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Abstract

Large deviation theory deals with the decay of the probability of in-
creasingly unlikely events. It is one of the key techniques of modern
probability, a role which is emphasised by the recent award of the Abel
prize to S.R.S. Varadhan, one of the pioneers of the subject. The sub-
ject is intimately related to combinatorial theory and the calculus of
variations. Applications of large deviation theory arise, for example,
in statistical mechanics, information theory and insurance.

1 Cramér’s theorem and the moderate devi-

ation principle

We start by looking at an example embedded in the most classical results of
probability theory. Suppose that X and X1, X2, . . . are independent, identi-
cally distributed random variables with mean µ and variance σ2 < ∞. We
denote the partial sum by

Sn :=
n∑

i=1

Xi.

The weak law of large numbers states that, for any ε > 0,

lim
n→∞

P
{∣∣ 1

n
Sn − µ

∣∣ > ε
}

= 0,

and this means that the empirical means 1
n
Sn converge in probability to µ.
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The simplest way to prove this is by an application of Chebyshev’s inequality.
Indeed, we argue that

P
{

1
n
Sn > µ+ ε

}
= P

{( n∑
i=1

Xi

)
− nµ > nε

}
≤ E[((

∑n
i=1Xi)− nµ)2]

n2ε2
=

σ2

nε2
→ 0,

and analogously for the opposite event 1
n
Sn < µ− ε.

The more desirable result is however the strong law of large numbers, which
states that

P
{

lim
n→∞

1
n
Sn = µ

}
= 1.

Excursion: On the difference of weak and strong laws
Here is a typical example of a sequence of random variables converging
weakly, but not strongly. Let N1, N2, . . . be an increasing sequence of random
variables with values in N such that

P
{
n ∈ {N1, N2, . . .}

}
→ 0,

for example by choosing Nj uniformly from the set {2j, . . . , 2j+1 − 1}. Pick
ak ↑ ∞ very quickly, so that at least ak/ak−1 > 2. Now choose Xn = ak if
Nk ≤ n < Nk+1, then

Xn+1

Xn

=

{ ak

ak−1
if n = Nk for some k,

1 otherwise.

This sequence converges to one in probability but not almost surely. More-
over, lim supXn/ablog2 nc−2 ≥ 1 almost surely.

To prove the strong law of large numbers, the previous argument is not good
enough. Indeed, recall from the Borel-Cantelli lemma that

∞∑
n=1

P
{

1
n
Sn > µ+ ε

}
<∞

would imply that, almost surely, 1
n
Sn > µ + ε for only finitely many n, and

hence
lim sup

n→∞

1
n
Sn ≤ µ,
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and an analogous argument for the opposite event 1
n
Sn < µ− ε would imply

the strong law. This line of reasoning fails, as our estimate for the probability
of the large deviation event 1

n
Sn > µ + ε is of order 1

n
and therefore not

summable.

It is therefore desirable to find out exactly how fast the large deviation prob-
abilities

P
{

1
n
Sn > µ+ ε

}
decay. This depends on finer features of the random variable X than merely
the finiteness of its variance. Our initial focus is on random variables satis-
fying

ϕ(λ) := log EeλX <∞ for all λ ∈ R. (1)

In this case the large deviation probabilities decay exponentially and Cramér’s
theorem tells us exactly how fast.

Theorem 1.1 (Cramér’s theorem). Let X1, X2, . . . be independent iden-
tically distributed random variables with mean µ, satisfying (1), and Sn their
partial sums. Then, for any x > µ we have

lim
n→∞

1

n
log P

{
1
n
Sn ≥ x

}
= −ϕ∗(x),

where ϕ∗ given by
ϕ∗(x) := sup

λ∈R

{
λx− ϕ(λ)}

is the Legendre transform of ϕ.

Remarks:

• This result holds without assumption (1) and, for µ < x <ess sup X,
the large deviation probability decreases exponentially as long as ϕ(ε) <
∞ for some ε > 0.

• In the example of a (possibly unfair) coin toss

X =

{
0 with probability 1− p,
1 with probability p,

we obtain ϕ(λ) = log(peλ + (1− p)) and therefore, for 0 < x < 1,

ϕ∗(x) = x log
x

p
+ (1− x) log

1− x

1− p
,

the relative entropy of (x, 1− x) with respect to (p, 1− p).
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The proof allows a first glance at some typical techniques of large deviation
theory. We shall give the argument for the lower and upper bound separately.

Proof of the upper bound. We use the Chebyshev inequality again, but in an
optimised form. More precisely, for any nonnegative, increasing function ψ
we get an upper bound of

P
{

1
n
Sn ≥ x

}
≤ P

{
ψ

(
Sn

)
≥ ψ(nx)

}
≤ 1

ψ(nx)
Eψ

(
Sn

)
.

In the proof of the weak law of large numbers, we have chosen ψ(x) = x2,
but now we choose ψ(x) = eλx and optimise over λ ≥ 0 later. This yields

lim sup
n→∞

1

n
log P

{
1
n
Sn ≥ x

}
≤ lim sup

n→∞

1

n
log e−λnx + lim sup

n→∞

1

n
log E

[
exp(λSn)

]
= −λx+ lim sup

n→∞

1

n

n∑
i=1

log E
[
exp(λXi)

]
= −λx+ ϕ(λ),

and therefore

lim sup
n→∞

1

n
log P

{
1
n
Sn ≥ x

}
≤ − sup

λ≥0

{
λx− ϕ(λ)

}
.

As ϕ is a convex function with ϕ′(0) = µ < x the expression in the curly
bracket on the right is negative for λ < 0, and vanishes for λ = 0. Hence the
supremum may be taken over all λ ∈ R, which completes the proof.

Proof of the lower bound. We use a change of measure or tilting argument.
The idea is to replace the law P of X by the law

dQ(X) = e−ϕ(λ)+λX dP (X).

If, for ε > 0, the parameter λ > 0 can be chosen in such a way that for
independent X1, . . . , Xn with law

dQ := dQ⊗ n· · · ⊗ dQ = e−nϕ(λ)+λSn dP(X1 . . . Xn),
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the partial sums satisfy, for any ε > 0,

Q
{
x+ ε > 1

n
Sn ≥ x

}
→ 1, (2)

we infer that

lim inf
n→∞

1

n
log P

{
1
n
Sn ≥ x

}
≥ lim inf

n→∞

1

n
log P

{
x+ ε > 1

n
Sn ≥ x

}
= lim inf

n→∞

1

n
log EQ

{
enϕ(λ)−λSn 1{x+ ε > 1

n
Sn ≥ x}

}
≥ ϕ(λ)− λ(x+ ε) + lim inf

n→∞

1

n
log Q

{
x+ ε > 1

n
Sn ≥ x

}
= ϕ(λ)− λ(x+ ε) ≥ −ϕ∗(x+ ε),

and the result follows by letting ε ↓ 0.

