
Sample path properties of Brownian motion

by Peter Mörters (University of Bath)

This is a set of lecture notes based on a graduate course given at the Berlin
Mathematical School in September 2011. The course is based on a selection of
material from my book with Yuval Peres, entitled Brownian motion, which was
published by Cambridge University Press in 2010.

1 Does Brownian motion hit points?

1.1 What is Brownian motion and why are we interested?

Much of probability theory is devoted to describing the macroscopic picture
emerging in random systems defined by a host of microscopic random effects.
Brownian motion is the macroscopic picture emerging from a particle mov-
ing randomly in d-dimensional space without making very big jumps. On the
microscopic level, at any time step, the particle receives a random displace-
ment, caused for example by other particles hitting it or by an external force,
so that, if its position at time zero is S0, its position at time n is given as
Sn = S0 +

∑n
i=1Xi, where the displacements X1, X2, X3, . . . are assumed to be

independent, identically distributed random variables with values in Rd. The
process {Sn : n > 0} is a random walk, the displacements represent the micro-
scopic inputs. It turns out that not all the features of the microscopic inputs
contribute to the macroscopic picture. Indeed, if they exist, only the mean and
covariance of the displacements are shaping the picture. In other words, all
random walks whose displacements have the same mean and covariance matrix
give rise to the same macroscopic process, and even the assumption that the
displacements have to be independent and identically distributed can be sub-
stantially relaxed. This effect is called universality, and the macroscopic process
is often called a universal object. It is a common approach in probability to study
various phenomena through the associated universal objects.

If the jumps of a random walk are sufficiently tame to become negligible in
the macroscopic picture, in particular if it has finite mean and variance, any
continuous time stochastic process {B(t) : t > 0} describing the macroscopic
features of this random walk should have the following properties:

(1) for all times 0 6 t1 6 t2 6 . . . 6 tn the random variables

B(tn)−B(tn−1), B(tn−1)−B(tn−2), . . . , B(t2)−B(t1)

are independent; we say that the process has independent increments,

(2) the distribution of the increment B(t + h) − B(t) does not depend on t;
we say that the process has stationary increments,
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(3) the process {B(t) : t > 0} has almost surely continuous paths.

It follows (with some work) from the central limit theorem that these features
imply that there exists a vector µ ∈ Rd and a matrix Σ ∈ Rd×d such that

(4) for every t > 0 and h > 0 the increment B(t + h) − B(t) is multivariate
normally distributed with mean hµ and covariance matrix hΣΣT.

Hence any process with the features (1)-(3) above is characterised by just three
parameters,

• the initial distribution, i.e. the law of B(0),

• the drift vector µ,

• the diffusion matrix Σ.

If the drift vector is zero, and the diffusion matrix is the identity we say the
process is a Brownian motion. If B(0) = 0, i.e. the motion is started at the
origin, we use the term standard Brownian motion.

Suppose we have a standard Brownian motion {B(t) : t > 0}. If X is a random
variable with values in Rd, µ a vector in Rd and Σ a d × d matrix, then it is
easy to check that {B̃(t) : t > 0} given by

B̃(t) = X + µt+ ΣB(t), for t > 0,

is a process with the properties (1)-(4) with initial distribution X, drift vector µ
and diffusion matrix Σ. Hence the macroscopic picture emerging from a random
walk with finite variance can be fully described by a standard Brownian motion.

1.2 Two basic properties of Brownian motion

A key property of Brownian motion is its scaling invariance, which we now
formulate. We describe a transformation on the space of functions, which
changes the individual Brownian random functions but leaves their distribu-
tion unchanged.

Lemma 1.1 (Scaling invariance). Suppose {B(t) : t > 0} is a standard Brow-
nian motion and let a > 0. Then the process {X(t) : t > 0} defined by X(t) =
1
aB(a2t) is also a standard Brownian motion.

Proof. Continuity of the paths, independence and stationarity of the
increments remain unchanged under the scaling. It remains to observe that
X(t) −X(s) = 1

a (B(a2t) − B(a2s)) is normally distributed with expectation 0
and variance (1/a2)(a2t− a2s) = t− s.

A property that is immediate is that Brownian motion starts afresh at any given
fixed time. This statement also holds for a class of random times called stopping
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times. A random variable T with values in [0,∞], defined on a probability
space with filtration (F(t) : t > 0) is called a stopping time with respect to
(F(t) : t > 0) if {T 6 t} ∈ F(t), for every t > 0. In the case of Brownian motion
we choose the filtration given by

F+(t) =
⋂
ε>0

σ{B(s) : s < t+ ε}.

This ensure that first entry times into open or closed sets are always stopping
times. We can now state the strong Markov property for Brownian motion,
which was rigorously established by Hunt and Dynkin in the mid fifties.

Theorem 1.2 (Strong Markov property). For every almost surely finite stop-
ping time T , the process

{B(T + t)−B(T ) : t > 0}

is a standard Brownian motion independent of F+(T ).

We will see many applications of the strong Markov property later, however, the
next result, the reflection principle, is particularly interesting. The reflection
principle states that Brownian motion reflected at some stopping time T is still
a Brownian motion.

Theorem 1.3 (Reflection principle). If T is a stopping time and {B(t) : t > 0}
is a standard Brownian motion, then the process {B∗(t) : t > 0} called Brown-
ian motion reflected at T and defined by

B∗(t) = B(t)1{t6T} + (2B(T )−B(t))1{t>T}

is also a standard Brownian motion.

Proof. If T is finite, by the strong Markov property both paths

{B(t+ T )−B(T ) : t > 0} and {−(B(t+ T )−B(T )) : t > 0} (1)

are Brownian motions and independent of the beginning {B(t) : 0 6 t 6 T}. The
process arising from glueing the first path in (1) to {B(t) : 0 6 t 6 T} and the
process arising from glueing the second path in (1) to {B(t) : 0 6 t 6 T} have the
same distribution. The first is just {B(t) : t > 0}, the second is {B∗(t) : t > 0},
as introduced in the statement.

Now we apply the reflection principle in the case of linear Brownian motion.
Let M(t) = max06s6tB(s). A priori it is not at all clear what the distribution
of this random variable is, but we can determine it as a consequence of the
reflection principle.

Lemma 1.4. P0{M(t) > a} = 2P0{B(t) > a} = P0{|B(t)| > a} for all a > 0.
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Proof. Let T = inf{t > 0: B(t) = a} and let {B∗(t) : t > 0} be Brownian
motion reflected at the stopping time T . Then

{M(t) > a} = {B(t) > a} ∪ {M(t) > a, B(t) 6 a}.

