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This is a set of lecture notes based on a graduate course given at the Taught
Course Centre in Mathematics in 2011. The course is based on a selection of
material from my book with Yuval Peres, entitled Brownian motion, which was
published by Cambridge University Press in 2010.

1 Lévy’s construction of Brownian motion and
modulus of continuity

Much of probability theory is devoted to describing the macroscopic picture
emerging in random systems defined by a host of microscopic random effects.
Brownian motion is the macroscopic picture emerging from a particle moving
randomly on a line without making very big jumps. On the microscopic level, at
any time step, the particle receives a random displacement, caused for example
by other particles hitting it or by an external force, so that, if its position at
time zero is S0, its position at time n is given as Sn = S0 +

∑n
i=1Xi, where

the displacements X1, X2, X3, . . . are assumed to be independent, identically
distributed random variables with mean zero. The process {Sn : n > 0} is a
random walk, the displacements represent the microscopic inputs.
It turns out that not all the features of the microscopic inputs contribute to
the macroscopic picture. Indeed, all random walks whose displacements have
zero mean and variance one give rise to the same macroscopic process, and
even the assumption that the displacements have to be independent and identi-
cally distributed can be substantially relaxed. This effect is called universality,
and the macroscopic process is often called a universal object. It is a common
approach in probability to study various phenomena through the associated uni-
versal objects. If the jumps of a random walk are sufficiently tame to become
negligible in the macroscopic picture, any continuous time stochastic process
{B(t) : t > 0} describing the macroscopic features of this random walk should
have the following properties:

(i) for all times 0 6 t1 6 t2 6 . . . 6 tn the random variables

B(tn)−B(tn−1), B(tn−1)−B(tn−2), . . . , B(t2)−B(t1)

are independent;

(ii) the distribution of the increment B(t+ h)−B(t) has zero mean and does
not depend on t;

(iii) the process {B(t) : t > 0} has almost surely continuous paths.
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It follows (with some work) from the central limit theorem that these features
imply that there exists σ > 0 such that

(iv) for every t > 0 and h > 0 the increment B(t + h) − B(t) is normally
distributed with mean zero and variance hσ2.

The process corresponding to σ = 1 is called Brownian motion. If B(0) = 0 we
say that it is a standard Brownian motion.
It is a substantial issue whether the conditions in the definition of Brownian
motion are free of contradiction.

Theorem 1.1 (Wiener 1923). Standard Brownian motion exists.

Proof. We first construct Brownian motion on the interval [0, 1] as a random
element on the space C[0, 1] of continuous functions on [0, 1]. The idea is to
construct the right joint distribution of Brownian motion step by step on the
finite sets

Dn =
{
k
2n : 0 6 k 6 2n

}
of dyadic points. We then interpolate the values on Dn linearly and check that
the uniform limit of these continuous functions exists and is a Brownian motion.
To do this let D =

⋃∞
n=0Dn and let (Ω,A,P) be a probability space on which

a collection {Zt : t ∈ D} of independent, standard normally distributed random
variables can be defined. Let B(0) := 0 and B(1) := Z1. For each n ∈ N we
define the random variables B(d), d ∈ Dn such that

(i) for all r < s < t in Dn the random variable B(t) − B(s) is normally
distributed with mean zero and variance t − s, and is independent of
B(s)−B(r),

(ii) the vectors (B(d) : d ∈ Dn) and (Zt : t ∈ D \ Dn) are independent.

Note that we have already done this for D0 = {0, 1}. Proceeding inductively we
may assume that we have succeeded in doing it for some n− 1. We then define
B(d) for d ∈ Dn \ Dn−1 by

B(d) =
B(d− 2−n) +B(d+ 2−n)

2
+

Zd
2(n+1)/2

.

Note that the first summand is the linear interpolation of the values of B at the
neighbouring points of d in Dn−1. Therefore B(d) is independent of (Zt : t ∈
D \ Dn) and the second property is fulfilled.
Moreover, as 1

2 [B(d + 2−n) − B(d − 2−n)] depends only on (Zt : t ∈ Dn−1), it
is independent of Zd/2(n+1)/2. By our induction assumptions both terms are
normally distributed with mean zero and variance 2−(n+1). Hence their sum
B(d)−B(d− 2−n) and their difference B(d+ 2−n)−B(d) are independent and
normally distributed with mean zero and variance 2−n.
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Indeed, all increments B(d)−B(d−2−n), for d ∈ Dn \{0}, are independent. To
see this it suffices to show that they are pairwise independent, as the vector of
these increments is Gaussian. We have seen already that pairs B(d)−B(d−2−n),
B(d+2−n)−B(d) with d ∈ Dn \Dn−1 are independent. The other possibility is
that the increments are over intervals separated by some d ∈ Dn−1. Choose d ∈
Dj with this property and minimal j, so that the two intervals are contained in
[d−2−j , d], respectively [d, d+2−j ]. By induction the increments over these two
intervals of length 2−j are independent, and the increments over the intervals of
length 2−n are constructed from the independent increments B(d)−B(d−2−j),
respectively B(d + 2−j) − B(d), using a disjoint set of variables (Zt : t ∈ Dn).
Hence they are independent and this implies the first property, and completes
the induction step.
Having thus chosen the values of the process on all dyadic points, we interpolate
between them. Formally, define

F0(t) =

 Z1 for t = 1,
0 for t = 0,
linear in between,

and, for each n > 1,

Fn(t) =

 2−(n+1)/2Zt for t ∈ Dn \ Dn−1

0 for t ∈ Dn−1

linear between consecutive points in Dn.

These functions are continuous on [0, 1] and, for all n and d ∈ Dn,

B(d) =
n∑
i=0

Fi(d) =
∞∑
i=0

Fi(d). (1)

On the other hand, we have, by definition of Zd and the from of Gaussian tails,
for c > 1 and large n,

P{|Zd| > c
√
n} 6 exp

(−c2n
2

)
,

so that the series
∞∑
n=0

P{ there exists d ∈ Dn with |Zd| > c
√
n} 6

∞∑
n=0

∑
d∈Dn

P{|Zd| > c
√
n}

6
∞∑
n=0

(2n + 1) exp
(−c2n

2

)
,

converges as soon as c >
√

2 log 2. Fix such a c. By the Borel–Cantelli lemma
there exists a random (but almost surely finite) N such that for all n > N and
d ∈ Dn we have |Zd| < c

√
n. Hence, for all n > N ,

‖Fn‖∞ < c
√
n2−n/2 . (2)
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This upper bound implies that, almost surely, the series

B(t) =
∞∑
n=0

Fn(t)

is uniformly convergent on [0, 1]. The increments of this process have the right
finite-dimensional distributions on the dense set D ⊂ [0, 1] and therefore also in
general, by approximation.
We have thus constructed a process B : [0, 1]→ R with the properties of Brow-
nian motion. To obtain a Brownian motion on [0,∞) we pick a sequence
B0, B1, . . . of independent C[0, 1]-valued random variables with this distribu-
tion, and define {B(t) : t > 0} by gluing together these parts to make a contin-
uous function.

Lemma 1.2 (Scaling invariance). Suppose {B(t) : t > 0} is a standard Brow-
nian motion and let a > 0. Then the process {X(t) : t > 0} defined by X(t) =
1
aB(a2t) is also a standard Brownian motion.

The definition of Brownian motion already requires that the sample functions are
continuous almost surely. This implies that on the interval [0, 1] (or any other
compact interval) the sample functions are uniformly continuous, i.e. there
exists some (random) function ϕ with limh↓0 ϕ(h) = 0 called a modulus of
continuity of the function B : [0, 1]→ R, such that

lim sup
h↓0

sup
06t61−h

|B(t+ h)−B(t)|
ϕ(h)

6 1. (3)

Can we achieve such a bound with a deterministic function ϕ, i.e. is there a
nonrandom modulus of continuity for the Brownian motion? The answer is yes,
as the following theorem shows.

Theorem 1.3. There exists a constant C > 0 such that, almost surely, for
every sufficiently small h > 0 and all 0 6 t 6 1− h,∣∣B(t+ h)−B(t)

∣∣ 6 C
√
h log(1/h).

Proof. This follows quite elegantly from Lévy’s construction of Brownian
motion. Recall the notation introduced there and that we have represented
Brownian motion as a series B(t) =

∑∞
n=0 Fn(t), where each Fn is a piecewise

linear function. The derivative of Fn exists almost everywhere, and by definition
and (2), for any c >

√
2 log 2 there exists a (random) N ∈ N such that, for all

n > N ,

‖F ′n‖∞ 6
2‖Fn‖∞

2−n
6 2c
√
n2n/2 .

Now for each t, t+ h ∈ [0, 1], using the mean-value theorem,

|B(t+ h)−B(t)| 6
∞∑
n=0

|Fn(t+ h)− Fn(t)| 6
∑̀
n=0

h‖F ′n‖∞ +
∞∑

n=`+1

2‖Fn‖∞ .
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Hence, using (2) again, we get for all ` > N , that this is bounded by

h

N∑
n=0

‖F ′n‖∞ + 2ch
∑̀
n=N

√
n2n/2 + 2c

∞∑
n=`+1

√
n2−n/2.

We now suppose that h is small enough that the first summand is smaller than√
h log(1/h) and that ` defined by 2−` < h 6 2−`+1 exceeds N . For this choice

of ` the second and third summands are also bounded by constant multiples of√
h log(1/h) as both sums are dominated by their largest element. Hence we

get (3) with a deterministic function ϕ(h) = C
√
h log(1/h).

This upper bound is pretty close to the optimal result, as the following famous
result of Lévy shows.

Theorem 1.4 (Lévy’s modulus of continuity (1937)). Almost surely,

lim sup
h↓0

sup
06t61−h

|B(t+ h)−B(t)|√
2h log(1/h)

= 1 .

Remark 1.5. The limsup in Theorem 1.4 may be replaced by a limit. �

2 (Non-)differentiability of Brownian motion

While it is not so easy to construct continuous functions that are noweher dif-
ferentiable, it turns out that Brownian motion has this property almost surely.
For the statement of this fact define, for a function f : [0, 1) → R, the upper
and lower right derivatives

D∗f(t) = lim sup
h↓0

f(t+ h)− f(t)
h

, D∗f(t) = lim inf
h↓0

f(t+ h)− f(t)
h

.

Theorem 2.1 (Paley, Wiener and Zygmund 1933). Almost surely, Brownian
motion is nowhere differentiable. Furthermore, almost surely, for all t,

either D∗B(t) = +∞ or D∗B(t) = −∞ (or both.)

Proof. Suppose that there is a t0 ∈ [0, 1] such that−∞ < D∗B(t0) 6 D∗B(t0) <
∞. Then

lim sup
h↓0

|B(t0 + h)−B(t0)|
h

<∞,

and this implies that for some finite constant M ,

sup
h∈[0,1]

|B(t0 + h)−B(t0)|
h

6 M.
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It suffices to show that this event has probability zero for any M . From now
on fix M . If t0 is contained in the binary interval [(k − 1)/2n, k/2n] for n > 2,
then for all 1 6 j 6 2n − k the triangle inequality gives∣∣B ((k + j)/2n)−B ((k + j − 1)/2n)

∣∣
6 |B ((k + j)/2n)−B(t0)|+ |B(t0)−B ((k + j − 1)/2n)|
6 M(2j + 1)/2n.