It remains to show that λ > 0 can be chosen to satisfy (2). By the weak
law of large numbers, it suffices to ensure that the expectation of X under
Q equals x+ ε

2
. Note that

ϕ′(λ) = e−ϕ(λ)E
[
XeλX

]
= EQ[X],

and hence ϕ′(0) = E[X] = µ and ϕ′(∞) = ess sup X =: M . If µ < x < M ,
by the intermediate value theorem, we can find for every sufficiently small
ε > 0, some λ > 0 with ϕ′(λ) = x+ ε

2
, as required.

To complete the argument note that, in the case M < ∞, for x > M both
sides of the statement in Theorem 1.1 are equal to −∞, and if x = M they
are both equal to log P{X = M}.

We have now seen that the probability of large deviation events of the type{
Sn − µn ≥ nx

}
for x > 0,

i.e. the partial sum exceeds its average by more than nx, decay exponentially
quickly. The central limit theorem tells us by how much the partial sum
normally exceeds its average, namely by an order of

√
n. More precisely,

P
{
Sn − µn ≥

√
nx

}
→ 1− Φ(x/σ) > 0,
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where Φ is the distribution function of the standard normal law. This implies
that for any sequence an with

√
n� an � n we still have

P
{
Sn − µn ≥ an

}
→ 0,

and neither the central limit theorem nor Cramér’s theorem tell us how fast
this convergence is. This question is in the remit of the moderate deviation
principle stated below.

Theorem 1.2 (Moderate deviation principle). Under the same assump-
tions as in Theorem 1.1, if

√
n� an � n we have, for all x > 0,

lim
n→∞

n

a2
n

log P
{
Sn − µn ≥ xan

}
= − x2

2σ2
.

Remark: By contrast to Cramér’s theorem, this is the result you would
have got by replacing Sn−µn

σ
√

n
by a standard normal. The result, which can be

extended significantly, is probably due to Feller.

Remark: In the next chapter we explain a large deviation framework that
includes moderate deviation principles. The typical features of moderate de-
viation principles are:

• they explain the decay of deviations from the mean on a scale smaller
than the mean itself and apply to a whole range of scales,

• they are associated to central limit type theorems and clarify when we
can use the normal approximation to calculate tail probabilities,

• the decay rates are universal, i.e. independent of finer features of X.

Proof. To get the gist it suffices to prove the (easier) upper bound. Without
loss of generality we may assume that µ = 0 and x = 1. Because ϕ(0) =
ϕ′(0) = 0 and ϕ′′(0) = σ2, a Taylor expansion of ϕ around zero gives

ϕ(λ) ∼ λ2 σ2

2
as λ ↓ 0.

We use the Chebyshev inequality again to get, for any λ > 0,

P
{
Sn ≥ an

}
≤ P

{
eSn

λan
n ≥ e

λa2
n

n

}
≤ e−

λa2
n

n enϕ(λ an
n

).

Hence

lim sup
n→∞

n

a2
n

log P
{
Sn ≥ an

}
≤ −λ+ lim sup

n→∞

n2

a2
n

ϕ
(

λan

n

)
= −λ+ λ2 σ2

2
.

Maximising over λ > 0, i.e. choosing λ = 1/σ2, yields the result.
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2 Framework of large deviation principles

Before starting to set up a framework for the theory we are going to develop,
we formulate a simple but useful lemma, which is one of the cornerstones of
large deviation theory. It states roughly that the rate of growth for a finite
sum of sequences equals the maximal rate of growth of the summands.

Lemma 2.1 (Laplace principle). Fix a sequence an → ∞ and a finite
number N of nonnegative sequences (b(1)n ), . . . , (b(N)

n ). Then

lim sup
n→∞

1

an

log
N∑

i=1

b(i)n =
N

max
i=1

lim sup
n→∞

1

an

log b(i)n .

Proof. Note that, for every fixed n,

0 ≤ log
N∑

i=1

b(i)n − N
max
i=1

log b(i)n ≤ logN,

and dividing by an and taking limsup shows that

lim sup
n→∞

1

an

log
N∑

i=1

b(i)n = lim sup
n→∞

1

an

N
max
i=1

log b(i)n =
N

max
i=1

lim sup
n→∞

1

an

log b(i)n ,

as required to complete the proof.

From Cramér’s theorem we can now infer the following result.

Corollary 2.2. For every Borel set A ⊂ R,

lim sup
n→∞

1

n
log P

{
1
n
Sn ∈ A

}
≤ − inf

x∈cl A
ϕ∗(x),

lim inf
n→∞

1

n
log P

{
1
n
Sn ∈ A

}
≥ − inf

x∈int A
ϕ∗(x).

(3)

Proof. We may assume that A ⊂ [µ,∞), as otherwise we split A = A1 ∪ A2

with A1 ⊂ [µ,∞) and A2 ⊂ (−∞, µ). Analogous arguments hold for the two

7



parts, and we obtain from the Laplace principle

lim sup
n→∞

1

n
log P

{
1
n
Sn ∈ A

}
= lim sup

n→∞

1

n
log

[
P
{

1
n
Sn ∈ A1

}
+ P

{
1
n
Sn ∈ A2

}]
= lim sup

n→∞

1

n
log P

{
1
n
Sn ∈ A1

}
∨ lim sup

n→∞

1

n
log P

{
1
n
Sn ∈ A2

}
≤

(
− inf

x∈cl A1

ϕ∗(x)
)
∨

(
− inf

x∈cl A2

ϕ∗(x)
)

= − inf
x∈cl A

ϕ∗(x),

and, more easily,

lim inf
n→∞

1

n
log P

{
1
n
Sn ∈ A

}
≥ lim inf

n→∞

1

n
log P

{
1
n
Sn ∈ A1

}
∨ lim inf

n→∞

1

n
log P

{
1
n
Sn ∈ A2

}
≥

(
− inf

x∈int A1

ϕ∗(x)
)
∨

(
− inf

x∈int A2

ϕ∗(x)
)

= − inf
x∈int A

ϕ∗(x).

Now let a = inf A ≥ µ. As ϕ∗ is increasing on [µ,∞), the infimum of ϕ∗ over
cl A equals ϕ∗(a). Then

lim sup
n→∞

1

n
log P

{
1
n
Sn ∈ A

}
≤ lim

n→∞

1

n
log P

{
1
n
Sn ≥ a

}
= −ϕ∗(a).