This is a disjoint union and the second summand coincides with event {B∗(t) > a}.
Hence the statement follows from the reflection principle.

1.3 The range of planar Brownian motion has zero area

Suppose {B(t) : t > 0} is planar Brownian motion. We denote the Lebesgue
measure on Rd by Ld. In this section we prove Lévy’s theorem on the area of
planar Brownian motion.

Theorem 1.5 (Lévy 1940). Almost surely, L2(B[0, 1]) = 0.

For a set A ⊂ Rd and x ∈ Rd we write A+ x := {a+ x : a ∈ A}.

Lemma 1.6. If A1, A2 ⊂ R2 are Borel sets with positive area, then

L2

({
x ∈ R2 : L2(A1 ∩ (A2 + x)) > 0

})
> 0.

The proof of the lemma is an exercise. To prove Theorem 1.5 we let X =
L2(B[0, 1]) denote the area of B[0, 1]. First we check that E[X] < ∞. Note
that X > a only if the Brownian motion leaves the square centred in the origin
of side length

√
a. Hence, using Theorem 1.4 and a standard tail estimate for

standard normal variables,

P{X > a} 6 2 P
{

max
t∈[0,1]

|W (t)| >
√
a/2 } = 6 8 P{W (1) >

√
a/2} 6 8e−a/8,

for a > 1, where {W (t) : t > 0} is standard one-dimensional Brownian motion.
Hence,

E[X] =
∫ ∞

0

P{X > a} da 6 4
∫ ∞

1

e−a/8da+ 1 <∞.

Note that B(3t) and
√

3B(t) have the same distribution, and hence

EL2(B[0, 3]) = 3EL2(B[0, 1]) = 3E[X] .

Note that we have L2(B[0, 3]) 6
∑2
j=0 L2(B[j, j + 1]) with equality if and only

if for 0 6 i < j 6 2 we have L2(B[i, i+ 1]∩B[j, j+ 1]) = 0. On the other hand,
for j = 0, 1, 2, we have EL2(B[j, j + 1]) = E[X] and

3E[X] = EL2(B[0, 3]) 6
2∑
j=0

EL2(B[j, j + 1]) = 3E[X] ,

whence, almost surely, the intersection of any two of the B[j, j+ 1] has measure
zero. In particular, L2(B[0, 1] ∩B[2, 3]) = 0 almost surely.
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Now we can use the Markov property to define two Brownian motions, {B1(t) : t ∈
[0, 1]} by B1(t) = B(t), and {B2(t) : t ∈ [0, 1]} by B2(t) = B(t+2)−B(2)+B(1).
The random variable Y := B(2) − B(1) is independent of both Brownian mo-
tions. For x ∈ R2, let R(x) denote the area of the set B1[0, 1] ∩ (x + B2[0, 1]),
and note that {R(x) : x ∈ R2} is independent of Y . Then

0 = E[L2(B[0, 1] ∩B[2, 3])] = E[R(Y )] = (2π)−1

∫
R2
e−|x|

2/2 E[R(x)] dx,

where we are averaging with respect to the Gaussian distribution of B(2)−B(1).
Thus, for L2-almost all x, we have R(x) = 0 almost surely and hence,

L2

({
x ∈ R2 : R(x) > 0

})
= 0, almost surely.

From Lemma 1.6 we get that, almost surely, L2(B[0, 1]) = 0 or L2(B[2, 3]) = 0.
The observation that L2(B[0, 1]) and L2(B[2, 3]) are identically distributed and
independent completes the proof that L2(B[0, 1]) = 0 almost surely.

Remark 1.7. How big is the path of Brownian motion? We have seen that the
Lebesgue measure of a planar Brownian path is zero almost surely, but a more
precise answer needs the concept of Hausdorff measure and dimension, which
we develop in the next lecture. �

The following corollary holds for Brownian motion in any dimension d > 2 and
answers the question of the title in the negative.

Corollary 1.8. For any points x, y ∈ Rd, d > 2, we have Px{y ∈ B(0, 1]} = 0.

Proof. Observe that, by projection onto the first two coordinates, it suffices
to prove this result for d = 2. Note that Theorem 1.5 holds for Brownian motion
with arbitrary starting point y ∈ R2. By Fubini’s theorem, for any fixed y ∈ R2,∫

R2
Py{x ∈ B[0, 1]} dx = EyL2(B[0, 1]) = 0.

Hence, for L2-almost every point x, we have Py{x ∈ B[0, 1]} = 0. By symmetry
of Brownian motion,

Py{x ∈ B[0, 1]} = P0{x− y ∈ B[0, 1]} = P0{y− x ∈ B[0, 1]} = Px{y ∈ B[0, 1]} .

We infer that Px{y ∈ B[0, 1]} = 0, for L2-almost every point x. For any ε > 0
we thus have, almost surely, PB(ε){y ∈ B[0, 1]} = 0. Hence,

Px{y ∈ B(0, 1]} = lim
ε↓0

Px{y ∈ B[ε, 1]} = lim
ε↓0

ExPB(ε){y ∈ B[0, 1− ε]} = 0,

where we have used the Markov property in the second step.

5



2 How big is the path of Brownian motion?

Dimensions are a tool to measure the size of mathematical objects on a crude
scale. For example, in classical geometry one can use dimension to see that a
line segment (a one-dimensional object) is smaller than the surface of a ball
(a two-dimensional object), but there is no difference between line-segments of
different lengths. It may therefore come as a surprise that dimension is able to
distinguish the size of so many objects in probability theory.

For every α > 0 the α-value of a sequence E1, E2, . . . of sets in a metric space
is ( with |Ei| denoting the diameter of Ei)

∞∑
i=1

|Ei|α .

For every α > 0 denote

Hαδ (E) := inf
{ ∞∑
i=1

|Ei|α : E1, E2, . . . is a covering of E with |Ei| 6 δ
}
.

The α-Hausdorff measure of E is defined as

Hα(E) = lim
δ↓0
Hαδ (E),

informally speaking the α-value of the most efficient covering by small sets. If
0 6 α < β, and Hα(E) < ∞, then Hβ(E) = 0. If 0 6 α < β, and Hβ(E) > 0,
then Hα(E) =∞. Thus we can define

dimE = inf
{
α > 0: Hα(E) <∞

}
= sup

{
α > 0: Hα(E) > 0

}
,

the Hausdorff dimension of the set E.

