ◦ f−1

1 (z)

z

)
∼ (s− 1) × w1 + z

w1 − z
,

which implies that

∂+
s

∣∣
s=1

fs(z) = f1(z) ×
w1 + f1(z)

w1 − f1(z)
,

where∂+
s denotes the one sided derivative from the right.

The reader can now probably already guess how to define SLEs: Just choosewt to be a
Brownian motion on the unit circle. The conformal mapsft are then defined via (11.3),
and the SLE curve can then be deduced from it.

11.2.3 The loop-erased random walk

Even if it is not really necessary in order to define stochastic Loewner evolutions and
to study consequences of their study to Brownian paths, we believe that it is useful at
this point to explain some background and motivation using discrete models. In the next
subsections, we will therefore describe two particular lattice models and their relation to
SLE paths. In those settings it can be more useful to considerrandom curves that grow
‘towards the inside’ of domains. This is of course almost identical to the previous case
(just use thez 7→ 1/z transformation to transform outside into inside i.e. look for instance
at the conformal mapgt(z) = 1/ft(1/z) instead offt).

One such discrete example is the loop-erased random walk. Infact, this model is the one
for which the SLE model was first introduced, see [Sc00]. IfG is a recurrent connected
graph containing a vertexv and a nonempty set of verticesA, then the loop-erased random
walk from v to A is the random path obtained from the simple random walk started atv
and stopped when hittingA by erasing the loops as they are created.

Let us now give a more precise definition. First, define the simple random walkS on
the graphG, which we assume to have more than one vertex. LetS(0) = v and for each
positive integern, let the conditional distribution ofS(n) given(S(0), S(1), . . . , S(n−1))

be uniform among the neighbours ofS(n − 1). Let T := inf{n ∈ N : S(n) ∈ A}. Since
G is recurrent, we know thatT is almost surely finite.



334 Stochastic Loewner evolution and planar Brownian motion

We now define theloop-erasure(β(0), β(1), . . . , β(τ)) of S[0, T ] by induction: We set
β(0) = v and then for eachk > 1, if β(k − 1) = S(T ), we setτ = k − 1 and finish the
procedure, whereas ifβ(k − 1) 6= S(T ), we set

m = max{j < T : S(j) = β(k − 1)} andβ(k) = S(m+ 1).

An important property of the loop-erased random walk is given by the following lemma.

Lemma 11.5LetG be a recurrent connected graph,v a vertex inG, andA a nonempty set
of vertices inG. The conditional law of(β(0), . . . , β(τ − j)) givenβ(τ) = x0, . . . , β(τ −
j) = xj is that of the loop-erasure of a random walkS′ started atv, stopped at it first
hitting timeT ′ ofA′ = A∪{x0, . . . , xk} and conditioned to first hit this set atS′(T ′) = xk.

This lemma can be interpreted as some sort of Markov propertyof the time-reversal ofβ.

Fig. 11.4. A loop-erased random walk

Consider a simply connected domainD in the planeR2 = C, with D 6= C. Suppose that
0 ∈ D. Takeδ > 0 small, and consider the square latticeδ Z2 of meshδ. We are interested
in the loop-erasureβ of the random walk onδ Z2 started at0 and stopped when it first
uses an edge intersecting∂D. More specifically, we are interested in the scaling limit of
β, which is the limit of the law ofβ asδ ↓ 0. (For the sake of brevity, we will not specify
the precise topology in which the limit is taken. This discussion is meant as a motivation,
and hence we allow ourselves not to be completely rigorous.)Let µD denote the limit law.
Figure 11.4 shows a sample of the loop-erasure of simple random walk onδ Z2 started at0
and stopped on exiting the unit diskU.

In order to use Lemma 11.5, it turns out to be better to parametrise time ‘backwards’, i.e. to
defineγ(0) to be the ‘end-point’ on∂D, andγ(∞) = 0 (we will discuss the precise time-
parametrisation later). Suppose thatγ : [0,∞] → D is a sample fromµD. Since Brownian
motion is conformally invariant up to a time change and it is the limit of simple random
walk, it is somewhat reasonable to expect thatγ is also conformally invariant, i.e., that if
G : D → U is a conformal homeomorphism fromD to the unit disk, thenµD = µU ◦G (in
fact, this result has now been proved using SLE, see [LSW04].)Moreover, Lemma 11.5
suggests that ift <∞ is fixed, then the conditional law ofγ[t,∞] givenγ[0, t] isµD\γ[0,t]
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where the path is conditioned to exit this domain throughγ(t). Now, the latter domain
D \ γ[0, t] is probably geometrically rather complicated, becauseγ is a fractal curve. But
we may simplify this domain using a conformal map.

Fig. 11.5. The conformal mapgt

Let us now consider the special case whereD = U. Note thatγ(0) is then distributed
uniformly on the unit circle. Letgt : U\γ[0, t] → U denote the conformal homeomorphism
normalised such thatgt(0) = 0 andg′t(0) is real and positive. It can be shown thatg′t(0)

is continuous and increasing int and thatlimt→∞ g′t(0) = ∞. Consequently, we may,
and will, choose the time parametert so thatg′t(0) = et. This is sometimes called the
parametrisation by capacity.

Loewner’s theorem allows to reconstructγ from the functionW : t 7→ gt(γ(t)). In the
present setting,γ defined on[0,∞] is a simple path inU ∪ {γ(0)} satisfyingγ(0) ∈ ∂U
andγ(∞) = 0, and which is parametrised by capacity inD. (The assumptions thatγ is a
simple path and that∂D is a simple closed path may be relaxed, but it is best at this point
to keep the setting simple.)
Applying Theorem 11.4 to the functionsz 7→ 1/gt(1/z), we get that the conformal home-
omorphismsgt satisfy the differential equation

∂

∂t
gt(z) = −gt(z)

gt(z) +Wt

gt(z) −Wt
(11.4)

at every pair of points(z, t) such thatt > 0 andz ∈ U \ γ[0, t]. If z ∈ U is fixed, then
Loewner’s equation (11.4) is an ordinary differential equation for gt(z) with respect to the
variablet (as long asz /∈ γ[0, t]). Loewner’s equation can also be considered an ordinary
differential equation forgt in the space of conformal maps with image inU, but variable
domain.
Just as before, the knowledge of the functiont 7→ Wt allows to reconstruct the curveγ.
The Markovian-like condition of loop-erased random walk leads to the idea that the process
t → Wt has stationary and independent increments. Recall also that it is continuous and
that the law of Brownian motion is symmetric (i.e. this implies thatW has no bias). All
this suggests that{Wt : t > 0} must be a Brownian motion on the unit circle.
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11.2.4 Definition of SLE

Now suppose that instead of starting with a curveγ, we start with a one dimensional
continuous pathW : [0,∞) → ∂U. If z ∈ U \ {W0} is fixed, then we may consider
the solutiongt(z) of the ordinary differential equation (11.4) started atg0(z) = z. There
exists a unique solution to this initial value problem as long asgt(z)−Wt is bounded away
from zero. Thus, there is someτz ∈ (0,∞] such that the solutiongt(z) is defined for all
t ∈ (0, τz) and if τz <∞, thenlim inft↑τz

|gt(z) −Wt| = 0. (In fact, it is easy to see that
the lim inf may be replaced by alim.) SetKt := {z ∈ U : τz 6 t} (we takeτW0

= 0).
It is immediate to verify thatgt : U \Kt → U is a conformal homeomorphism satisfying
gt(0) = 0 andg′t(0) = et. The one parameter family of mapsgt is called theLoewner
evolution driven byWt. The setKt is often called thehull of the Loewner evolution at
time t. At this point we should point out that the setKt constructed in this way does not
have to be a simple path. This brings us to the definition of SLE:

Definition 11.6. Fix someκ > 0, and setWt = exp(iB(κt)), where{B(t) : t > 0} is
Brownian motion. Then the Loewner evolution driven byWt is calledradial stochastic
Loewner evolutionwith parameterκ in U, or justradial SLE(κ), fromW0 to 0. �

To define radial SLE in another simply-connected domainD $ C, we may start with a
conformal homeomorphismG : D → U, and solve (11.4) withg0 = G. SetKD

t := {z ∈
D : gt(z) is undefined}. Of course, the resulting processKD

· will depend onG. The point
G−1(0) is referred to as thetarget of the SLE.

If G1 andG2 are two conformal homeomorphisms fromD to U such thatG−1
1 (0) =

G−1
2 (0), thenG2 = λG1 for someλ ∈ ∂U. Since the law ofWt is invariant under

rotations, it follows that the law of the evolutiong· starting atG2 is obtained from the law of
the evolution starting atG1 by appropriately rotating the mapsgt by λ. Consequently, the
law ofKD

· is the same forG1 as forG2. This is also the same as the law ofG−1
1 (K· ∩U),

whereKt are the hulls of radial SLE inU.

Our argument based on the assumptions of conformal invariance and the analogue of
Lemma 11.5 for the loop-erased walk scaling limitγ shows that for some choice of the
constantκ, the law of the processKD

· is the same as the law ofγ(0, ·) (where the starting
point of the SLE is started uniformly on the unit circle). It turns out that the correctκ for
loop-erased random walk is2. This is explained in [Sc00, LSW04].

11.2.5 Critical percolation and SLE(6)

It will turn out that SLE(6) is a useful SLE in order to study planar Brownian motion. To
better understand why this is the case, we first turn to a modelof percolation in the plane.
LetD be some simply connected domain in the plane whose boundary is a simple closed
curve. Fix two pointsa, b ∈ ∂D, and letA denote the counterclockwise arc froma to
b alongD (not includinga andb). Fix some smallδ > 0, and letHδ denote the planar
hexagonal grid of hexagons with edge lengthδ as in Figure 11.6. IfH is a connected com-
ponent of the intersection ofD with a hexagon inHδ, we colourH white if its boundary
meetsA, and colourH black if its boundary meets∂D but does not meetA. If H is a
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hexagon ofHδ that lies entirely insideD, we colourH white or black with probability
1/2, independently. LetW denote the closure of the union of the white coloured tiles inD

and letB denote the closure of the union of the black coloured tiles. We assume thatδ is
sufficiently small so thatB ∩ ∂D 6= ∅. It is then easy to see that there is a unique pathγ,
which is the connected component of∂B ∩ ∂W that meets∂D. (See Figure 11.6.)

Fig. 11.6. The percolation interface

Smirnov [Sm01, Sm07] has shown that the limit asδ → 0 of the law of this interfaceγ
exists, and is conformally invariant, in the following sense. If D′ ⊂ C is a simply con-
nected domain whose boundary is a simple closed curve andG : D → D′ is a conformal
homeomorphism, then the image of the limit law inD is the limit law inD′, provided that
in D′ we take the pointsa′ := G(a) andb′ := G(b) as the two special boundary points.
(It is known thatG extends to a homeomorphism from∂D to ∂D′.) We have chosen to
discuss domains whose boundary is a simple closed curve for the sake of simplicity, but
this is by no means necessary.

Next, we consider the analogue of Lemma 11.5 in this setting.If we condition on the first
k steps of the discrete curveγ from its (deterministic) endpoint neara, the conditioning
involves only the colours of those tiles which meet this initial segmentβ. Moreover, on
the right hand side ofβ we find white tiles while on the left hand side we find black tiles.
Consequently, conditioned onβ, the law ofγ \ β is just the law of the interface in the
domainD \ β, where the special points are chosen as the terminal point ofβ andb. (If
we are to be entirely precise, we should replace the domainD \ β with D \ β̂, whereβ̂ is
an appropriate small neighbourhood ofβ \ {a small piece of its last segment}, so that the
resulting domain is a simple closed path that does not intersect a hexagon whose colour
has not been determined.) This is indeed analogous to Lemma 11.5.

Since we have conformal invariance for the scaling limit of the percolation interface and
the analogue of Lemma 11.5, we would expect the scaling limitof the interface to be given
by an SLE curve. However, the setting is different, since thepercolation interface connects
two boundary points of the domain (which are fixed), while theloop-erased random walk
connects a fixed interior point with a random boundary point.Indeed, the percolation
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interface scaling is described not by a radial SLE, but by a different version of SLE called
chordal SLE.

In the chordal setting, the base domain is normally chosen tobe the upper half planeH. We
let Wt := B(κt), where{B(t) : t > 0} is a standard one dimensional Brownian motion,
and letgt(z) denote the solution of the differential equation

∂

∂t
gt(z) =

2

gt(z) −Wt
(11.5)

with g0(z) = z. Thengt : H \ Kt → H is a conformal homeomorphism, whereKt :=

{z ∈ H : τz 6 t} andτz := inf{t > 0 : gt(z) is undefined}. This defines the chordal SLE
from 0 to infinity in H.

Fig. 11.7. Beginning of the percolation interface in the upper half-plane

Chordal SLEs are often more natural than radial SLEs in the context of models from sta-
tistical physics, and both variants are very closely related to each other. In particular, see
[LSW01b], if one looks at the beginning of a radial SLE in the unit disc, and the image
of the beginning of a chordal SLE under the conformal map fromthe unit disc on the up-
per half-plane that sends the points0 and i onto1 and0, for the same parameterκ, then
the two laws are absolutely continuous with respect to each other (the fractal dimensions
of the curves are therefore the same). In view of applications to Brownian motion (and
more precisely to those questions that we raised at the beginning of this appendix), we can
however mostly restrict ourselves to the study of radial SLE.

It turns out that the valueκ = 6 is the one that corresponds to the scaling limit of perco-
lation interfaces [Sm01] (as conjectured in [Sc00]). At this point, it is worth stressing the
following subtle point. In our discussion, we have described the construction of SLE as if
it would anyway define a simple curve. This is indeed the fact whenκ 6 4, see [RS05].
But, in the case of the scaling limit of percolation, one expects the scaling limit of the
discrete interfaces to have double points. Indeed, on whatever scale, the discrete interface
will ‘bounce’ on its remote past, and this will produce (in the limit when the mesh of the
lattice goes to zero) double points. Hence, one has to changethe construction of the SLE
as follows (we describe it in the radial case – the chordal case is treated in a similar way):
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• Start with the Brownian motion{Wt : t > 0} on the unit circle.
• For eachz in the unit disc, solve the ordinary differential equation (11.4) up to the

(random and possibly infinite) timeτz.
• At each timet, denoteKt = {z ∈ U : τz 6 t} andUt = U \ Kt. Then,gt is the

normalised conformal map fromUt ontoU.
• Call the increasing family{Kt : t > 0} theSLE Loewner chain.

Then, with some substantial work whenκ > 4, it is in fact possible [RS05] to prove that
there exists almost surely a continuous curve{γt : t > 0} such that at eacht > 0, the
domainUt is the connected component containing the origin ofU \ γ[0, t] and that this
curveγ is determined by the SLE Loewner chain. We call this curveγ the SLE curve.

In order to discuss the consequences for Brownian motion, itis in fact not necessary to
know that SLE chains are ‘generated’ by curvesγ. One can just work with the chain
instead of the path, but it is helpful to have this in mind in order to guide our intuition
about what goes on. In the caseκ = 6, the convergence of critical percolation interfaces
to SLE(6), see [Sm07], provides a rather direct alternativeproof of the fact that SLE(6)
chains are generated by paths (see also [We07]).

11.3 Special properties of SLE(6)

It is possible to prove directly via stochastic calculus methods [LSW01b, We04, La05] that
the law of the beginning of radial SLE(6) and chordal SLE(6) curves are the same. Here is
a precise statement:

Proposition 11.7Consider a chordal SLE(6) processγ1 from 1 to −1 in the unit discU,
and a radial SLE(6) processγ2 from1 to 0 in U. Define

T l = inf{t > 0 : |γl[0, t] − 1| > 1/2}

for l = 1, 2. Then, the two pathsγ1[0, T 1] and γ2[0, T 2] defined modulo time-repara-
metrisation have the same law.

We omit the proof here. The main idea is basically to express the radial Loewner evolution
as a chordal Loewner chain, and to compute how the time-parametrisations and driving
functions are transformed. It turns out that a seemingly miraculous cancellation occurs
whenκ is equal to6, that leads to this result. In fact, it is also possible to derive this relation
between radial SLE(6) and chordal SLE(6) using the relationwith critical percolation (see
e.g. [We07]); this provides a transparent justification of this ‘miraculous result’.