For the lower bound we let b ∈ intA and ε > 0 with [b − ε, b + ε) ⊂ A.
We assume that ϕ∗(b − ε) < ∞ and ϕ∗(b − ε) > 0. This implies that
ϕ∗(b− ε) < ϕ∗(b+ ε) and hence

lim inf
n→∞

1

n
log P

{
1
n
Sn ∈ A

}
≥ lim

n→∞

1

n
log

[
P
{

1
n
Sn ≥ b− ε

}
− P

{
1
n
Sn ≥ b+ ε

}]
= −ϕ∗(b− ε).

Letting b ↓ inf intA and ε ↓ 0 gives the result.
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We note from this that, for a general large deviation theory we may consider
a sequence of random variable X1, X2, . . . in a general metric space M and
consider events of the type {Xn ∈ A} where A ⊂M is a Borel set. We start
to set things up by looking at the functions that will in general replace ϕ∗.

Definition 2.3. Fix a metric space M . A function I : M → [0,∞] is called

• a rate function if it is lower semicontinuous, which means that the level
sets {x ∈M : I(x) ≤ a} are closed for any a ≥ 0;

• a good rate function if the level sets are compact for any a ≥ 0.

Now we can define the notion of a large deviation principle.

Definition 2.4. A sequence of random variables X1, X2, . . . with values in a
metric space is said to satisfy a large deviation principle with

• speed an →∞ and

• rate function I,

if, for all Borel sets A ⊂M ,

lim sup
n→∞

1

an

log P
{
Xn ∈ A

}
≤ − inf

x∈cl A
I(x),

lim inf
n→∞

1

an

log P
{
Xn ∈ A

}
≥ − inf

x∈int A
I(x).

(4)

Remark: Note that we do not require convexity of I. This is a special
feature of the rate function ϕ∗ in Cramér’s theorem.
Remark: We do not mention the speed if it is clear from the context. The
rate function of a large deviation principle is uniquely determined, due to its
lower semicontinuity.

Note that for Sn =
∑n

i=1Xi as above

• 1
n
Sn satisfies a large deviation principle with speed n and good rate

function ϕ∗, by Cramér’s theorem;
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• for any sequence
√
n� an � n the random variables

Sn − µn

an

satisfy a large deviation principle with speed a2
n

n
and good rate function

I(x) = x2

2σ2 , by the moderate deviation principle.

Before returning to interesting examples we briefly discuss two important
theoretical issues related to the general set-up. These are responses to the
following questions:

(1) Can we get away with proving (4) not for all Borel sets A, but for a
somewhat smaller family? Obviously it suffices to look at open sets
for the lower bound and closed sets for the upper bound. But maybe
it even suffices to check the lower bound for open balls, or the upper
bound for compact sets?

(2) If we have a large deviation principle for Xn and f : M → M ′ is a
continuous function, can we get a large deviation principle for f(Xn)?

We start with answers for the first question. The following simple lemma
helps in the proof of the lower bounds.

Lemma 2.5. If I is a rate function and A is a Borel set, such that for every
x ∈ A and ε > 0 with B(x, ε) ⊂ A,

lim inf
n→∞

1

an

log P
{
Xn ∈ B(x, ε)

}
≥ −I(x),

then

lim inf
n→∞

1

an

log P
{
Xn ∈ A

}
≥ − inf

x∈int A
I(x).

Proof. Choose xk ∈ intA with I(xk) → infx∈int A I(x) and for each xk an
εk > 0 such that B(xk, εk) ⊂ A. Then

lim inf
n→∞

1

an

log P
{
Xn ∈ A

}
≥ lim inf

n→∞

1

an

log P
{
Xn ∈ B(xk, εk)

}
≥ −I(xk),

and the result follows as k ↑ ∞.
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Replacing closed sets by compact sets in the upper bound requires a sub-
stantial condition, which is often hard to check.

Definition 2.6. The sequence Xn of random variables is called exponentially
tight if for every N <∞ there exists a compact set K ⊂M such that

lim sup
n→∞

1

an

log P
{
Xn 6∈ K

}
< −N.

Lemma 2.7. If the family Xn is exponentially tight and satisfies the large
deviation upper bound upper bound for every compact set, then it holds for
every closed set.

Proof. Fix N and a compact set K ⊂ M as in the definition of exponential
tightness. If A ⊂M is closed, then A ∩K is compact and therefore

lim sup
n→∞

1

an

log P
{
Xn ∈ A

}
≤ lim sup

n→∞

1

an

log
[
P
{
Xn ∈ A ∩K

}
+ P

{
Xn 6∈ K

}]
≤

(
− inf

x∈A∩K
I(x)

)
∨ −N

≤
(
− inf

x∈A
I(x)

)
∨ −N,

and the result follows by letting N →∞.

Remark: Suppose the sequence Xn satisfies a large deviation principle with
speed an and rate function I. If the sequence of random variables is expo-
nentially tight, then I is a good rate function. Conversely, if M is separable
and I is a good rate function, then the sequence is exponentially tight. See
1.2.18(b) and 4.1.10 in Dembo-Zeitouni.

Coming to the second question, the answer is almost as clean as one could
wish for.

Lemma 2.8 (Contraction Principle). If X1, X2, . . . satisfies a large de-
viation principle with speed an and good rate function I, and f : M →M ′ is
a continuous mapping, then the sequence f(X1), f(X2), . . . satisfies a large
deviation principle with speed an and good rate function J given by

J(y) = inf
x∈f−1({y})

I(x).
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Proof. Let A ⊂M ′ be a closed set. Then

lim sup
n→∞

1

an

log P
{
f(Xn) ∈ A

}
= lim sup

n→∞

1

an

log P
{
Xn ∈ f−1(A)

}
≤ − inf

x∈f−1(A)
I(x) = − inf

y∈A
inf

x∈f−1({y})
I(x)

= − inf
y∈A

J(y),

using that f−1(A) is closed in M . An analogous argument applies to open
sets. Note that we have not used the goodness of the rate function so far.
This comes in when we check that J is indeed a rate function, i.e. is lower
semicontinuous. The level sets of J are

{y ∈M : J(y) ≤ a} = {f(x) ∈M : I(x) ≤ a} = f
(
{x ∈M : I(x) ≤ a}

)
.

Because the level sets of I are compact and f is continuous, the level sets of
J are compact as well, so J is a good rate function. Observe that if I fails
to be good, we could not ensure that J is a rate function.
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3 Sanov’s theorem and the method of types

In this section we illustrate how combinatorial, or counting, arguments, can
help providing large deviation principles. These techniques are often set up
for a ‘finite’ context and then generalized using analytical machinery. Our
interest at this point is in the former, so we now assume that X1, X2, . . . are
i.i.d. random variables taking values in a finite set X . We are interested in
the frequency of a symbol x ∈ X among the first n samples. While Cramér’s
theorem yields the precise rate of decay of probabilities of events of the form{ 1

n

n∑
i=1

1{Xi = x} ≥ a
}
, for 0 < a < 1, x ∈ X ,

it does not help when we are interested in the frequency of more than one
symbol, like{ 1

n

n∑
i=1

1{Xi = x} ≥ a,
n∑

i=1

1{Xi = y} ≥ b
}
, for a, b > 0, a+ b < 1, x, y ∈ X .