Theorem 2.1. For d > 2, then H2
(
B([0, 1])

)
<∞ and hence dim B[0, 1] 6 2,

almost surely.

Proof. For any n ∈ N, we look at the covering of B([0, 1]) by the closure of
the balls

B
(
B( kn ), max

k
n6t6 k+1

n

∣∣B(t)−B( kn )
∣∣), k ∈ {0, . . . , n− 1}.

By the uniform continuity of Brownian motion on the unit interval, the maximal
diameter in these coverings goes to zero, as n→∞. Moreover, we have

E
[(

max
k
n6t6 k+1

n

∣∣B(t)−B( kn )
∣∣)2]

= E
[(

max
06t6 1

n

|B(t)|
)2]

=
1
n

E
[(

max
06t61

|B(t)|
)2]

,
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using Brownian scaling. The expectation on the right is finite by the reflection
principle. Indeed,

E
[(

max
06t61

|B(t)|
)2]

=
∫ ∞

0

P
{

max
06t61

|B(t)|2 > x
}
dx

6 4
∫ ∞

0

P
{

max
06t61

W (t) >
√
x/
√

2
}
dx

6 8
∫ ∞

0

P
{
B(t) >

√
x/
√

2
}
dx <∞.

Hence the expected 2-value of the nth covering is bounded from above by

4E
[ n−1∑
k=0

(
max

k
n6t6 k+1

n

∣∣B(t)−B( kn )
∣∣)2]

= 4 E
[(

max
06t61

|B(t)|
)2]

,

which implies, by Fatou’s lemma, that

E
[

lim inf
n→∞

4
n−1∑
k=0

(
max

k
n6t6 k+1

n

∣∣B(t)−B( kn )
∣∣)2]

<∞.

Hence the liminf is almost surely finite, as required.

Remark 2.2. With some extra effort it can be shown that H2(B([0, 1])) = 0.

From the definition of the Hausdorff dimension it is plausible that in many
cases it is relatively easy to give an upper bound on the dimension: just find
an efficient cover of the set and find an upper bound to its α-value. However
it looks more difficult to give lower bounds, as we must obtain a lower bound
on α-values of all covers of the set. The energy method is a way around this
problem, which is based on the existence of a nonzero measure on the set. The
basic idea is that, if this measure distributes a positive amount of mass on a set
E in such a manner that its local concentration is bounded from above, then
the set must be large in a suitable sense. Suppose µ is a measure on a metric
space (E, ρ) and α > 0. The α-potential of a point x ∈ E with respect to µ is
defined as

φα(x) =
∫

dµ(y)
ρ(x, y)α

.

In the case E = R3 and α = 1, this is the Newton gravitational potential of the
mass µ. The α-energy of µ is

Iα(µ) =
∫
φα(x) dµ(x) =

∫∫
dµ(x) dµ(y)
ρ(x, y)α

.

Measures with Iα(µ) <∞ spread the mass so that at each place the concentra-
tion is sufficiently small to overcome the singularity of the integrand. This is
only possible on sets which are large in a suitable sense.
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Theorem 2.3 (Energy method). Let α > 0 and µ be a nonzero measure on a
metric space E. Then, for every ε > 0, we have

Hαε (E) >
µ(E)2∫∫

ρ(x,y)<ε
dµ(x) dµ(y)
ρ(x,y)α

.

Hence, if Iα(µ) <∞ then Hα(E) =∞ and, in particular, dimE > α.

Proof. (Due to O. Schramm) If {An : n = 1, 2, . . .} is any pairwise disjoint
covering of E consisting of closed sets of diameter < ε, then∫∫

ρ(x,y)<ε

dµ(x) dµ(y)
ρ(x, y)α

>
∞∑
n=1

∫∫
An×An

dµ(x) dµ(y)
ρ(x, y)α

>
∞∑
n=1

µ(An)2

|An|α
,

and moreover,

µ(E) 6
∞∑
n=1

µ(An) =
∞∑
n=1

|An|
α
2
µ(An)
|An|

α
2

Given δ > 0 choose a covering as above such that additionally

∞∑
n=1

|An|α 6 Hαε (E) + δ.

Using now the Cauchy–Schwarz inequality, we get

µ(E)2 6
∞∑
n=1

|An|α
∞∑
n=1

µ(An)2

|An|α
6
(
Hαε (E) + δ

) ∫∫
ρ(x,y)<ε

dµ(x) dµ(y)
ρ(x, y)α

.

Letting δ ↓ 0 gives the stated inequality. Further, letting ε ↓ 0, if EIα(µ) < ∞
the integral converges to zero, so that Hαε (E) diverges to infinity.

Remark 2.4. To get a lower bound on the dimension from this method it
suffices to show finiteness of a single integral. In particular, in order to show
for a random set E that dimE > α almost surely, it suffices to show that
EIα(µ) <∞ for a (random) measure on E. �

Theorem 2.5 (Taylor 1953). Let {B(t) : 0 6 t 6 1} be d-dimensional Brownian
motion, d > 2, then dimB[0, 1] = 2 almost surely.

Proof. Recall that we already know the upper bound. We now look at the
lower bound. A natural measure on B[0, 1] is the occupation measure µ defined
by µ(A) = L(B−1(A) ∩ [0, 1]), for all Borel sets A ⊂ Rd, or, equivalently,∫

Rd
f(x) dµ(x) =

∫ 1

0

f
(
B(t)

)
dt,
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for all bounded measurable functions f . We want to show that, for 0 < α < 2,

E
∫∫

dµ(x) dµ(y)
|x− y|α

= E
∫ 1

0

∫ 1

0

ds dt

|B(t)−B(s)|α
<∞. (2)

Let us evaluate the expectation

E|B(t)−B(s)|−α = E
[
(|t− s|1/2|B(1)|)−α

]
= |t− s|−α/2

∫
Rd

cd
|z|α

e−|z|
2/2dz.

The integral can be evaluated using polar coordinates, but all we need is that
it is a finite constant c depending on d and α only. Substituting this expression
into (2) and using Fubini’s theorem we get

EIα(µ) = c

∫ 1

0

∫ 1

0

ds dt

|t− s|α/2
6 2c

∫ 1

0

du

uα/2
<∞. (3)

Therefore Iα(µ) < ∞ and hence dimB[0, 1] > α, almost surely. The lower
bound on the range follows by letting α ↑ 2.

We define the α-capacity, of a metric space (E, ρ) as

Capα(E) := sup
{
Iα(µ)−1 : µ a probability measure on E

}
.