Define events

Ωn,k :=
{∣∣B ((k + j)/2n)−B ((k + j − 1)/2n)

∣∣ 6 M(2j+1)/2n for j = 1, 2, 3
}
.

By independence of the increments and the scaling property, for 1 6 k 6 2n−3,

P(Ωn,k) 6
3∏
j=1

P
{∣∣B ((k + j)/2n)−B ((k + j − 1)/2n)

∣∣ 6 M(2j + 1)/2n
}

6 P
{
|B(1)| 6 7M/

√
2n
}3

,

which is at most (7M2−n/2)3, since the normal density is bounded by 1/2.
Hence

P

(
2n−3⋃
k=1

Ωn,k

)
6 2n(7M2−n/2)3 = (7M)32−n/2,

which is summable over all n. Hence, by the Borel–Cantelli lemma,

P
{

there is t0 ∈ [0, 1) with sup
h∈[0,1]

|B(t0 + h)−B(t0)|
h

6 M
}

6 P

(
2n−3⋃
k=1

Ωn,k for infinitely many n

)
= 0.

There is an abundance of interesting statements about the right derivatives
of Brownian motion. As a taster we mention here that Lévy asked whether,
almost surely, D∗B(t) ∈ {−∞,∞} for every t ∈ [0, 1). Barlow and Perkins
(1984) showed that this is not the case. We will see below that there exist
points where Brownian motion has an infinite derivative.

Before we approach this, we establish the strong Markov property, which is an
essential tool in the study of Brownian motion. It states that Brownian motion
is started afresh at certain (possibly random) times called stopping times.

For t > 0 we define a σ-algebra

F+(t) :=
⋂
ε>0

σ(Bs : 0 6 s < t+ ε).

The following result is easy to show.
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Theorem 2.2 (Markov property). For every s > 0 the process {B(t + s) −
B(s) : t > 0} is a standard Brownian motion and independent of F+(s).

A random variable T with values in [0,∞] is called a stopping time if {T 6 t} ∈
F+(t), for every t > 0. In particular the times of first entry or exit from an
open or closed set are stopping times. We define, for every stopping time T , the
σ-algebra

F+(T ) = {A ∈ A : A ∩ {T 6 t} ∈ F+(t) for all t > 0}

which is the collection of events that depend only on {B(t) : 0 6 t 6 T} . We
now state the strong Markov property for Brownian motion, which was rigorously
established by Hunt and Dynkin in the 1950s.

Theorem 2.3 (Strong Markov property). For every almost surely finite stop-
ping time T , the process {B(T + t) − B(T ) : t > 0} is a standard Brownian
motion independent of F+(T ).

The proof follows by approximation from Theorem 2.2 and will be skipped here.
To formulate an important consequence of the Markov property, we introduce
the convention that {B(t) : t > 0} under Px is a Brownian motion started in x.

Theorem 2.4 (Blumenthal’s 0-1 law). Every A ∈ F+(0) has Px(A) ∈ {0, 1}.

Proof. Using Theorem 2.3 for s = 0 we see that any A ∈ σ(B(t) : t > 0) is
independent of F+(0). This applies in particular to A ∈ F+(0), which therefore
is independent of itself, hence has probability zero or one.

As a first application we show that a standard Brownian motion has positive
and negative values and zeros in every small interval to the right of 0.

Theorem 2.5. Let τ = inf{t > 0: B(t) > 0} and σ = inf{t > 0: B(t) = 0}.
Then

P0{τ = 0} = P0{σ = 0} = 1 .

Proof. The event

{τ = 0} =
∞⋂
n=1

{
there is 0 < ε < 1/n such that B(ε) > 0

}
is clearly in F+(0). Hence we just have to show that this event has positive
probability. This follows, as P0{τ 6 t} > P0{B(t) > 0} = 1/2 for t > 0. Hence
P0{τ = 0} > 1/2 and we have shown the first part. The same argument works
replacing B(t) > 0 by B(t) < 0 and from these two facts P0{σ = 0} = 1 follows,
using the intermediate value property of continuous functions.

We now exploit the Markov property to study the local and global extrema of
Brownian motion.
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Theorem 2.6. For a Brownian motion {B(t) : 0 6 t 6 1}, almost surely,

(a) every local maximum is a strict local maximum;

(b) the set of times where the local maxima are attained is countable and dense;

(c) the global maximum is attained at a unique time.

Proof. We first show that, given two nonoverlapping closed time intervals the
maxima of Brownian motion on them are different almost surely. Let [a1, b1]
and [a2, b2] be two fixed intervals with b1 6 a2. Denote by m1 and m2, the
maxima of Brownian motion on these two intervals. Note first that, by the
Markov property together with Theorem 2.5, almost surely B(a2) < m2. Hence
this maximum agrees with maximum in the interval [a2− 1

n , b2], for some n ∈ N,
and we may therefore assume in the proof that b1 < a2.
Applying the Markov property at time b1 we see that the random variable
B(a2) − B(b1) is independent of m1 − B(b1). Using the Markov property at
time a2 we see that m2−B(a2) is also independent of both these variables. The
event m1 = m2 can be written as

B(a2)−B(b1) = (m1 −B(b1))− (m2 −B(a2)).

Conditioning on the values of the random variables m1−B(b1) and m2−B(a2),
the left hand side is a continuous random variable and the right hand side a
constant, hence this event has probability 0.
(a) By the statement just proved, almost surely, all nonoverlapping pairs of
nondegenerate compact intervals with rational endpoints have different maxima.
If Brownian motion however has a non-strict local maximum, there are two such
intervals where Brownian motion has the same maximum.
(b) In particular, almost surely, the maximum over any nondegenerate compact
interval with rational endpoints is not attained at an endpoint. Hence every such
interval contains a local maximum, and the set of times where local maxima are
attained is dense. As every local maximum is strict, this set has at most the
cardinality of the collection of these intervals.
(c) Almost surely, for any rational number q ∈ [0, 1] the maximum in [0, q] and
in [q, 1] are different. Note that, if the global maximum is attained for two points
t1 < t2 there exists a rational number t1 < q < t2 for which the maximum in
[0, q] and in [q, 1] agree.

We will see many applications of the strong Markov property later, however,
the next result, the reflection principle, is particularly interesting.

Theorem 2.7 (Reflection principle). If T is a stopping time and {B(t) : t > 0}
is a standard Brownian motion, then the process {B∗(t) : t > 0} defined by

B∗(t) = B(t)1{t6T} + (2B(T )−B(t))1{t>T}

is also a standard Brownian motion.
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Proof. If T is finite, by the strong Markov property both paths

{B(t+ T )−B(T ) : t > 0} and {−(B(t+ T )−B(T )) : t > 0} (4)

are Brownian motions and independent of the beginning {B(t) : 0 6 t 6 T}. The
process arising from glueing the first path in (4) to {B(t) : 0 6 t 6 T} and the
process arising from glueing the second path in (4) to {B(t) : 0 6 t 6 T} have the
same distribution. The first is just {B(t) : t > 0}, the second is {B∗(t) : t > 0},
as introduced in the statement.

Now we apply the reflection principle. Let M(t) = max06s6tB(s). A priori it
is not at all clear what the distribution of this random variable is, but we can
determine it as a consequence of the reflection principle.

Lemma 2.8. P0{M(t) > a} = 2P0{B(t) > a} = P0{|B(t)| > a} for all a > 0.

Proof. Let T = inf{t > 0: B(t) = a} and let {B∗(t) : t > 0} be Brownian
motion reflected at the stopping time T . Then

{M(t) > a} = {B(t) > a} ∪ {M(t) > a, B(t) 6 a}.

This is a disjoint union and the second summand coincides with event {B∗(t) > a}.
Hence the statement follows from the reflection principle.

Theorem 2.9. Almost surely,

D∗B(t0) = D∗B(t0) = −∞,

where t0 is the uniquely determined maximum of Brownian motion on [0, 1].

Proof. We first fix ε, a > 0. We denote by B the event that ε is small
enough in the sense of Theorem 1.3. Given an interval I ⊂ [ε, 1− ε] with length
0 < h < (ε/6)4, we consider the event A that t0 ∈ I and we have

B(t0 + h̃)−B(t0) > −2ah1/4 for some h1/4 < h̃ 6 2h1/4.

We now denote by tL the left endpoint of I. By Theorem 1.3, on the event B,

B(t0)−B(tL) 6 C
√
h log(1/h).

Hence the event A ∩B implies the following events

A1 =
{
B(tL − s)−B(tL) 6 C

√
h log(1/h) for all s ∈ [0, ε]

}
,

A2 =
{
B(tL + s)−B(tL) 6 C

√
h log(1/h) for all s ∈ [0, h1/4]

}
.

We now define the stopping time

T := inf{s > tL + h1/4 : B(s) > B(tL)− 2ah1/4}.
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Then the event A ∩B implies that T 6 tL + 3h1/4 and this implies the event

A3 =
{
B(T + s)−B(T ) 6 2ah1/4 + C

√
h log(1/h) for all s ∈ [0, ε/2]

}
.

Now by the strong Markov property, these three events are independent and we
obtain

P(A ∩B) 6 P(A1) P(A2) P(A3).

Using Lemma 2.8 we obtain

P(A1) = P
{
|B(ε)| 6 C

√
h log(1/h)

}
6 2 1√

2πε
C
√
h log(1/h),

P(A2) = P
{
|B(h1/4)| 6 C

√
h log(1/h)

}
6 2 1√

2πh1/4
C
√
h log(1/h),

P(A3) = P
{
|B(ε/2)| 6 2ah1/4 + C

√
h log(1/h)

}
6 2 1√

πε

(
C h1/4 + 2ah1/4

)
.

Hence we obtain, for a suitable constant K > 0, depending on a and ε, that

P(A ∩B) 6 K h9/8 log(1/h).

Summing first over a covering collection of 1/h intervals of length h that cover
[ε, 1− ε] and then taking h = 2−4n−4 and summing over n, we see that

∞∑
n=1

P
{
ε 6 t0 6 1−ε, ε small, and sup

2−n−1<h 6 2−n

B(t0 + h)−B(t0)
h

> −a
}
<∞,

and from the Borel–Cantelli lemma we obtain that, almost surely, either t0 6∈
[ε, 1− ε], or ε is too large in the sense of Theorem 1.3 or

lim sup
h↓0

B(t0 + h)−B(t0)
h

6 − a.

Taking a ↑ ∞ and ε ↓ 0 gives that, almost surely, D*B(t0) = −∞, as required.

3 Lévy’s theorem on the maximum process

We have seen from the reflection principle that the maximum of a Brownian
motion at time t has the same law as the absolute value as the same time |B(t)|.
Obviously, this does not extend to the maximum process {M(t) : t > 0} , defined
by M(t) = max06s6tB(s), and the reflected Brownian motion {|B(t)| : t > 0}.
The relationship between these processes is giben by a famous theorem of Lévy.

Theorem 3.1 (Lévy 1948). Let {M(t) : t > 0} be the maximum process of a
standard Brownian motion, then, the process {Y (t) : t > 0} defined by Y (t) =
M(t)−B(t) is a reflected Brownian motion.
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Proof. Fix s > 0, and consider the two processes {B̂(t) : t > 0} defined by

B̂(t) = B(s+ t)−B(s) for t > 0,

and {M̂(t) : t > 0} defined by

M̂(t) = max
06u6t

B̂(u) for t > 0.