This type of problems is addressed in Sanov’s theorem. It requires looking at
the empirical measure LX

n of a sample vector X = (X1, . . . , Xn) defined by

LX
n (x) =

1

n

n∑
i=1

1{Xi = x}

and interpreted as a random element of the space M1(X ) of probability
measures on X endowed with the metric inherited from the embedding into
R|X | given by the mapping µ 7→ (µ(x) : x ∈ X ).

Theorem 3.1 (Sanov’s theorem). Assume that X1, X2, . . . are i.i.d. ran-
dom variables taking values in a finite set X and denote by µ ∈ M1(X )
their distribution. Then the empirical measures LX

n satisfy a large deviation
principle on the metric space M1(X ) with speed n and good rate function J
given by the relative entropies

J(ν) = H(ν‖µ) :=
∑
x∈X

ν(x) log
ν(x)

µ(x)
.
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Remarks:
(a) The relative entropyH(ν‖µ) is always nonnegative and zero only if ν = µ.
This follows easily from Jensen’s inequality for the strictly convex function
φ(x) = x log x on [0,∞),∑

x∈X

ν(x) log
ν(x)

µ(x)
=

∑
x∈X

µ(x)φ
(ν(x)
µ(x)

)
≥ φ

( ∑
x∈X

µ(x)
ν(x)

µ(x)

)
= φ(1) = 0.

(b) If our random variables take (finitely many) values in the real numbers we
can derive Cramér’s theorem from Sanov’s theorem by contraction. Indeed,
let

f : M1(X ) → R, f(ν) =
∑
x∈X

xν(x),

so that f(LX
n ) = 1

n
Sn. As f is obviously continuous, we obtain a large

deviation principle for 1
n
Sn with rate function

I(y) = inf
ν∈f−1({y})

J(ν)

= inf
{ ∑

x∈X

ν(x) log
ν(x)

µ(x)
: ν ∈M1(X ) with

∑
x∈X

xν(x) = y
}

= sup
λ∈R

{
λy − log

( ∑
x∈X

eλxµ(x)
)}
.

The last identity is a typical variational identity arising in large deviation the-
ory. Let us give a direct proof. The ≥ direction is based on Jensen’s inequal-
ity and mimics the tilting argument of the proof of Cramér’s theorem. Let ν
be any permissible measure, λ arbitrary and abbreviate Z =

∑
x∈X e

λxµ(x).
Then ∑

x∈X

ν(x) log
ν(x)

µ(x)
=

∑
x∈X

ν(x) log
ν(x)

eλxµ(x)
+ λy

=
∑
x∈X

φ
( ν(x)

1
Z
eλxµ(x)

) 1

Z
eλxµ(x)− logZ + λy

≥ − logZ + λy.
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As in the proof of Cramér’s theorem we can use the intermediate value the-
orem to find, for minX < y < maxX a λ ∈ R with

y =

∑
xeλxµ(x)∑
eλxµ(x)

,

and hence the choice ν(x) = 1
Z
µ(x)eλx yields a permissible measure. Then∑

x∈X

ν(x) log
ν(x)

µ(x)
=

∑
x∈X

ν(x) log
( 1

Z
eλx

)
= − logZ + λy,

proving the ≤ direction.

For the proof of Sanov’s theorem, we use relatively simple combinatorics.
We note that the probability of the events {(X1, . . . , Xn) = x} for x ∈ X n

depends only on the type of x, which is the associated empirical measure Lx
n

given by

Lx
n(y) =

1

n

n∑
i=1

1{xi = y}, for y ∈ X .

Denote by Tn(ν) the set of all vectors x ∈ X n of type ν and define the entropy
of a probability measure ν as

H(ν) = −
∑
x∈X

ν(x) log ν(x).

Lemma 3.2. If x ∈ Tn(ν), then

P
{
(X1, . . . , Xn) = x

}
= e−n(H(ν)+H(ν‖µ)).

Proof. Note that

H(ν) +H(ν‖µ) = −
∑
x∈X

ν(x) log µ(x).

Then, using independence, for

P
{
(X1, . . . , Xn) = x

}
=

n∏
i=1

µ(xi) =
∏
x∈X

µ(x)ν(x)

= exp
( ∑

x∈X

ν(x) log µ(x)
)
,

which completes the proof.
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Next, we count how many types and how many vectors of a given type there
are. We denote by Ln the set of types of all possible vectors x ∈ X n.

Lemma 3.3.

(a) #Ln ≤ (n+ 1)#X .

(b) There exist polynomials p1, p2 with positive coefficients, such that for
every ν ∈ Ln,

1

p1(n)
enH(ν) ≤ #Tn(ν) ≤ p2(n) enH(ν).

Proof. (a) For any y ∈ X , the number Lx
n(y) belongs to the set { 0

n
, 1

n
, . . . , n

n
},

whose cardinality is n + 1. Hence the number of possible measures Lx
n is at

most (n+ 1)#X .

(b) Tn(ν) is in bijection to the number of ways one can arrange the objects
from a collection containing object x ∈ X exactly nν(x) times. Hence #Tn(ν)
is the multinomial

#Tn(ν) =
n!∏

x∈X (nν(x))!
.

To find the exponential growth rate of the right hand side we use Stirling’s
formula, which states that (see, e.g., Feller I) for suitable c1, c2 > 0 and all
positive integers n ∈ N,

n log
n

e
≤ log n! ≤ n log

n

e
+ c1 log n+ c2.

Now

log #Tn(ν) ≤ log n!−
∑
x∈X

log(nν(x))!

≤ n log
n

e
−

∑
x∈X

nν(x) log
nν(x)

e
+ c1 log n+ c2

= nH(ν) + c1 log n+ c2,

which yields the upper bound with p1(n) = c2n
c1 . The proof of the lower

bound is analogous.
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Proof of Sanov’s theorem. Take any Borel set A ⊂M1(X ). Then, using the
lemmas,

P
{
LX

n ∈ A
}

=
∑

ν∈Ln∩A

P
{
LX

n = ν
}

=
∑

ν∈Ln∩A

∑
x∈Tn(ν)

P
{
X = x

}
≤

∑
ν∈Ln∩A

p2(n) enH(ν) e−n(H(ν)+H(ν‖µ))

≤ p2(n) #
(
Ln ∩ A

)
e−n infν∈A H(ν‖µ).

Hence, as 1
n

log p2(n) → 0 and 1
n

log #Ln → 0,

lim sup
n→∞

1

n
log P

{
LX

n ∈ A
}
≤ − inf

ν∈A
H(ν‖µ).