In the case of the Euclidean space E = Rd with d > 3 and α = d − 2 the α-
capacity is also known as the Newtonian capacity. Theorem 2.3 states that
a set of positive α-capacity has dimension at least α. The famous Frostman’s
lemma states that in Euclidean spaces this method is sharp, i.e., for any closed
(or, more generally, analytic) set A ⊂ Rd,

dimA = sup
{
α : Capα(A) > 0

}
.

We omit the proof, but we’ll discuss in Exercise 4 how this result can be exploited
to give McKean’s theorem.
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3 Which sets are hit by Brownian motion?

One of our ideas to measure the size of sets was based on the notion of capacity.
While this notion appeared to be useful, but maybe a bit artificial at the time,
we can now understand its true meaning. This is linked to the notion of polarity,
namely whether a set has a positive probability of being hit by a suitably defined
random set.

More precisely, we call a Borel set A ⊂ Rd is polar for Brownian motion if, for
all x,

Px
{
B(t) ∈ A for some t > 0

}
= 0.

By Corollary 1.8 points are polar for Brownian motion in all dimensions d > 2.
The general characterisation of polar sets requires an extension of the notion of
capacities to a bigger class of kernels.

Suppose A ⊂ Rd is a Borel set and K : Rd × Rd → [0,∞] is a kernel. Then the
K-energy of a measure µ is defined to be

IK(µ) =
∫∫

K(x, y) dµ(x) dµ(y),

and the K-capacity of A is defined as

CapK(A) =
[
inf
{
IK(µ) : µ a probability measure on A

}]−1
.

Recall that the α-energy of a measure and the α-capacity Capα of a set corre-
spond to the kernel K(x, y) = |x− y|−α.

Theorem 3.1 (Kakutani’s theorem). A closed set Λ is polar for d-dimensional
Brownian motion if and only if it has zero K-capacity for the potential kernel
K defined by

K(x, y) =

{ ∣∣ log
(

1
|x−y|

)∣∣ if d = 2,

|x− y|2−d if d > 3.

Instead of proving Kakutani’s theorem directly, we aim for a stronger, quan-
titative result. To this end we take {B(t) : 0 6 t 6 T} to be d-dimensional
Brownian motion killed at time T , and either d > 3 and T = ∞, or d > 2 and
T is the first exit time from a bounded domain D containing the origin. This
result gives, for compact sets Λ ⊂ D, a quantitative estimate of

P0

{
∃0 < t < T such that B(t) ∈ Λ

}
in terms of capacities. However, even if d = 3 and T = ∞, one cannot expect
that

P0

{
∃t > 0 such that B(t) ∈ Λ

}
� CapK(Λ)

for the potential kernel K in Theorem 3.1. Observe, for example, that the left
hand side depends strongly on the starting point of Brownian motion, whereas
the right hand side is translation invariant. Similarly, if Brownian motion is
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starting at the origin, the left hand side is invariant under scaling, i.e. remains
the same when Λ is replaced by λΛ for any λ > 0, whereas the right hand
side is not. For a direct comparison of hitting probabilities and capacities, it is
therefore necessary to use a capacity function with respect to a scale-invariant
modified kernel. To this end define the Green kernel G(x, ·), as the density of
the expected occupation measure∫

G(x, y)f(y) dy = Ex
∫ T

0

f(B(t)) dt,

which in the case d > 3 is known as

G(x, y) =
Γ(d/2− 1)

2πd/2
|x− y|2−d,

and hence agrees up to a constant multiple with the potential kernel. We define
the Martin kernel M : D ×D → [0,∞] by

M(x, y) :=
G(x, y)
G(0, y)

for x 6= y,

and otherwise by M(x, x) =∞.
The following theorem of Benjamini, Pemantle and Peres (1995) shows that
Martin capacity is indeed a good estimate of the hitting probability.

Theorem 3.2. Let {B(t) : 0 6 t 6 T} be a Brownian motion killed as before,
and A ⊂ D closed. Then

1
2 CapM (A) 6 P0{∃0 < t 6 T such that B(t) ∈ A} 6 CapM (A) (4)

Proof. Let µ be the (possibly sub-probability) distribution of B(τ) for the
stopping time τ = inf{0 < t 6 T : B(t) ∈ A}. Note that the total mass of µ is

µ(A) = P0{τ 6 T} = P0{B(t) ∈ A for some 0 < t 6 T}. (5)

The idea for the upper bound is that if the harmonic measure µ is nonzero,
it is an obvious candidate for a measure of finite M -energy. Recall from the
definition of the Green’s function, for any y ∈ D,

E0

∫ T

0

1{|B(t)− y| < ε} dt =
∫
B(y,ε)

G(0, z) dz. (6)

By the strong Markov property applied to the first hitting time τ of A,

P0

{
|B(t)− y| < ε and t 6 T

}
> P0

{
|B(t)− y| < ε and τ 6 t 6 T

}
= EP

{
|B(t− τ)− y| < ε | F(τ)

}
.
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Integrating over t and using Fubini’s theorem yields

E0

∫ T

0

1{|B(t)− y| < ε} dt >
∫
A

∫
B(y,ε)

G(x, z) dz dµ(x).

Combining this with (6) we infer that∫
B(y,ε)

∫
A

G(x, z) dµ(x) dz 6
∫
B(y,ε)

G(0, z) dz .

Dividing by L(B(0, ε)) and letting ε ↓ 0 we obtain∫
A

G(x, y) dµ(x) 6 G(0, y),

i.e.
∫
A
M(x, y) dµ(x) 6 1 for all y ∈ D. Therefore, IM (µ) 6 µ(A) and thus if

we use µ/µ(A) as a probability measure we get

CapM (A) > [IM (µ/µ(A))]−1 > µ(A),

which by (5) yields the upper bound on the probability of hitting A.
To obtain a lower bound for this probability, a second moment estimate is used.
It is easily seen that the Martin capacity of A is the supremum of the capacities
of its compact subsets, so we may assume that A is a compact subset of the
domain D \ {0}. We take ε > 0 smaller than half the distance of A to Dc ∪{0}.
For x, y ∈ A let

hε(x, y) =
∫
B(y,ε)

G(x, ξ) dξ

denote the expected time which a Brownian motion started in x spends in the
ball B(y, ε). Also define

h∗ε(x, y) = sup
|x−z|<ε

∫
B(y,ε)

G(z, ξ) dξ.

Given a probability measure ν on A, and ε > 0, consider the random variable

Zε =
∫
A

∫ T

0

1{B(t) ∈ B(y, ε)}
hε(0, y)

dt dν(y) .

