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The project

Aim: Study diffusion in a random medium or potential.

Questions:

• Which qualitative effects can be caused by
small inhomogeneities in the medium?

• Which qualitative effects can be caused by
considerable irregularity of the medium?

This talk will focus on the second question, but we will start with a
general introduction of the parabolic Anderson model.
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The parabolic Anderson problem

The parabolic Anderson problem is the Cauchy problem for the heat equation

∂
∂t u(t, z) = ∆u(t, z) + ξ(z)u(t, z), for (t, z) ∈ [0,∞)× Zd ,

u(0, z) = 10(z), for z ∈ Zd ,

with

discrete Laplacian (∆f )(z) =
∑
y∼z

[f (y)− f (z)] and

random potential {ξ(z) : z ∈ Zd} independent, identically distributed.

The problem has a unique nonnegative solution if

E [(ξ(0) ∨ 0)d+ε] <∞

for some ε > 0, which will always be assumed.
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Random mass transport in random media

The solution of the parabolic Anderson problem has the following
probabilistic representation:

Start a particle of at the origin of Zd ,

suppose this particle performs a a continuous time random walk
with generator ∆,

and when at a site z its mass grows with .

The (random) solution of the parabolic Anderson problem is given by the
at time t at site z . This is the content of the celebrated
Feynman–Kac formula

u(t, z) = E0

{
1{Xt=z} exp

(∫ t

0

ξ(Xs) ds
)}

for t > 0, z ∈ Zd .
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Intermittency effect

For any nondegenerate potential distribution, the parabolic Anderson model is
believed to exhibit an intermittency effect:

As time progresses, the bulk of the mass of the solution is not spreading in a
regular fashion, but becomes concentrated in a small number of spatially
separated islands of moderate size determined by the potential.
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For any nondegenerate potential distribution, the parabolic Anderson model is
believed to exhibit an intermittency effect:

As time progresses, the bulk of the mass of the solution is not spreading in a
regular fashion, but becomes concentrated in a small number of spatially
separated islands of moderate size determined by the potential.

Heuristics: In the Feynman-Kac formula∑
z∈Zd

u(t, z) = E0

{
exp

(∫ t

0

ξ(Xs) ds
)}
.

there is a competition between the benefits of spending much time at sites with
large potential values and the unlikeliness of this behaviour. The paths
(Xs : 0 ≤ s ≤ t) that give the dominant contribution to the integral are likely to
end in certain regions of the lattice, the islands.
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Intermittency effect

For any nondegenerate potential distribution, the parabolic Anderson model is
believed to exhibit an intermittency effect:

As time progresses, the bulk of the mass of the solution is not spreading in a
regular fashion, but becomes concentrated in a small number of spatially
separated islands of moderate size determined by the potential.

The growth in size and number of islands as well as the height of the potential on
an island depend on the law of ξ(0), more precisely on its upper tail.

Main contributors in this research area: Molchanov, Gärtner, König, Sznitman,
den Hollander, . . . but there are still many open problems.
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Rough classification of potentials

Roughly speaking, the solution of the parabolic Anderson model is becoming more
localized if the tails become heavier.

if
1

x
log
∣∣ log P

{
ξ(0) > x}

∣∣ −→∞ as x ↑ ∞,

the diameter of islands is growing in time.

if
1

x
log
∣∣ log P

{
ξ(0) > x}

∣∣ −→ 0 as x ↑ ∞,

islands consist of single sites.

In this talk we focus on a case of heavy tails and derive fine properties of the
solution, including a detailed discussion of the number of islands in which the
solution is concentrated.
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Heavy tailed potentials

We now assume that ξ(0) is Pareto-distributed, i.e.

P {ξ(0) ≥ x} = x−α for x ≥ 1,

so that ξ(0) has a polynomial tail with parameter α > d .

Advantage: the intermittency effect is expected to be strongest with only a small
number of islands consisting of single sites.
Disadvantage: Moments of the solution do not exist and new techniques have to
be developed to study the problem.

Questions:

How many sites are needed to support the bulk of the solution?

Where are these sites?

How fast does the solution grow?
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Complete localisation

Theorem 1 (König, Lacoin, M, Sidorova 2006)

There exists a stochastic process (Zt : t > 0) with values in Zd such that

lim
t→∞

u(t,Zt)∑
z∈Zd

u(t, z)
= 1 in probability.

Remarks:

The mass is concentrated in just one site, a phenomenon often called
complete localisation. This has not been observed in any lattice-based model
of mathematical physics so far.

The mass is concentrated in the maximiser Zt of

Ψt(z) = ξ(z)− .

The convergence does not hold in the almost sure sense.
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Limit law for the concentration site and mass

Let U(t) =
∑

x∈Zd u(t, x) be the total mass of the solution.

Theorem 2 (M, Ortgiese, Sidorova 2009)

As t →∞, (
, : s > 0

)
⇒
(
Y (1)

s ,Y (2)

s + d
α−d

(
1− 1

s

)
‖Y (1)

s ‖ : s > 0
)
,

in the Skorokhod topology on every compact subinterval of (0,∞).

Remarks:

The process is a forward and backward (time-inhomogeneous) Markov
process and can be described explicitly.

Particles move an extraordinary distance to go to a site.

The growth rate of the total mass , there is .
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Extreme value theory approach
Recall that

1

t
log U(t) ≈ max

z∈Zd
Ψt(z)

for

Ψt(z) = ξ(z)− ‖z‖
t

log
‖z‖
2det

.

For rt = (t/ log t)
α

α−d and at = (t/ log t)
d

α−d the point process

Πt =
∑
z∈Zd

δ
( z

rt
,

Ψt (x)
at

)

converges to a Poisson process with intensity measure

ν(dx dy) = dx ⊗ α dy

(y + d
α−d ‖x‖)α+1

.