In particular, in this case there is no need for taking the closure of A in the
upper bound.

For the lower bound we may assume µ(x) > 0 for all x ∈ X . Take an open
set A ⊂M1(X ) and assume, without loss of generality, infν∈AH(ν‖µ) <∞.
Fix ν ∈ A such that H(ν‖µ) differs from the infimum by no more than some
fixed ε > 0. For any sufficiently large n we can moreover find νn ∈ A ∩ Ln

such that H(νn‖µ) differs from H(ν‖µ) by no more than ε. Hence,

P
{
LX

n ∈ A
}
≥ P

{
LX

n = νn

}
=

∑
x∈Tn(νn)

P
{
X = x

}
≥ 1

p1(n)
e−nH(νn‖µ).

Hence, as 1
n

log 1/p1(n) → 0,

lim inf
n→∞

1

n
log P

{
LX

n ∈ A
}
≥ −H(νn‖µ) ≥ − inf

ν∈A
H(ν‖µ)− 2ε.

The result follows as ε > 0 was arbitrary.
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4 Large deviations for empirical pair mea-

sures

We now study a model example for the large deviation technique, hopefully
raising all the major issues coming up in typical proofs.

We still look at i.i.d. random variables X1, . . . , Xn with values in a finite
state space X , and denote by µ ∈ M1(X ) their distribution. Instead of the
empirical measure, our interest is now focused on the empirical pair measure

MX
n =

1

n

n∑
i=1

δ(Xi−1,Xi) ∈M1(X × X )

where we put X0 := Xn for symmetry reasons. Note that this measure,
other than LX

n , reflects the linear indexing of our random variables. Interest-
ing variations arise when the random variables are indexed by other graph
structures.

Theorem 4.1. The empirical pair measures MX
n ∈ M1(X × X ) satisfy a

large deviation principle with speed n and good rate function

J(ν) =

{
H(ν ‖ ν1 ⊗ µ) if ν1 = ν2,
∞, otherwise,

where ν1, ν2 ∈M1(X ) are the two marginals of ν ∈M1(X × X ).

Remark: Sanov’s theorem can be recovered from this result. Indeed, the
contraction theorem applied to the mapping projecting ν onto its first marginal
gives a large deviation principle for LX

n with rate function

I(ω) = inf
{
H(ν ‖ω ⊗ µ) : ν1 = ν2 = ω

}
.

Indeed, for any permissible choice of ν,

H(ν ‖ω ⊗ µ) =
∑

x,y∈X

ν(x, y) log
ν(x, y)

ω(x)ω(y)
+

∑
y∈X

ω(y) log
ω(y)

µ(y)

≥
∑
y∈X

ω(y) log
ω(y)

µ(y)
= H(ω ‖µ),

and the choice ν = ω ⊗ ω gives equality.
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How do we prove such a result?

I suggest to follow two golden rules :

(1) Make sure that the quantity you study is a type, i.e. we have (at least
on an exponential scale) equal probability for all elementary events
with the same empirical pair measure MX

n . If this fails take a more
informative quantity and reduce later, using the projection theorem.

(2) Make sure that the process class you study is big enough to contain a
process for which the required large deviation behaviour is typical. If
necessary look at a more general problem class.

In our case the first golden rule is satisfied, as we have observed in Lemma 3.2.
But the second golden rule fails, as the typical empirical pair measure for any
i.i.d sequence is of product structure ω⊗ω. Hence we need to generalize the
problem and ensure that we look at sequences X1, . . . , Xn no longer i.i.d. but
with some control on the expected empirical pair measures. It is therefore
easier to prove the result for Markov chains, which include i.i.d. sequences
as a special case.

Let X1, X2 . . . be a Markov chain with statespace X , strictly positive transi-
tion matrix P and stationary distribution π. Assume that the initial distri-
bution is π, so that the chain is stationary.

Theorem 4.2. For a Markov chain as above, the empirical pair measures
MX

n ∈ M1(X × X ) satisfy a large deviation principle with speed n and good
rate function

J(ν) =

{
H(ν ‖ ν1 ⊗ P ) if ν1 = ν2,
∞, otherwise,

where ω ⊗ P for ω ∈M1(X ) is given as ω ⊗ P (x, y) = ω(x)Px,y.

Remark: Obviously, this is stronger than Theorem 4.1.

It can be checked that the first golden rule is still satisfied in this more general
setup. This will be implicit in our proof. We give a proof of the upper bound
based on Chebyshev’s inequality, which is very versatile.
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For any function g : X ×X → R we define an auxiliary chain with transition
matrix P g given by

P g
x,y = eg(x,y)−Ug(x) Px,y, for x, y ∈ X ,

where
Ug(x) = log

∑
y∈X

eg(x,y)Px,y.

Lemma 4.3. For any closed set A ⊂M1(X × X ) we have

lim sup
n→∞

1

n
log P

{
MX

n ∈ A
}

≤ − inf
ν∈A

sup
g

∑
x,y∈X

(
g(x, y)− Ug(x)

)
ν(x, y).

Proof. Note that (using the convention x0 := xn)

1 ≥
∑

x∈Xn

πg(x1)
n∏

i=2

P g
xi−1,xi

≥
(

inf
x,y∈X

πg(x)Px,y

π(x)P g
x,y

) ∑
x∈Xn

e
∑n

i=1 g(xi−1,xi)−Ug(xi−1) π(x1)
n∏

i=2

Pxi−1,xi

=
(

inf
x,y∈X

πg(x)Px,y

π(x)P g
x,y

)
E[en

∫
(g−Ug) dMX

n ].

Given any ν ∈ A and ε > 0 we may fix g such that∑
x,y∈X

(g(x, y)− Ug(x)) ν(x, y) ≥ sup
h

∑
x,y∈X

(
h(x, y)− Uh(x)

)
ν(x, y)− ε.

Using continuity we also find δ > 0 such that, for all ν ′ ∈ B(ν, δ)∑
x,y∈X

(g(x, y)− Ug(x)) ν
′(x, y) ≥

∑
x,y∈X

(g(x, y)− Ug(x)) ν(x, y)− ε.

Now, by Chebyshev’s inequality,

P
{
MX

n ∈ B(ν, δ)
}
≤ E

[
en

∫
(g−Ug) dMX

n
]
e−n[

∫
(g−Ug) dν−ε].

Therefore,

lim sup
n→∞

1

n
log P

{
MX

n ∈ B(ν, δ)
}
≤ − inf

ν′∈A
sup

g

∫
(g − Ug) dν

′ − 2ε.