Clearly E0Zε = 1. By symmetry, the second moment of Zε can be written as

E0Z
2
ε = 2E0

∫ T

0

ds

∫ T

s

dt

∫∫
1{B(s) ∈ B(x, ε), B(t) ∈ B(y, ε)}

hε(0, x)hε(0, y)
dν(x) dν(y)

6 2E0

∫∫ ∫ T

0

ds 1{B(s) ∈ B(x, ε)} h∗ε(x, y)
hε(0, x)hε(0, y)

dν(x) dν(y)

= 2
∫∫

h∗ε(x, y)
hε(0, y)

dν(x) dν(y).

(7)
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Observe that, for all fixed x, y ∈ A we have limε↓0 L(B(0, ε))−1 h∗ε(x, y) =
G(x, y) and limε↓0 L(B(0, ε))−1 hε(0, y) = G(0, y). Hence, we obtain,

lim
ε↓0

EZ2
ε 6 2

∫∫
G(x, y)
G(0, y)

dν(x) dν(y) = 2IM (ν), (8)

using dominated convergence (which has to be justified by a separate argu-
ment, which we omit here). Clearly, the hitting probability P{∃0 < t < T, y ∈
A such that B(t) ∈ B(y, ε)} is at least

P{Zε > 0} >
(EZε)2

EZ2
ε

= (EZ2
ε )−1 ,

where we have used the Paley–Zygmund inequality. Compactness of A, together
with transience and continuity of Brownian motion, imply that if the Brownian
path visits every ε-neighbourhood of the compact set A then it intersects A
itself. Therefore, by (8),

P{∃0 < t < T such that B(t) ∈ A}> lim
ε↓0

(EZ2
ε )−1 >

1
2IM (ν)

.

Since this is true for all probability measures ν on A, we get the conclusion.

From Theorem 3.2 we now readily obtain Kakutani’s theorem. It suffices, by
taking countable unions, to consider compact sets Λ which have positive distance
from the origin. First consider the case d > 3. Then G(0, x) is bounded away
from zero and infinity. Hence the set Λ is polar if and only if its K-capacity
vanishes. In the case d = 2 we choose a large ball B(0, R) containing Λ. The
Green’s function for the Brownian motion stopped upon leaving B(0, R) satisfies

G(x, y) = − 1
π log |x− y|+ Ex

[
1
π log |B(T )− y|

]
.

The second summand of G(x, y) is bounded from above if x, y ∈ Λ, and G(0, y)
is bounded from zero. Hence only the contribution from − log |x − y| decides
about finiteness of the Martin energy of a probability measure. Therefore, any
probability measure on Λ with finite Martin energy has finite K-energy, and
vice versa. This completes the proof.

Suppose that {B1(t) : t > 0} and {B2(t) : t > 0} are two independent d-
dimensional Brownian motions started in arbitrary points. The question we
ask now is, in which dimensions the paths of the two motions have a nontriv-
ial intersection, in other words whether there exist times t1, t2 > 0 such that
B1(t1) = B2(t2). Keeping the path {B1(t) : t > 0} fixed, we have to decide
whether it is a polar set for the second Brownian motion. By Kakutani’s the-
orem, Theorem 3.1, this question depends on its capacity with respect to the
potential kernel.
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Theorem 3.3.

(a) For d > 4, almost surely, two independent Brownian paths in Rd have an
empty intersection, except for a possible common starting point.

(b) For d 6 3, almost surely, the intersection of two independent Brownian
paths in Rd is nontrivial, i.e. contains points other than a possible common
starting point.

Proof. (a). Note that it suffices to look at one Brownian motion and show
that its path is, almost surely, a set of capacity zero with respect to the potential
kernel. If d > 4, the capacity with respect to the potential kernel is a multiple
of the (d − 2)-capacity. By Theorem 2.3 this capacity is zero for sets of finite
(d−2)-dimensional Hausdorff measure. Now note that if d > 5 the dimension of
a Brownian path is two, and hence strictly smaller than d−2, so that the (d−2)-
dimensional Hausdorff measure is zero, which shows that the capacity must be
zero. If d = 4 the situation is only marginally more complicated, although
the dimension of the Brownian path is 2 = d − 2 and the simple argument
above does not apply. However, we know that H2(B[0, 1]) < ∞ almost surely,
which implies that Cap2(B[0, 1]) = 0 by Theorem 2.3. This implies that an
independent Brownian motion almost surely does not hit any of the segments
B[n, n+ 1], and therefore avoids the path entirely.
(b). If d = 3, the capacity with respect to the potential kernel is a multiple
of the 1-capacity. As the Hausdorff dimension of a path is two, this capacity is
positive by Frostman’s lemma. Therefore two Brownian paths in d = 3 intersect
with positive probability. It is an exercise to complete the proof and show that
this happens almost surely.

14



4 Does Brownian motion have multiple points?

Having found that two Brownian motions intersect, we now ask whether for
d = 2, 3 a collection of p independent d-dimensional Brownian motions

{B1(t) : t > 0}, . . . , {Bp(t) : t > 0}

intersect, i.e. if there exist times t1, . . . , tp > 0 such that B1(t1) = · · · = Bp(tp).

Theorem 4.1.

(a) For d > 3, almost surely, three independent Brownian paths in Rd have
an empty intersection, except for a possible common starting point.

(b) For d = 2, almost surely, the intersection of any finite number p of in-
dependent Brownian paths in Rd is nontrivial, i.e. contains points other
than a possible common starting point.

In the light of our discussion of the case p = 2, it is natural to approach the
question about the existence of intersections of p paths, by asking for the Haus-
dorff dimension and measure of the intersection of p− 1 paths. This leads to an
easy proof of (a).

Lemma 4.2. Suppose {Bi(t) : t > 0}, for i = 1, 2, are two independent Brow-
nian motions in d = 3. Then, almost surely, for every compact set Λ ⊂ R3 not
containing the starting points of the Brownian motions, we have H1(B1[0,∞)∩
B2[0,∞) ∩ Λ) <∞.

Proof. Fix a cube Cube ⊂ R3 of unit side length not containing the starting
points. It suffices to show that, almost surely, H1(B1[0,∞)∩B2[0,∞)∩Cube) <
∞. For this purpose let Cn be the collection of dyadic subcubes of Cube of side
length 2−n, and In be the collection of cubes in Cn which are hit by both
motions. There exists C > 0 such that, for any cube E ∈ Cn,

P
{
E ∈ In

}
= P

{
∃s > 0 with B(s) ∈ E

}2
6 C2−2n.