For fixed s and large t we obtain

Ψst(z)

at
≈ Ψt(z)

at
+

d

α− d

(
1− 1

s

)‖z‖
rt

.
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Definition of the limit process
Let Π be a Poisson point process with intensity measure

ν(dx dy) = dx ⊗ α dy

(y + d
α−d ‖x‖)α+1

.

x

y

x

y

− d
d−α |x|

x

y
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Definition of the limit process
For z > 0 consider the cone

{(x , y) : y ≥ z − d
α−d (1− 1

s )‖x‖}.

Let Ys = (Y (1)
s ,Y (2)

s ) be the first point of Π hit by the cone as we decrease z .

x

y

x

y

− d
d−α |x|

x

y

− d
α−d (1− 1/t)
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Almost sure behaviour

Recall our first theorem:

There exists a stochastic process (Zt : t > 0) with values in Zd such that

lim
t→∞

u(t,Zt)∑
z∈Zd

u(t, z)
= 1 in probability.

Question:

How many sites are needed to support the bulk of the
solution almost surely?
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Two cities theorem

Theorem 3 (König, Lacoin, M, Sidorova 2007)

There exist two stochastic processes (Z (1)

t : t > 0) and (Z (2)

t : t > 0) with values in
Zd such that Z (1)

t 6= Z (2)

t for all t > 0 and

lim
t→∞

u(t,Z (1)

t ) + u(t,Z (2)

t )∑
z∈Zd

u(t, z)
= 1 almost surely.

Remarks:

At a typical large time the mass, which is thought of as a population,
inhabits one site, interpreted as a city. At some rare times, however, word
spreads that a better site has been found, and the entire population moves to
the new city, so that at the transition times part of the population still lives
in the old city, while part has already moved to the new one.

The term two cities theorem was suggested to us by S.A. Molchanov.
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Two cities theorem: Key idea

The two cities theorem is considerably harder to prove than complete localisation,
as the variational problem Ψt does not provide a good approximation at all times.

For a finer approximation we look at random walks which wander to a site z during
the time interval [0, ρt] and stay there throughout [ρt, t]. This has probability

≈ exp
{
− ‖z‖ log

‖z‖
eρt
− 2dt + η(z)

}
,

where η(z) = log #{ paths of length ‖z‖ from origin to z}. We obtain

1

t
log U(t) ≈ sup

z∈Zd

sup
ρ∈(0,1)

{
(1− ρ)ξ(z)− ‖z‖

t
log
‖z‖
eρt

+
η(z)

t

}
≈ sup

z∈Zd

{
ξ(z)− ‖z‖

t
log ξ(z) +

η(z)

t

}
︸ ︷︷ ︸

=:Φt(z)

.
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Ageing

Roughly speaking, if a system exhibits ageing, the probability that there is
no essential change of state between time t and time t + s(t) is of constant order
for a period s(t) which depends increasingly, and often linearly, on the time t.

Hence, as time goes on, in an ageing system changes become less likely and the
typical time scales of the system are increasing. Therefore, ageing can be
associated to the existence of infinitely many time-scales that are inherently
relevant to the system.

Ageing has been much studied recently: Ben Arous, Cerný, Bovier.

Questions:

Does the parabolic Anderson model exhibit ageing?

How many time-scales are relevant to our model?
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Ageing

Theorem 4 (M, Ortgiese, Sidorova 2009)

Let

v(t, x) =
u(t, x)∑

z∈Zd

u(t, z)
for t > 0, x ∈ Zd .

Then there exists some 0 < θ(c) < 1 such that, for all ε > 0,

lim
t→∞

P
{

sup
x∈Zd

∣∣v(t, x)− v(t, x)
∣∣ < ε

}
= lim

t→∞
P
{

sup
0≤s

sup
x∈Zd

∣∣v(t + s, x)− v(t, x)
∣∣ < ε

}
= θ(c).

Remark: The limit θ(c) is not associated to a generalized arc-sine law, as
typically observed in simple trap models, but a more complicated function.
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Ageing: Key idea
The probability of no significant change of state between time t and t + ct can be
approximated by

Zt = Zt+ct .

If Zt

rt
= x and Ψt(Zt)

at
= y , then this means approximately that Πt

has a point in (x , y) but no points (x̄ , ȳ) with ȳ > y ,

has no points (x̄ , ȳ) with ‖x̄‖ > ‖x‖ and ȳ > y − d
α−d

c
1+c (‖x̄‖ − ‖x‖).

x

y

x

y

−( d
d−α − ε)|x|

(|x|, y)

x

y

x

y

−( d
d−α − ε)|x|

(|x|, y)

y + d
d−α

c
1+c (|x| − |x|)

x

y

x

y

−( d
d−α − ε)|x|

(|x|, y)

x

y

x

y

−( d
d−α − ε)|x|

(|x|, y)

y + d
d−α

c
1+c (|x| − |x|)

x

y

x

y

−( d
d−α − ε)|x|

(|x|, y)

x

y

x

y

−( d
d−α − ε)|x|

(|x|, y)

y + d
d−α

c
1+c (|x| − |x|)
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Summary

We have seen that for a potential with heavy tails the parabolic Anderson model
shows interesting extreme behaviour, in particular

the growth rate of the total mass is asymptotically random,

the solution is asymptotically concentrated in a single point at most times,

this point goes to infinity at superlinear speed,

the solution is asymptotically concentrated in two points at all times,

the system exhibits ageing behaviour.

In the proofs we combine a very fine analysis of the random walk paths
contributing in the Feynman-Kac formula with extreme value theory for the
random field.

For preprints see http://people.bath.ac.uk/maspm.
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