Covering the compact set A with finitely many balls of this type and using
the Laplace principle we infer the result.
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Proof of the upper bound. To finish the proof of the upper bound, we fix ν
with ν1 = ν2 and identify the variational problem in g as a relative entropy.∑

x,y∈X

(
g(x, y)− Ug(x)

)
ν(x, y) =

∑
x,y∈X

ν(x, y) log
P g

x,y

Px,y

= H(ν ‖ ν1 ⊗ P )−H(ν ‖ ν1 ⊗ P g)

≤ H(ν ‖ ν1 ⊗ P ),

and equality holds if ν = ν1 ⊗ P g. This corresponds to the choice

g(x, y) = log
ν(x, y)

ν1(x)Px,y

, (5)

which makes Ug = 0.

For the lower bound we use the upper bound to show that exactly this choice
of g makes the event MX

n ≈ ν typical. We write Pg, Eg for probabilities and
expectations with respect to the stationary chain with transition matrix P g.

Lemma 4.4. Given ν ∈M1(X ×X ) with ν1 = ν2 and g as in (5), we have,
for all ε > 0,

lim sup
n→∞

1

n
log Pg

{
MX

n 6∈ B(ν, ε)
}
< 0.

Proof. Applying the upper bound to the Markov chain with transition matrix
P g, we obtain

lim sup
n→∞

1

n
log Pg

{
MX

n 6∈ B(ν, ε)
}
≤ − inf

ν′ 6∈B(ν,ε)
H(ν ′ ‖ ν ′1 ⊗ P g).

By compactness and continuity, the right hand side is strictly negative if
ν ′ 6= ν ′1 ⊗ P g for all ν ′ 6∈ B(ν, ε). This is the case, because ν ′ = ν ′1 ⊗ P g

implies

ν ′(x, y) = ν ′1(x)
ν(x, y)

ν1(x)Px,y

Px,y = ν ′1(x)
ν(x, y)

ν1(x)
. (6)

Summing over x ∈ X and using the equality of the marginals of ν ′ we infer
that

ν ′1(y) = ν ′2(y) =
∑
x∈X

ν ′1(x)
ν(x, y)

ν1(x)
.
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Hence ν ′1 is the (unique) invariant distribution for the Markov chain with
transition matrix P ′x,y = ν(x, y)/ν1(x). Obviously, ν1 is also an invariant
distribution for this Markov chain, so ν1 = ν ′1. From (6) we can therefore
infer that ν = ν ′, as required.

Proof of the lower bound. Having established a law of large numbers from
the upper bound, we can complete the proof of the lower bound by change of
measure. By Lemma 2.5 it suffices to show that, for every ν ∈ M1(X × X )
with ν1 = ν2, and ε > 0,

lim inf
n→∞

1

n
log P

{
MX

n ∈ B(ν, ε)
}
≥ −H(ν ‖ ν1 ⊗ P ).

We write

P
{
MX

n ∈ B(ν, ε)
}

= Eg
[ π(X1)

πg(X1)

n∏
i=2

PXi−1,Xi

P g
Xi−1,Xi

1{MX
n ∈ B(ν, ε)}

]
≥

(
inf

x,y∈X
π(x)P g

y,x

πg(x)Py,x

)
× Eg

[
exp

(
−

n∑
i=1

g(Xi−1, Xi)− Ug(Xi−1)
)

1{MX
n ∈ B(ν, ε)}

]
.

The exponent is −n
∫

(g − Ug) dM
X
n and, given δ > 0, we may choose 0 <

ε̃ < ε small enough to ensure that, for every ν ′ ∈ B(ν, ε̃),∫
(g − Ug) dν

′ ≤
∫

(g − Ug) dν + δ.

Hence we can estimate the expectation from below by

≥ exp
(
− n

[ ∫
(g − Ug) dν + δ

])
Pg

{
MX

n ∈ B(ν, ε̃)
}
.

Using Lemma 4.4, we conclude that

lim inf
n→∞

1

n
log P

{
MX

n ∈ B(ν, ε)
}
≥ −

∫
(g − Ug) dν − δ

= −
∑
x∈X

ν(x, y) log
ν(x, y)

ν1(x)Px,y

− δ.

The result follows as δ > 0 was arbitrary.
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A final remark about our two golden rules: Suppose we were interested in
large deviations for the empirical measure LX

n for a Markov chain. Then
our first golden rule is violated, as LX

n is not a type in this case. Our
approach would be to move to a more inclusive statistic, namely the empirical
pair measure, and then use the projection theorem to get a large deviation
principle for LX

n . The rate function remains in a variational form which
cannot be solved explicitly.
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5 The Dawson-Gärtner theorem and large de-

viation principles on the process level

In this section we give an example of a task which has to be carried out
frequently in large deviation theory: lifting a large deviation principle from
small to large spaces. As a reward we will see an example of the ‘queen of
large deviation principles’, namely the principles on the process level.

We start by generalising Sanov’s theorem for the empirical pair measures to
empirical measures involving k-tuples. Let X1, X2 . . . be a stationary Markov
chain with statespace X , strictly positive transition matrix P and stationary
distribution π. Define the empirical k-measure

LX
n,k =

1

n

n∑
i=1

δ(Xi,Xi+1,...,Xi+k−1),

which is a random probability measure on M1(X×
k· · · ×X ).

Theorem 5.1. The empirical k-measures LX
n,k satisfy a large deviation prin-

ciple on M1(X×
k· · · ×X ) with speed n and good rate function

Jk(ν) =

{
H(ν ‖ ν1,...,k−1 ⊗ P ) if ν1,...,k−1 = ν2,...,k,
∞, otherwise,

where νi1,...,ij is the marginal on the components with index i1, . . . , ij.

Proof. We look at the auxiliary Markov chain Y1, Y2, . . . with statespace

X× k−1· · · ×X given by
Yj = (Xj, . . . , Xj+k−2).

This chain has the following properties

• its invariant distribution is π(k) = π ⊗ P⊗ k−2· · · ⊗P ,

• its transition matrix is given by P (k)

(x1,...,xk−1),(x2,...,xk) = Pxk−1,xk
,

• its empirical pair measure MY
n satisfies LX

n,k = MY
n ◦ f−1 with

f
(
(x1, . . . , xk−1), (x2, . . . , xk)

)
= (x1, . . . , xk).
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From Theorem 4.2 we obtain a large deviation principle for MY
n with speed n

and good rate function

JY (ν) =

{
H(ν ‖ ν1 ⊗ P (k)) if ν1 = ν2,
∞ otherwise.

The contraction principle hence gives a large deviation principle for MY
n ◦f−1

with speed n and good rate function

Jk(ν) = JY (ν ◦ f) =

{
H(ν ‖ ν1,...,k−1 ⊗ P ) if ν1,...,k−1 = ν2,...,k,
∞ otherwise,

as required to complete the proof.