Now, for every n, the collection In is a covering of B1[0,∞)∩B2[0,∞)∩ Cube,
and

E
[ ∑
E∈In

|E|
]

= 23n P
{
E ∈ In

}√
32−n 6 C

√
3.

Therefore, by Fatou’s lemma, we obtain

E
[

lim inf
n→∞

∑
E∈In

|E|
]

6 lim inf
n→∞

E
[ ∑
E∈In

|E|
]

6 C
√

3.

Hence the liminf is finite almost surely, and we infer from this thatH1(B1[0,∞)∩
B2[0,∞) ∩ Cube) is finite almost surely.
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To prove Theorem 4.1 (a) it suffices to show that, for any cube Cube of unit side
length which does not contain the origin, we have Cap1(B1[0,∞) ∩ B2[0,∞) ∩
Cube) = 0. This follows directly from Lemma 4.2 and the energy method, The-
orem 2.3. For Theorem 4.1 (b) it suffices to show that the Hausdorff dimension
of the set B1(0,∞)∩ . . .∩Bp−1(0,∞) is positive in the case d = 2. This problem
was raised by Itô and McKean in the first edition of their influential book and
has since been resolved by Taylor and Fristedt. The problem of finding lower
bounds for the Hausdorff dimension of the intersection sets is best approached
using the technique of stochastic co-dimension, which we discuss now.

Given a set A, the idea behind the stochastic co-dimension approach is to take a
suitable random test set Θ, and check whether P{Θ∩A 6= ∅} is zero or positive.
In the latter case this indicates that the set is large, and we should therefore
get a lower bound on the dimension of A. The approach we use here is based
on using the family of percolation limit sets as test sets.

Suppose that C ⊂ Rd is a fixed compact unit cube. We denote by Cn the
collection of compact dyadic subcubes (relative to C) of side length 2−n. We
also let

C =
∞⋃
n=0

Cn.

Given γ ∈ [0, d] we construct a random compact set Γ[γ] ⊂ C inductively
as follows: We keep each of the 2d compact cubes in C1 independently with
probability p = 2−γ . Let S1 be the collection of cubes kept in this procedure
and S(1) their union. Pass from Sn to Sn+1 by keeping each cube of Cn+1, which
is not contained in a previously rejected cube, independently with probability
p. Denote by S =

⋃∞
n=1 Sn and let S(n+ 1) be the union of the cubes in Sn+1.

Then the random set

Γ[γ] :=
∞⋂
n=1

S(n)

is called a percolation limit set. The usefulness of percolation limit sets in
fractal geometry comes from the following theorem.

Theorem 4.3 (Hawkes 1981). For every γ ∈ [0, d] and every closed set A ⊂ C
the following properties hold

(i) if dimA < γ, then almost surely, A ∩ Γ[γ] = ∅,

(ii) if dimA > γ, then A ∩ Γ[γ] 6= ∅ with positive probability.

Remark 4.4. The stochastic co-dimension technique and the energy method
are closely related: A set A is called polar for the percolation limit set, if

P{A ∩ Γ[γ] 6= ∅} = 0.

A set is polar for the percolation limit set if and only if it has γ-capacity zero.
For d > 3, the criterion for polarity of a percolation limit set with γ = d − 2
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therefore agrees with the criterion for the polarity for Brownian motion, recall
Theorem 3.1. This ‘equivalence’ between percolation limit sets and Brownian
motion has a quantitative strengthening due to Peres.

The proof of part (i) in Hawkes’ theorem is based on the first moment method,
which means that we essentially only have to calculate an expectation. Because
dimA < γ there exists, for every ε > 0, a covering of A by countably many sets
D1, D2, . . . with

∑∞
i=1 |Di|γ < ε. As each set is contained in no more than a

constant number of dyadic cubes of smaller diameter, we may even assume that
D1, D2, . . . ∈ C. Suppose that the side length of Di is 2−n, then the probability
that Di ∈ Sn is 2−nγ . By picking from D1, D2, . . . those cubes which are in
S we get a covering of A ∩ Γ[γ]. Let N be the number of cubes picked in this
procedure, then

P{A ∩ Γ[γ] 6= ∅} 6 P{N > 0} 6 EN =
∞∑
i=1

P{Di ∈ S} =
∞∑
i=1

|Di|γ < ε.

As this holds for all ε > 0 we infer that, almost surely, we have A ∩ Γ[γ] = ∅.
The proof of part (ii) is based on the second moment method, which means
that a variance has to be calculated. We also use Frostman’s lemma, which
states that, as dimA > γ, there exists a probability measure µ on A such that
Iγ(µ) <∞. Now let n be a positive integer and define the random variables

Yn =
∑
C∈Sn

µ(C)
|C|γ

=
∑
C∈Cn

µ(C)2nγ 1{C∈Sn}.

Note that Yn > 0 implies S(n) ∩A 6= ∅ and, by compactness, if Yn > 0 for all n
we even have A ∩ Γ[γ] 6= ∅. As Yn+1 > 0 implies Yn > 0, we get that

P
{
A ∩ Γ[γ] 6= ∅

}
> P

{
Yn > 0 for all n

}
= lim
n→∞

P
{
Yn > 0

}
.

It therefore suffices to give a positive lower bound for P{Yn > 0} indepen-
dent of n. A straightforward calculation gives for the first moment E[Yn] =∑
C∈Cn

µ(C) = 1. For the second moment we find

E[Y 2
n ] =

∑
C∈Cn

∑
D∈Cn

µ(C)µ(D) 22nγ P{C ∈ Sn and D ∈ Sn}.

The latter probability depends on the dyadic distance of the cubes C and D:
if 2−m is the side length of the smallest dyadic cube which contains both C
and D, then the probability in question is 2−2γ(n−m)2−γm. The value m can
be estimated in terms of the Euclidean distance of the cubes, indeed if x ∈ C
and y ∈ D then |x − y| 6

√
d2−m. This gives a handle to estimate the second

moment in terms of the energy of µ. We find that

E[Y 2
n ] =

∑
C∈Cn

∑
D∈Cn

µ(C)µ(D)2γm 6 dγ/2
∫∫

dµ(x) dµ(y)
|x− y|γ

= dγ/2Iγ(µ).
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Plugging these moment estimates into the Paley–Zygmund inequality gives
P{Yn > 0} > d−γ/2Iγ(µ)−1, as required.