It may be useful at this point to have a picture of the radial exploration process for perco-
lation in the discrete setting. We start with a fine-meshδ approximation of the unit disc.
Our goal is to define a path from the boundary point1 to the origin. We are going to define
this path dynamically. We start with the same rule as the exploration process from1 in the
chordal case, except that we do not fix a priori the colours of the sites on the∂U. Note
that as long as the discrete exploration path does not disconnect the origin from infinity,
there is some arcI of points on∂U that are connected to the origin without intersecting
the exploration path. We then use the same boundary conditions to define the exploration
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process as if we would do the exploration process from1 to one of the points inI. Note
thatI is non-increasing in time, and the rule that we just described indeed determines the
exploration path up to the first time at which it disconnects the origin from∂U. In this case,
note that the connected component of the complement of the path that contains the origin is
simply connected, and that it has a boundary point at distanceδ of the tip of the exploration
process. We now force the exploration process to move to thispoint. Then, the exploration
process is at a boundary point of the connected component that contains the origin. Now,
we start again, as if the colours of the boundary of this domain would not have been known,
and we start exploring interfaces in this domain using the same algorithm (replacing1 by
the end-point of the exploration).

Theorem 11.8When the mesh of the lattice goes to zero, then the law of the radial discrete
exploration process converges to that of radial SLE(6).

We will really not use this result here, so we will not discussits detailed proof. We refer to
[We07] for a self-contained proof in the spirit of Smirnov’spaper [Sm07], see also [CN07].

We can also use a similar construction to define the continuous analogue of our ‘discrete’
curve that is growing towards infinity from a given point. Theidea is to use exactly the
same definition, except that this time the initial domain is the complement of the disc of
radiusr, and the target point is infinity. Then, when the mesh of the lattice goes to0 and
r → 0, this exploration process converges to a random curveη started at the origin that
possesses the following two properties:

• For any simply connected domainU ′ that contains the origin, the exit point ofU ′ by η
is distributed according to harmonic measure from the origin in U ′ (this follows either
from the locality properties of SLE(6), or alternatively, from the conformal invariance
properties of percolation).

• For anyt, the conditional law ofη[t,∞) givenη up to timet, is that of radial SLE(6)
from ηt to infinity in the unbounded connected component ofR2 \ η[0, t].

We can therefore conclude (either by using the relation to critical percolation or via direct
derivations of the special properties of SLE(6)) that the dynamics of an ‘outwards growing’
radial SLE(6) provide a way to construct a pathη that satisfies our ‘harmonic measure
condition’. It looks indeed as if computations for SLE(6) will provide useful information
for Brownian hulls.

11.4 Exponents of stochastic Loewner evolution

11.4.1 A radial computation

We now briefly browse through the computations that lead to the determination of the
exponents that we are looking for. This section will certainly seem quick to the first-time
reader. The goal is not to give a complete proof, but rather togive a flavour of the type of
stochastic calculus arguments that are used in this derivation.
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Define, forz = exp(ix) on the unit circle, the eventH(x, t) that one radial SLE(6) (in the
usual parametrisation) started from1 did not disconnect the pointz from the origin inU
before timet. For reasons that we will explain in a moment, we will focus onthe moments
of the derivative ofgt at exp(ix) on the eventH(x, t). Note already that on a heuristic
level, |g′t(eix)| measures how ‘far’eix is from the origin inU \ γ[0, t].
More precisely, we define

f(x, t) := E
[
|g′t(exp(ix))| 1H(x,t)

]
.

The main result of this section is the following estimate:

Proposition 11.9There is a constantc > 0 such that for allt > 1, for all x ∈ (0, 2π),

e−5t/4
(
sin(x/2)

)1/3
6 f(x, t) 6 ce−5t/4

(
sin(x/2)

)1/3

Proof. LetWt = exp(i
√

6B(t)) be the driving process of the radial SLE(6), withB(0) =

0. For allx ∈ (0, 2π), we defineY xt the continuous function (with respect tot) such that

gt(e
ix) = Wt exp(iY xt )

andY x0 = x. The functionY xt is defined as long asH(x, t) holds. Sincegt satisfies
Loewner’s differential equation, we get immediately that

d(Y xt −B(6t)) = cot(Y xt /2) dt. (11.6)

Let

τx := inf{t > 0 : Y xt ∈ {0, 2π}}

denote the time at whichexp(ix) is absorbed byKt, so that

P
(
H(x, t)

)
= P{τx > t}.

We therefore want to estimate the probability, weighted by some power of|g′t(exp(eix))|
that the diffusionY x (started fromx) has not hit{0, 2π} before timet ast → ∞. This
turns out to be a rather standard problem that can be treated via the general theory of
diffusion processes: Define, for allt < τx,

Φxt := |g′t(exp(ix))| .

On t > τx setΦxt := 0. Note that ont < τx we haveΦxt = ∂xY
x
t and

Y xt = B(6t) +

∫ t

0

cot(Y xs /2) ds.

Hence, we have that, fort < τx,

∂t log Φxt = − 1

2 sin2(Y xt /2)
, (11.7)

so that, fort < τx,

Φxt = exp

(
−1

2

∫ t

0

ds

sin2(Y xs /2)

)
. (11.8)
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Hence,

f(x, t) = E
[
1H(x,t) exp

(
−1

2

∫ t

0

ds

sin2(Y xs /2)

)]
.

Hence, the weighting byΦxt can be interpreted as a (space-dependent) killing rate for the
processY , andf(x, t) is just the probability that a given Markov process (the processY
with the given killing rate and additional killing when it exits (0, 2π)) survives up to timet
when it starts atx. In order to estimate such probabilities, one has to look forthe first
eigenfunction of the generator of this process.

It is, for instance, not difficult to see that the right hand side of (11.8) is0 whent = τx and
that

lim
x→0

f(x, t) = lim
x→2π

f(x, t) = 0 (11.9)

holds for all fixedt > 0. Let F : [0, 2π] → R be a continuous function withF (0) =

F (2π) = 0, which is smooth in(0, 2π), and set

h(x, t) = hF (x, t) := E
[
Φxt F (Y xt )

]
.

By (11.8) and the general theory of diffusion Markov processes, we know thath is smooth
in (0, 2π) × R+. The Markov property forY xt and (11.8) show thath(Y xt , t

′ − t) × Φxt is
a local martingale ont < min{τx, t′}. Hence, the drift term of the stochastic differential
d
(
h(Y xt , t

′ − t)Φxt
)

is zero att = 0. By Itô’s formula, this means that

∂th =
6

2
∂2
xh+ cot(x/2) ∂xh− 1

2 sin2(x/2)
h . (11.10)

The corresponding positive eigenfunction is
(
sin(x/2)

)1/3
. We therefore defineF to be

this function, so thatF (x)e−5t/4 = hF because both satisfy (11.10) on(0, 2π) × [0,∞)

and have the same boundary values. The proposition then follows easily.

11.4.2 Consequences

Let us now explain some steps that enable us to transform the previous considerations and
computations into an actual proof of the fact thatξ = 5/8. Consider a radial SLE(6)
path in the unit disc, parametrised by capacity. Define, for eachr < 1, its hitting time
τr of the discB(0, r) of radiusr around the origin. A standard result from complex anal-
ysis, Koebe’s1/4 theorem, shows that the path can not reach distancer from the origin
before time(log(1/r))/4 and that it has to do so before timelog(1/r). In other words,
log(1/r) 6 4τr 6 4 log(1/r). Furthermore, the mapt 7→ |g′t(eix)| is decreasing witht
(this can for instance be seen from its expression as a killing probability). The previous
estimate can therefore be transformed into an estimate of

E
[∣∣g′τr

(exp(ix))
∣∣ 1H(x,τr)

]
asr → 0.

We can also integrate this quantity whenx spans[0, 2π]. In fact, the integral expression∫ 2π

0
|g′τr

(exp(ix))|1H(x,τr) dx is the harmonic measure (from the origin) of∂U in the do-
mainU \ γ[0, τr]. In other words, if we start a planar Brownian motionZ from the origin,
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and stop it at the first timeσ at which it hits the unit circle, we get that, for some absolute
constantsc1, c2, . . .,

c1 r
5/4

6 P
{
Z[0, σ] ∩ γ[0, τr] = ∅

}
6 c2 r

5/4.

Modulo some additional arguments, this can be reformulatedalso in terms of a planar
Brownian motionY started uniformly on the unit circle and stopped at its first hitting
timeρr of the circle of radiusr (roughly speaking, we time-reverseZ):

c3r
5/4

6 P
{
Y [0, ρr] ∩ γ[0, τr] = ∅

}
6 c4r

5/4.

We can then use the transformationz 7→ 1/z to be back in our original setting. This last
result (after a couple more uses of monotonicity and of Koebe’s 1/4 Theorem) can then
be reformulated in this setting, and it shows that ifη is our curve that is growing ‘from
the origin to infinity’ in the plane, and ifZ is a Brownian motion started uniformly on the
circle of radiusr,

c5r
5/4

6 P
{
Z[0, σ] ∩ η[0, τ ] = ∅

}
6 c6 r

5/4.

Hence, we indeed get a precise answer to Question 11.1 withξ = 5/8 (the factor2 comes
in because of the scaling relation between time and space).

Arguments of a similar type can be used to prove that if{Z1(t) : 0 6 t 6 τ1} and
{Z2(t) : 0 6 t 6 τ2} are two planar Brownian paths started at the origin and stopped
at their hitting times of the unit circle, then the probability thatZ1[0, τ1] ∪ Z2[0, τ2] does
not disconnect the pointr from infinity, does decay liker2/3+o(1) asr → 0. This expo-
nentα = 2/3 comes in fact from a similar radial SLE computation. This time, one has to
consider the moment of order1/3 of |gt(eix)| ast → ∞ (we do however not explain here
why this1/3 moment comes in, this has in fact to do with a chordal SLE computation, the
interested reader might consult [LSW01a, LSW01b, We04, La05]).

11.4.3 From exponents to dimensions

In papers [La96a, La96b] (before the mathematical determination of the values of the expo-
nents in [LSW01a, LSW01b]), Greg Lawler showed how to derive and use moment bounds
in order to express the Hausdorff dimension of special random subsets of the planar Brow-
nian curve in terms of the corresponding exponents.

More precisely, let{Z(t) : t > 0} denote a planar Brownian motion. Recall thatp = Z(t)

is a cut point ifZ[0, t] ∩ Z(t, 1] = ∅. Note that, loosely speaking, nearp, there are
two independent Brownian paths starting atp: The future{Z1(s) : s ∈ [0, 1 − t]}, given
by Z1(s) = Z(t + s), and the past{Z1(s) : s ∈ [0, t]}, given byZ2(s) = Z(t − s).
Furthermore,p is a cut point ifZ1[0, 1 − t] ∩ Z2[0, t] = {p}. Similarly, p = Z(t) is a
boundary point ifZ1[0, 1 − t] ∪ Z2[0, t] does not disconnectp from infinity.



344 Stochastic Loewner evolution and planar Brownian motion

Hence, the previous estimates enable us to control the probability that a given pointx ∈ C
is in theε-neighbourhood of a cut point (resp. boundary point). Independence properties
of planar Brownian paths then make it also possible to derivesecond moment estimates
(i.e. the probability that two given pointsx andx′ are both in theε-neighbourhood of such
points) and to show that the Hausdorff dimension of the set ofcut times is almost surely
1−ξ, and that the Hausdorff dimension of the set of boundary points is almost surely equal
to 1 − α/2.

The proofs use (just as in the case of cone points described inSection 10.4, see in particular
Theorem 10.43) first and second moment estimates. In fact, ifone uses the relation with
critical percolation, it turns out that life can be somewhatsimplified in the derivation of the
second moment estimates (see for instance [Be04]).

Recall that on the other hand, we know from SLE calculations that 2 − 2ξ = 3/4, 2 −
α = 4/3. In view of Kaufman’s dimension doubling theorem, see Theorem 9.28, we can
therefore answer our three initial questions:

Theorem 11.10

(1) The exponentξ is equal to5/8.
(2) The Hausdorff dimension of the set of cut points is almostsurely equal to3/4.
(3) The Hausdorff dimension of the outer boundary is almost surely equal to4/3.

Notes and comments

The idea to use Loewner’s equation to study random growth models probably first ap-
peared in the works of Carleson and Makarov in the context of diffusion limited aggrega-
tion (DLA), see [CM01, CM02].

Conformal invariance of lattice models has now been established in various cases.
Aizenman [Ai96] was probably the first one to emphasise that the conformal invariance
conjectures that were present in various forms in the physics literature could be expressed
in terms of conformally invariant laws on curves. Kenyon used determinant computations
and estimates in order to prove several conformal invariance properties of the loop-erased
random walk (and its companion model called the uniform spanning tree), see [Ke00a,
Ke00b]. Later [LSW04] showed stronger conformal invarianceproperties and the conver-
gence of the loop-erased random walk to SLE(2) in the fine-mesh limit. Smirnov [Sm01,
Sm07, Sm08] proved conformal invariance for the particularcritical percolation model that
we presented here, and also for the Ising model on the square lattice.

The idea that one probably had to compute the value of the Brownian exponents using
another model (that should be closely related to critical percolation scaling limits) appeared
in [LW00]. The mathematical derivation of the value of the exponents was performed in
the series of papers [LSW01a, LSW01b, LSW02]. The properties ofSLE that were later
derived in [LSW03] enable us to shorten some parts of some proofs and to derive various
direct identities in law between SLE(6) boundaries and Brownian boundaries, see [We05,
We08a].
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A good reference for the relation between Brownian exponents and Hausdorff dimen-
sions is Lawler’s review paper [La99]. See also Beffara [Be04, Be08]. Determining the
Hausdorff dimensions of the SLE curves is a rather difficult question. It turns out to be
1 + κ/8 whenκ 6 8. This has been proved by Rohde and Schramm [RS05] for the upper
bound and Beffara [Be08] for the tricky lower bound.

The value of the Brownian intersection exponents had been predicted/conjectured be-
fore: Duplantier–Kwon [DK88] had for instance predicted the values ofξ using numerics
and non-rigorous conformal field theory considerations. Later, Duplantier [Du04] used
also ‘quantum gravity techniques’ to produce the values of all exponents. The fact that
planar Brownian motion contains cut points had first been proved by Burdzy ([Bu89] and
[Bu95]). A different shorter proof was given by Lawler in [La96a].

The fact that the dimension of the Brownian boundary is4/3 was first observed visually
and conjectured by Mandelbrot [Ma82]. Before the proof of this conjecture, some rigorous
bounds had been derived, for instance that the dimension of the Brownian boundary is
strictly larger than1 and strictly smaller than3/2 (see [BJPP97, BL90, We96]). The two
exponents that we have chosen to focus on are just two examples from a continuous family
of intersection exponents, that can all be derived using these SLE methods.



Appendix B: Background and prerequisites

12.1 Convergence of distributions

In this section we collect the basic facts about convergencein distribution, see for example
the books of Billingsley [Bi95, Bi99] for more extensive treatment. While this is a familiar
concept for real valued random variables, for example in thecentral limit theorem, we need
a more abstract viewpoint, which allows to study convergence in distribution for random
variables with values in metric spaces, like for example function spaces.

If random variables{Xn : n > 0} converge in distribution, strictly speaking it is their
distributionsand not therandom variablesthemselves which converge. This just means
that the shape of the distributions ofXn for largen is like the shape of the distribution
of X: Sample values fromXn allow no inference towards sample values fromX and,
indeed, there is no need to defineXn andX on the same probability space.

Definition 12.1. Suppose(E, ρ) is a metric space andA the Borel-σ-algebra onE.
Suppose thatXn andX areE-valued random variables. Then we say thatXn converges
in distribution toX, if, for every bounded continuousg : E → R,

lim
n→∞

E[g(Xn)] = E[g(X)].

We writeXn
d−→ X for convergence in distribution. �

Remark 12.2Xn
d−→ X is equivalent toweak convergenceof the distributions. �

Remark 12.3 If Xn
d−→ X andg : E → R is continuous, theng(Xn)

d→ g(X). But

note that, ifE = R andXn
d−→ X, this does not imply thatE[Xn] converges toE[X], as

g(x) = x is not a bounded function onR. �

Example 12.4

• SupposeE = {1, . . . ,m} is finite andρ(x, y) = 1 − 1{x=y}. ThenXn
d−→ X if

and only iflimn→∞ P{Xn = k} = P{X = k} for all k ∈ E.

• Let E = [0, 1] andXn = 1/n almost surely. ThenXn
d−→ X, whereX = 0

almost surely. However, note thatlimn→∞ P{Xn = 0} = 0 6= P{X = 0} = 1. �

Theorem 12.5Suppose a sequence{Xn : n > 0} of random variables converges almost
surely to a random variableX (of course, all on the same probability space). ThenXn

converges in distribution toX.