Because Y (s) is F+(s)-measurable, it suffices to check that conditional on
F+(s), for every t > 0, the random variable Y (s+ t) has the same distribution
as |Y (s) + B̂(t)|. Indeed, this directly implies that {Y (t) : t > 0} is a Markov
process with the same transition kernel as the reflected Brownian motion, and
the result follows by continuity of paths. To prove the claim fix s, t > 0 and
observe that M(s+ t) = M(s) ∨ (B(s) + M̂(t)), and hence

Y (s+ t) = (M(s) ∨ (B(s) + M̂(t)))− (B(s) + B̂(t)).

Using the fact that (a ∨ b)− c = (a− c) ∨ (b− c), we have

Y (s+ t) =
(
Y (s) ∨ M̂(t)

)
− B̂(t).

To finish, it suffices to check, for every y > 0, that y∨M̂(t)− B̂(t) has the same
distribution as |y + B̂(t)|. For any a > 0 write

P1 = P{y − B̂(t) > a}, P2 = P
{
y − B̂(t) 6 a and M̂(t)− B̂(t) > a

}
.

Then P{y ∨ M̂(t)− B̂(t) > a} = P1 +P2. Since {B̂(t) : t > 0} has the same dis-
tribution as {−B̂(t) : t > 0} we have P1 = P{y+B̂(t) > a}. To study the second
term it is useful to define the time reversed Brownian motion {W (u) : 0 6 u 6 t}
by W (u) := B̂(t− u)− B̂(t). Note that this process is also a Brownian motion
on [0, t]. Let MW (t) = max06u6tW (u). Then MW (t) = M̂(t) − B̂(t). Since
W (t) = −B̂(t), we have

P2 = P{y +W (t) 6 a and MW (t) > a}.

Using the reflection principle by reflecting {W (u) : 06u6t} at the first time it
hits a, we get another Brownian motion {W ∗(u) : 0 6 u 6 t}. In terms of
this Brownian motion we have P2 = P{W ∗(t) > a + y}. Since it has the same
distribution as {−B̂(t) : t > 0}, it follows that P2 = P{y + B̂(t) 6 − a}. The
Brownian motion {B̂(t) : t > 0} has continuous distribution, and so, by adding
P1 and P2, we get P{y∨ M̂(t)− B̂(t) > a} = P{|y+ B̂(t)| > a}. This proves the
main step and, consequently, the theorem.

While, as seen above, {M(t)−B(t) : t > 0} is a Markov process, it is important
to note that the maximum process {M(t) : t > 0} itself is not a Markov process.
However the times when new maxima are achieved form a Markov process, as
the following theorem shows.
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Theorem 3.2. For any a > 0 define the stopping times

Ta = inf{t > 0: B(t) = a}.

Then {Ta : a > 0} is an increasing Markov process with transition densities

p(a, t, s) = a√
2π(s−t)3

exp
(
− a2

2(s−t)
)
1{s > t}, for a > 0.

This process is called the stable subordinator of index 1
2 .

Remark 3.3. As the transition densities satisfy the shift-invariance property

p(a, t, s) = p(a, 0, s− t) for all a > 0 and s, t > 0,

the stable subordinator has stationary, independent increments. �

Proof. Fix a > b > 0 and note that for all t > 0 we have{
Ta − Tb = t

}
=
{
B(Tb + s)−B(Tb) < a− b, 0 < s < t, and B(Tb + t)−B(Tb) = a− b

}
.

By the strong Markov property of Brownian motion this event is independent
of F+(Tb) and therefore in particular of {Td : d 6 b}. This proves the Markov
property of {Ta : a > 0}. The form of the transition kernel follows from the
reflection principle,

P{Ta − Tb 6 t} = P{Ta−b 6 t} = P
{

max
0 6s6t

B(s) > a− b
}

= 2P
{
B(t) > a− b

}
= 2

∫ ∞
a−b

1√
2πt

exp
(
− x2

2t

)
dx

=
∫ t

0

1√
2πs3

(a− b) exp
(
− (a−b)2

2s

)
ds,

where we used the substitution x =
√
t/s (a− b) in the last step.

4 Exit and hitting times, and Wald’s lemmas

Given a stopping time T , what can we say about E[B(T )]? Note that if T
is a fixed time, we always have E[B(T )] = 0, but this does not extend to all
stopping times, as the example of T = inf{t > 0: B(t) = 1} shows. To decide
which stopping times have this property, we develop a bit of martingale theory
in continuous time.

A real-valued stochastic process {X(t) : t > 0} is a martingale with respect to
a filtration (F(t) : t > 0) if it is adapted to the filtration, E|X(t)| < ∞ for all
t > 0 and, for any pair of times 0 6 s 6 t,

12



E
[
X(t)

∣∣F(s)
]

= X(s) almost surely.

The process is called a submartingale if > holds, and a supermartingale if
6 holds in the display above. We observe that Brownian motion is a martingale,
and reflected Brownian motion is a submartingale, but not a martingale.

We now state a useful fact about martingales, which we will exploit extensively,
the optional stopping theorem. This results is well-known in the discrete time
setting and adapt easily to the continuous world.

Proposition 4.1 (Optional stopping theorem). Suppose {X(t) : t > 0} is a
continuous martingale, and 0 6 S 6 T are stopping times. If the process
{X(t∧T ) : t > 0} is dominated by an integrable random variable X, i.e. |X(t∧
T )| 6 X almost surely, for all t > 0, then

E
[
X(T )

∣∣F(S)
]

= X(S), almost surely.

We now use the martingale property and the optional stopping theorem to prove
Wald’s lemmas for Brownian motion. These results identify the first and second
moments of the value of Brownian motion at well-behaved stopping times.

Theorem 4.2 (Wald’s lemma). Let {B(t) : t > 0} be a standard Brownian
motion, and T be a stopping time such that either

(i) E[T ] <∞, or

(ii)
{
B(t ∧ T ) : t > 0

}
is dominated by an integrable random variable.

Then we have E[B(T )] = 0.

Proof. We first show that a stopping time satisfying condition (i), also
satisfies condition (ii). So suppose E[T ] <∞, and define

Mk = max
06t61

|B(t+ k)−B(k)| and M =
dTe∑
k=1

Mk.

Then

E[M ] = E
[ dTe∑
k=1

Mk

]
=
∞∑
k=1

E
[
1{T > k − 1}Mk

]
=
∞∑
k=1

P{T > k − 1}E[Mk]

= E[M0] E[T + 1] <∞ ,

where, using Fubini’s theorem and Lemma 2.8,

E[M0] =
∫ ∞

0

P
{

max
06t61

|B(t)| > x
}
dx 6 1 +

∫ ∞
1

2
√

2
x
√
π

exp
{
− x2

2

}
dx <∞ .

Now note that |B(t ∧ T )| 6 M , so that (ii) holds. It remains to observe that
under condition (ii) we can apply the optional stopping theorem with S = 0,
which yields that E[B(T )] = 0.

13



Corollary 4.3. Let S 6 T be stopping times and E[T ] <∞. Then

E
[
(B(T ))2

]
= E

[
(B(S))2

]
+ E

[(
B(T )−B(S)

)2]
.

Proof. The tower property of conditional expectation gives

E
[(
B(T )

)2] = E
[(
B(S)

)2]+ 2E
[
B(S)E

[
B(T )−B(S) | F(S)

]]
+ E

[(
B(T )−B(S)

)2]
.

As E[T ] < ∞ implies that {B(t ∧ T ) : t > 0} is dominated by an integrable
random variable, the optional stopping theorem implies that the conditional
expectation on the right hand side and the middle term hence vanishes.

To find the second moment of B(T ) and thus prove Wald’s second lemma, we
identify a further martingale derived from Brownian motion.

Lemma 4.4. Suppose {B(t) : t > 0} is a Brownian motion. Then the process{
B(t)2 − t : t > 0

}
is a martingale.

Proof. The process is adapted to (F+(s) : s > 0) and

E
[
B(t)2 − t

∣∣F+(s)
]

= E
[(
B(t)−B(s)

)2 ∣∣F+(s)
]

+ 2 E
[
B(t)B(s)

∣∣F+(s)
]
−B(s)2 − t

= (t− s) + 2B(s)2 −B(s)2 − t = B(s)2 − s ,

which completes the proof.

Theorem 4.5 (Wald’s second lemma). Let T be a stopping time for standard
Brownian motion such that E[T ] <∞. Then

E
[
B(T )2

]
= E[T ].

Proof. Look at the martingale {B(t)2− t : t > 0} and define stopping times

Tn = inf{t > 0: |B(t)| = n}

so that {B(t∧T∧Tn)2−t∧T∧Tn : t > 0} is dominated by the integrable random
variable n2 + T . By the optional stopping theorem we get E[B(T ∧ Tn)2] =
E[T ∧ Tn]. By Corollary 4.3 we have E[B(T )2] > E[B(T ∧ Tn)2]. Hence, by
monotone convergence,

E
[
B(T )2

]
> lim

n→∞
E
[
B(T ∧ Tn)2

]
= lim
n→∞

E
[
T ∧ Tn

]
= E[T ] .

14



Conversely, now using Fatou’s lemma in the first step,

E
[
B(T )2

]
6 lim inf

n→∞
E
[
B(T ∧ Tn)2

]
= lim inf

n→∞
E
[
T ∧ Tn

]
6 E[T ] .

Wald’s lemmas suffice to obtain exit probabilities and expected exit times for
Brownian motion.

Theorem 4.6. Let a < 0 < b and, for a standard Brownian motion {B(t) :
t > 0}, define T = min{t > 0: B(t) ∈ {a, b}}. Then

• P{B(T ) = a} =
b

|a|+ b
and P{B(T ) = b} =

|a|
|a|+ b

.

• E[T ] = |a|b.

Proof. Let T = τ({a, b}) be the first exit time from the interval [a, b].
This stopping time satisfies the condition of the optional stopping theorem, as
|B(t ∧ T )| 6 |a| ∨ b. Hence, by Wald’s first lemma,

0 = E[B(T )] = aP{B(T ) = a}+ bP{B(T ) = b}.

Together with the easy equation P{B(T ) = a}+P{B(T ) = b} = 1 one can solve
this, and obtain P{B(T ) = a} = b/(|a| + b), and P{B(T ) = b} = |a|/(|a| + b).
To use Wald’s second lemma, we check that E[T ] <∞. For this purpose note

E[T ] =
∫ ∞

0

P{T > t} dt =
∫ ∞

0

P{B(s) ∈ (a, b) for all s ∈ [0, t]} dt,

and that, for t > k ∈ N the integrand is bounded by the kth power of

max
x∈(a,b)

Px{B(1) ∈ (a, b)},

i.e. decreases exponentially. Hence the integral is finite.

Now, by Wald’s second lemma and the exit probabilities, we obtain

E[T ] = E[B(T )2] =
a2b

|a|+ b
+

b2|a|
|a|+ b

= |a|b.

We now discuss a strengthening of Theorem 4.2, which works with a weaker
(essentially optimal) moment condition. The lemma is a weak version of the
famous Burkholder-Davis-Gundy inequality.