Our aim is now to prove a large deviation principle for functionals of the
Markov chain that may depend on an unbounded number of states, which
means that we take a limit k →∞ in the preceding theorem. Formally, the
Markov chain is a random element (X1, X2, . . .) of the sequence space X N

and we are interested in the empirical ∞-measure

LX
n,∞ =

1

n

n∑
i=1

δ(Xi,Xi+1,...)

which is in M(X N). The distribution of the Markov chain itself is an element
of this space, therefore such a large deviation principle is said to be on the
process level.

As X N is no longer finite, we need to discuss some topological subtleties now.
The key point is that M(X N) is the projective limit of the spaces M(X k).

A projective system (Yj, pij)i≤j is a family of metric spaces Yj and continuous
maps pij : Yj → Yi such that pik = pij ◦ pjk whenever i ≤ j ≤ k, and pjj are
the identities on Yj. The projective limit, written as

Y∞ = lim
←
Yj,

is the subspace of the product space Y =
∏∞

j=1 Yj consisting of all sequences
(yj) for which yi = pij(yj) whenever i ≤ j. There exist continuous projections

pj : Y∞ → Yj

given as the restrictions of the coordinate maps in the product space Y .
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Theorem 5.2 (Dawson-Gärtner). Let (Xn) be a sequence of random vari-
ables on Y∞ such that for any j the sequence of projections (pj(Xn)) satisfy
a large deviation principle on Yj with good rate function Jj. Then (Xn)
satisfies a large deviation principle on Y∞ with good rate function

J(x) = sup
j
Jj

(
pj(x)

)
, for x ∈ Y∞.

Proof. See Dembo-Zeitouni Theorem 4.6.1.

Let us apply this theorem to our situation. We take

Yj = M(X j)

and, for i ≤ j, the marginal maps

pij : Yj → Yi, ν 7→ ν1,...,i.

This defines a projective system. The associated projective limit consists
formally of sequences (ν(n)) of probability measures on X n such that

ν(i) = (ν(j))1,...,i for i ≤ j,

and the Kolmogorov extension theorem states that this implies that there
exists a unique probability measure ν on M(X N) with ν(j) = ν1,...,j. Hence

lim
←
M(X j) = M(X N)

with the topology given by

νn → ν iff νn
1,...,j → νn

1,...,j for all j,

and projections given by
pk(ν) = ν1,...,k.

The given topology coincides with the weak topology on M(X N).

Note that, for every k,
pk(L

X
n,∞) = LX

n,k.

The Dawson-Gärtner theorem therefore gives a large deviation principle for
the empirical ∞-measure, although with an implicitly defined rate function.
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To derive an explicit expression for the rate function we define the shifts

θi : X N → X N, θi(x1, x2, . . .) = (xi+1, xi+2, . . .).

A measure ν ∈M1(X N) is shift-invariant if ν ◦ θ−1
1 = ν. Moreover, let

Ni = {. . . ,−1, 0, 1, . . . , i}

and define backward measures ν∗(i) ∈M(X Ni) by

ν∗(i)
(
{(. . . , xi−1, xi) : (xi+1−k, . . . , xi) ∈ A}

)
= ν1,...,k(A).

This is well-defined by the Kolmogorov extension theorem and shift-invariance.
An analysis of the rate function yields the following result.

Theorem 5.3. The empirical ∞-measures LX
n,∞ satisfy a large deviation

principle on M1(X N) with speed n and good rate function

J∞(ν) =

{
H(ν∗(1) ‖ ν∗(0) ⊗ P ) if ν shift-invariant,

∞, otherwise,

where ν∗(i) are the backwards measures and ν∗0 ⊗ P is given by

ν∗(0) ⊗ P
(
{(. . . , x0, x1) : (. . . , x0) ∈ A, x1 = a}

)
=

∑
b∈X

ν∗(0)

(
{(. . . , x0) : (. . . , x−1, b) ∈ A}

)
Pb,a.

Proof. The rate function we get from the Dawson-Gärtner theorem is

J∞(ν) =

{
supk H(ν1,...,k ‖ ν1,...,k−1 ⊗ P ) if ν1,...,k−1 = ν2,...,k for all k,
∞, otherwise.

First note that ν is shift invariant if and only if

ν1,...,k−1 = (ν ◦ θ−1
1 )1,...,k−1 = ν2,...,k for all k.

Next observe that ν∗(1),2−k,...,1 = ν1,...,k and ν∗(0),2−k,...,0 = ν1,...,k−1, so that our
result follows once we show that

H
(
ν∗(1),−k,...,1

∥∥ ν∗(0),−k,...,0 ⊗ P
)
↑ H(ν∗(1) ‖ ν∗(0) ⊗ P )

for any shift-invariant ν. This follows directly from Pinsker’s lemma, which
is stated and proved below.
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Lemma 5.4 (Pinsker’s lemma). If ν(1), ν(2) ∈M(X N) then

H
(
ν

(1)
1,...,k

∥∥ ν(2)

1,...,k

)
↑ H(ν(1) ‖ ν(2)) :=

∫ (
log dν(1)

dν(2)

)
dν(1).

Proof. We can represent entropy as

H(ν(1) ‖ ν(2)) = sup
φ

∫
φ dν(1) − log

∫
eφdν(2),

where φ : X N → R is continuous and bounded. We have shown a discrete
variant of this on page 21. Permitting only functions φ depending on the
first k, resp. k − 1, coordinates we see that

H(ν(1) ‖ ν(2)) ≥ H(ν(1)

1,...,k ‖ ν
(2)

1,...,k) ≥ H(ν(1)

1,...,k−1 ‖ ν
(2)

1,...,k−1).

Any bounded continuous function φ can be approximated, for sufficiently
large k, by a function φk depending only on the first k coordinates, such that∣∣∣ ∫

φ dν(1) −
∫
φk dν

(1)

∣∣∣ < ε,

and ∣∣∣ ∫
eφ dν(2) −

∫
eφk dν(2)

∣∣∣ < ε.

This implies that limk→∞H(ν(1)

1,...,k ‖ ν
(2)

1,...,k) = H(ν(1) ‖ ν(2)).
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6 Varadhan’s lemma and its inverse

Varadhan’s lemma makes precise statements about the exponential growth
of functionals of the form

E
[
enf(Xn)

]
, as n→∞.

Typical applications are the calculation of the free energy in statistical me-
chanics models, which are often of this form.

Theorem 6.1 (Varadhan’s lemma). If Xn is a family of random variables
taking values in a metric space M satisfying a large deviation principle with
speed n and rate function I, and f : M → R is a continuous function, which
is bounded from above, then

lim
n→∞

1

n
log E

[
enf(Xn)

]
= sup

x∈M

{
f(x)− I(x)

}
.