346
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Proof. Supposeg is bounded and continuous. Theg(Xn) converges almost surely to
g(X). As the sequence is bounded it is also uniformly integrable,hence convergence holds
also in theL1-sense and this implies convergence of the expectations, i.e. E[g(Xn)] →
E[g(X)].

Theorem 12.6 (Portmanteau theorem)The following statements are equivalent

(i) Xn
d−→ X.

(ii) For all closed setsK ⊂ E, lim supn→∞ P{Xn ∈ K} 6 P{X ∈ K}.
(iii) For all open setsG ⊂ E, lim infn→∞ P{Xn ∈ G} > P{X ∈ G}.
(iv) For all Borel setsA ⊂ E with P{X ∈ ∂A} = 0, we have

lim
n→∞

P{Xn ∈ A} = P{X ∈ A}.

(v) For all bounded measurable functionsg : E → R with

P
{
g is discontinuous atX

}
= 0

we haveE[g(Xn)] → E[g(X)].

Proof. (i)⇒(ii) Let gn(x) = 1− (nρ(x,K)∧ 1), which is continuous and bounded, is1

onK and converges pointwise to1K . Then, for everyn,

lim sup
k→∞

P{Xk ∈ K} 6 lim sup
k→∞

E[gn(Xk)] = E[gn(X)] .

Letn→ ∞. The integrand on the right hand side is bounded by1 and converges pointwise
and hence in theL1-sense to1K(X).
(ii)⇒(iii) Follows from1G = 1 − 1K for the closed setK = Gc.

(iii)⇒(iv) Let G be the interior andK the closure ofA. Then, by assumption,P{X ∈
G} = P{X ∈ K} = P{X ∈ A} and we may use (iii) and (ii) (which follows immediately
from (iii)) to get

lim sup
n→∞

P{Xn ∈ A} 6 lim sup
n→∞

P{Xn ∈ K} 6 P{X ∈ K} = P{X ∈ A},

lim inf
n→∞

P{Xn ∈ A} > lim inf
n→∞

P{Xn ∈ G} > P{X ∈ G} = P{X ∈ A}.

(iv)⇒(v) From (iv) we infer that the convergence holds forg of the formg(x) =
∑N
n=1 an

1An
, whereAn satisfiesP{X ∈ ∂An} = 0. Let us call such functions elementary. Given

g as in (v) we observe that for everya < b with possibly a countable set of exceptions

P
{
X ∈ ∂{x : g(x) ∈ (a, b]}

}
= 0 .

Indeed, ifX ∈ ∂{x : g(x) ∈ (a, b]} then eitherg is discontinuous inX or g(X) = a or
g(X) = b. The first event has probability zero and so have the last two except possibly for
a countable set of values ofa, b. By decomposing the real axis in small suitable intervals
we thus obtain an increasing sequencegn and a decreasing sequencehn of elementary
functions both converging pointwise tog. Now, for allk,

lim sup
n→∞

E[g(Xn)] 6 lim sup
n→∞

E[hk(Xn)] = E[hk(X)] ,
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and

lim inf
n→∞

E[g(Xn)] > lim inf
n→∞

E[gk(Xn)] = E[gk(X)] .

and the right sides converge, ask → ∞, by bounded convergence, toE[g(X)].
(v)⇒(i) This is obvious.

To remember the directions of the inequalities in the Portmanteau theorem it is useful to
recall the last exampleXn = 1/n→ 0 and chooseG = (0, 1) andK = {0} to obtain cases
where the opposite inequalities fail. We now show that the convergence of distribution as
defined here agrees with the familiar concept in the case of real random variables.

Theorem 12.7 (Helly-Bray theorem)LetXn andX be real valued random variables and
define the associated distribution functionsFn(x) = P{Xn 6 x} andF (x) = P{X 6 x}.
Then the following assertions are equivalent.

(a) Xn converges in distribution toX,
(b) lim

n→∞
Fn(x) = F (x) for all x such thatF is continuous inx.

Proof. (a)⇒(b) Use property (iv) for the setA = (−∞, x].
(b)⇒(a) We choose a dense sequence{xn} with P{X = xn} = 0 and note that every
open setG ⊂ R can be written as the countable union of disjoint intervalsIk = (ak, bk]

with ak, bk chosen from the sequence. We have

lim
n→∞

P{Xn ∈ Ik} = lim
n→∞

Fn(bk) − Fn(ak) = F (bk) − F (ak) = P{X ∈ Ik} .

Hence, for allN ,

lim inf
n→∞

P{Xn ∈ G} >

N∑

k=1

lim inf
n→∞

P{Xn ∈ Ik} =

N∑

k=1

P{X ∈ Ik} ,

and asN → ∞ the last term converges toP{X ∈ G}.

Finally, we note the useful fact that for nonnegative randomvariablesXn, rather then
testing convergence ofE[g(Xn)] for all continuous bounded functionsg, it suffices to
consider functions of a rather simple form.

Proposition 12.8Suppose(X(n)

1 , . . . ,X(n)
m ) are random vectors with nonnegative entries,

then

(X(n)

1 , . . . ,X(n)

m )
d−→ (X1, . . . ,Xm) ,

if and only if, for anyλ1, . . . , λm > 0,

lim
n↑∞

E
[
exp

{
−

m∑

j=1

λjX
(n)

j

}]
= E

[
exp

{
−

m∑

j=1

λjXj

}]
.

The functionφ(λ1, . . . , λm) = E[exp{−∑m
j=1 λjXj}] is called theLaplace transform

of (X1, . . . ,Xm) and thus the proposition states in other words that the convergence of
nonnegative random vectors is equivalent to convergence oftheir Laplace transforms. The
proof, usually done by approximation, can be found as Theorem 5.3 in [Ka02].
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12.2 Gaussian random variables

In this section we have collected the facts about Gaussian random vectors, which are used
in this book. We start with a useful estimate for standard normal random variables, which
is quite precise for largex.

Lemma 12.9SupposeX is standard normally distributed. Then, for allx > 0,

x

x2 + 1

1√
2π

e−x
2/2

6 P{X > x} 6
1

x

1√
2π

e−x
2/2.

Proof. The right inequality is obtained by the estimate

P{X > x} 6
1√
2π

∫ ∞

x

u

x
e−u

2/2 du =
1

x

1√
2π
e−x

2/2 .

For the left inequality we define

f(x) = xe−x
2/2 − (x2 + 1)

∫ ∞

x

e−u
2/2 du .

Observe thatf(0) < 0 andlimx→∞ f(x) = 0. Moreover,

f ′(x) = (1−x2+x2+1)e−x
2/2−2x

∫ ∞

x

e−u
2/2 du = −2x

(∫ ∞

x

e−u
2/2 du− e−x

2/2

x

)
,

which is positive forx > 0, by the first part. Hencef(x) 6 0, proving the lemma.

We now look more closely at random vectors with normally distributed components. Our
motivation is that they arise, for example, as vectors consisting of the increments of a
Brownian motion. Let us clarify some terminology.

Definition 12.10. A random variableX = (X1, . . . ,Xd)
T with values inRd has the

d-dimensional standard Gaussian distributionif its d coordinates are standard normally
distributed and independent. �

More general Gaussian distributions can be derived as linear images of standard Gaussians.
Recall, e.g. from Definition 1.5, that a random variableY with values inRd is called
Gaussianif there exists anm-dimensional standard GaussianX, ad×m matrixA, and a
d dimensional vectorb such thatY T = AX + b. Thecovariance matrixof the (column)
vectorY is then given by

Cov(Y ) = E
[
(Y − EY )(Y − EY )T

]
= AAT ,

where the expectations are defined componentwise.
Our next lemma shows that applying an orthogonald×dmatrix does not change the distri-
bution of a standard Gaussian random vector, and in particular that the standard Gaussian
distribution is rotationally invariant. We writeId for thed× d identity matrix.

Lemma 12.11If A is an orthogonald×dmatrix, i.e.AAT = Id, andX is ad-dimensional
standard Gaussian vector, thenAX is also ad-dimensional standard Gaussian vector.
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Proof. As the coordinates ofX are independent, standard normally distributed,X has a
density

f(x1, . . . , xd) =

d∏

i=1

1√
2π

e−x
2
i /2 =

1

(2π)d/2
e−|x|2/2 ,

where | · | is the Euclidean norm. The density ofAX is (by the transformation rule)
f(A−1x) |det(A−1)|. The determinant is1 and, since orthogonal matrices preserve the
Euclidean norm, the density ofX is invariant underA.

Corollary 12.12 LetX1 andX2 be independent and normally distributed with zero expec-
tation and varianceσ2 > 0. ThenX1 +X2 andX1 −X2 are independent and normally
distributed with expectation0 and variance2σ2.

Proof. The vector(X1/σ,X2/σ)T is standard Gaussian by assumption. Look at

A =

(
1√
2

1√
2

1√
2

− 1√
2

)
.

This is an orthogonal matrix and applying it to our vector yields((X1+X2)/(
√

2σ), (X1−
X2)/(

√
2σ)), which thus must have independent standard normal coordinates.

The next proposition shows that the distribution of a Gaussian random vector is determined
by its expectation and covariance matrix.

Proposition 12.13If X andY are d-dimensional Gaussian vectors withEX = EY and
Cov(X) = Cov(Y ), thenX andY have the same distribution.

Proof. It is sufficient to consider the caseEX = EY = 0. By definition, there are
standard Gaussian random vectorsX1 andX2 and matricesA andB with X = AX1 and
Y = BX2. By adding columns of zeros toA or B, if necessary, we can assume thatX1

andX2 are bothk-vectors, for somek, andA,B are bothd × k matrices. LetA andB
be the vector subspaces ofRk generated by the row vectors ofA andB, respectively. To
simplify notation assume that the firstl 6 d row vectors ofA form a basis ofA. Define
the linear mapL : A → B by

L(Ai) = Bi for i = 1, . . . , l.

HereAi is theith row vector ofA, andBi is theith row vector ofB. Our aim is to show
thatL is an orthogonal isomorphism and then use the previous proposition. Let us first
show thatL is an isomorphism. Our covariance assumption gives thatAAT = BBT.
Assume there is a vectorv1A1 + . . . vlAl whose image is0. Then thed-vector

v = (v1, . . . , vl, 0, . . . , 0)

satisfiesvB = 0. Hence

‖vA‖2 = vAATvT = vBBTvT = 0 .
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We conclude thatvA = 0. HenceL is injective anddimA 6 dimB. Interchanging the
rôle ofA andB gives thatL is an isomorphism. As the entry(i, j) of AAT = BBT is the
scalar product ofAi andAj as well asBi andBj , the mappingL is orthogonal. We can
extend it on the orthocomplement ofA to an orthogonal mapL : Rk → Rk (or an orthog-
onalk × k-matrix). ThenX = AX1 andY = BX2 = ALTX2. As LTX2 is standard
Gaussian, by Lemma 12.11,X andY have the same distribution.

In particular, comparing ad-dimensional Gaussian vector withCov(X) = Id with a Gaus-
sian vector withd independent entries and the same expectation, we obtain thefollowing
fact.

Corollary 12.14 A Gaussian random vectorX has independent entries if and only if its
covariance matrix is diagonal. In other words, the entries in a Gaussian vector are uncor-
related if and only if they are independent.

We now show that the Gaussian nature of a random vector is preserved under taking limits.

Proposition 12.15Suppose{Xn : n ∈ N} is a sequence of Gaussian random vectors and
limnXn = X, almost surely. Ifb := limn→∞ EXn andC := limn→∞ CovXn exist,
thenX is Gaussian with meanb and covariance matrixC.

Proof. A variant of the argument in Proposition 12.13 shows thatXn converges in law
to a Gaussian random vector with meanb and covariance matrixC. As almost sure con-
vergence implies convergence of the associated distributions, this must be the law ofX.

Lemma 12.16SupposeX, Y are independent and normally distributed with mean zero
and varianceσ2, thenX2 + Y 2 is exponentially distributed with mean2σ2.

Proof. For any bounded, measurablef : R → R we have, using polar coordinates,

Ef(X2 + Y 2) =
1

2πσ2

∫
f(x2 + y2) exp

{
− x2+y2

2σ2

}
dx dy

=
1

σ2

∫ ∞

0

f(r2) exp
{
− r2

2σ2

}
r dr

=
1

2σ2

∫ ∞

0

f(a) exp
{
− a

2σ2

}
da = Ef(Z) ,

whereZ is exponential with mean2σ2.

12.3 Martingales in discrete time

In this section we recall the essentials from the theory of martingales in discrete time. A
more thorough introduction to this subject is Williams [Wi91].

Definition 12.17. A filtration (Fn : n > 0) is an increasing sequence

F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ · · ·
of σ-algebras.
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Let {Xn : n > 0} be a stochastic process in discrete time and(Fn : n > 0) be a filtration.
The process is amartingalerelative to the filtration if, for alln > 0,

• Xn is measurable with respect toFn,

• E|Xn| <∞, and

• E[Xn+1 | Fn] = Xn, almost surely.

If we have ‘>’ in the last condition, then{Xn : n > 0} is called asubmartingale, if ‘ 6’
holds it is called asupermartingale. �

Remark 12.18Note that for a submartingaleE[Xn+1] > E[Xn], for a supermartingale
E[Xn+1] 6 E[Xn], and hence for a martingale we haveE[Xn+1] = E[Xn]. �

Loosely speaking, a stopping time is a random time such that the knowledge about a ran-
dom process at timen suffices to determine whether the stopping time has happenedat
timen or not. Here is a formal definition.

Definition 12.19. A random variableT with values in{0, 1, 2, . . .} ∪ {∞} is called a
stopping timeif {T 6 n} = {ω : T (ω) 6 n} ∈ Fn for all n > 0 . �

If {Xn : n > 0} is a supermartingale andT a stopping time, then it is easy to check that
the process

{XT
n : n > 0} defined byXT

n = XT∧n

is a supermartingale. If{Xn : n > 0} is a martingale, then both{Xn : n > 0} and
{−Xn : n > 0} are supermartingales and, hence, we have,

E
[
XT∧n

]
= E

[
X0

]
, for all n > 0 .

Doob’s optional stopping theorem gives criteria when, letting n ↑ ∞, we obtainE[XT ] =

E[X0].

Theorem 12.20 (Doob’s optional stopping theorem)Let T be a stopping time andX a
martingale. ThenXT is integrable andE

[
XT

]
= E

[
X0

]
, if one of the following condi-

tions hold:

(1) T is bounded, i.e. there isN such thatT < N almost surely;

(2) {XT
n : n > 0} is dominated by an integrable random variableZ, i.e. |Xn∧T | 6 Z

for all n > 0 almost surely;

(3) E[T ] <∞ and there isK > 0 such thatsupn |Xn −Xn−1| 6 K.

Proof. Recall thatE[XT∧n − X0] = 0. The result follows in case (1) by choosing
n = N . In case (2) letn → ∞ and use dominated convergence. In case (3) observe
that |XT∧n −X0| = |∑T∧n

k=1 (Xk −Xk−1)| 6 KT. By assumptionKT is an integrable
function and dominated convergence can be used again.
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Doob’s famous forward convergence theorem gives a sufficient condition for the almost
sure convergence of supermartingales to a limiting random variable. See 11.5 in [Wi91]
for the proof.

Theorem 12.21 (Doob’s supermartingale convergence theorem) Let{Xn : n > 0} be a
supermartingale, which is bounded inL1, i.e. there isK > 0 such thatE|Xn| 6 K for
all n. Then there exists an integrable random variableX on the same probability space
such that

lim
n→∞

Xn = X almost surely.

Remark 12.22Note that if {Xn : n > 0} is nonnegative, we haveE[|Xn|] = E[Xn]

6 E[X0] := K and thusXn is bounded inL1 andlimn→∞Xn = X exists. �

A key question is when the almost sure convergence in the supermartingale convergence
theorem can be replaced byL

1-convergence (which in contrast to almost sure convergence
implies convergence of expectations). A necessary and sufficient criterion for this isuni-
form integrability. A stochastic process{Xn : n > 0} is calleduniformly integrableif, for
everyε > 0, there existsK > 0 such that

E
[
|Xn|1{|Xn| > K}

]
< ε for all n > 0 .

Sufficient criteria for uniform integrability are

• {Xn : n > 0} is dominated by an integrable random variable,
• {Xn : n > 0} is L

p-bounded for somep > 1,
• {Xn : n > 0} is L

1-convergent.

The following lemma is proved in Section 13.1 of [Wi91].