Theorem 4.7. Let {B(t) : t > 0} be a standard Brownian motion and T a
stopping time with E[T 1/2] <∞. Then E[B(T )] = 0.
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Proof. Let {M(t) : t > 0} be the maximum process of {B(t) : t > 0} and T
a stopping time with E[T 1/2] <∞. Let τ = dlog4 T e, so that B(t∧T ) 6 M(4τ ).
In order to get E[B(T )] = 0 from the optional stopping theorem it suffices to
show that the majorant is integrable, i.e. that

EM(4τ ) <∞.

Define a discrete time stochastic process {Xk : k ∈ N} by Xk = M(4k)− 2k+1,
and observe that τ is a stopping time with respect to the filtration (F+(4k) : k ∈
N). Moreover, the process {Xk : k ∈ N} is a supermartingale. Indeed,

E
[
Xk

∣∣Fk−1

]
6 M(4k−1) + E

[
max

06t64k−4k−1
B(t)

]
− 2k+1 ,

and the supermartingale property follows as

E
[

max
06t64k−4k−1

B(t)
]

=
√

4k − 4k−1 E
[

max
06t61

B(t)
]

6 2k ,

using that, by the reflection principle, Theorem 2.8, and the Cauchy–Schwarz
inequality,

E
[

max
06t61

B(t)
]

= E|B(1)| 6
(
E[B(1)2]

) 1
2 = 1.

Now let t = 4` and use the supermartingale property for τ ∧ ` to get

E
[
M(4τ ∧ t)

]
= E

[
Xτ∧`

]
+ E

[
2τ∧`+1

]
6 E[X0] + 2 E

[
2τ
]
.

Note that X0 = M(1)− 2, which has finite expectation and, by our assumption
on the moments of T , we have E[2τ ] <∞. Thus, by monotone convergence,

E
[
M(4τ )

]
= lim
t↑∞

[
M(4τ ∧ t)

]
<∞ ,

which completes the proof of the theorem.

5 How often does Brownian motion visit zero?

The set {t > 0: Bt = 0} of zeros of a Brownian motion is almost surely

• uncountable (as it is a perfect set: closed with no isolated points),
• and has zero Lebesgue measure (easily seen from Fubini’s theorem).

To measure its size on a crude scale we use the notion of Hausdorff dimension,
which we now introduce. For every α > 0 the α-value of a sequence E1, E2, . . .
of sets in a metric space is (with |Ei| denoting the diameter of Ei)

∞∑
i=1

|Ei|α .
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For every α > 0 denote

Hαδ (E) := inf
{ ∞∑
i=1

|Ei|α : E1, E2, . . . is a covering of E with |Ei| 6 δ
}
.

The α-Hausdorff measure of E is defined as

Hα(E) = lim
δ↓0
Hαδ (E),

informally speaking the α-value of the most efficient covering by small sets. If
0 < α < β, and Hα(E) < ∞, then Hβ(E) = 0. If 0 < α < β, and Hβ(E) > 0,
then Hα(E) =∞. Thus we can define

dimE = inf
{
α > 0: Hα(E) <∞

}
= sup

{
α > 0: Hα(E) > 0

}
,

the Hausdorff dimension of the set E.

Theorem 5.1. For every ε > 0 we have, almost surely,

H1/2
{
ε < t < 1: B(t) = 0

}
<∞.

We use a covering consisting of intervals. Define the collection Dk of intervals
[j2−k, (j+1)2−k) for j = 0, . . . , 2k−1, and let Z(I) = 1 if there exists t ∈ I with
B(t) = 0, and Z(I) = 0 otherwise. To estimate the dimension of the zero set
we need an estimate for the probability that Z(I) = 1, i.e. for the probability
that a given interval contains a zero of Brownian motion.

Lemma 5.2. There is an absolute constant C such that, for any a, δ > 0,

P
{

there exists t ∈ [a, a+ δ] with B(t) = 0
}

6 C
√

δ
a+δ .

Proof. Consider the event A = {|B(a+ δ)| 6
√
δ}. By the scaling property

of Brownian motion, we can give the upper bound

P(A) 6 P
{
|B(1)| 6

√
δ
a+δ

}
6 2
√

δ
a+δ .

Applying the strong Markov property at T = inf{t > a : B(t) = 0}, we have

P(A) > P
(
A ∩ {0 ∈ B[a, a+ δ]}

)
> P{T 6 a+ δ} min

a6t6a+δ
P{|B(a+ δ)| 6

√
δ |B(t) = 0}.

Clearly the minimum is achieved at t = a and, using the scaling property of
Brownian motion, we have P{|B(a + δ)| 6

√
δ |B(a) = 0} = P{|B(1)| 6 1} =:

c > 0. Hence,

P{T 6 a+ δ} 6 2
c

√
δ
a+δ .
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We have thus shown that, for any ε > 0 and sufficiently large integer k, we have

E[Z(I)] 6 c1 2−k/2, for all I ∈ Dk with I ∩ (ε, 1] 6= ∅ ,

for some constant c1 > 0. Hence the covering of the set {t ∈ (ε, 1] : B(t) = 0}
by all I ∈ Dk with I ∩ (ε, 1] 6= ∅ and Z(I) = 1 has an expected 1

2 -value of

E
[ ∑

I∈Dk
I∩(ε,1] 6=∅

Z(I) 2−k/2
]

=
∑
I∈Dk

I∩(ε,1] 6=∅

E[Z(I)] 2−k/2 6 c1 2k 2−k/2 2−k/2 = c1.

We thus get, from Fatou’s lemma,

E
[

lim inf
k→∞

∑
I∈Dk

I∩(ε,1] 6=∅

Z(I) 2−k/2
]

6 lim inf
k→∞

E
[ ∑

I∈Dk
I∩(ε,1] 6=∅

Z(I) 2−k/2
]

6 c1.

Hence the liminf is almost surely finite, which means that there exists a family
of coverings with maximal diameter going to zero and bounded 1

2 -value. This
implies the statement.

With some (considerable) extra effort it can even be shown that

H1/2{0 < t < 1: B(t) = 0} = 0.

But even from the result for fixed ε > 0 we can infer that

dim
{

0 < t 6 1: B(t) = 0
}

6
1
2

almost surely,

and the stability of dimension under countable unions gives the same bound for
the unbounded zero set.

From the definition of the Hausdorff dimension it is plausible that in many
cases it is relatively easy to give an upper bound on the dimension: just find
an efficient cover of the set and find an upper bound to its α-value. However
it looks more difficult to give lower bounds, as we must obtain a lower bound
on α-values of all covers of the set. The energy method is a way around this
problem, which is based on the existence of a nonzero measure on the set. The
basic idea is that, if this measure distributes a positive amount of mass on a set
E in such a manner that its local concentration is bounded from above, then
the set must be large in a suitable sense. Suppose µ is a measure on a metric
space (E, ρ) and α > 0. The α-potential of a point x ∈ E with respect to µ is
defined as

φα(x) =
∫

dµ(y)
ρ(x, y)α

.

In the case E = R3 and α = 1, this is the Newton gravitational potential of the
mass µ. The α-energy of µ is

Iα(µ) =
∫
φα(x) dµ(x) =

∫∫
dµ(x) dµ(y)
ρ(x, y)α

.
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Measures with Iα(µ) <∞ spread the mass so that at each place the concentra-
tion is sufficiently small to overcome the singularity of the integrand. This is
only possible on sets which are large in a suitable sense.

Theorem 5.3 (Energy method). Let α > 0 and µ be a nonzero measure on a
metric space E. Then, for every ε > 0, we have

Hαε (E) >
µ(E)2∫∫

ρ(x,y)<ε
dµ(x) dµ(y)
ρ(x,y)α

.

Hence, if Iα(µ) <∞ then Hα(E) =∞ and, in particular, dimE > α.

Proof. (Due to O. Schramm) If {An : n = 1, 2, . . .} is any pairwise disjoint
covering of E consisting of Borel sets of diameter < ε, then∫∫

ρ(x,y)<ε

dµ(x) dµ(y)
ρ(x, y)α

>
∞∑
n=1

∫∫
An×An

dµ(x) dµ(y)
ρ(x, y)α

>
∞∑
n=1

µ(An)2

|An|α
,

and moreover,

µ(E) 6
∞∑
n=1

µ(An) =
∞∑
n=1

|An|
α
2
µ(An)
|An|

α
2

Given δ > 0 choose a covering as above such that additionally

∞∑
n=1

|An|α 6 Hαε (E) + δ.

Using now the Cauchy–Schwarz inequality, we get

µ(E)2 6
∞∑
n=1

|An|α
∞∑
n=1

µ(An)2

|An|α
6
(
Hαε (E) + δ

) ∫∫
ρ(x,y)<ε

dµ(x) dµ(y)
ρ(x, y)α

.

Letting δ ↓ 0 gives the stated inequality. Further, letting ε ↓ 0, if Iα(µ) < ∞
the integral converges to zero, so that Hαε (E) diverges to infinity.

Remark 5.4. To get a lower bound on the dimension from this method it
suffices to show finiteness of a single integral. In particular, in order to show
for a random set E that dimE > α almost surely, it suffices to show that
EIα(µ) <∞ for a (random) measure on E. �

Theorem 5.5 (Taylor 1955).

dim
{
t > 0: B(t) = 0

}
=

1
2

almost surely.
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Proof. Recall that we already know the upper bound. We now look at the
lower bound using the energy method, for which we require a suitable positive
finite measure on the zero set. We use Lévy’s theorem, which implies that the
random variables

dim
{
t > 0: |B(t)| = 0

}
and dim

{
t > 0: M(t) = B(t)

}
have the same law. On the set on the right we have a measure µ given by∫

f dµ =
∫ ∞

0

f(Ta) da,

where Ta is the first hitting time of level a > 0. It thus suffices to show, for any
fixed l > 0 and α < 1

2 , the finiteness of the integral

E
∫ Tl

0

∫ Tl

0

dµ(s) dµ(t)
|s− t|α

=
∫ l

0

da

∫ l

0

dbE|Ta − Tb|−α

= 2
∫ l

0

da

∫ a

0

db

∫ ∞
0

ds s−α
1√

2πs3
(a− b) exp

(
− (a−b)2

2s

)
=

√
2
π

∫ ∞
0

ds s−α−
1
2

∫ l

0

da
(
1− e−a

2/2s
)
,

where we used the transition density of the 1
2 -stable subordinator. The inner

integral converges to a constant when s ↓ 0 and decays like O(1/s) when s ↑ ∞.
Hence the expression is finite when (0 6 )α < 1

2 .

We define the α-capacity of a metric space (E, ρ) as

Capα(E) := sup
{
Iα(µ)−1 : µ a probability measure on E

}
.

In the case of the Euclidean space E = Rd with d > 3 and α = d − 2 the α-
capacity is also known as the Newtonian capacity. Theorem 5.3 states that
a set of positive α-capacity has dimension at least α. The famous Frostman’s
lemma states that in Euclidean spaces this method is sharp, i.e., for any closed
(or, more generally, analytic) set A ⊂ Rd,

dimA = sup
{
α : Capα(A) > 0

}
.

We omit the (nontrivial) proof.