We now apply Hawkes’ theorem to intersections of Brownian paths.

Theorem 4.5. Suppose d = 2, 3 and {B1(t) : t > 0}, {B2(t) : t > 0} are inde-
pendent d-dimensional Brownian motions. Then, almost surely,

dim
(
B1[0,∞) ∩B2[0,∞)

)
= 4− d.

Proof. We focus on d = 3 (the case d = 2 being similar) and note that the
upper bound follows from Lemma 4.2, and hence only the lower bound remains
to be proved. Suppose γ < 1 is arbitrary, and pick β > 1 such that γ + β < 2.
Let Γ[γ] and Γ[β] be two independent percolation limit sets, independent of
the Brownian motions. Note that Γ[γ] ∩ Γ[β] is a percolation limit set with
parameter γ+β. Hence, by Theorem 4.3 (ii) and the fact that dim(B1[0,∞)) =
2 > γ + β, we have

P
{
B1[0,∞) ∩ Γ[γ] ∩ Γ[β] 6= ∅

}
> 0.

Interpreting Γ[β] as the test set and using Theorem 4.3 (i) we obtain

dim
(
B1[0,∞) ∩ Γ[γ]

)
> β with positive probability.

As β > 1, given this event, the set B1[0,∞) ∩ Γ[γ] has positive capacity with
respect to the potential kernel in R3 and is therefore nonpolar with respect to
the independent Brownian motion {B2(t) : t > 0}. We therefore have

P
{
B1[0,∞) ∩B2[0,∞) ∩ Γ[γ] 6= ∅

}
> 0.

Using Theorem 4.3 (i) we infer that dim(B1[0,∞)∩B2[0,∞)) > γ with positive
probability. A zero-one law shows that this must in fact hold almost surely, and
the result follows as γ < 1 was arbitrary.

A point x ∈ Rd has multiplicity p for a Brownian motion {B(t) : t > 0} in Rd,
if there exist times 0 < t1 < · · · < tp with x = B(t1) = · · · = B(tp).

Theorem 4.6. Suppose d > 2 and {B(t) : t ∈ [0, 1]} is a d-dimensional Brow-
nian motion. Then, almost surely,

• if d > 4 no double points exist, i.e. Brownian motion is injective,

• if d = 3 double points exist, but triple points fail to exist,

• if d = 2 points of any finite multiplicity exist.

Proof. We only discuss the problem of double points. To show nonex-
istence of double points in d > 4 it suffices to show that for any rational
α ∈ (0, 1), almost surely, there exists no times 0 6 t1 < α < t2 6 1 with
B(t1) = B(t2). Fixing such an α, the Brownian motions {B1(t) : 0 6 t 6 1−α}
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and {B2(t) : 0 6 t 6 α} given by B1(t) = B(α + t) − B(α) and B2(t) =
B(α − t) − B(α) are independent and hence, by Theorem 3.3, they do not
intersect, almost surely, proving the statement.
To show existence of double points in d 6 3 we apply Theorem 3.3 to the inde-
pendent Brownian motions {B1(t) : 0 6 t 6 1

2} and {B2(t) : 0 6 t 6 1
2} given

by B1(t) = B( 1
2 + t)− B( 1

2 ) and B2(t) = B( 1
2 − t)− B( 1

2 ), to see that, almost
surely, the two paths intersect.

Knowing that planar Brownian motion has points of arbitrarily large finite mul-
tiplicity, it is an interesting question whether there are points of infinite mul-
tiplicity. The following deep result was first proved by Dvoretzky, Erdös and
Kakutani.

Theorem 4.7. Let {B(t) : t > 0} be a planar Brownian motion. Then, almost
surely, there exists a point x ∈ R2 such that the set {t > 0: B(t) = x} is
uncountable.
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5 How many times can Brownian motion visit a
point?

How big can the sets T (x) =
{
t > 0: B(t) = x

}
of times mapped by d-

dimensional Brownian motion onto the same point x possibly be? We have
seen in the previous section that, almost surely,

• in dimension d > 4 all sets T (x) consist of at most one point,

• in dimension d = 3 all sets T (x) consist of at most two points,

• in dimension d = 2 at least one of the sets T (x) is uncountable.

We now give an upper bound on the size of T (x), simultaneously for all x, in
the planar case.

Theorem 5.1. Suppose {B(t) : t > 0} is a planar Brownian motion. Then,
almost surely, for all x ∈ R2, we have dimT (x) = 0.

Proof. Define τ∗R = min
{
t : |B(t)| = R

}
. It is sufficient to show that,

almost surely,

dim(T (x) ∩ [0, τ∗R]) = 0 for all x ∈ R2, |x| < R.

Lemma 5.2. Consider a cube Q ⊂ R2 centred at a point x and having diameter
2r, and assume that the cube Q is inside the ball of radius R about the origin.
Define recursively

τQ1 = inf{t > 0 : B(t) ∈ Q} ,
τQk+1 = inf{t > τQk + r2 : B(t) ∈ Q}, for k > 1,

There exists c = c(R) > 0 such that, with 2−m−1 < r 6 2−m, for any z ∈ R2,

Pz
{
τQk < τ∗R

}
6
(

1− c

m

)k
6 e−ck/m. (9)

Proof. It suffices to bound Pz{τQk+1 > τ∗R | τ
Q
k < τ∗R} from below by

Pz
{
τQk+1 > τ∗R

∣∣ |B(τQk + r2)− x| > 2r, τQk < τ∗R
}

× Pz
{
|B(τQk + r2)− x| > 2r

∣∣ τQk < τ∗R
}
.

The second factor can be bounded from below by a positive constant, which
does not depend on r and R. The first factor is bounded from below by the
probability that planar Brownian motion started at any point in ∂B(0, 2r) hits
∂B(0, 2R) before ∂B(0, r). This probability is given by

log 2r − log r
log 2R− log r

>
1

log2R+ 2 +m
.

This is at least c/m for some c > 0 which depends on R only.
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Denote by Cm the set of dyadic cubes of side length 2−m inside Cube = [− 1
2 ,

1
2 ]d.

Lemma 5.3. There exists a random variable C = C(ω) such that, almost surely,
for all m and for all cubes Q ∈ Cm we have τQdm2C+1e > τ∗R.

Proof. From (9) we get that

∞∑
m=1

∑
Q∈Cm

P
{
τQdcm2+1e < τ∗R

}
6

∞∑
m=1

2dmθcm.