Lemma 12.23Any stochastic process{Xn : n > 0}, which is uniformly integrable and
almost surely convergent, converges also in theL

1-sense.

The next result is one of the highlights of martingale theory.

Theorem 12.24 (Martingale closure theorem)Suppose that the martingale{Xn : n > 0}
is uniformly integrable. Then there is an integrable randomvariableX such that

lim
n→∞

Xn = X almost surely and inL1.

Moreover,Xn = E[X | Fn] for everyn > 0.

Proof. Uniform integrability implies that{Xn : n > 0} is L
1-bounded and thus, by

the martingale convergence theorem, almost surely convergent to an integrable random
variableX. Convergence in theL1-sense follows from Lemma 12.23. To check the last
assertion, we note thatXn is Fn-measurable and letF ∈ Fn. For allm > n we have, by
the martingale property,

∫
F
Xm dP =

∫
F
Xn dP . We letm → ∞. Then|

∫
F
Xm dP −∫

F
X dP| 6

∫
|Xm −X| dP → 0, hence we obtain

∫
F
X dP =

∫
F
Xn dP, as required.
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There is a natural converse to the martingale closure theorem, see Section 14.2 in [Wi91]
for the proof.

Theorem 12.25 (Lévy’s upward theorem)Suppose thatX is an integrable random vari-
able andXn = E[X | Fn]. Then{Xn : n > 0} is a uniformly integrable martingale and

lim
n→∞

Xn = E
[
X | F∞

]
almost surely and inL1 ,

whereF∞ =
(⋃∞

n=1 Fn
)

is the smallestσ-algebra containing the entire filtration.

There is also a convergence theorem for ‘reverse’ martingales, which is called Lévy’s
downward theorem and is a natural partner to the upward theorem, see Section 14.4 in
[Wi91] for the proof.

Theorem 12.26 (Lévy’s downward theorem)Suppose that(Gn : n ∈ N) is a collection
of σ-algebras such that

G∞ :=
∞⋂

k=1

Gk ⊂ · · · ⊂ Gn+1 ⊂ Gn ⊂ · · · ⊂ G1.

An integrable process{Xn : n ∈ N} is a reverse martingaleif almost surely,

Xn = E
[
Xn−1

∣∣Gn
]

for all n > 2 .

Then

lim
n↑∞

Xn = E[X1 | G∞] almost surely.

An important consequence of Theorems 12.20 and 12.24 is thatthe martingale property
holds for well-behaved stopping times. For a stopping timeT defineFT to be theσ-
algebra of eventsA with A ∩ {T 6 n} ∈ Fn. Observe thatXT is FT -measurable.

Theorem 12.27 (Optional sampling theorem)If the martingale{Xn : n = 1, 2, . . .} is
uniformly integrable, then for all stopping times0 6 S 6 T we haveE[XT

∣∣FS ] = XS

almost surely.

Proof. By the martingale closure theorem,XT
n converges toXT in L

1 andE[XT | Fn] =

XT∧n = XT
n . Dividing XT in its positive and its nonpositive part if necessary, we may

assume thatXT > 0 and thereforeXT
n > 0 almost surely. Taking conditional expecta-

tion with respect toFS∧n givesE
[
XT

∣∣FS∧n
]

= XS∧n. Now letA ∈ FS . We have to
show thatE[XT 1A] = E[XS1A]. Note first thatA ∩ {S 6 n} ∈ FS∧n. Hence, we get
E[XT 1{A ∩ {S 6 n}}] = E[XS∧n1{A ∩ {S 6 n}}] = E[XS1{A ∩ {S 6 n}}]. Letting
n ↑ ∞ and using monotone convergence gives the required result.

Of considerable practical importance are martingales{Xn : n > 0}, which aresquare
integrable. Note that in this case we can calculate, form > n,

E
[
X2
m | Fn

]
= E

[
(Xm −Xn)

2 | Fn
]
+ 2E[Xm | Fn]Xn −X2

n

= E
[
(Xm −Xn)

2 | Fn
]
+X2

n > X2
n ,

(12.1)

so that{X2
n : t > 0} is a submartingale.
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Theorem 12.28 (Convergence theorem forL2-bounded martingales)Suppose that the
martingale{Xn : t > 0} is L

2-bounded. Then there is a random variableX such that

lim
n→∞

Xn = X almost surely and inL2 .

Proof. From (12.1) andL2-boundedness of{Xn : t > 0} it is easy to see that, for
m > n,

E
[
(Xm −Xn)

2
]

=

m∑

k=n+1

E
[
(Xk −Xk−1)

2
]

6

∞∑

k=1

E
[
(Xk −Xk−1)

2
]
<∞ .

Recall thatL2-boundedness impliesL1-boundedness, and hence, by the martingale conver-
gence theorem,Xn converges almost surely to an integrable random variableX. Letting
m ↑ ∞ and using Fatou’s lemma in the last display, givesL

2-convergence.

We now discuss twomartingale inequalitiesthat have important counterparts in the con-
tinuous setting. The first one is Doob’s weak maximal inequality.

Theorem 12.29 (Doob’s weak maximal inequality)Let{Xj : j > 0} be a submartingale
and denoteMn := max16j6nXj . Then, for allλ > 0,

λP
{
Mn > λ

}
6 E

[
Xn1{Mn > λ}

]
.

Proof. Define the stopping time

τ :=

{
min{k : Xk > λ} if Mn > λ

n if Mn < λ

Note that{Mn > λ} = {Xτ > λ}. This implies

λP{Mn > λ} = λP{Xτ > λ
}

= Eλ1{Xτ > λ}
6 EXτ1{Xτ > λ} = EXτ1{Mn > λ} ,

and the result follows once we demonstrateEXτ1{Mn > λ} 6 EXn1{Mn > λ}. But, as
τ is bounded byn andXτ is a submartingale, we haveE[Xτ ] 6 E[Xn], which implies

E
[
Xτ1{Mn < λ}

]
+E
[
Xτ1{Mn > λ}

]

6 E
[
Xn1{Mn < λ}

]
+ E

[
Xn1{Mn > λ}

]
.

Because, by definition ofτ , we haveXτ1{Mn < λ} = Xn1{Mn < λ}, this reduces to

E
[
Xτ1{Mn > λ}

]
6 E

[
Xn1{Mn > λ}

]
,

and this concludes the proof.

The most useful martingale inequality for us is Doob’sL
p-maximal inequality.

Theorem 12.30 (Doob’sLp maximal inequality) Suppose{Xn : n > 0} is a martingale
or nonnegative submartingale. LetMn = max16k6nXk andp > 1. Then

E
[
Mp
n

]
6
(

p
p−1

)p
E
[
|Xn|p

]
.



356

We make use of the following lemma, which allows us to comparetheL
p-norms of two

nonnegative random variables.

Lemma 12.31Suppose nonnegative random variablesX andY satisfy, for allλ > 0,

λP{Y > λ} 6 E[X1{Y > λ}] .

Then, for allp > 1,

E
[
Y p
]

6
(

p
p−1

)p
E
[
Xp
]
.

Proof. Using the fact thatX > 0 andxp =
∫ x
0
pλp−1dλ, we can expressE[Xp] as a

double integral and apply Fubini’s theorem,

E
[
Xp
]

= E
∫ ∞

0

1{X > λ} pλp−1 dλ =

∫ ∞

0

pλp−1 P{X > λ} dλ .

Similarly, using the hypothesis,

E
[
Y p
]

=

∫ ∞

0

pλp−1 P
{
Y > λ

}
dλ 6

∫ ∞

0

pλp−2E
[
X1{Y > λ}

]
dλ .

We can rewrite the right hand side, using Fubini’s theorem again, and then integrating
pλp−2 and using Hölder’s inequality withq = p/(p− 1),

∫ ∞

0

pλp−2 E
[
X1{Y > λ}

]
dλ = E

[
X

∫ Y

0

pλp−2 dλ
]

= q E
[
XY p−1

]
6 q ‖X‖p‖Y p−1‖q .

Altogether, this givesE[Y p] 6 q(E[Xp])1/p (E[Y p])1/q So, assumingE[Y p] < ∞, the
above inequality gives,

(
E[Y p]

)1/p
6 q
(
E[Xp]

)1/p
,

from which the result follows by raising both sides to thepth power. In general, ifE[Y p] =

∞, then for anyn ∈ N, the random variableYn = Y ∧ n satisfies the hypothesis of the
lemma, and the result follows by lettingn ↑ ∞ and applying the monotone convergence
theorem.

Proof of Theorem 12.30. If {Xn : n > 0} is a martingale, then{|Xn| : n > 0} is
a nonnegative submartingale. Hence it suffices to prove the result for nonnegative sub-
martingales. By Doob’s weak maximal inequality,

λP
{
Mn > λ

}
6 E

[
Xn1{Mn > λ}

]
,

and applying Lemma 12.31 withX = Xn andY = Mn gives the result.

We end this section with a useful version of the Radon-Nikodým theorem, which can be
proved using martingale arguments, cf. [Du95], Chapter4, Theorem3.3.
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Theorem 12.32Letµ, ν be two probability measures on a space withσ-algebraF . Assume
that(Fn : n = 1, 2, . . .) is a filtration such thatFn ↗ F (i.e. the union of allFn generates
F) and denoteµn = µ|Fn

andνn = ν|Fn
. Supposeµn � νn for all n and let

Xn =
dµn
dνn

.

(a) {Xn : n > 0} is a nonnegative martingale and thereforeν-almost surely conver-
gent. We denote

X = lim sup
n→∞

Xn .

(b) For anyA ∈ F we have

µ(A) =

∫

A

X dν + µ
(
A ∩ {X = ∞}

)
. (12.2)

In particular,

(i) If ν{X = 0} = 1, thenµ ⊥ ν.

(ii) If µ{X = ∞} = 0, thenµ� ν.

(iii) If ν{X > 0} = 1, thenν � µ.

Proof. Note that, for anyA ∈ Fn, we have
∫

A

Xn+1dν =

∫

A

dµn+1

dνn+1
dνn+1 = µn+1(A) = µn(A) =

∫

A

dµn
dνn

dνn =

∫

A

Xn dν,

and hence{Xn : n > 0} is a martingale. MoreoverXn > 0 and hence, by Remark 12.22,
it is convergent, which proves (a). Claims(i), (ii) and(iii) follow easily from (12.2), so
it suffices to establish the latter. Rewrite (12.2) in the equivalent form

µ
(
A ∩ {X <∞}

)
=

∫

A

X dν for all A ∈ F . (12.3)

ForA ∈ Fk andn > k we haveµ(A) =
∫
A
Xn dν whenceµ(A) >

∫
A
X dν by Fatou’s

lemma. It follows that the last inequality holds for allA ∈ F , whence for allA ∈ F we
have

µ
(
A ∩ {X <∞}

)
>

∫

A∩{X<∞}
X dν =

∫

A

X dν . (12.4)

On the other hand, forA ∈ Fk andn > k we also have

µ
(
A ∩ {Xn < M}

)
=

∫

A∩{Xn<M}
Xn dν 6

∫

A

Xn ∧M dν

whenceµ(A ∩ {sup`>nX` < M}) 6
∫
A
Xn ∧M dν. Takingn → ∞, bounded con-

vergence yieldsµ(A ∩ {X < M}) 6
∫
A
X ∧ M dν so that lettingM → ∞ gives

µ(A ∩ {X <∞}) 6
∫
A
X dν. Thus (12.3) holds for allA ∈ F .
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12.4 Trees and flows on trees

In this section we provide the notation for the discussion oftrees, and the basic facts about
trees, which we use in this book.
Definition 12.33. A tree T = (V,E) is a connected graph described by a finite or
countable setV of vertices, which includes a distinguished vertex% designated as the root,
and a setE ⊂ V × V of orderededges, such that

• for every vertexv ∈ V the set{w ∈ V : (w, v) ∈ E} consists of exactly one elementv,
theparent, except for theroot % ∈ V , which has no parent;

• for every vertexv there is a unique self-avoiding path from the root tov and the number
of edges in this path is theorder or generation|v| of the vertexv ∈ V ;

• for everyv ∈ V , the set ofoffspring or children of {w ∈ V : (v, w) ∈ E} is finite. �

Remark 12.34Sometimes, the notation is slightly abused and the treeT is identified with
its vertex set. This should not cause any confusion. �

We introduce some further notation. For anyv, w ∈ V we denote byv ∧w the element on
the intersection of the paths from the root tov, respectivelyw with maximal order, i.e. the
last common ancestor ofv andw. We write v 6 w if v is an ancestor ofw, which is
equivalent tov = v ∧ w.

The order|e| of an edgee = (u, v) is the order of its end-vertexv. Every infinite self-
avoiding path started in the root is called aray. The set of rays is denoted∂T , the
boundary of T . For any two raysξ andη we defineξ ∧ η the vertex in the intersec-
tion of the rays, which maximises the order. Note that|ξ ∧ η| is the number of edges that
two raysξ andη have in common. The distance between two raysξ andη is defined to be
|ξ − η| := 2−|ξ∧η|, and this definition makes the boundary∂T a compact metric space.

Remark 12.35The boundary∂T of a tree is an interesting fractal in its own right. Its Haus-
dorff dimension islog2(brT ) where brT is a suitably defined average offspring number.
This, together with other interesting aspects of trees, is discussed in depth in [LP05]. �

For infinite trees, we are interested in flows on the tree. We suppose thatcapacitiesare
assigned to the edges of a treeT , i.e. there is a mappingC : E → [0,∞). A flow of
strengthc > 0 through a tree with capacitiesC is a mappingθ : E → [0, c] such that

• for the root we have
∑

w=%

θ
(
%,w

)
= c, for every other vertexv 6= % we have

θ
(
v, v
)

=
∑

w : w=v

θ
(
v, w

)
,

i.e. the flow into and out of each vertex other than the root is conserved.

• θ(e) 6 C(e), i.e. the flow through the edgee is bounded by its capacity.



12.4 Trees and flows on trees 359

A setΠ of edges is called acutset if every ray includes an edge fromΠ.

We now give a short proof of a famous result of graph theory, the max-flow min-cut theo-
rem of Ford and Fulkerson [FF56] in the special case of infinite trees.

Theorem 12.36 (Max-flow min-cut theorem)

max
{

strength (θ) : θ a flow with capacitiesC
}

= inf
{∑

e∈Π

C(e) : Π a cutset
}
.

Proof. The proof is a festival of compactness arguments.
First observe that on the left hand side the infimum is indeed amaximum, because if{θn}
is a sequence of flows with capacitiesC, then at every edge we have a bounded sequence
{θn(e)} and by the diagonal argument we may pass to a subsequence suchthat lim θn(e)

exists simultaneously for alle ∈ E. This limit is obviously again a flow with capacitiesC.
Secondly observe that every cutsetΠ contains a finite subsetΠ′ ⊂ Π, which is still a cutset.
Indeed, if this was not the case, we had for every positive integerj a rayej1, e

j
2, e

j
3, . . . with

eji 6∈ Π for all i 6 j. By the diagonal argument we find a sequencejk and edgesel of
orderl such thatejkl = el for all k > l. Thene1, e2, . . . is a ray andel 6∈ Π for all l, which
is a contradiction.
Now let θ be a flow with capacitiesC andΠ an arbitrary cutset. We letA be the set
of verticesv such that there is a sequence of edgese1, . . . , en 6∈ Π with e1 = (ρ, v1),
en = (vn−1, v) andej = (vj−1, vj). By our previous observation this set is finite. Let

φ(v, e) :=

{
1 if e = (v, w) for somew ∈ V ,

−1 if e = (w, v) for somew ∈ V .

Then, using the definition of a flow and finiteness of all sums,

strength (θ) =
∑

e∈E
φ(ρ, e)θ(e) =

∑

v∈A

∑

e∈E
φ(v, e)θ(e)

=
∑

e∈E
θ(e)

∑

v∈A
φ(v, e) 6

∑

e∈Π

θ(e) 6
∑

e∈Π

C(e) .

This proves the first inequality.
For the reverse inequality we restrict attention to finite trees. LetTn be the tree consisting
of all verticesVn and edgesEn of order 6 n and look at cutsetsΠ consisting of edges in
En. A flow θ of strengthc > 0 through the finite treeTn with capacitiesC is defined as in
the case of infinite trees, except that the main condition

θ
(
v, v
)

=
∑

w : w=v

θ
(
v, w

)
,

is only required for verticesv 6= ρ with |v| < n. We shall show that

max
{

strength (θ) : θ a flow inTn with capacitiesC
}

> min
{∑

e∈Π

C(e) : Π a cutset inTn
}
.