6 Donsker’s invariance principle

Given a random variable X can we find a stopping time T with E[T ] <∞, such
that B(T ) has the law of X? This is called the Skorokhod embedding problem.
By Wald’s lemmas we have E[B(T )] = 0 and E[B(T )2] = E[T ] <∞, so that the
Skorokhod embedding problem can only be solved for random variables X with
mean zero and finite second moment. However, under these assumptions there
are several solutions.
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Theorem 6.1 (Azéma–Yor embedding theorem). Let X be a real valued random
variable with E[X] = 0 and E[X2] <∞. Define

Ψ(x) =
{
E
[
X
∣∣X > x

]
if P{X > x} > 0,

0 otherwise,

and a stopping time τ by

τ = inf{t > 0: Mt > Ψ(Bt)}.

Then E[τ ] = E[X2] and B(τ) has the same law as X.

We prove this for random variables taking only finitely many values, the general
case follows by an approximation from this case.

Lemma 6.2. Suppose the random variable X with EX = 0 takes only finitely
many values x1 < x2 < · · · < xn. Define y1 < y2 < · · · < yn−1 by yi = Ψ(xi+1),
and define stopping times T0 = 0 and

Ti = inf
{
t > Ti−1 : B(t) 6∈ (xi, yi)

}
for i 6 n− 1.

Then T = Tn−1 satisfies E[T ] = E[X2] and B(T ) has the same law as X.

Proof. First observe that yi > xi+1 and equality holds if and only if
i = n−1. We have E[Tn−1] <∞, by Theorem 4.6, and E[Tn−1] = E[B(Tn−1)2],
from Theorem 4.5. For i = 1, . . . , n− 1 define random variables

Yi =
{
E[X |X > xi+1] if X > xi+1,
X if X 6 xi.

Note that Y1 has expectation zero and takes on the two values x1, y1. For
i > 2, given Yi−1 = yi−1, the random variable Yi takes the values xi, yi and
has expectation yi−1. Given Yi−1 = xj , j 6 i − 1 we have Yi = xj . Note that
Yn−1 = X. We now argue that

(B(T1), . . . , B(Tn−1)) d= (Y1, . . . , Yn−1).

Clearly, B(T1) can take only the values x1, y1 and has expectation zero, hence
the law of B(T1) agrees with the law of Y1. For i > 2, given B(Ti−1) = yi−1, the
random variable B(Ti) takes the values xi, yi and has expectation yi−1. Given
B(Ti−1) = xj where j 6 i− 1, we have B(Ti) = xj . Hence the two tuples have
the same law and, in particular, B(Tn−1) has the same law as X.

It remains to show that the stopping time we have constructed in Lemma 6.2
agrees with the stopping time τ in the Azéma–Yor embedding theorem. Indeed,
suppose that B(Tn−1) = xi, and hence Ψ(B(Tn−1)) = yi−1. If i 6 n − 1,
then i is minimal with the property that B(Ti) = · · · = B(Tn−1), and thus
B(Ti−1) 6= B(Ti). Hence M(Tn−1) > yi−1. If i = n we also have M(Tn−1) =
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xn > yi−1, which implies in any case that τ 6 T . Conversely, if Ti−1 6 t < Ti
then B(t) ∈ (xi, yi) and this implies M(t) < yi 6 Ψ(B(t)). Hence τ > T , and
altogether we have seen that T = τ .

The main application of Skorokhod embedding is to Donsker’s invariance prin-
ciple, or functional central limit theorem, which offers a direct relation between
random walks and Brownian motion. Let {Xn : n > 0} be a sequence of inde-
pendent and identically distributed random variables and assume that they are
normalised, so that E[Xn] = 0 and Var(Xn) = 1. We look at the random walk
generated by the sequence

Sn =
n∑
k=1

Xk ,

and interpolate linearly between the integer points, i.e.

S(t) = S[t] + (t− [t])(S[t]+1 − S[t]) .

This defines a random function S ∈ C[0,∞). We now define a sequence
{S∗n : n > 1} of random functions in C[0, 1] by

S∗n(t) =
S(nt)√

n
for all t ∈ [0, 1].

Theorem 6.3 (Donsker’s invariance principle). On the space C[0, 1] of contin-
uous functions on the unit interval with the metric induced by the sup-norm, the
sequence {S∗n : n > 1} converges in distribution to a standard Brownian motion
{B(t) : t ∈ [0, 1]}.

By the Skorohod embedding theorem there exists a sequence of stopping times

0 = T0 6 T1 6 T2 6 T3 6 . . .

with respect to the Brownian motion, such that the sequence {B(Tn) : n > 0}
has the distribution of the random walk with increments given by the law of X.
Moreover, using the finiteness of the expectations it is not too hard to show
that the sequence of functions {S∗n : n > 0} constructed from this random walk
satisfies

lim
n→∞

P
{

sup
06t61

∣∣∣B(nt)√
n
− S∗n(t)

∣∣∣ > ε
}

= 0 .

To complete the proof of Donsker’s invariance principle recall from the scaling
property of Brownian motion that the random functions {Wn(t) : 0 6 t 6 1}
given by Wn(t) = B(nt)/

√
n are standard Brownian motions. Suppose that

K ⊂ C[0, 1] is closed and define

K[ε] = {f ∈ C[0, 1] : ‖f − g‖sup 6 ε for some g ∈ K}.

Then P{S∗n ∈ K} 6 P{Wn ∈ K[ε]} + P{‖S∗n − Wn‖sup > ε} . As n → ∞,
the second term goes to 0, whereas the first term does not depend on n and
is equal to P{B ∈ K[ε]} for a Brownian motion B. Letting ε ↓ 0 we obtain
lim supn→∞ P{S∗n ∈ K} 6 P{B ∈ K}, which implies weak convergence and
completes the proof of Donsker’s invariance principle.
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7 Applications: Arcsine laws and
Pitman’s 2M −X Theorem

We now show by the example of the arc-sine laws how one can transfer results
between Brownian motion and random walks by means of Donsker’s invariance
principle. The name comes from the arcsine distribution, which is the distri-
bution on (0, 1) which has the density

1
π
√
x(1− x)

for x ∈ (0, 1).

The distribution function of an arcsine distributed random variable X is there-
fore given by P{X 6 x} = 2

π arcsin(
√
x).

Theorem 7.1 (First arcsine law for Brownian motion). The random variables

• L, the last zero of Brownian motion in [0, 1], and

• M∗, the maximiser of Brownian motion in [0, 1],

are both arcsine distributed.

Proof. Lévy’s theorem shows that M∗, which is the last zero of the process
{M(t) − B(t) : t > 0} has the same law as L. Hence it suffices to prove the
second statement. Note that

P{M∗ < s} = P
{

max
06u6s

B(u) > max
s6v61

B(v)
}

= P
{

max
06u6s

B(u)−B(s) > max
s6v61

B(v)−B(s)
}

= P
{
M1(s) > M2(1− s)

}
,

where {M1(t) : 0 6 t 6 s} is the maximum process of the Brownian mo-
tion {B1(t) : 0 6 t 6 s}, which is given by B1(t) = B(s − t) − B(s), and
{M2(t) : 0 6 t 6 1} is the maximum process of the independent Brownian mo-
tion {B2(t) : 0 6 t 6 1− s}, which is given by B2(t) = B(s+ t)− B(s). Since,
for any fixed t, the random variable M(t) has the same law as |B(t)|, we have

P
{
M1(s) > M2(1− s)

}
= P

{
|B1(s)| > |B2(1− s)|

}
.

Using the scaling invariance of Brownian motion we can express this in terms
of a pair of two independent standard normal random variables Z1 and Z2 , by

P
{
|B1(s)| > |B2(1− s)|

}
= P

{√
s |Z1| >

√
1− s |Z2|

}
= P

{ |Z2|√
Z2

1 + Z2
2

<
√
s
}
.

In polar coordinates, (Z1, Z2) = (R cos θ,R sin θ) pointwise. The random vari-
able θ is uniformly distributed on [0, 2π] and hence the last quantity becomes

P
{ |Z2|√

Z2
1 + Z2

2

<
√
s
}

= P
{
| sin(θ)| <

√
s
}

= 4P
{
θ < arcsin(

√
s)
}

= 4
(

arcsin(
√
s)

2π

)
=

2
π

arcsin(
√
s).
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For random walks the first arcsine law takes the form of a limit theorem, as the
length of the walk tends to infinity.

Theorem 7.2 (Arcsine law for the last sign-change). Suppose that {Xk : k > 1}
is a sequence of independent, identically distributed random variables with E[X1] =
0 and 0 < E[X2

1 ] = σ2 < ∞. Let {Sn : n > 0} be the associated random walk
and

Nn = max{1 6 k 6 n : SkSk−1 6 0}

the last time the random walk changes its sign before time n. Then, for all
x ∈ (0, 1),

lim
n→∞

P{Nn 6 xn} =
2
π

arcsin(
√
x) .

Proof. The strategy of proof is to use Theorem 7.1, and apply Donsker’s
invariance principle to extend the result to random walks. As Nn is unchanged
under scaling of the random walk we may assume that σ2 = 1. Define a bounded
function g on C[0, 1] by

g(f) = max{t 6 1: f(t) = 0}.

It is clear that g(S∗n) differs from Nn/n by a term, which is bounded by 1/n and
therefore vanishes asymptotically. Hence Donsker’s invariance principle would
imply convergence of Nn/n in distribution to g(B) = sup{t 6 1: B(t) = 0} —
if g was continuous. g is not continuous, but we claim that g is continuous on
the set C of all f ∈ C[0, 1] such that f takes positive and negative values in
every neighbourhood of every zero and f(1) 6= 0. As Brownian motion is almost
surely in C, we get from the Portmanteau theorem and Donsker’s invariance
principle, that, for every continuous bounded h : R→ R,

lim
n→∞

E
[
h
(Nn
n

)]
= lim
n→∞

E
[
h ◦ g(S∗n)

]
= E

[
h ◦ g(B)

]
= E

[
h(sup{t 6 1: B(t) = 0})

]
,

which completes the proof subject to the claim. To see that g is continuous
on C, let ε > 0 be given and f ∈ C. Let

δ0 = min
t∈[g(f)+ε,1]

|f(t)| ,

and choose δ1 such that (−δ1, δ1) ⊂ f(g(f)− ε, g(f) + ε) . Let 0 < δ < δ0 ∧ δ1.
If now ‖h − f‖∞ < δ, then h has no zero in (g(f) + ε, 1], but has a zero in
(g(f) − ε, g(f) + ε), because there are s, t ∈ (g(f) − ε, g(f) + ε) with h(t) < 0
and h(s) > 0. Thus |g(h)− g(f)| < ε. This shows that g is continuous on C.

There is a second arcsine law for Brownian motion, which describes the law
of the random variable L

{
t ∈ [0, 1] : B(t) > 0

}
, the time spent by Brownian

motion above the x-axis. This statement is much harder to derive directly for
Brownian motion. At this stage we can use random walks to derive the result
for Brownian motion.
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Theorem 7.3 (Second arcsine law for Brownian motion). If {Bt : t > 0} is a
standard Brownian motion, then L{t ∈ [0, 1] : Bt > 0} is arcsine distributed.

The idea is to prove a direct relationship between the first maximum and the
number of positive terms for a simple random walk by a combinatorial argument,
and then transfer this to Brownian motion using Donsker’s invariance principle.