Now choose c so large that 2dθc < 1. Then, by the Borel–Cantelli lemma, for
all but finitely many m we have τQdcm+1e > τ∗R for all Q ∈ Cm. Finally, we can
choose a random C(ω) > c to handle the finitely many exceptional cubes.

The idea is to verify dimT (x) = 0 for all paths satisfying Lemma 5.3 using
completely deterministic reasoning. As this set of paths has full measure, this
verifies the statement.

Fix a path {B(t) : t > 0} satisfying Lemma 5.3 for a constant C > 0. Fix m
and let Q ∈ Cm be the cube containing a given x ∈ Cube. Lemma 5.3 yields a
covering of T (x)∩ [0, τ∗R], which uses at most Cm2 + 1 intervals of length 2−2m.
For any γ > 0 we hence find

Hγ2−2m(T (x) ∩ [0, τ∗R]) 6 (Cm2 + 1) (2−2m)γ .

Letting m ↑ ∞ gives Hγ(T (x)∩ [0, τ∗R]) = 0. Thus T (x)∩ [0, τ∗R] and hence T (x)
itself has Hausdorff dimension zero.

This result leaves us with the informal question how often does a planar Brow-
nian motion visit its most visited site. There are several ways to formalise this
and I close this lecture series with a brief survey on recent progress on this
question.

Large occupation times: Dembo, Peres, Rosen, Zeitouni

An idea of Dembo, Peres, Rosen and Zeitouni (2001) is to study the most visited
small balls of planar Brownian motion. Let

µ(A) =
∫ T

0

1{Bs ∈ A} ds

be the total occupation time of Brownian motion up to the first exit time T of
the disc of radius one. Then

lim
ε↓0

sup
x∈R2

µ(B(x, ε))
ε2 log(1/ε)

= sup
x∈R2

lim sup
ε↓0

µ(B(x, ε))
ε2 log(1/ε)

= 2 almost surely.

Loosely, speaking the most visited small ball is visited for 2ε2 log(1/ε) time
units, where ε is its radius.
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This result is one the one hand not a satisfactory answer to our question, as
the points x where we are close to the supremum above need not be points of
infinite multiplicity. On the other hand it does answer the analogous question
for simple random walks on the planar lattice. Denoting by Tn(x) the number
of visits of the random walk to site x during the first n steps, we have

lim
n→∞

max
x∈Z2

Tn(x)
(log n)2

=
1
π

almost surely.

This can be derived from the Brownian motion result by strong approximation.

Large number of excursions: Bass, Burdzy, Khoshnevisan

An idea much closer to the original question is due to Bass, Burdzy, and Khosh-
nevisan (1994). Again we stop planar Brownian motion at first exit from the
unit disc. Given any point x we denote by Nx

ε the number of excursions of the
Brownian motion from x which travel at least distance ε from x. For almost
every point x we have Nx

ε = 0, but a point x has infinite multiplicity if and only
if

lim
ε↓0

Nx
ε =∞.

The idea of Bass et al. is to quantify the number of visits to x by the rate of
increase of Nx

ε as ε ↓ 0. They show that, for every 0 < a < 1
2 , almost surely

there exist points x ∈ R2 with

lim
ε↓0

Nx
ε

log(1/ε)
= a.

On the other hand it is not hard to show (using a variant of the proof of
Theorem 5.1) that the set of points with

lim inf
ε↓0

Nx
ε

log(1/ε)
> 2e

is almost surely empty. The question precisely for which values of a there exists
a point in the plane with limε↓0

Nxε
log(1/ε) = a is still open.

Large set of visits: Cammarota, Mörters

Another idea is to measure the size of the sets T (x) using a finer notion of
dimension. Instead of evaluating coverings using the α-value

∞∑
i=1

|Ei|α

we look at a general nondecreasing (gauge) function ϕ : [0, ε) → [0,∞) with
ϕ(0) = 0 and define the ϕ-value

∞∑
i=1

ϕ(|Ei|).
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The ϕ-Hausdorff measure is then defined by

Hϕ(E) = lim
δ↓0

inf
{ ∞∑
i=1

ϕ(|Ei|) : E1, E2, E3, . . . cover E, and |Ei| 6 δ
}
.

This coincides with the α-Hausdorff measure for ϕ(r) = rα. Many of the mea-
sures occuring in probability theory (e.g. in the form of local times or occupa-
tion measures) turn out to be Hausdorff measures for special gauge functions
restricted to particular sets.
Slowly varying functions can be used to measure the size of sets of dimension
zero. The aim is to find a smallest gauge function ϕ (with repect to the partial
ordering φ� ψ if limε↓0 φ(ε)/ψ(ε) = 0) for which almost surely exists a point x
in the plane so that Hϕ(T (x)) > 0. In work currently in progress we show that
almost surely there exists such a point for

ϕ(ε) =
log log log(1/ε)

log(1/ε)
.

We also show (and again this is not hard) that, almost surely, for any gauge
function φ with

lim
ε↓0

φ(ε) log(1/ε) = 0

we have Hφ(T (x)) = 0 for all x ∈ R2. There is a gap between the two bounds
which is subject of ongoing work.

23



6 Exercises

Exercise 1. Prove Lemma 1.6: If A1, A2 ⊂ R2 are Borel sets with positive
area, then

L2

({
x ∈ R2 : L2(A1 ∩ (A2 + x)) > 0

})
> 0.

Exercise 2. Let 0 < r < s < t. Show that the probability that d-dimensional
Brownian motion started at any point in ∂B(0, s) hits ∂B(0, t) before ∂B(0, r)
is given by

• log s− log r
log t− log r

if d = 2,

• s2−d − r2−d

t2−d − r2−d
if d > 2.

Exercise 3. Prove the Paley-Zygmund inequality

P{X > 0} >
E[X]2

E[X2]
.

Exercise 4. Prove McKean’s theorem: Let A ⊂ [0,∞) be a closed subset and
{B(t) : t > 0} a d-dimensional Brownian motion. Then, almost surely,

dimB(A) = 2 dimA ∧ d.

Exercise 5. Complete the proof of Theorem 3.3 (b): For d 6 3, the inter-
section of two independent Brownian paths in Rd is nontrivial with probability
one.

Exercise 6. Find the Hausdorff dimension of a percolation limit set Γ[γ] ⊂ Rd.

Exercise 7. Prove Kaufman’s theorem: Let {B(t) : t > 0} be Brownian
motion in dimension d > 2. Almost surely, for any set A ⊂ [0,∞), we have

dimB(A) = 2 dimA.

Compare this result with McKean’s theorem.
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