(12.5)

Once we have this, we get a sequence(θn) of flows inTn with capacitiesC and strength at
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leastc = min{∑e∈Π C(e) : Π a cutset inT}. By using the diagonal argument once more
we can get a subsequence such that the limits ofθn(e) exist for every edge, and the result
is a flowθ with capacitiesC and strength at leastc, as required.
To prove (12.5) letθ be a flow of maximal strengthc with capacitiesC in Tn and call a se-
quenceρ = v0, v1, . . . , vn with (vi, vi+1) ∈ En anaugmenting sequenceif θ(vi, vi+1) <

C(vi, vi+1). If there are augmenting sequences, we can construct a flowθ̃ of strength> c

by just increasing the flow through every edge of the augmenting sequence by a sufficiently
smallε > 0. As θ was maximal this is a contradiction. Hence there is a minimalcutsetΠ
consisting entirely of edges inEn with θ(e) > C(e). LetA, as above, be the collection of
all vertices which are connected to the root by edges not inΠ. As before, we have

strength (θ) =
∑

e∈E
θ(e)

∑

v∈A
φ(v, e) =

∑

e∈Π

θ(e) >
∑

e∈Π

C(e) ,

where in the penultimate step we use minimality. This proves(12.5).

Finally, we discuss the most important class of random trees, theGalton–Watson trees.
For their construction we pick anoffspring distribution , given as the law of a random
variableN with values in the nonnegative integers. To initiate the recursive construction
of the tree, we sample from this distribution to determine the number of offspring of the
root. Having constructed the tree up to thenth generation and supposing this generation
is nonempty, we sample an independent copy ofN for each vertex in this generation and
attach the corresponding number of offspring to it. If this procedure is infinite, i.e. if it
produces an infinite tree, we say that the Galton–Watson treesurvivesotherwise that it
becomesextinct. The sharp criterion below is at least as old as the work of Galton and
Watson in the middle of the nineteenth century.

Proposition 12.37If N 6= 1 with positive probability, a Galton–Watson tree survives with
positive probability if and only ifEN > 1. Moreover, the extinction probability is the
smallest nonnegative fixed point of the generating functionf : [0, 1] → [0, 1] given by
f(z) = EzN .

Proof. Note that the generating function of the numberZn of vertices in thenth
generation is the iteratefn = f◦ n· · · ◦f . Elementary analysis shows thatfn(0) converges
increasingly to the smallest nonnegative fixed point off . At the same time

lim
n→∞

fn(0) = lim
n→∞

P{Zn = 0} = lim
n→∞

P{Zi = 0 for some1 6 i 6 n}

= P{Zi = 0 for somei > 1} = P{ extinction}.
It is again an exercise in elementary analysis to see that, unlessf is the identity, the small-
est nonnegative fixed point off is one if and only ifEN = f ′(1) 6 1.



Hints and solutions for selected exercises

Here we give hints, solutions or additional references for the exercises marked with the
symbol S in the main body of the text.

Exercise 1.2.Using the notation from Theorem 1.3, the Brownian motion is defined on a
probability space(Ω,A,P) on which a collection{Zt : t ∈ D} of independent, standard
normally distributed random variables are defined. It is easy to see from the construction
that, for anyn ∈ N, the functionsFn are jointly measurable as a function ofZd, d ∈ Dn
andt ∈ [0, 1]. Therefore it is also jointly measurable as a function ofω ∈ Ω andt ∈ [0, 1],
and this carries over to(ω, t) 7→ B(ω, t) by summation and taking a limit.

Exercise 1.3.Fix times0 < t1 < . . . < tn. Let

M :=




1 0 . . . 0

−1
. ..

.. .
...

0
. ..

.. . 0

0 0 −1 1



, D :=




1√
t1

0 . . . 0

0 1√
t2−t1

. . .
...

...
.. .

. . . 0

0 . . . 0 1√
tn−tn−1



.

Then, for a Brownian motion{B(t) : t > 0} with start inx, by definition, the vector

X := DM (B(t1) − x, . . . , B(tn) − x
)T

has independent standard normal entries. As bothD andM are nonsingular, the matrix
A := M−1D−1 is well-defined and, denoting alsob = (x, . . . , x), we have that

(
B(t1), . . . , B(tn)

)T
= AX + b .

By definition, this means that(B(t1), . . . , B(tn)) is a Gaussian random vector.

Exercise 1.5.Note that{X(t) : 0 6 t 6 1} is a Gaussian process, while the distributions
given in (a) determine Gaussian random vectors. Hence it suffices to identify the means
and covariances of(X(t1), . . . ,X(tn)) and compare them with those given in (a). Starting
with the mean, on the one hand we obviously haveEX(t) = x(1 − t) + ty, on the other
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hand
∫
z

p(t, x, z)p(1 − t, z, y)

p(1, x, y)

=
1

p(1, x, y)

∫ (
z − x(1 − t) − ty

)
p(t, x, z)p(1 − t, z, y) dz + x(1 − t) + ty,

and the integral can be seen to vanish by completing the square in the exponent of the
integrand. To perform the covariance calculation one may assume thatx = y = 0, which
reduces the complexity of expressions significantly, see (8.5) in Chapter 7 of [Du96] for
more details.

Exercise 1.6.B(t) does not oscillate too much betweenn andn+ 1 if

lim sup
n→∞

1

n

[
max

n6t6n+1
B(t) −B(n)

]
= 0 .

EstimateP{max06t61B(t) > εn} and use the Borel–Cantelli lemma.

Exercise 1.7. One has to improve the lower bound, and show that, for every constant
c <

√
2, almost surely, there existsε > 0 such that, for all0 < h < ε, there exists

t ∈ [0, 1 − h] with
∣∣B(t+ h) −B(t)

∣∣ > c
√
h log(1/h).

To this end, givenδ > 0, let c <
√

2 − δ and define, for integersk, n > 0, the events

Ak,n =
{
B
(
(k + 1)e−

√
n
)
−B

(
ke−

√
n
)
> c

(√
n e−

√
n
) 1

2

}
.

Then, using Lemma 12.9, for anyk > 0,

P(Ak,n) = P
{
B
(
e−

√
n
)
> c

(√
ne−

√
n
) 1

2

}
= P

{
B(1) > cn

1
4

}
>

cn
1
4

c2
√
n+1

e−c
2√n/2 .

Therefore, by our assumption onc, and using that1 − x 6 e−x for all x > 0,

∞∑

n=0

P
( be

√
n−1c⋂

k=0

Ac
k,n

)
6

∞∑

n=0

(
1−P(A0,n)

)e√n−1
6

∞∑

n=0

exp
(
−(e

√
n−1)P(A0,n)

)
<∞ .

From the Borel–Cantelli lemma we thus obtain that, almost surely, there existsn0 ∈ N
such that, for alln > n0, there existst ∈ [0, 1 − e−

√
n] of the formt = ke−

√
n such that

∣∣B
(
t+ e−

√
n
)
−B(t)

∣∣ > c
(√
ne−

√
n
) 1

2 .

In addition, we may choosen0 big enough to ensure thate−
√
n0 is sufficiently small in the

sense of Theorem 1.12. Then we pickε = e−
√
n0 and, given0 < h < ε, choosen such

thate−
√
n+1 < h 6 e−

√
n. Then, fort as above,

∣∣B
(
t+ h

)
−B(t)

∣∣ >
∣∣B
(
t+ e−

√
n
)
−B(t)

∣∣−
∣∣B
(
t+ h

)
−B

(
t+ e−

√
n
)∣∣

> c
(√
ne−

√
n
) 1

2 − C
√(

e−
√
n − e−

√
n+1
)
log
(
1/(e−

√
n − e−

√
n+1)

)
.

It is not hard to see that the second (subtracted) term decaysmuch more rapidly than the
first, so that modifyingn0 to ensure that it is belowδ (

√
ne−

√
n)

1
2 gives the result.
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Exercise 1.8. Given f ∈ C[0, 1] andε > 0 there existsn such that the functiong ∈
C[0, 1], which agrees withf on the dyadic points inDn and is linearly interpolated inbe-
tween, satisfiessup |f(t) − g(t)| < ε. Then use Lévy’s construction of Brownian motion
and the fact that normal distributions have full support to complete the proof.

Exercise 1.9. It suffices to show that, for fixedε > 0 andc > 0, almost surely, for all
t > 0, there exists0 < h < ε with |B(t + h) − B(t)| > chα. By Brownian scaling we
may further assumeε = 1. Note that, after this simplification, the complementary event
means that there is at0 > 0 such that

sup
h∈(0,1)

B(t0 + h) −B(t0)

hα
6 c or inf

h∈(0,1)

B(t0 + h) −B(t0)

hα
> − c .

We may assume thatt0 ∈ [0, 1). Fix l > 1/(α− 1
2 ). Thent0 ∈

[
k−1
2n , k2n

)
for any largen

and some0 6 k < 2n − l. Then, by the triangle inequality, for allj ∈ {1, . . . , 2n − k},
∣∣∣B
(
k+j
2n

)
−B

(
k+j−1

2n

)∣∣∣ 6 2c
(
j+1
2n

)α
.

Now, for any0 6 k < 2n − l, let Ωn,k be the event
{∣∣B

(
k+j
2n

)
−B

(
k+j−1

2n

)∣∣ 6 2c
(
j+1
2n

)α
for j = 1, 2, . . . , l

}
.

It suffices to show that, almost surely for all sufficiently largen and allk ∈ {0, . . . , 2n− l}
the eventΩn,k does not occur. Observe that

P(Ωn,k) 6
[
P
{
|B(1)| 6 2n/2 2c

(
l+1
2n

)α}]l
6
[
2n/2 2c

(
l+1
2n )α

]l
,

since the normal density is bounded by 1/2. Hence, for a suitable constantC,

P
( 2n−l⋃

k=0

Ωn,k

)
6 2n

[
2n/2 2c

(
l+1
2n

)α]l
= C

[
2(1−l(α−1/2))

]n
,

which is summable. Thus

P
(

lim sup
n→∞

2n−l⋃

k=0

Ωn,k

)
= 0 .

This is the required statement and hence the proof is complete.

Exercise 1.10.The proof can be found in Chapter 3 of [Du95], or Theorem 3.15 of [Ka02].

Exercise 1.12.Argue as in the proof of Theorem 1.30 withB replaced byB + f . The
resulting term

P
{∣∣B(1) +

√
2n f ((k + j)/2n) −

√
2n f ((k + j − 1)/2n)

∣∣ 6 7M/
√

2n
}

can be estimated in exactly the same manner as for the unshifted Brownian motion.
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Exercise 1.13. This can be found, together with stronger and more general results, in
[BP84]. PutI =

[
B(1), sup06s61B(s)

]
, and define a functiong : I → [0, 1] by setting

g(x) = sup{s ∈ [0, 1] : B(s) = x}.

First check that almost surely the intervalI is nondegenerate,g is strictly decreasing, left
continuous and satisfiesB(g(x)) = x. Then show that almost surely the set of disconti-
nuities ofg is dense inI. We restrict our attention to the event of probability 1 on which
these assertions hold. Let

Vn =
{
x ∈ I : g(x− h) − g(x) > nh for someh ∈ (0, n−1)

}
.

Now show thatVn is open and dense inI. By the Baire category theorem,V :=
⋂
n Vn

is uncountable and dense inI. Now if x ∈ V then there is a sequencexn ↑ x such that
g(xn) − g(x) > n(x − xn). Settingt = g(x) and tn = g(xn) we havetn ↓ t and
tn − t > n(B(t) − B(tn)), from which it follows thatD∗B(t) > 0. On the other hand
D∗B(t) 6 0 sinceB(s) 6 B(t) for all s ∈ (t, 1), by definition oft = g(x).

Exercise 1.14.We first fix some positiveε and positivea. For some smallh and an interval
I ⊂ [ε, 1 − ε] with lengthh, we consider the eventA thatt0 ∈ I and we have

B(t0 + h̃) −B(t0) > −2ah1/4 for someh1/4 < h̃ 6 2h1/4.

We now denote bytL the left endpoint ofI. Using Theorem 1.12 we see there exists some
positiveC so that

B(t0) −B(tL) 6 C
√
h log(1/h).

Hence the eventA implies the following events

A1 =
{
B(tL − s) −B(tL) 6 C

√
h log(1/h) for all s ∈ [0, ε]

}
,

A2 =
{
B(tL + s) −B(tL) 6 C

√
h log(1/h) for all s ∈ [0, h1/4]

}
.

We now defineT := inf(s > tL + h1/4 : B(s) > B(tL) − 2ah1/4). Then by definition
we have thatT 6 tL + 2h1/4 and this implies the event

A3 =
{
B(T + s) −B(T ) 6 2ah1/4 + C

√
h log(1/h) for all s ∈ [0, ε]

}
.

Now by the strong Markov property, these three events are independent and we obtain

P(A) 6 P(A1) P(A2) P(A3).

We estimate the probabilities of these three events and obtain

P(A1) = P
{
B(ε) 6 C

√
h log(1/h)

}
6

1√
2πε

2C
√
h log(1/h),

P(A2) = P
{
B(h1/4) 6 C

√
h log(1/h)

}
6

1√
2πh1/4

2C
√
h log(1/h),

P(A3) = P
{
B(ε) 6 2ah1/4 + C

√
h log(1/h)

}
6

1√
2πε

2
(
C h1/4 + 2ah1/4

)
.

Hence we obtain, for a suitable constantK > 0, depending ona andε, that

P(A) 6 K h9/8 log(1/h).
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Summing over a covering collection of1/h intervals of lengthh gives the bound

P
{
t0 ∈ [ε, 1 − ε] andB(t0 + h̃) −B(t0) > −2ah1/4 for someh1/4 < h̃ 6 2h1/4

}

6 K log(1/h)h1/8.

Takingh = 2−4n−4 in this bound and summing overn, we see that

∞∑

n=1

P
{
t0 ∈ [ε, 1 − ε] and sup

2−n−1<h 6 2−n

B(t0 + h) −B(t0)

h
> −a

}
<∞,

and from the Borel–Cantelli lemma we obtain that, almost surely, eithert0 6∈ [ε, 1 − ε], or

lim sup
h↓0

B(t0 + h) −B(t0)

h
6 − a.

Now recall thata andε are arbitrary positive numbers, so taking a countable unionovera
andε gives that, almost surely,D*B(t0) = −∞, as required.

Exercise 1.15.By Brownian scaling it suffices to consider the caset = 1.
(a) We first show that, givenM > 0 large, for any fixed points ∈ [0, 1], almost surely
there existsn ∈ N such that the dyadic intervalI(n, s) := [k2−n, (k+1)2−n] containings
satisfies

∣∣B
(
(k + 1)2−n

)
−B

(
k2−n

)∣∣ > M 2−n/2. (13.1)

To see this, it is best to consider the construction of Brownian motion, see Theorem 1.3.
Using the notation of that proof, letd0 = 1 anddn+1 ∈ Dn+1 \ Dn be the dyadic point
that splits the interval[k2−n, (k+ 1)2−n) containings. This defines a sequenceZdn

, n =

0, 1, . . . of independent, normally distributed random variables. Now let

n = min
{
k ∈ {0, 1, . . .} : |Zdk

| > 3M
}
,

which is almost surely well-defined. Moreover,

3M 6
∣∣Zdn

∣∣ = 2
n−1

2

∣∣2B(dn) −B(dn − 2−n) −B(dn + 2−n)
∣∣

6 2
n+1

2

∣∣B(dn) −B(dn ± 2−n)
∣∣+ 2

n−1
2

∣∣B(dn + 2−n) −B(dn − 2−n)
∣∣,

where± indicates that the inequality holds with either choice of sign. This implies that
eitherI(n, s) or I(n− 1, s) satisfies (13.1). We denote byN(s) the smallest nonnegative
integern, for which (13.1) holds.
By Fubini’s theorem, almost surely, we haveN(s) <∞ for almost everys ∈ [0, 1]. On this
event, we can pick a finite collection of disjoint dyadic intervals[t2j , t2j+1], j = 0, . . . , k−
1, with summed lengths exceeding1/2, say, such that the partition0 = t0 < · · · < t2k = 1

given by their endpoints satisfies

2k∑

j=1

(
B(tj) −B(tj−1)

)2
> M2

k∑

j=1

(t2j+1 − t2j) >
M

2
,

from which (a) follows, asM was arbitrary.
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(b) Note that the number of (finite) partitions of[0, 1] consisting of dyadic points is count-
able. Hence, by (a), givenn ∈ N, we can find a finite setPn of partitions such that the
probability that there exists a partition0 = t0 < · · · < tk = 1 in Pn with the property that

k∑

j=1

(
B(tj) −B(tj−1)

)2
> n

is bigger than1 − 1
n . Successively enumerating the partitions inP1, P2, . . . yields a se-

quence satisfying the requirement of (b).