Lemma 7.4. Let {Sk : k = 1, . . . , n} be a simple, symmetric random walk on
the integers. Then

#
{
k ∈ {1, . . . , n} : Sk > 0

} d= min
{
k ∈ {0, . . . , n} : Sk = max

06j6n
Sj
}
. (5)

For the proof of the lemma let Xk = Sk − Sk−1 for each k ∈ {1, . . . , n}, with
S0 := 0, and rearrange the tuple (X1, . . . , Xn) by

• placing first in decreasing order of k the terms Xk for which Sk > 0,

• and then in increasing order of k the Xk for which Sk 6 0.

Denote the new tuple by (Y1, . . . , Yn) := Tn(X1, . . . , Xn). One first shows by
induction that Tn is a bijection for every n ∈ N. Then one defines {Sk(Y ) : k =
1, . . . , n} by Sk(Y ) =

∑k
j=1 Yj and checks by induction on n that

#
{
k ∈ {1, . . . , n} : Sk(X) > 0}

= min{k ∈ {0, . . . , n} : Sk(Y ) = max
06j6n

Sj(Y )
}
.

To prove Theorem 7.3 we look at the right hand side of the equation (5), which
divided by n can be written as g(S∗n) for the function g : C[0, 1]→ [0, 1] defined
by

g(f) = inf
{
t ∈ [0, 1] : f(t) = sup

s∈[0,1]

f(s)
}
.

The function g is continuous in every f ∈ C[0, 1] which has a unique maxi-
mum, hence almost everywhere with respect to the distribution of Brownian
motion. By Donsker’s invariance principle and the Portmanteau theorem the
right hand side in (5) divided by n converges to the distribution of g(B), which
by Theorem 7.1 is the arcsine distribution.
Similarly, the left hand side of (5) divided by n can be approximated in proba-
bility by h(S∗n) for the function h : C[0, 1]→ [0, 1] defined by

h(f) = L{t ∈ [0, 1] : f(t) > 0
}
.

It is not hard to see that the function h is continuous in every f ∈ C[0, 1] with
L{t ∈ [0, 1] : f(t) = 0

}
= 0, a property which Brownian motion has almost

surely. Hence, again by Donsker’s invariance principle and the Portmanteau
theorem the left hand side in (5) divided by n converges to the distribution of
h(B) = L{t ∈ [0, 1] : B(t) > 0}, and this completes the argument.
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Pitman’s 2M −X theorem describes an interesting relationship between the
process {2M(t) − B(t) : t > 0} and the 3-dimensional Bessel process, which,
loosely speaking, can be considered as a Brownian motion conditioned to avoid
zero. We will obtain this result from a random walk analogue, using Donsker’s
invariance principle to pass to the Brownian motion case.
We start by discussing simple random walk conditioned to avoid zero. Consider
a simple random walk on {0, 1, 2, . . . , n} conditioned to reach n before 0. This
conditioned process is a Markov chain with the following transition probabilities:
p̂(0, 1) = 1 and for 1 6 k < n,

p̂(k, k + 1) = (k + 1)/2k ; p̂(k, k − 1) = (k − 1)/2k . (6)

Taking n → ∞, this leads us to define the simple random walk on N =
{1, 2, . . .} conditioned to avoid zero (forever) as a Markov chain on N with
transition probabilities as in (6) for all k > 1.

Lemma 7.5. Let {S(j) : j = 0, 1, . . .} be a simple random walk on Z and let
{ρ̃(j) : j = 0, 1, . . .} be a simple random walk on N conditioned to avoid zero.
Then for ` > 1 and any sequence (x0, . . . , x`) of positive integers, we have

P
{
ρ̃(1) = x1, . . . , ρ̃(`) = x`

∣∣ ρ̃(0) = x0

}
=
x`
x0

P
{
S(1) = x1, . . . , S(`) = x`

∣∣S(0) = x0

}
.

Proof. We prove the result by induction on `. The case ` = 1 is just (6).
Assume the lemma holds for `− 1 and let (x0, . . . , x`) be a sequence of positive
integers such that |xj − xj−1| = 1 for j = 1, . . . , `. Clearly, the probability on
the right hand side of the equation is just 2−`. Moreover, using the induction
hypothesis and the Markov property,

P
{
ρ̃(1) = x1, . . . , ρ̃(`) = x`

∣∣ ρ̃(0) = x0

}
=
x`−1

x0
21−` P

{
ρ̃(`) = x`

∣∣ ρ̃(`− 1) = x`−1

}
=
x`−1

x0
21−` x`

2x`−1
=

x`
x0

2−`,

as required to complete the proof.

Define the three-dimensional Bessel process {ρ(t) : t > 0} by taking three
independent Brownian motions and putting

ρ(t) =
√
B1(t)2 +B2(t)2 +B3(t)2 .

The only nontrivial fact we need about this process is that, for 0 < r < a < R,

P{exit (r,R) at R | ρ(0) = a} =
1
r −

1
a

1
r −

1
R

,

see Theorem 3.18 in the Brownian motion book.
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Fix h > 0 and assume ρ(0) = h. Define the stopping times {τ (h)
j : j = 0, 1, . . .}

by τ (h)
0 = 0 and, for j > 0,

τ (h)
j+1 = min

{
t > τ (h)

j : |ρ(t)− ρ(τ (h)
j )| = h

}
.

Given that ρ(τ (h)
j ) = kh for some k > 0, by our hitting estimate, we have that

ρ(τ (h)
j+1) =

{
(k + 1)h, with probability k+1

2k ,

(k − 1)h, with probability k−1
2k .

(7)

We abbreviate τj = τ (1)
j . By (6) and (7), the sequence {ρ(τj) : j = 0, 1, . . .}

has the same distribution as the simple random walk on N conditioned to avoid
zero, with the initial condition ρ̃(0) = 1.

Lemma 7.6. The sequence {τn − n : n > 0} is a martingale and there exists
C > 0 with

Var(τn − n) 6 C n .

Proof. If {B(t) : t > 0} is standard Brownian motion, then we know from
Lemma 4.4 that {B(t)2 − t : t > 0} is a martingale. As {ρ(t)2 − 3t : t > 0} is
the sum of three independent copies of this martingale, it is also a martingale.
Given that ρ(τn−1) = k, optional sampling for this martingale at times τn−1

and τn yields

k2 − 3τn−1 =
(k + 1)3

2k
+

(k − 1)3

2k
− 3E[τn | F+(τn−1)] ,

hence E[τn− τn−1 | F+(τn−1)] = 1, so that {τn− n : n > 0} is a martingale. To
bound its variance, consider the scalar product

Z :=
〈
W (t+ 1)−W (t) , W (t)

|W (t)|
〉
,

where W (t) = (B1(t), B2(t), B3(t)). Given F+(t) the distribution of Z is stan-
dard normal. Moreover,

Z =
〈
W (t+ 1) , W (t)

|W (t)|
〉
− |W (t)| 6 |W (t+ 1)| − |W (t)| .

Therefore P{|W (t+ 1)| − |W (t)| > 2 | F(t)} > P{Z > 2}. For any n,

k⋃
j=1

{
|W (τn−1 + j)| − |W (τn−1 + j − 1)| > 2

}
⊂ {τn − τn−1 6 k},

so that, given τn−1, the difference τn − τn−1 is stochastically bounded from
above by a geometric random variable with parameter p := P{Z > 2}. Hence,

Var(τn − τn−1 − 1) 6 E
[
(τn − τn−1)2

]
6

2
p
.

By orthogonality of martingale differences, we conclude that Var(τn−n) 6 2n/p,
which completes the proof.
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We use the following notation,

• {S(j) : j = 0, 1, . . .} is a simple random walk in Z,

• {M̃(j) : j = 0, 1, . . .} defined by M̃(j) = max06a6j S(a);

• {ρ̃(j) : j = 0, 1, . . .} is simple random walk on N conditioned to avoid 0,

• {Ĩ(j) : j = 0, 1, . . .} defined by Ĩ(j) = mink>j ρ̃(k).

Let {I(t) : t > 0} defined by I(t) = mins>t ρ(s) be the future minimum process
of the process {ρ(t) : t > 0}.

Proposition 7.7. Let Ĩ(0) = ρ̃(0) = 0, and extend the processes {ρ̃(j) : j =
0, 1, . . .} and {Ĩ(j) : j = 0, 1, . . .} to [0,∞) by linear interpolation. Then{

hρ̃(t/h2) : 0 6 t 6 1
} d→

{
ρ(t) : 0 6 t 6 1

}
as h ↓ 0 , (8)

and {
hĨ(t/h2) : 0 6 t 6 1

} d→
{
I(t) : 0 6 t 6 1

}
as h ↓ 0 , (9)

where d→ indicates convergence in law as random elements of C[0, 1].

Proof. For any h > 0, Brownian scaling implies that the process {τ (h)
n : n =

0, 1, . . .} has the same law as the process {h2τn : n = 0, 1, . . .}. Doob’s L2

maximal inequality, E[max16k6nX
2
k ] 6 4 E[|Xn|2] and Lemma 7.6 yield

E
[

max
06j6n

(τj − j)2
]

6 C n,

for a suitable constant C > 0. Therefore, taking n = bh−2tc,

E
[

max
06t61

(τ (h)

bh−2tc − h
2bh−2tc)2

]
= h4 E

[
max
06t61

(τbh−2tc − bh−2tc)2
]

6 C h2 ,

whence also (for a slightly larger constant)

E
[

max
06t61

(τ (h)

bh−2tc − t)
2
]

6 C h2 . (10)

Since {ρ(t) : 0 6 t 6 1} is uniformly continuous almost surely, we infer that

max
06t61

|ρ(τ (h)

bh−2tc)− ρ(t)| → 0 in probability as h ↓ 0,

and similar reasoning gives the analogous result when b·c is replaced by d·e.
Since ρ̃(t/h2) is, by definition, a weighted average of ρ̃(bh−2tc) and ρ̃(dh−2te),
the proof of (8) is now concluded by recalling that {ρ(τ (h)

j ) : j = 0, 1, . . .} has
the same distribution as {hρ̃(j) : j = 0, 1, . . .}. Similarly, {I(τ (h)

j ) : j = 0, 1, . . .}
has the same distribution as {hĨ(j) : j = 0, 1, . . .}, so (9) follows from (10) and
the continuity of I.
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Theorem 7.8. (Pitman’s 2M − X theorem) Let {B(t) : t > 0} be a stan-
dard Brownian motion and let M(t) = max06s6tB(s) denote its maximum
up to time t. Also let {ρ(t) : t > 0} be a three-dimensional Bessel process
and let {I(t) : t > 0} be the corresponding future infimum process given by
I(t) = infs>t ρ(s). Then{

(2M(t)−B(t),M(t)) : t > 0
} d=

{
(ρ(t), I(t)) : t > 0

}
.

In particular, {2M(t)−B(t) : t > 0} is a three-dimensional Bessel process.

Proof. Following Pitman’s original paper, we prove the theorem in the
discrete setting, i.e. we show that, for S(0) = ρ̃(0) = 0,{

(2M̃(j)− S(j), M̃(j)) : j = 0, 1, . . .
} d=

{
(ρ̃(j), Ĩ(j)) : j = 0, 1, . . .

}
. (11)

The theorem then follows directly by invoking Donsker’s invariance principle
and Proposition 7.7. First note that (11) is equivalent to{

(S(j), M̃(j)) : j = 0, 1, . . .
} d=

{
(2Ĩ(j)− ρ̃(j), Ĩ(j)) : j = 0, 1, . . .