Remark: This results extends the Laplace principle in a natural way: Heuris-
tically, we could write

E
[
enf(Xn)

]
≈

∑
x

enf(x)P{Xn ≈ x} ≈
∑

x

en(f(x)−I(x)),

and then the biggest exponent in the sum determines the rate of the sum.

Proof. For the proof denote, for any S ⊂M Borel,

Jn(S) = E
[
1{Xn ∈ S} enf(Xn)

]
.

Denote by a the supremum of f , and by b the supremum of f − I, both are
finite by our assumption on the boundedness of f .

Upper bound: We partition the space according o the values of f . Let C =
f−1([b, a]), define cNj = b+ j

N
(a− b) and CN

j = f−1[cNj−1, c
N
j ], so that

C =
N⋃

j=1

CN
j .
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All the cells CN
j are closed and therefore

lim sup
n→∞

1

n
log P{Xn ∈ CN

j } ≤ − inf
x∈CN

j

I(x).

As f(x) ≤ cNj on CN
j we obtain, from the Laplace principle,

lim sup
n→∞

1

n
log Jn(C) ≤ max

1≤j≤N

{
cNj − inf

x∈CN
j

I(x)
}
.

Using now that

cNj ≤ inf
x∈CN

j

f(x) +
1

N
(a− b),

we get

lim sup
n→∞

1

n
log Jn(C) ≤ max

1≤j≤N

{
inf

x∈CN
j

f(x)− inf
x∈CN

j

I(x)
}

+
1

N
(a− b)

≤ max
1≤j≤N

sup
x∈CN

j

{
f(x)− I(x)

}
+

1

N
(a− b)

= sup
x∈C

{
f(x)− I(x)

}
+

1

N
(a− b)

≤ b+
1

N
(a− b).

Letting N →∞ we get

lim sup
n→∞

1

n
log Jn(C) ≤ b.

As, trivially, Jn(M \ C) ≤ enb the Laplace principle implies

lim sup
n→∞

1

n
log E

[
enf(Xn)

]
≤ b = sup

x∈M

{
f(x)− I(x)

}
.

Lower bound: Pick x ∈M and ε > 0 arbitrary. Then

O(x, ε) = {y ∈M : f(y) > f(x)− ε}

is an open neighbourhood of x, by continuity of f . Therefore

lim inf
n→∞

1

n
log P{Xn ∈ O(x, ε)} ≥ − inf

y∈O(x,ε)
I(y),
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and

lim inf
n→∞

1

n
log Jn

(
O(x, ε)

)
≥ f(x)− ε− I(x).

Now use that
E

[
enf(Xn)

]
≥ Jn

(
O(x, ε)

)
,

let ε ↓ 0 and take the supremum over all x ∈M to find

lim inf
n→∞

1

n
log E

[
enf(Xn)

]
≥ sup

x∈M

{
f(x)− I(x)

}
.

There is an inverse of Vardhan’s lemma, due to Bryc.

Theorem 6.2 (Bryc’s lemma). If Xn is an exponentially tight family of
random variables taking values in a metric space M such that

Λ(f) := lim
n→∞

1

n
log E

[
enf(Xn)

]
exists for all continuous and bounded functions f : M → R, then the random
variables Xn satisfy a large deviation principle with speed n and good rate
function

J(x) = sup
fcts,bdd

{
f(x)− Λ(f)

}
.

Furthermore, we have the equation

Λ(f) = sup
x∈M

{
f(x)− J(x)

}
.

The interest in Bryc’s lemma consists in the fact that the existence of Λ(f)
need only be checked for bounded, continuous functions. However, for most
practical purposes this class is too large, and one prefers to work in a more
restrictive setting, in which the existence of Λ(f) needs to be established for
only a small class of functions. The most successful result in this direction is
the Gärtner-Ellis theorem, which (under suitable assumptions) allows us to
get away with testing only linear functions f .
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Theorem 6.3 (Gärtner-Ellis theorem). Suppose Xn is a family of ran-
dom variables taking values in Rd such that

Λ(x) := lim
n→∞

1

n
log E

[
en〈x,Xn〉

]
exists and is finite for all x ∈ Rd. If Λ is additionally differentiable, then
the random variables Xn satisfy a large deviation principle with speed n and
good rate function

J(x) = sup
y∈Rd

{
〈x, y〉 − Λ(y)

}
.

Remark: The Gärtner-Ellis theorem for d = 1 is also a natural generaliza-
tion of Cramér’s theorem to dependent random variables. In this case J is
given by a Legendre transform. As in our first result, we have not stated
the Gärtner-Ellis theorem in its full strength, there are versions which allow
Λ to be finite on some open set and steep at the boundary, see for example
den Hollander V.2 for a precise statement and more details.

Proof. The proof is similar to that of Cramér’s theorem, so we will only
sketch it, pointing out some places where one needs to be more careful.

In the upper bound one can use Chebyshev’s inequality, choosing for a given
x ∈ Rd a y ∈ Rd which is a near maximizer in the definition of J and arguing
that, given ε > 0 we find δ > 0 with

P
{
Xn ∈ Bδ(x)

}
≤ P

{
〈Xn − x, y〉 ≥ −ε

}
≤ eεnE

[
en〈y,Xn〉

]
e−n〈x,y〉 ≤ e−n(J(x)−2ε).

By covering with finitely many balls, this gives the result for compact sets.
One then has to prove exponential tightness to pass to an upper bound for
all closed sets. This can be proved using Chebyshev again, together with the
fact that the Λ(ei) < ∞ for all unit vectors ei of Rd. In fact, it suffices to
have this for any small, positive multiple of the unit vectors.

For the lower bound, given x ∈ Rd, we are using the changed measures P̂n

given by
dP̂n

dPn

(X) =
1

E[en〈y,Xn〉]
en〈y,X〉,

where y is chosen as an exposing hyperplane for x, which means that

J(z)− J(x) > 〈z − x, y〉 for all z 6= x.
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Our conditions ensure the existence of such an exposing hyperplane, which
is not a trivial fact. It is used in the proof of the weak law of large numbers,
which we again derive from the upper bound. Let

Λ̂n(z) = Ên

[
en〈z,X〉] =

E[en〈z+y,Xn〉]

E[en〈y,Xn〉]
.

Then

lim
n→∞

1

n
log Λ̂n(z) = Λ(y + z)− Λ(y),

so that the upper bound is applicable and yields

lim sup
n→∞

1

n
log P

{
Xn 6∈ Bε(x)

}
≤ − inf

z 6∈Bε(x)

{
J(z)− 〈z, y〉+ Λ(y)

}
.

If z is a minimum in this variational problem, using the definition of J in the
first and the exposing hyperplane property of y in the second step, gives

J(z)− 〈z, y〉+ Λ(y) ≥
[
J(z)− 〈z, y〉

]
−

[
J(x)− 〈x, y〉

]
> 0,

establishing the weak law of large numbers.
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