Exercise 1.16.To see convergence in theL2-sense one can use the independence of the
increments of a Brownian motion,

E
[ k(n)∑

j=1

(
B
(
t(n)

j+1

)
−B

(
t(n)

j

))2 − t
]2

=

k(n)∑

j=1

E
[(
B
(
t(n)

j+1

)
−B

(
t(n)

j

))2 −
(
t(n)

j+1 − t(n)

j

)]2

6

k(n)∑

j=1

E
[(
B
(
t(n)

j+1

)
−B

(
t(n)

j

))4
+
(
t(n)

j+1 − t(n)

j

)2]
.

Now, using that the fourth moment of a centred normal distribution with varianceσ2 is
3σ4, this can be estimated by a constant multiple of

k(n)∑

j=1

(
t(n)

j+1 − t(n)

j

)2
,

which goes to zero. Moreover, by the Markov inequality

P
{∣∣∣

k(n)∑

j=1

(
B
(
t(n)

j+1

)
−B

(
t(n)

j

))2 − t
∣∣∣ > ε

}
6 ε−2 E

[( n∑

j=1

(
B
(
t(n)

j+1

)
−B

(
t(n)

j

))2 − t
)2]

,

and summability of the right hand side together with the Borel–Cantelli lemma ensures
almost sure convergence.

Exercise 1.17.Recall (1.5) from Lemma 1.41 and note that it implies

∇(n)

2j−1B = 1
2∇

(n−1)

j B + σnZ
(

2j−1
2n

)
, ∇(n)

2j B = 1
2∇

(n−1)

j B − σnZ
(

2j−1
2n

)
,

whereσn = 2−(n+1)/2 andZ(t) for t ∈ Dn \ Dn−1 are i.i.d. standard normal random
variables independent ofFn−1. Hence

E
[
exp

{
− 2n

(
∇(n)

2j−1B
) (

∇(n)

2j−1F
)
− 2n

(
∇(n)

2j B
) (

∇(n)

2j F
)} ∣∣Fn−1

]

= exp
{
− 2n−1

(
∇(n−1)

j B
) (

∇(n−1)

j F
)}

× E
[
exp

{
− 2nσnZ

(
2j−1
2n

)(
∇(n)

2j−1F −∇(n)

2j F
)}]

.

The expectation equals

exp
{
2n−2

(
∇(n)

2j−1F −∇(n)

2j F
)2}

= exp
{
2n−1

(
∇(n)

2j−1F
)2

+ 2n−1
(
∇(n)

2j F
)2 − 2n−2

(
∇(n−1)

j F
)2}

.

Rearranging the terms completes the proof.
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Exercise 1.19.Write F (a+ h) − F (a) as an integral and apply Cauchy-Schwarz.

Exercise 2.3.
(i) If A ∈ F(S), thenA ∩ {T 6 t} = (A ∩ {S 6 t}) ∩ {T 6 t} ∈ F+(t) .

(ii) By (i), F(T ) ⊂ F(Tn) for all n, which proves⊂. On the other hand, ifA ∈⋂∞
n=1 F(Tn), then for allt > 0,

A ∩ {T < t} =

∞⋃

k=1

∞⋂

n=k

A ∩ {Tn < t} ∈ F+(t) .

(iii) Look at the discrete stopping timesTn defined in the previous example. We have, for
any Borel setA ⊂ Rd,

{B(Tn) ∈ A}∩
{
Tn 6 k2−n

}
=

k⋃

m=0

(
{B(m2−n) ∈ A}∩{Tn = m2−n}

)
∈ F+(k2−n).

HenceB(Tn) is F(Tn)-measurable, and asTn ↓ T , we get thatB(T ) = limB(Tn) is
F(Tn)-measurable for anyn. HenceB(T ) is F(T )-measurable by part (ii).

Exercise 2.7.If T = 0 almost surely there is nothing to show, hence assumeE[T ] > 0.
(a) By construction,Tn is the sum ofn independent random variables with the law ofT ,
hence, by the law of large numbers, almost surely,

lim
n→∞

Tn
n

= E[T ] > 0,

which, by assumption, is finite. This implies, in particular, thatTn → ∞ almost surely,
and together with the law of large numbers for Brownian motion, Corollary 1.11, we get al-
most surely,limn→∞B(Tn)/Tn = 0. The two limit statements together show that, almost
surely,

lim
n→∞

B(Tn)

n
= lim
n→∞

B(Tn)

Tn
lim
n→∞

Tn
n

= 0.

(b) Again by construction,B(Tn) is the sum ofn independent random variables with the
law ofB(T ), which we conveniently denoteX1,X2, . . .. As

lim
n→∞

Xn

n
= lim
n→∞

B(Tn)

n
− lim
n→∞

B(Tn−1)

n
= 0,

the event{|Xn| > n} occurs only finitely often, so that the Borel–Cantelli lemmaimplies
∞∑

n=0

P
{
|Xn| > n

}
<∞.

Hence we have that

E[B(T )] = E|Xn| 6

∞∑

n=0

P
{
|Xn| > n

}
<∞.

(c) By the law of large numbers, almost surely,

lim
n→∞

B(Tn)

n
= lim
n→∞

1

n

n∑

j=1

Xj = E[B(T )].
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Exercise 2.9. Let S be a nonempty, closed setS with no isolated points. To see that it
is uncountable, we construct a subset with the cardinality of {1, 2}N. Start by choosing a
point x1 ∈ S. As this point is not isolated there exists a further, different pointx2 ∈ S.
Now pick two disjoint closed ballsB1, B2 around these points. Again, asx1 is not isolated,
we can find two points inB1 ∩ S, around which we can put disjoint balls contained in
B1 ∩ S, similarly for B2 ∩ S, and so on. Now there is a bijection between{1, 2}N and
the decreasing sequences of balls in our construction. The intersection of the balls in each
such sequence contains, asS is closed, at least one point ofS, and two points belonging to
two different sequences are clearly different. This completes the proof.

Exercise 2.13.By Fubini’s theorem,

E[Tα] =

∫ ∞

0

P{T > x1/α} dx 6 1 +

∫ ∞

1

P
{
M(x1/α) < 1

}
dx.

Note that, by Brownian scaling,P{M(x1/α) < 1} 6 C x−
1
2α for a suitable constantC >

0, which implies thatE[Tα] <∞, as required.

Exercise 2.16.By Exercise 2.15 the process{X(t) : t > 0} defined by

X(t) = exp
{
2bB(t) − 2b2t

}
for t > 0,

defines a martingale. Observe thatT = inf{t > 0: B(t) = a+ bt} is a stopping time for
the natural filtration, which is finite exactly ifB(t) = a+ bt for somet > 0. Then

P{T <∞} = e−2ab E
[
X(T ) 1{T <∞}

]
,

and because{XT (t) : t > 0} is bounded, the right hand side equalse−2ab.

Exercise 2.17.Use the binomial expansion of(B(t)+ (B(t+h)−B(t)))3 to deduce that
X(t) = B(t)3 − 3tB(t) defines a martingale. We know thatPx{TR < T0} = x/R. Write
τ∗ = τ({0, R}). Then

x3 = Ex[X(0)] = Ex[X(τ∗)] = Px{TR < T0}Ex
[
X(τ∗) |TR < T0

]

= Px{TR < T0}Ex
[
R3 − 3τ∗R |TR < T0

]
= (x/R)(R3 − 3γR) = x (R2 − 3γ) .

Solving the last equation forγ gives the claim.

Exercise 2.20.Part (a) can be proved similarly to Theorem 2.51, which in fact is the special
caseλ = 0 of this exercise. For part (b) chooseu : U → R as a bounded solution of

1
2∆u(x) = λu(x), for x ∈ U ,

with lim
x→x0

u(x) = f(x0) for all x0 ∈ ∂U . Then

X(t) = e−λtu(B(t)) −
∫ t

0

e−λs
(

1
2∆u(B(s)) − λu(B(s))

)
ds

defines a martingale. For any compactK ⊂ U we can pick a twice continuously differ-
entiable functionv : Rd → R with v = u onK andv = 0 on U c. Apply the optional
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stopping theorem to stopping timesS = 0, T = inf{t > 0: B(T ) 6∈ K} to get, for every
x ∈ K,

u(x) = E[X(0)] = E[X(T )] = Ex
[
e−λT f(B(T ))

]
.

Now choose a sequenceKn ↑ U of compacts and pass to the limit on the right hand side
of the equation.

Exercise 3.3. To prove the result fork = 1 estimate|u(x) − u(y)| in terms of|x − y|
using the mean value formula for harmonic functions and the fact that, ifx andy are close,
the volume of the symmetric difference ofB(x, r) andB(y, r) is bounded by a constant
multiple of rd−1|x − y|. For generalk note that the partial derivatives of a harmonic
function are themselves harmonic, and iterate the estimate.

Exercise 3.5. Define a random variableY by Y := X, if X > λE[X], andY := 0,
otherwise. Applying the Cauchy–Schwarz inequality toE[Y ] = E[Y 1{Y > 0}] gives

E[Y 1{Y > 0}] 6 E[Y 2]1/2
(
P{Y > 0}

)1/2
,

hence, asX > Y > X − λE[X], we get

P
{
X > λE[X]

}
= P{Y > 0} >

E[Y ]2

E[Y 2]
> (1 − λ)2

E[X]2

E[X2]
.

Exercise 3.7.For d > 3, choosea andb such thata + br2−d = ũ(r), anda + bR2−d =

ũ(R). Notice that the harmonic functions given byu(x) = ũ(|x|) andv(x) = a+ b|x|2−d
agree on∂D. They also agree onD by Corollary 3.7. Sou(x) = a+ b|x|2−d. By similar
consideration we can show thatu(x) = a+ b log |x| in the cased = 2.

Exercise 3.8.Letx, y ∈ Rd, a = |x−y|. Supposeu is a positive harmonic function. Then

u(x) =
1

LB(x,R)

∫

B(x,R)

u(z) dz

6
LB(y,R+ a)

LB(x,R)

1

LB(y,R+ a)

∫

B(y,R+a)

u(z) dz =
(R+ a)d

Rd
u(y).

This converges tou(y) asR → ∞, sou(x) 6 u(y), and by symmetry,u(x) = u(y) for
all x, y. Henceu is constant.

Exercise 3.11.Uniqueness is clear, because there is at most onecontinuousextension ofu.
LetD0 ⊂ D be a ball whose closure is contained inD, which containsx. u is bounded and
harmonic onD1 = D0 \ {x} and continuous onD1 \ {x}. Show that this already implies
thatu(z) = Ez[u(τ(D1))] onD1 and that the right hand side has an obvious harmonic
extension toD1 ∪ {x}, which defines the global extension.

Exercise 3.14. To obtain joint continuity one can show equicontinuity ofG(x, · ) and
G( · , x) in D \ B(x, ε) for anyε > 0. This follows from the fact that these functions are
harmonic, by Theorem 3.35, and the estimates of Exercise 3.3.
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Exercise 3.15.Recall that

G(x, y) = − 1
π log |x− y| + 1

π Ex[log |B(τ) − y|].

The expectation can be evaluated (one can see how in the proofof Theorem 3.44). The
final answer is

G(x, y) =

{
− 1
π log |x/R− y/R| + 1

π log
∣∣ x
|x| − |x|yR−2

∣∣, if x 6= 0, x, y ∈ B(0, R),

− 1
π log |y/R| if x = 0, y ∈ B(0, R).

Exercise 3.16.Supposex, y 6∈ B(0, r) andA ⊂ B(0, r) compact. Then, by the strong
Markov property applied to the first hitting time of∂B(0, r),

µA(x, · ) =

∫

∂B(0,r)

µA(z, · ) dµ∂B(0,r)(x, dz) .

Use Theorem 3.44 to show that, forB ⊂ A Borel,µ∂B(0,r)(x,B) 6 Cµ∂B(0,r)(y,B) for
a constantC not depending onB. Complete the argument from there.

Exercise 4.1. Let α = log 2/ log 3. For the upper bound it suffices to find an efficient
covering ofC by intervals of diameterε. If ε ∈ (0, 1) is given, letn be the integer such
that1/3n < 2ε 6 1/3n−1 and look at the sets

[ n∑

i=1

xi
3i
,

n∑

i=1

xi
3i

+ ε
]

for (x1, . . . , xn) ∈ {0, 2}n.

These sets obviously coverC and each of them is contained in an open ball centred in an
interval of diameter2ε. Hence

M(C, ε) 6 2n = 3αn = 3α
(
3n−1

)α
6 3α(1/ε)α .

This impliesdimMC 6 α .

For the lower bound we may assume we have a covering by intervals (xk−ε, xk+ε), with
xk ∈ C, and letn be the integer such that1/3n+1 6 2ε < 1/3n. Letxk =

∑∞
i=1 xi,k3

−i.
Then

B(xk − ε, xk + ε) ∩ C ⊂
{ ∞∑

i=1

yi
3i

: y1 = x1,k, . . . , yn = xn,k

}
,

and we need at least2n sets of the latter type to coverC. Hence,

M(C, ε) > 2n = 3αn = (1/3)α
(
3n+1

)α
> (1/3)α(1/ε)α .

This impliesdimMC > α .
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Exercise 4.2.Givenε ∈ (0, 1) find the integern such that1/(n+ 1)2 6 ε < 1/n2. Then
the points in{1/k : k > n} ∪ {0} can be covered byn+ 1 intervals of diameterε, andn
further balls suffice to cover the remainingn points. Hence

M(E, ε) 6 2n+ 1 6
2n+1
n (1/ε)1/2 ,

implying dimM (E) 6 1/2. On the other hand, as the distance between neighbouring
points is

1

k
− 1

k + 1
=

1

k(k + 1)
>

1

(k + 1)2
,

we always need at leastn− 1 sets of diameterε to coverE, which implies

M(E, ε) > n− 1 >
n−1
n+1 (1/ε)1/2 ,

hencedimM (E) > 1/2.

Exercise 4.3.SupposeE is a bounded metric space withdimME < α. Chooseε > 0 such
thatdimEM < α−ε. Then, for everyk there exists0 < δ < 1

k and a coveringE1, . . . , En
of E by sets of diameter at mostδ with n 6 δ−α+ε. Theα-value of this covering is at
mostnδα 6 δε, which tends to zero for largek. HenceHα

∞(E) = 0, anddimE 6 α.

Exercise 4.4.Indeed, asE ⊂ F impliesdimE 6 dimF , it is obvious that

dim

∞⋃

k=1

Ek > sup
{

dimEk : k > 1
}
.

To see the converse, we use

Hα
∞

( ∞⋃

k=1

Ek

)
6 inf

{ ∞∑

k=1

∞∑

j=1

|Ej,k|α : E1,k, E2,k, . . . coversEk
}

=
∞∑

k=1

inf
{ ∞∑

j=1

|Ej,k|α : E1,k, E2,k, . . . coversEk
}

=
∞∑

k=1

Hα
∞(Ek) .

Hence,

dim

∞⋃

k=1

Ek 6 sup
{
α > 0: Hα

∞
( ∞⋃

k=1

Ek
)
> 0
}

6 sup
{
α > 0:

∞∑

k=1

Hα
∞
(
Ek
)
> 0
}

6
∞

sup
k=1

sup
{
α > 0: Hα

∞
(
Ek
)
> 0
}
.

This proves the converse inequality.
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Exercise 4.6.Suppose thatf is surjective andα-Hölder continuous with Hölder constant
C > 0, and assume thatHαβ(E1) < ∞. Given ε, δ > 0 we can coverE1 with sets
B1, B2, . . . of diameter at mostδ such that

∞∑

i=1

|Bi|αβ 6 Hαβ(E1) + ε .

Note that the setsf(B1), f(B2), . . . coverE2 and that|f(Bi)| 6 C |Bi|α 6 C δα. Hence

∞∑

i=1

|f(Bi)|β 6 Cβ
∞∑

i=1

|Bi|αβ 6 CβHαβ(E1) + Cβ ε,

from which the claimed result for the Hausdorff measure readily follows.

Exercise 4.8.Start withd = 1. For any0 < a < 1/2 letC(a) be the Cantor set obtained
by iteratively removing from each construction interval a central interval of1 − 2a of its
length. Note that at thenth level of the construction we have2n intervals each of lengthan.
It is not hard to show thatC(a) has Hausdorff dimensionlog 2/ log(1/a), which solves the
problem for the cased = 1.