}
,

which we establish by computing the transition probabilities. If S(j) < M̃(j),
then clearly

(S(j + 1), M̃(j + 1)) =

{
(S(j) + 1, M̃(j)), with probability 1

2 ,

(S(j)− 1, M̃(j)), with probability 1
2 .

(12)

If S(j) = M̃(j), then

(S(j + 1), M̃(j + 1)) =

{
(S(j) + 1, M̃(j) + 1), with probability 1

2 ,

(S(j)− 1, M̃(j)), with probability 1
2 .

(13)

We now compute the transition probabilities of {(2Ĩ(j)−ρ̃(j), Ĩ(j)) : j = 0, 1, . . .}.
To this end, we first show that {Ĩ(j) : j = 0, 1, . . .} is the maximum process of
{2Ĩ(j)− ρ̃(j) : j = 0, 1, . . .}. Indeed, for all j 6 k, since (Ĩ − ρ̃)(j) 6 0, we have

2Ĩ(j)− ρ̃(j) = Ĩ(j) + (Ĩ − ρ̃)(j) 6 Ĩ(k) .

On the other hand, let j∗ be the minimal j∗ 6 k such that Ĩ(j∗) = Ĩ(k). Then
ρ̃(j∗) = Ĩ(j∗) and we infer that (2Ĩ − ρ̃)(j∗) = Ĩ(j∗) = I(k).
Assume now that 2Ĩ(j)− ρ̃(j) < Ĩ(j), i.e., ρ̃(j) > Ĩ(j). Lemma 7.5 and the fact
that {S(j) : j = 0, 1, . . .} is recurrent imply that, for integers k > i > 0,

P
{
∃j with ρ̃(j) = i

∣∣ ρ̃(0) = k
}

=
i

k
P
{
∃j with S(j) = i

∣∣S(0) = k
}

=
i

k
.

Thus, for k > i > 0,

P
{
Ĩ(j) = i

∣∣ ρ̃(j) = k
}

= P
{
∃j with ρ̃(j) = i

∣∣ ρ̃(0) = k
}
− P

{
∃j with ρ̃(j) = i− 1

∣∣ ρ̃(0) = k
}

=
1
k
.
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Therefore,

P
{
ρ̃(j + 1) = k − 1 | ρ̃(j) = k, Ĩ(j) = i

}
=

P{ρ̃(j + 1) = k − 1, Ĩ(j) = i | ρ̃(j) = k}
P{Ĩ(j) = i | ρ̃(j) = k}

=
k−1
2k

1
k−1

1
k

=
1
2
.

(14)

We conclude that if 2Ĩ(j)− ρ̃(j) < Ĩ(j), then

(2Ĩ(j + 1)− ρ̃(j + 1), Ĩ(j + 1))

=

{
(2Ĩ(j)− ρ̃(j) + 1, Ĩ(j)), with probability 1

2 ,

(2Ĩ(j)− ρ̃(j)− 1, Ĩ(j)), with probability 1
2 .

(15)

Assume now that ρ̃(j) = Ĩ(j) = k. Then ρ̃(j + 1) = k + 1, and

P{Ĩ(j + 1) = k + 1 | Ĩ(j) = ρ̃(j) = k}

=
P{ρ̃(j + 1) = k + 1 | ρ̃(j) = k}P{Ĩ(j + 1) = k + 1 | ρ̃(j + 1) = k + 1}

P{Ĩ(j) = k | ρ̃(j) = k}

=
k+1
2k

1
k+1

1
k

=
1
2
.

Hence, if ρ̃(j) = Ĩ(j) = k, then we have

(2Ĩ(j + 1)− ρ̃(j + 1), Ĩ(j + 1))

=

{
(2Ĩ(j)− ρ̃(j) + 1, Ĩ(j) + 1), with probability 1

2 ,

(2Ĩ(j)− ρ̃(j)− 1, Ĩ(j)), with probability 1
2 .

(16)

Finally, comparing (12) and (13) to (15) and (16) completes the proof.

8 Local times of Brownian motion

How can we measure the amount of time spent by a standard Brownian motion
{Bt : t > 0} at zero? Recall that, almost surely, the zero set has Hausdorff
dimension 1/2, so its Lebesgue measure is zero. We approach this problem by
counting the number of downcrossings of a nested sequence of intervals decreas-
ing to zero. Given a < b, we define stopping times τ0 = 0 and, for j > 1,

σj = inf
{
t > τj−1 : B(t) = b

}
, τj = inf

{
t > σj : B(t) = a

}
. (17)

For every t > 0 we denote by

D(a, b, t) = max
{
j ∈ N : τj 6 t

}
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the number of downcrossings of the interval [a, b] before time t. Note that
D(a, b, t) is almost surely finite by the uniform continuity of Brownian motion
on the compact interval [0, t].

Theorem 8.1 (Downcrossing representation of the local time at zero). There
exists a stochastic process {Lt : t > 0} called the local time at zero such that
for all sequences an ↑ 0 and bn ↓ 0 with an < bn, almost surely,

lim
n→∞

2(bn − an)D(an, bn, t) = Lt for every t > 0

and this process is almost surely locally γ-Hölder continuous for any γ < 1/2.

We first prove the convergence for the case when the Brownian motion is stopped
at the time T = Tb when it first reaches some level b > b1. This has the
advantage that there cannot be any uncompleted upcrossings.

Lemma 8.2. For any two sequences an ↑ 0 and bn ↓ 0 with an < bn, the discrete
time stochastic process {2 bn−anb−an D(an, bn, T ) : n ∈ N} is a submartingale.

Proof. Without loss of generality we may assume that, for each n, we
have either (1) an = an+1 or (2) bn = bn+1. In case (1), we observe that the
total number D(an, bn+1, T ) of downcrossings of [an, bn+1] given D(an, bn, T ) is
the sum of D(an, bn, T ) independent geometric random variables with success
parameter p = bn+1−an

bn−an plus a nonnegative contribution. Hence,

E
[ bn+1−an

b−an D(an, bn+1, T )
∣∣Fn] > bn−an

b−an D(an, bn, T ),

which is the submartingale property. Case (2) follows similarly.

Lemma 8.3. For any two sequences an ↑ 0 and bn ↓ 0 with an < bn the limit

L(Tb) := lim
n→∞

2(bn − an)D(an, bn, Tb) (18)

exists almost surely. It is not zero and does not depend on the choices.

Proof. Observe that D(an, bn, Tb) is a geometric random variable on
{0, 1, . . .} with parameter (bn − an)/(b − an). Recall that the variance of a
geometric random variable on {0, 1, . . .} with parameter p is (1− p)/p2, and so
its second moment is bounded by 2/p2. Hence

E
[
4(bn − an)2D(an, bn, Tb)2

]
6 8 (b− an)2,

and thus the submartingale in Lemma 8.2 is L2-bounded. By the submartingale
convergence theorem its limit exists almost surely and in L2 ensuring that the
limit is nonzero. Finally, note that the limit does not depend on the choice of
the sequence an ↑ 0 and bn ↓ 0 because if it did, then given two sequences with
different limits in (18) we could construct a sequence of intervals alternating
between the sequences, for which the limit in (18) would not exist.
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Lemma 8.4. For any fixed time t > 0, almost surely, the limit

L(t) := lim
n→∞

2(bn − an)D(an, bn, t) exists.

Proof. We define an auxiliary Brownian motion {Bt(s) : s > 0} by Bt(s) =
B(t + s). For any integer b > b1 we denote by Dt(an, bn, Tb) the number of
downcrossings of the interval [an, bn] by the auxiliary Brownian motion before
it hits b. Then, almost surely,

Lt(Tb) := lim
n↑∞

2(bn − an)Dt(an, bn, Tb),

exists by the previous lemma. Given t > 0 we fix a Brownian path such that
this limit and the limit in Lemma 8.3 exist for all integers b > b1. Pick b so
large that Tb > t. Define

L(t) := L(Tb)− Lt(Tb) .

To show that this is the required limit, observe that

D(an, bn, Tb)−Dt(an, bn, Tb)− 1 6 D(an, bn, t) 6 D(an, bn, Tb)−Dt(an, bn, Tb),

where the correction −1 on the left hand side arises from the possibility that t
interrupts a downcrossing. Multiplying by 2(bn − an) and taking a limit gives
L(Tb)− Lt(Tb) for both bounds, proving convergence.

We now have to study the dependence of L(t) on the time t in more detail. To
simplify the notation we write

In(s, t) = 2(bn − an)
(
D(an, bn, t)−D(an, bn, s)

)
for all 0 6 s < t .

The following lemma contains a probability estimate, which is sufficient to get
the convergence of the downcrossing numbers jointly for all times and to estab-
lish Hölder continuity.

Lemma 8.5. Let γ < 1/2 and 0 < ε < (1 − 2γ)/3. Then, for all t > 0 and
0 < h < 1, we have

P
{
L(t+ h)− L(t) > hγ

}
6 2 exp{− 1

2 h
−ε} .

Proof. As, by Fatou’s lemma,

P
{
L(t+ h)− L(t) > hγ

}
= P

{
lim inf
n→∞

In(t, t+ h) > hγ
}

6 lim inf
n→∞

P
{
In(t, t+ h) > hγ

}
we can focus on estimating P{In(t, t + h) > hγ} for fixed large n. It clearly
suffices to estimate Pbn{In(0, h) > hγ

}
. Let Th = inf{s > 0: B(s) = bn +

h(1−ε)/2} and observe that{
In(0, h) > hγ

}
⊂
{
In(0, Th) > hγ

}
∪
{
Th < h

}
.
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The number of downcrossings of [an, bn] during the period before Th is geometri-
cally distributed on {0, 1, . . .} with failure parameter (bn−an+h(1−ε)/2)−1h(1−ε)/2

and thus

Pbn
{
In(0, Th) > hγ

}
6
( h(1−ε)/2

bn − an + h(1−ε)/2

)b 1
2(bn−an) h

γc

n→∞−→ exp
{
− 1

2 h
γ− 1

2+ ε
2
}

6 exp
{
− 1

2 h
−ε}.

With {Ws : s > 0} denoting a standard Brownian motion,

Pbn
{
Th < h

}
= P

{
max

06s6h
Ws > h(1−ε)/2

}
6
√

2
πh−ε exp

{
− 1

2 h
−ε}.

The result follows by adding the last two displayed formulas.

Lemma 8.6. Almost surely,

L(t) := lim
n→∞

2(bn − an)D(an, bn, t)

exists for every t > 0.

Proof. It suffices to prove the simultaneous convergence for all 0 6 t 6 1.
We define a countable set of gridpoints

G =
⋃
m∈N
Gm ∪ {1}, for Gm =

{
k
m : k ∈ {0, . . . ,m− 1}

}
and show that the stated convergence holds on the event

EM =
⋂
t∈G

{
L(t) = lim

n→∞
2(bn − an)D(an, bn, t) exists

}
∩
⋂

m>M

⋂
t∈Gm

{
L(t+ 1

m )− L(t) 6 (1/m)γ
}
.

which, by choosing M suitably, has probability arbitrarily close to one by the
previous two lemmas. Given any t ∈ [0, 1) and a large m we find t1, t2 ∈ Gm
with t2 − t1 = 1

m and t ∈ [t1, t2]. We obviously have

2(bn − an)D(an, bn, t1) 6 2(bn − an)D(an, bn, t) 6 2(bn − an)D(an, bn, t2).

Both bounds converge on EM , and the difference of the limits is L(t2)− L(t1),
which is bounded by m−γ and thus can be made arbitrarily small by choosing
a large m.

Lemma 8.7. For γ < 1
2 , almost surely, the process {L(t) : t > 0} is locally

γ-Hölder continuous.
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Proof. It suffices to look at 0 6 t < 1. We use the notation of the proof
of the previous lemma and show that γ-Hölder continuity holds on the set EM
constructed there. Indeed, whenever 0 6 s < t < 1 and t − s < 1/M we
pick m > M such that

1
m+1 6 t− s < 1

m .

We take t1 6 s with t1 ∈ Gm and s − t1 < 1/m, and t2 > t with t2 ∈ Gm and
t2 − t < 1/m. Note that t2 − t1 6 2/m by construction and hence,

L(t)− L(s) 6 L(t2)− L(t1) 6 2(1/m)γ 6 2
(
m+1
m )γ (t− s)γ .

The result follows as the fraction on the right is bounded by 2.

This completes the proof of Theorem 8.1. It is easy to see from this representa-
tion that, almost surely, the local time at zero increases only on the zero set of
the Brownian motion. The following theorem is a substantial refinement of the
downcrossing representation, the proof of which we omit.

Theorem 8.8 (Trotter’s theorem). Let D(n)(a, t) be the number of downcross-
ings before time t of the nth stage dyadic interval containing a. Then, almost
surely,

La(t) = lim
n→∞

2−n+1D(n)(a, t) exists for all a ∈ R and t > 0.

The process {La(t) : t > 0} is called the local time at level a. Moreover, for
every γ < 1

2 , the random field

{La(t) : a ∈ R, t > 0}

is almost surely locally γ-Hölder continuous.

9 The Ray–Knight theorem

We now have a closer look at the distributions of local times Lx(T ) as a function
of the level x in the case that Brownian motion is started at an arbitrary point
and stopped at the time T when it first hits level zero. The following remarkable
distributional identity goes back to the work of Ray and Knight.

Theorem 9.1 (Ray–Knight theorem). Suppose a > 0 and {Bt : 0 6 t 6 T} is
a Brownian motion started at a and stopped at time T = inf{t > 0: Bt = 0},
when it reaches level zero for the first time. Then

{Lx(T ) : 0 6 x 6 a} d= {B1(x)2 +B2(x)2 : 0 6 x 6 a} ,

where B1, B2 are independent Brownian motions.

Remark 9.2. The process (|W (x)| : x > 0) given by |W (x)| =
√
B1(x)2 +B2(x)2

is the two-dimensional Bessel process. �
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As a warm-up, we look at one point 0 < x 6 a. Recall that

lim
n→∞

2
n Dn(x) = Lx(T ) almost surely,

where Dn(x) denotes the number of downcrossings of [x−1/n, x] before time T .

Lemma 9.3. For any 0 < x 6 a, we have 2
n Dn(x) d−→ |W (x)|2 as n ↑ ∞.

Proof. By the strong Markov property and the exit probabilities from
an interval it is clear that, provided n > 1/x, the random variable Dn(x) is
geometrically distributed with parameter 1/(nx). Hence, as n→∞,

P{Dn(x) > ny/2} =
(
1− 1

nx

)bny/2c −→ e−y/(2x) ,

and the result follows, as |W (x)|2 is exponentially distributed with mean 2x.

The essence of the Ray–Knight theorem is captured in the following ‘two-point
version’, which we will prove here instead of the full result. We fix two points x
and x+ h with 0 < x < x+ h < a.

Lemma 9.4. Suppose nun are nonnegative, even integers and un → u. For
any λ > 0,

lim
n→∞

E
[

exp
{
− λ 2

nDn(x+ h)
} ∣∣ 2

nDn(x) = un
]

= E
[

exp
{
− λ|W (h)|2

}]
,

where {|W (x)| : x > 0} is a two-dimensional Bessel process started in
√
u.

The next three lemmas are the crucial ingredients for the proof of Theorem 9.1.

Lemma 9.5. Let 0 < x < x+ h < a. Then, for all n > h, we have

Dn(x+ h) = D +
Dn(x)∑
j=1

Ij Nj ,

where

• D = D(n) is the number of downcrossings of the interval [x+h− 1
n , x+h]

before the Brownian motion hits level x,

• for any j ∈ N the random variable Ij = I(n)
j is Bernoulli distributed with

mean 1
nh+1 ,

• for any j ∈ N the random variable Nj = N (n)
j is geometrically distributed

with mean nh+ 1,

and all these random variables are independent of each other and of Dn(x).
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Proof. The decomposition of Dn(x+h) is based on counting the number of
downcrossings of the interval [x+h− 1/n, x+h] that have taken place between
the stopping times in the sequence

τ0 = inf
{
t > 0: B(t) = x

}
, τ1 = inf

{
t > τ0 : B(t) = x− 1

n

}
,

τ2j = inf
{
t > τ2j−1 : B(t) = x

}
, τ2j+1 = inf

{
t > τ2j : B(t) = x− 1

n

}
,

for j > 1. By the strong Markov property the pieces

B(0) : [0, τ0]→ R, B(0)(s) = B(s)
B(j) : [0, τj − τj−1]→ R, B(j)(s) = B(τj−1 + s), j > 1,

are all independent. The crucial observation of the proof is that the vector
Dn(x) is a function of the pieces B(2j) for j > 1, whereas we shall define the
random variables D, I1, I2, . . . and N1, N2 . . . depending only on the other pieces
B(0) and B(2j−1) for j > 1.
First, let D be the number of downcrossings of [x+ h− 1/n, x+ h] during the
time interval [0, τ0]. Then fix j > 1 and hence a piece B(2j−1). Define Ij to be
the indicator of the event that B(2j−1) reaches level x+h during its lifetime. By
Theorem 4.6 this event has probability 1/(nh+ 1). Observe that the number of
downcrossings by B(2j−1) is zero if the event fails. If the event holds, we define
Nj as the number of downcrossings of [x+ h− 1/n, x+ h] by B(2j−1), which is
a geometric random variable with mean nh+ 1 by the strong Markov property
and Theorem 4.6.

The claimed decomposition follows now from the fact that the pieces B(2j) for
j > 1 do not upcross the interval [x + h − 1/n, x + h] by definition and that
B(2j−1) for j = 1, . . . , Dn(x) are exactly the pieces that take place before the
Brownian motion reaches level zero.

Lemma 9.6. Suppose nun are nonnegative, even integers and un → u. Then

2
n
D(n) +

2
n

nun
2∑
j=1

I(n)
j N (n)

j
d−→ X̃2 + Ỹ 2 + 2

M∑
j=1

Z̃j as n ↑ ∞,

where X̃, Ỹ are normally distributed with mean zero and variance h, the ran-
dom variable M is Poisson distributed with parameter u/(2h) and Z̃1, Z̃2, . . .
are exponentially distributed with mean h, and all these random variables are
independent.

Proof. By Lemma 9.3, we have, for X̃, Ỹ as defined in the lemma,

2
n
D(n) d−→ |W (h)|2 d= X̃2 + Ỹ 2 as n ↑ ∞.
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Moreover, we observe that

2
n

nun
2∑
j=1

I(n)
j N (n)

j
d=

2
n

Bn∑
j=1

N (n)
j ,

where Bn is binomial with parameters nun/2 ∈ {0, 1, . . .} and 1/(nh+1) ∈ (0, 1)
and independent of N (n)

1 , N (n)
2 , . . .. We now show that, when n ↑ ∞, the random

variables Bn converge in distribution to M and the random variables 1
n N

(n)
j

converge to Z̃j , as defined in the lemma. First note that, for λ, θ > 0, we have

E exp
{
− λZ̃j

}
= 1

λh+1 , E
[
θM
]

= exp
{
− u(1−θ)

2h

}
,

and hence

E exp
{
− λ

M∑
j=1

Z̃j

}
= E

(
1

λh+1

)M = exp
{
− u

2h
λh
λh+1

}
= exp

{
− uλ

2λh+2

}
.

Convergence of 1
n N

(n)
j is best seen using tail probabilities

P
{

1
n N

(n)
j > a

}
=
(
1− 1

nh+1

)bnac −→ exp
{
− a

h

}
= P{Z̃j > a} .

Hence, for a suitable sequence δn → 0,

E exp
{
− λ 1

n N
(n)
j

}
=

1 + δn
λh+ 1

.

For the binomial distributions we have

E
[
θBn

]
=
(

θ
nh+1 +

(
1− 1

nh+1

))nun/2
−→ exp

{
− u(1−θ)

2h

}
,

and thus

lim
n↑∞

E exp
{
− λ 1

n

Bn∑
j=1

N (n)
j

}
= lim
n↑∞

E
[(

1+δn
λh+1

)Bn] = lim
n↑∞

exp
{
− u

2h
λh−δn
λh+1

}
= exp

{
− uλ

2λh+2

}
= E exp

{
− λ

M∑
j=1

Z̃j

}
.

Lemma 9.7. Suppose X is standard normally distributed, Z1, Z2, . . . standard
exponentially distributed and N Poisson distributed with parameter `2/2 for
some ` > 0. If all these random variables are independent, then

(X + `)2 d= X2 + 2
N∑
j=1

Zj .
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Proof. It suffices to show that the Laplace transforms of the random
variables on the two sides of the equation agree. Let λ > 0. Completing the
square, we find

E exp{−λ (X + `)2} =
1√
2π

∫
exp{−λ (x+ `)2 − x2/2} dx

=
1√
2π

∫
exp

{
− 1

2

(√
2λ+ 1x+ 2λ`√

2λ+1

)2 − λ`2 + 2λ2`2

2λ+1

}
dx

=
1√

2λ+ 1
exp

{
− λ`2

2λ+1

}
.

From the special case ` = 0 we get E exp{−λX2} = 1√
2λ+1

. For any θ > 0,

E[θN ] = exp{−`2/2}
∞∑
k=0

(`2θ/2)k

k! = exp{(θ − 1)`2/2} .

Using this and that E exp{−2λZj} = 1
2λ+1 we get

E exp
{
− λ

(
X2 + 2

N∑
j=1

Zj
)}

=
1√

2λ+ 1
E
( 1

2λ+ 1

)N
=

1√
2λ+ 1

exp
{
− λ`2

2λ+1

}
,

which completes the proof.

Combining Lemmas 9.5 and 9.6 we get

lim
n→∞

E
[

exp
{
− λ 2

nDn(x+ h)
} ∣∣ 2

nDn(x) = un
]

= E
[

exp
{
− λ

(
X̃2 + Ỹ 2 + 2

M∑
j=1

Z̃j

)}]

= E
[

exp
{
− λh

(
X2 + Y 2 + 2

M∑
j=1

Zj

)}]
,

where X, Y are standard normally distributed, Z1, Z2, . . . are standard expo-
nentially distributed and M is Poisson distributed with parameter `2/2, for
` =

√
u/h. By Lemma 9.7 the right hand side can thus be rewritten as

E
[

exp
{
− λh

(
(X +

√
u/h)2 + Y 2

)}]
= E(0,

√
u)

[
exp

{
− λ|W (h)|2

}]
,

which proves the two-point version of the Ray-Knight theorem.

38