For arbitrary dimensiond and givenα we find a such thatdimC(a) = α/d. Then the
Cartesian productC(a)× d. . . ×C(a) has dimensionα. The upper bound is straightfor-
ward, and the lower bound can be verified, for example, from the mass distribution princi-
ple, by considering the natural measure that places mass1/2dn to each of the2dn cubes of
side lengthan at thenth construction level.

Exercise 4.14.Recall that it suffices to show thatH1/2(Rec) = 0 almost surely. In the
proof of Lemma 4.21 the maximum process was used to define a measure on the set of
record points: this measure can be used to define ‘big intervals’ analogous to the ‘big
cubes’ in the proof of Theorem 4.18. A similar covering strategy as in this proof yields the
result.

Exercise 5.1.Use the Borel–Cantelli lemma for the events

En =
{

sup
n6t<n+1

B(t) −B(n) >
√
a log n

}

and test for which values ofa the seriesP(En) converges. To estimate the probabilities,
the reflection principle and Lemma 12.9 will be useful.

Exercise 5.2. The lower bound is immediate from the one-dimensional statement. For
the upper bound pick a finite subsetS ⊂ ∂B(0, 1) of directions such that, for everyx ∈
∂B(0, 1) there exists̃x ∈ S with |x − x̃| < ε. Almost surely, all Brownian motions in
dimension one obtained by projecting{B(t) : t > 0} on the line determined by the vectors
in S satisfy the statement. From this one can infer that the limsup under consideration is
bounded from above by1 + ε.
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Exercise 5.3.LetTa = inf{t > 0: B(t) = a}. The proof of the upper bound can be based
on the fact that, forA < 1 andq > 1,

∞∑

n=1

P
{
ψ(T1 − T1−qn) < 1

A 2−n
}
<∞.

Exercise 5.4.Define the stopping timeτ−1 = min{k : Sk = −1} and recall the definition
of pn from (5.4). Then

pn = P{Sn > 0} − P{Sn > 0, τ−1 < n}.

Let {S∗
j : j > 0} denote the random walk reflected at timeτ−1, that is

S∗
j = Sj for j 6 τ−1,
S∗
j = (−1) − (Sj + 1) for j > τ−1.

Note that ifτ−1 < n thenSn > 0 if and only if S∗
n 6 − 2, so

pn = P{Sn > 0} − P{S∗
n 6 − 2}.

Using symmetry and the reflection principle, we have

pn = P{Sn > 0} − P{Sn > 2} = P
{
Sn ∈ {0, 1}

}
,

which means that

pn = P{Sn = 0} =
(

n
n/2

)
2−n for n even,

pn = P{Sn = 1} =
(

n
(n−1)/2

)
2−n for n odd.

Recall that Stirling’s Formula givesm! ∼
√

2πmm+1/2e−m, where the symbol∼ means
that the ratio of the two sides approaches1 asm → ∞. One can deduce from Stirling’s
Formula thatpn ∼

√
2/πn, which proves the result.

Exercise 5.5.Denote byIn(k) the event thatk is a point of increase forS0, S1, . . . , Sn
and byFn(k) = In(k) \

⋃k−1
i=0 In(i) the event thatk is the first such point. The events that

{Sk is largest amongS0, S1, . . . Sk} and that{Sk is smallest amongSk, Sk+1, . . . Sn} are
independent, and thereforeP(In(k)) = pkpn−k.
Observe that ifSj is minimal amongSj , . . . , Sn , then any point of increase forS0, . . . , Sj
is automatically a point of increase forS0, . . . , Sn. Therefore forj 6 k we can write

Fn(j) ∩ In(k) =

Fj(j) ∩ {Sj 6 Si 6 Sk for all i ∈ [j, k]} ∩ {Sk is minimal amongSk, . . . , Sn} .

The three events on the right hand side are independent, as they involve disjoint sets of
summands; the second of these events is of the type considered in Lemma 5.9. Thus,

P(Fn(j) ∩ In(k)) > P(Fj(j)) p
2
k−j pn−k

> p2
k−j P(Fj(j)) P {Sj is minimal amongSj , . . . , Sn} ,
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sincepn−k > pn−j . Here the two events on the right are independent, and their intersection
is preciselyFn(j). ConsequentlyP(Fn(j) ∩ In(k)) > p2

k−jP(Fn(j)) .

Decomposing the eventIn(k) according to the first point of increase gives

n∑

k=0

pkpn−k =
n∑

k=0

P(In(k)) =
n∑

k=0

k∑

j=0

P(Fn(j) ∩ In(k))

>

bn/2c∑

j=0

j+bn/2c∑

k=j

p2
k−jP(Fn(j)) >

bn/2c∑

j=0

P(Fn(j))

bn/2c∑

i=0

p2
i .

(13.2)

This yields an upper bound on the probability that{Sj : j = 0, . . . , n} has a point of
increase by timen/2; but this random walk has a point of increase at timek if and only if
the reversed walk{Sn − Sn−i : i = 0, . . . , n} has a point of increase at timen− k. Thus,
doubling the upper bound given by (13.2) proves the statement.

Exercise 5.7.In the proof of Exercise 5.5 we have seen that,

n∑

k=0

pkpn−k =
n∑

k=0

P(In(k)) =
n∑

k=0

k∑

j=0

P(Fn(j) ∩ In(k)) .

By Lemma 5.9, we have, forj 6 k 6 n,

P(Fn(j) ∩ In(k)) 6 P(Fn(j) ∩ {Sj 6 Si 6 Sk for j 6 i 6 k})
6 P(Fn(j))p

2
b(k−j)/2c.

Thus,

n∑

k=0

pkpn−k 6

n∑

k=0

k∑

j=0

P(Fn(j))p
2
b(k−j)/2c 6

n∑

j=0

P(Fn(j))

n∑

i=0

p2
bi/2c.

This implies the statement.

Exercise 5.10.Suppose thatX is an arbitrary random variable with vanishing expectation
and finite variance. For eachn ∈ N divide the intersection of the support ofX with
the interval[−n, n] into finitely intervals with mesh< 1

n . If x1 < · · · < xm are the
partition points, construct the law ofXn by placing, for anyj ∈ {0, . . . ,m}, atoms of size
P{X ∈ [xj , xj+1)} in positionE[X | xj 6 X < xj+1], using the conventionx0 = −∞
andxm+1 = ∞. By construction,Xn takes only finitely many values.
Observe thatE[Xn] = 0 andXn converges toX in distribution. Moreover, one can show
thatτn → τ almost surely. This implies thatB(τn) → B(τ) almost surely, and therefore
also in distribution, which implies thatX has the same law asB(τ). Fatou’s lemma implies
that

E[τ ] 6 lim inf
n↑∞

E
[
τn
]

= lim inf
n↑∞

E
[
X2
n

]
<∞.

Hence, by Wald’s second lemma,E[X2] = E[B(τ)2] = E[τ ].
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Exercise 5.11.Note that
∣∣nL{t ∈ [0, 1] : S∗

n(t) > 0
}
− #

{
k ∈ {1, . . . , n} : Sk > 0

}∣∣

is bounded by#
{
k ∈ {1, . . . , n} : SkSk−1 6 0

}
. Hence it suffices to show that

1

n

n∑

k=1

P
{
SkSk−1 6 0

}
−→ 0.

Note that, for anyM > 0, we have{SkSk−1 6 0} ⊂ {|Sk − Sk−1| > M} ∪ {|Sk−1| <
M}.One can now chooseM > 0 so large that the probability of the first event on the right,
which does not depend onk, is arbitrarily close to zero. Donsker’s invariance principle
implies that, for anyM > 0, one hasP{|Sk−1| < M} → 0, ask → ∞.

Exercise 5.12 (b).For a continuous functionf : [0,∞) → R and anya > 0 defineτfa =

inf{t > 0: f(t) = a}, τfa,0 = inf{t > τfa : f(t) = 0} and

σf0,a = sup{0 6 t 6 τfa,0 : f(t) = 0}.

Define a mappingΦa on the set of continuous functions by lettingΦaf = f if τfa,0 = ∞
and otherwise

Φaf(t) =

{
f(t) if t 6 σf0,a or t > τfa,0,

f(τfa,0 + σfa,0 − t) if σfa,0 6 t 6 τfa,0.

For fixedn ∈ N, we look at the functionsS∗
n : [0,∞) → R associated to a simple random

walk as in Donsker’s invariance principle. It is easy to see that the laws ofS∗
n andΦaS∗

n

coincide.

The functionΦa is continuous on the set of all continuous functions taking positive and
negative values in every neighbourhood of every zero. By Theorem 2.28, Brownian motion
is almost surely in this set. Hence, by property (v) in the Portmanteau theorem, see Theo-
rem 12.6 in the appendix, and Donsker’s invariance principle, the laws of{B(t) : t > 0}
and{ΦaB(t) : t > 0} coincide, which readily implies our claim.

Exercise 6.6.From Exercise 2.17 we get, for anyx ∈ (0, 1) that

Ex
[
T1

∣∣T1 < T0

]
=

1 − x2

3
, Ex

[
T0

∣∣T0 < T1

]
=

2x− x2

3
,

whereT0, T1 are the first hitting times of the points0, resp.1.
Define stopping timesτ (x)

0 = 0 and, forj > 1,

σ(x)

j = inf{t > τ (x)

j−1 : B(t) = x}, τ (x)

j = inf{t > σ(x)

j : B(t) ∈ {0, 1}} .

Let N (x) = min{j > 1: B(τ (x)

j ) = 1}. ThenN (x) is geometric with parameterx. We
have

∫ T1

0

1{0 6 B(s) 6 1} ds = lim
x↓0

N(x)∑

j=1

(τ (x)

j − σ(x)

j ) .
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and this limit is increasing. Hence

E
∫ T1

0

1{0 6 B(s) 6 1} ds

= lim
x↓0

E
[
N (x) − 1

]
E
[
τ (x)

1 − σ(x)

1

∣∣B(τ (x)

1 ) = 0
]
+ lim

x↓0
E
[
τ (x)

1 − σ(x)

1

∣∣B(τ (x)

1 ) = 1
]

= lim
x↓0

( 1

x
− 1
) 2x− x2

3
+ lim

x↓0

1 − x2

3
= 1 .

Exercise 6.7.Observe thatE exp{λXj} = eλ/(2− eλ) for all λ < log 2, and hence, for a
suitable constantC and all smallλ > 0,

E exp
{
λ(Xj − 2)

}
6 exp{λ2 + Cλ3},

by a Taylor expansion. Using this forλ = ε
2 we get from Chebyshev’s inequality,

P
{ k∑

j=1

(Xj − 2) > mε
}

6 exp{−m ε2

2 }
(
E exp{ ε2 (Xj − 2)}

)k

6 exp
{
−m ε2

2

}
exp

{
m
(
ε2

4 + C ε3

8

)}
,

which proves the more difficult half of the claim. The inequality for the lower tail is
obvious.

Exercise 6.8.We have that

P
{ (X + `)2

2
6 t
}

= P
{
−

√
2t− ` 6 X 6

√
2t− `

}
.

So the density of the left hand side is

1

2
√
πt
e−(2t+`2)/2

[
e`

√
2t + e−`

√
2t
]
,

which by Taylor expansion is

1√
πt
e−(2t+`2)/2

∞∑

k=0

(`
√

2t)2k

(2k)!
.

Recall thatX2/2 is distributed as Gamma( 1
2 ), and givenN the sum

∑N
i=1 Zi is distributed

as Gamma(N). By conditioning onN , we get that the density of the right hand side is

∞∑

k=0

`2ke−`
2/2tk−1/2e−t

2kk!Γ(k + 1
2 )

.

Recall that

Γ(k +
1

2
) =

√
π(2k)!

22kk!
,

and so the densities of both sides are equal.
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Exercise 7.1.GivenF ∈ D[0, 1] approximatef = F ′ by the deterministic step process

fn =
2n∑

i=1

1((i−1)2−n,i2−n]2
n
[
F
(
i2−n

)
− F

(
(i− 1)2−n

)]
.

Exercise 7.2.Use that
∫ T
0
H(s) dB(s) =

∫∞
0
HT (s) dB(s).

Exercise 7.4.First establish a Taylor formula of the form
∣∣f(x, y) − f(x0, y0) −∇yf(x0, y0) · (y − y0)

−∇xf(x0, y0) · (x− x0) − 1
2 (x− x0)

THesxf(x0, y0)(x− x0)
∣∣

6 ω1(δ,M) |y − y0| + ω2(δ,M)|x− x0|2,
whereHesxf = (∂ijf) is thed× d-Hessian matrix of second derivatives in the directions
of x, and

ω1(δ,M) = sup
x1,x2∈[−M,M]d,y1,y2∈[−M,M]m

|x1−x2|∧|y1−y2|<δ

∣∣∇yf(x1, y1) −∇yf(x2, y2)
∣∣,

and the modulus of continuity ofHesxf by

ω2(δ,M) = sup
x1,x2∈[−M,M]d,y1,y2∈[−M,M]m

|x1−x2|∧|y1−y2|<δ

‖Hesxf(x1, y1) − Hesxf(x2, y2)‖,

where‖ · ‖ is the operator norm of a matrix. Then argue as in the proof of Theorem 7.14.

Exercise 7.5.First use Brownian scaling and the Markov property, as in theoriginal proof
of Theorem 2.37 to reduce the problem to showing that the distribution ofB(T (1)) (using
the notation of Theorem 2.37) is the Cauchy distribution.
The map defined byf(z) = z

2−z , for z ∈ C, takes the half-plane{(x, y) : x < 1} onto
the unit disk andf(0) = 0. The image measure of harmonic measure onV (1) from 0

is the harmonic measure on the unit sphere from the origin, which is uniform. Hence the
harmonic measureµV (1)(0, · ) is the image measure of the uniform distribution$ on the
unit sphere underf−1, which can be calculated using the derivative off .

Exercise 7.6.Use thatθ(t) = W2(H(t)) andlimt↑∞H(t) = ∞.

Exercise 7.9.Supposeh is supported by[0, b] and look at the partitions given byt(n)

k =

bk2−n, for k = 0, . . . , 2n. By Theorem 7.33 and Theorem 6.19 we can choose a continu-
ous modification of the process{

∫ t
0

sign(B(s) − a) dB(s) : a ∈ R}. Hence the Lebesgue
integral on the left hand side is also a Riemann integral and can be approximated by the
sum

2n−1∑

k=0

b2−nh(t(n)

k )
(∫ t

0

sign(B(s) − t(n)

k ) dB(s)
)

=

∫ t

0

Fn(B(s)) dB(s),

where

Fn(x) =

2n−1∑

k=0

b2−nh(t(n)

k ) sign
(
x− t(n)

k

)
, for n ∈ N.
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This is a uniformly bounded sequence, which is uniformly convergent to the Lebesgue
integral

F (x) =

∫ ∞

−∞
h(a) sign(x− a) da.

Therefore the sequence of stochastic integrals converges in L
2 to the stochastic integral∫∞

0
F (B(s)) dB(s), which is the right hand side of our formula.

Exercise 7.12. By Theorem 5.35 we may replaceT by the first exit timeτ from the
interval(−1, 1) by a linear Brownian motion.
For statement (a) we use that

P{τ < x} = 2P
{

max
06t6x

B(t) > 1
}
− P

{
max

06t6x
B(t) > 1, min

06t6x
B(t) < −1

}
.

The subtracted term is easily seen to be of smaller order. Forthe first term we can use the
reflection principle and Lemma 12.9 to see that

P
{

max
06t6x

B(t) > 1
}

= 2 P
{
B(t) > 1

}
∼ 2
√

x
2π e

− 1
2x .

Combining these results leads to the given asymptotics.

Statement (b) can be inferred from the equation

P{τ > x} = P1

{
B(s) ∈ (0, 2) for all 0 6 s 6 x

}

and the representation of the latter probability in (7.15).

Exercise 8.1.Suppose thatu is subharmonic andB(x, r) ⊂ U . Let τ be the first exit time
from B(x, r), which is a stopping time. As∆u(z) > 0 for all z ∈ U we see from the
multidimensional version of Itô’s formula that

u(B(t ∧ τ)) 6 u(B(0)) +

d∑

i=1

∫ t∧τ

0

∂u

∂xi
(B(s)) dBi(s).

Note that∂u/∂xi is bounded on the closure ofB(x, r), and thus everything is well-defined.
We can now take expectations, and use Exercise 7.2 to see that

Ex
[
u(B(t ∧ τ))

]
6 Ex

[
u(B(0))

]
= u(x).

Now let t ↑ ∞, so that the left hand side converges toEx[u(B(τ))] and note that this gives
the mean value property for spheres. The result follows by integrating overr.

Exercise 8.3.Let u be a solution of the Poisson problem onU . Define open setsUn ↑ U
by

Un =
{
x ∈ U : |x− y| > 1

n for all y ∈ ∂U
}
.

Let τn be the first exit time ofUn, which is a stopping time. As12∆u(x) = −g(x) for all
x ∈ U we see from the multidimensional version of Itô’s formula that

u(B(t ∧ τn)) = u(B(0)) +

d∑

i=1

∫ t∧τn

0

∂u

∂xi
(B(s)) dBi(s) −

∫ t∧τn

0

g(B(s)) ds.
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Note that∂u/∂xi is bounded on the closure ofUn, and thus everything is well-defined.
We can now take expectations, and use Exercise 7.2 to see that

Ex
[
u(B(t ∧ τn))

]
= u(x) − Ex

∫ t∧τn

0

g(B(s)) ds.

Note that both integrands are bounded. Hence, ast ↑ ∞ andn → ∞, bounded conver-
gence yields that

u(x) = Ex

∫ τ

0

g(B(s)) ds,

where we have used the boundary condition to eliminate the left hand side.

Exercise 8.5.First note that the lower bound is elementary, becauseτ > 1 with positive
probability. For the upper bound we proceed in three steps. In the first step, we prove an
inequality based on Harris’ inequality, see Theorem 5.7.
Let f1, f2 be densities on[0,∞). Suppose that the likelihood ratioψ(r) = f2(r)

f1(r)
is increas-

ing, andh : [0,∞) → [0,∞) is decreasing on[a,∞). Then
∫∞
0
h(r)f2(r) dr∫∞

0
h(r)f1(r) dr

6 ψ(a) +

∫∞
a
f2(r) dr∫∞

a
f1(r) dr

. (13.3)

To see this, observe first that
∫ a
0
h(r)f2(r) dr 6 ψ(a)

∫ a
0
h(r)f1(r) dr. Write Ta =∫∞

a
f1(r) dr. Using Harris’ inequality, we get

∫ ∞

a

h(r)f2(r) dr = Ta

∫ ∞

a

h(r)ψ(r)
f1(r)

Ta
dr

6 Ta

∫ ∞

a

h(r)
f1(r)

Ta
dr

∫ ∞

a

ψ(r)
f1(r)

Ta
dr

=
1

Ta

∫ ∞

a

h(r)f1(r) dr

∫ ∞

a

f2(r) dr,

Combining the two inequalities proves (13.3).
As a second step, we show that, fort1 6 t2,

P0

{
B[t2, t2 + s] ∩A 6= ∅

}
6 Ca P0

{
B[t1, t1 + s] ∩A 6= ∅

}
,

where

Ca =
f2(a)

f1(a)
+

1

P0{|B(t1)| > a} 6 e
|a|2
2t1 +

1

P0{|B(t1)| > a}
andfj is the density of|B(tj)|. This follows by applying (13.3) with

h(r) =

∫
Py{B[0, s] ∩A 6= ∅} d$0,r(y).

Finally, to complete the proof, we show that

P0

{
B(0, τ) ∩A 6= ∅

}
6

Ca

1−e−1/2 P
{
B[0, 1] ∩A 6= ∅

}
,

whereCa 6 e|a|
2

+ P0{|B( 1
2 )| > a}−1. To this end, letH(I) = P0{B(I) ∩ A 6= ∅},
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whereI is an interval. ThenH satisfiesH[t, t + 1
2 ] 6 CaH[12 , 1] for t >

1
2 . Hence, we

can conclude that

EH[0, τ ] 6 H[0, 1] +

∞∑

j=2

e−j/2H[ j2 ,
j+1
2 ] 6 Ca

∞∑

j=0

e−j/2H[0, 1],

which is the required statement.

Exercise 8.10.Note thatX × X is itself a compact metric space. Then, by the Stone–
Weierstrass theorem, the vector space spanned by the functions of the formf(x, y) =

g(x)h(y), whereg, h are continuous functions onX, is dense in the spaceC(X ×X) of
continuous functions onX ×X. Hence weak convergence is implied by the fact that,

lim
n→∞

∫
f dµn ⊗ µn = lim

n→∞

∫
g dµn

∫
h dµn =

∫
g dµ

∫
h dµ =

∫
f dµ⊗ µ.

Exercise 8.11.For the proof of the upper bound, chooseM > 0 such that

inf
x∈B(0,1)

Px
{
B(t) ∈ B(0,M) for all 0 6 t 6 1

}
>

1
2 .

Then, for allt > 1,

∫
Px{τB(0,1) < t} dx 6

dte∑

j=1

∫
Px
{
B[j − 1, j) ∩ B(0, 1) 6= ∅

}
dx

6 2

dte∑

j=1

∫
Px
{
B(j) ∈ B(0,M)

}
dx

= 2

dte∑

j=1

∫

B(0,M)

∫
pj(x, y) dx dy 6

(
4L(B(0, 1))Md

)
t.

For the lower bound, we argue that
∫

Px{τB(0,1) < t} dx

>

btc∑

j=1

∫
Px
{
B[0, j − 1) ∩ B(0, 1) = ∅, B(j) ∈ B(0, 1)

}
dx

>

btc∑

j=1

∫
P0

{
B[1, j) ∩ B(0, 2) = ∅, B(j) ∈ B(x, 1)

}
dx,

reversing time in the last step. Using Fubini’s theorem, we rewrite the right hand side as

btc∑

j=1

E0

[
1
{
B[1, j) ∩ B(0, 2) = ∅}

∫

B(B(j),1)

dx
]

>
(

1
2L(B(0, 1))P0{B[1,∞) ∩ B(0, 2) = ∅}

)
t.
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Exercise 9.3. Use arguments as in the proof of Theorem 9.22 to transfer the results of
Theorem 9.8 from intersections of independent Brownian motions to self-intersections of
one Brownian motion.

Exercise 9.8.An example can be constructed as follows: LetA1 andA2 be two disjoint
closed sets on the line such that the Cartesian squaresA2

i have Hausdorff dimension less
than1/2 yet the Cartesian productA1 × A2 has dimension strictly greater than1/2. Let
A be the union ofA1 andA2. Then Brownian motion{B(t) : t > 0} on A is 1-1 with
positive probability (ifB(A1) is disjoint fromB(A2)) yet with positive probabilityB(A1)

intersectsB(A2).
For instance letA1 consist of points in[0, 1] where the binarynth digit vanishes whenever
(2k)! 6 n < (2k + 1)! for somek. Let A2 consist of points in[2, 3] where the binary
nth digit vanishes whenever(2k − 1)! 6 n < (2k)! for somek. Thendim(A2

i ) = 0 for
i = 1, 2 yetdim(A1 ×A2) > dim(A1 +A2) = 1, in factdim(A1 ×A2) = 1.

Exercise 9.10.Let {B1(t) : 0 6 t 6 1} be the first component of the planar motion. By
Kaufman’s theorem, almost surely,

dimS(a) = 2 dim{t ∈ [0, 1] : B1(t) = a}

and, as in Corollary 9.30, the dimension on the right equals1/2 for everya ∈ (min{x :

(x, y) ∈ B[0, t]},max{x : (x, y) ∈ B[0, t]}).

Exercise 10.2.For every decompositionE =
⋃∞
i=1Ei of E into bounded sets, we have,

using countable stability of Hausdorff dimension,

∞
sup
i=1

dimMEi >
∞

sup
i=1

dimEi = dim

∞⋃

i=1

Ei = dimE ,

and passing to the infimum yields the statement.

Exercise 10.7.The argument is sketched in [La99].

Exercise 10.9.For (a) note that Theorem 10.28 can be read as a criterion to determine the
packing dimension of a setE by hitting it with a limsup random fractal. HencedimP (A∩
E) can be found by evaluatingP{A∩A′ ∩E = ∅} for A′ an independent copy ofA. Now
use thatA ∩A′ is also a discrete limsup fractal.
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Exercise 10.10.To apply Theorem 7.25 for the proof of Lemma 10.40 (a) we shiftthe
cone by defining a new tip̃z as follows:

• If α < π the intersection of the line throughx parallel to the central axis of the cone
with the boundary of the dual cone,

• if α > π the intersection of the line throughx parallel to the central axis of the cone
with the boundary of the cone.

Note thatz + W [α, ξ] ⊂ z̃ + W [α, ξ] and there exists a constantC > 1 depending only
onα such that|z − z̃| < Cδ. There is nothing to show ifCδ > ε/2 and otherwise

Px
{
B(0, Tε(z)) ⊂ z +W [α, ξ]

}
6 Px

{
B(0, Tε/2(z̃)) ⊂ z̃ +W [α, ξ]

}
.

By shifting, rotating and scaling the Brownian motion and byTheorem 7.25 we obtain an
upper bound for the right hand side of

P1

{
B(0, T ε

δ (C+ 1
2 )−1(0)) ⊂W [α, 0]

}
= 2

π arctan
(
C0

(
δ
ε

) π
α
)

6 C1

(
δ
ε

) π
α ,

whereC0, C1 > 0 are suitable constants.



Selected open problems

In this section we give a personal selection of problems related to the material of this book,
which are still open.

(1) Given an almost sure property of Brownian paths, characterise those continuous func-
tionsf such thatB + f also has this property almost surely.

Recall that by the Cameron–Martin theorem, Theorem 1.38, for the functionsf ∈
D[0, 1] all almost sure properties ofB carry over toB + f . Hence only functions
f ∈ C[0, 1] \ D[0, 1] are of interest.

The answer to this problem depends on the property one is looking at. Some problems
are easy (and fully resolved) and others are very tricky. Here are some examples:

(a) Nowhere differentiable. We have seen in Exercise 1.12 that forall continuous
functionsf : [0, 1] → R, the functionB + f is nowhere differentiable.

(b) Not hitting points. Takingd > 2 the problem is to characterise the functions
f : [0, 1] → Rd with the property

P
{
∃t ∈ (0, 1) such thatB(t) + f(t) = 0

}
= 0. (13.1)

Recall that there are continuous space-filling curvesf , so that it is plausible
that some continuousf violate the statement in the display. Ford = 2 Gra-
versen [Gr82] shows that, for anyα < 1/2, there existα-Hölder continuous
functionsf violating (13.1), and Le Gall [LG88a] shows that anyα-Hölder con-
tinuousf with α > 1/2 satisfies (13.1). The latter paper also contains finer
results near the critical caseα = 1/2 and results for dimensionsd > 3. An
extension to Lévy processes is given by Mountford [Mo89].

(c) No isolated zeros. Recall from Theorem 2.28 that, for a linear Brownian motion
{B(t) : t ∈ [0, 1]}, the setZeros = {t ∈ [0, 1] : B(t) = 0} has no isolated
points. Using the law of the iterated logarithm in the form ofCorollary 5.3, one
can easily construct functionsf ∈ C[0, 1] such that{t ∈ [0, 1] : B(t) + f(t) =

0} has an isolated point in the origin. The problem is thereforeto characterise
thosef ∈ C[0, 1] such that the process{B(t)+f(t) : 0 < t 6 1} has no isolated
zeros.

(d) No double points. Take Brownian motion{B(t) : 0 6 t 6 1} in dimension
d = 4. Characterise those functionsf ∈ C([0, 1],R4) such that the process
{B(t) + f(t) : 0 6 t 6 1} has no double points.

383
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(2) What is the minimal Hausdorff dimension of a curve containedin the path of planar
Brownian motion?

We have seen in Theorem 11.10 that the outer boundary is a curve contained in pla-
nar Brownian motion, which has Hausdorff dimension4/3. It is not known whether
this is the curve of minimal dimension. The best known lower bound stems from Pe-
mantle [Pe97], where it is shown that the planar Brownian path does not contain a line
segment. It is also unknown whether there exists a Lipschitzcurve intersecting the range
of planar Brownian motion in a set of positive length.

(3) Is the set of double points of planar Brownian motion totallydisconnected?

It is natural to conjecture that, almost surely, all connected components of the set of dou-
ble points of a planar Brownian motion are singletons, but noproof is known. For Brow-
nian motion inR3 this follows from the fact that the set of double points hasH1-measure
zero, together with a general fact from geometric measure theory, see e.g. [Fa97a].

(4) Can one move between any two domains of the complement of the range of a planar
Brownian motion by passing through only a finite number of points of the range?

This question is due to Wendelin Werner. To put it more formally let {B(t) : t > 0} be
a planar Brownian motion. We ask whether, almost surely, foranyx, y ∈ R2 \ B[0, 1]

there exists a curveγ : [0, 1] → R2 with γ(0) = x, γ(1) = y such that

γ[0, 1] ∩B[0, 1]

is a finite set.

(5) For which gauge functionsφ does a planar Brownian motion visit some (random) point
z ∈ R2 in a set of positiveφ-Hausdorff measure?

This problem is related to finding the ‘maximal multiplicity’ of points on a planar Brow-
nian curve{B(t) : t > 0}. We know from Corollary 9.29 that, almost surely,

dim
{
t > 0: B(t) = z

}
= 0 for all z ∈ R2.

It is however unknown for which gauge functionsφ we can find an (exceptional) pointz
such thatHφ{t > 0: B(t) = z} > 0.

(6) What is the Hausdorff dimension of the set of points where the‘local time’ of planar
Brownian motion takes a particular value?

This problem, which is due to Bass, Burdzy and Khoshnevisan [BBK94], requires some
background from that paper. Recall from Theorem 9.24 that planar Brownian motion
has points of infinite multiplicity. Similar arguments can also be used to show that the
Hausdorff dimension of the set of points of infinite multiplicity is still two. How far can
we go before we see a reduction in the dimension?
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A natural way is to count the number of excursions from a point. To be explicit, let
{B(s) : s > 0} be a planar Brownian motion and fixx ∈ R2 andε > 0. Let S−1 = 0

and, for any integerj > 0, let Tj = inf{s > Sj−1 : B(s) = x} andSj = inf{s >
Tj : |B(s) − x| > ε}. Then define

Nx
ε = max

{
j > 0: Tj <∞

}
,

which is the number of completed excursions fromx reaching∂B(x, ε). Observe that
limε↓0Nx

ε = ∞ if and only if x has infinite multiplicity. It is therefore a natural ques-
tion to ask how rapidlyNx

ε can go to infinity whenε ↓ 0. Bass, Burdzy and Khosh-
nevisan [BBK94] show that, almost surely,

1

2
6 sup

x∈R2

lim sup
ε↓0

Nx
ε

log(1/ε)
6 2e,

where the limsup represents a ‘local time’ of planar Brownian motion inx. It is an open
problem to find the value of the supremum and to identify, for any 0 < a < 2, the value
of

dim
{
x ∈ R2 : lim

ε↓0

Nx
ε

log(1/ε)
= a

}
.

Partial progress on this problem was made by Bass, Burdzy andKhoshnevisan [BBK94],
who show a lower bound of2 − a for the Hausdorff dimension for all0 < a < 1

2 , and
an upper bound of2 − a

e for all 0 < a < 2e.

(7) Does planar Brownian motion have triple points which are also pioneer points?

Let {B(t) : 0 6 t 6 1} be a planar Brownian motion. A pointx ∈ R2 is called a
pioneer pointif there exists0 < t 6 1 such thatx = B(t) andx lies on the outer
boundary ofB[0, t], i.e. on the boundary of the unbounded component ofR2 \ B[0, t].
Note that all points on the outer boundary ofB[0, 1] itself are pioneer points, but not
vice versa. Indeed, Lawler, Schramm and Werner [LSW02] show,using arguments like
in Chapter 11, that the Hausdorff dimension of the set of pioneer points is74 .

Burdzy and Werner in [BW96] show that, almost surely, there are no triple points of
planar Brownian motion on the outer boundary and conjecturethat there are also no
triple points which are pioneer points. It is not hard to see (using nontrivial knowledge
about intersection exponents) that the set of triple pointswhich are also pioneer points
has Hausdorff dimension zero, but it is open whether this setis empty.



Bibliography

[dA83] A. DE ACOSTA. A new proof of the Hartman–Wintner law of the iterated logarithm.Ann.
Probab.11, 270–276 (1983).

[Ad85] O. ADELMAN . Brownian motion never increases: a new proof of a theorem of Dvoretzky,
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