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Setup of the talk

Three problems in probability

Solution of the extra head problem

Solution of the Poisson matching problem

Solution of the embedding problem for Brownian motion
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Problem 1: The extra head problem

Let (Xi : i ∈ Z) be a two sided sequence of independent fair coin tosses, i.e.

P{Xi = head} =
1

2
= P{Xi = tail}.

Problem: Find a coin that landed heads so that all other coins are still
independent with heads probability 1

2 !

Attempt: Turn the coin at zero. If it shows heads, fine. Otherwise look at the
next coin to its right. Continue until you find a coin showing heads.
Not good because: The probability that the coin to the left of the found coin has
landed tails is

1

2
× 1

2
+

1

2
=

3

4
.

Thorisson (1996) A solution exists if additional randomness can be used.
Liggett (2001) Explicit, nonrandomized solution (I’ll show you later).
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Problem 2: Matching of Poisson points

Let R and B be two independent standard Poisson processes on Rd , constituing a
random pattern of red and blue points.

Problem: Find a shift-invariant matching of red and blue points that minimizes
the tail probabilities of the typical distance of matched points!

Holroyd, Pemantle, Peres and Schramm (2008)
Explicit procedure called stable matching (I’ll show you later).

In d = 1 a stable matching procedure is optimal.

In d = 2 it is open whether stable matching is optimal.
An optimal non-randomized solution was given by Timar (2009).

In d ≥ 3 stable matching is bad, and the problem is open.
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Problem 3: Shifting Brownian motion
Let B = (Bt : t ∈ R) be a standard Brownian motion on R.

Strong Markov property: If T is a stopping time then (Bt+T − BT : t ≥ 0) is a
Brownian motion on R+ and independent of (Bt : t ≤ T ).

T

B(T)

An unbiased shift of B is a random time T , which is a function of B, such that
(BT+t − BT )t∈R is a Brownian motion independent of BT .

The following are not unbiased shifts:

first hitting time of a level, or first exit time from an interval;

fixed times T 6= 0.
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Problem 3: Shifting Brownian motion

Here is an example of an unbiased shift:
Let (L0t : t ≥ 0) be the local time of B at zero, and r > 0. Take

Tr := inf{t ≥ 0: L0t = r}.

Tr

Embedding problem: Given a probability measure ν find an unbiased shift T such
that BT has the distribution ν.

Last, M ,Thorisson (2012)
Explicit solution T which is also a stopping time with optimal tail behaviour.
Inspired by solutions to Problem 1 (Liggett) and 2 (Holroyd et al.).
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Liggett’s solution of the extra head problem

We come back to the extra head problem.

Problem: In a biinfinite sequence of independent fair coins find a coin that landed
heads so that all other coins are still independent fair coins!

Solution (Liggett 2001): If the coin at zero does not show heads, turn the next
coin to its right until the number of heads and tails you have seen agrees. Pick
the last coin you turned, which automatically shows heads.

T HT T H H

Peter Mörters (Bath) Shifting Brownian motion 7 / 1



Liggett’s solution of the extra head problem
We come back to the extra head problem.

Problem: In a biinfinite sequence of independent fair coins find a coin that landed
heads so that all other coins are still independent fair coins!

Solution (Liggett 2001): If the coin at zero does not show heads, turn the next
coin to its right until the number of heads and tails you have seen agrees. Pick
the last coin you turned, which automatically shows heads.

T

T HT T H H

Peter Mörters (Bath) Shifting Brownian motion 7 / 1



Liggett’s solution of the extra head problem
We come back to the extra head problem.

Problem: In a biinfinite sequence of independent fair coins find a coin that landed
heads so that all other coins are still independent fair coins!

Solution (Liggett 2001): If the coin at zero does not show heads, turn the next
coin to its right until the number of heads and tails you have seen agrees. Pick
the last coin you turned, which automatically shows heads.

T T

T HT T H H

Peter Mörters (Bath) Shifting Brownian motion 7 / 1



Liggett’s solution of the extra head problem
We come back to the extra head problem.

Problem: In a biinfinite sequence of independent fair coins find a coin that landed
heads so that all other coins are still independent fair coins!

Solution (Liggett 2001): If the coin at zero does not show heads, turn the next
coin to its right until the number of heads and tails you have seen agrees. Pick
the last coin you turned, which automatically shows heads.

T T H

T HT T H H

Peter Mörters (Bath) Shifting Brownian motion 7 / 1



Liggett’s solution of the extra head problem
We come back to the extra head problem.

Problem: In a biinfinite sequence of independent fair coins find a coin that landed
heads so that all other coins are still independent fair coins!

Solution (Liggett 2001): If the coin at zero does not show heads, turn the next
coin to its right until the number of heads and tails you have seen agrees. Pick
the last coin you turned, which automatically shows heads.

T HT T

T HT T H H

Peter Mörters (Bath) Shifting Brownian motion 7 / 1



Liggett’s solution of the extra head problem
We come back to the extra head problem.

Problem: In a biinfinite sequence of independent fair coins find a coin that landed
heads so that all other coins are still independent fair coins!

Solution (Liggett 2001): If the coin at zero does not show heads, turn the next
coin to its right until the number of heads and tails you have seen agrees. Pick
the last coin you turned, which automatically shows heads.

T HT T H

T HT T H H

Peter Mörters (Bath) Shifting Brownian motion 7 / 1



Liggett’s solution of the extra head problem
We come back to the extra head problem.

Problem: In a biinfinite sequence of independent fair coins find a coin that landed
heads so that all other coins are still independent fair coins!

Solution (Liggett 2001): If the coin at zero does not show heads, turn the next
coin to its right until the number of heads and tails you have seen agrees. Pick
the last coin you turned, which automatically shows heads.

T HT T H H

T HT T H H

Peter Mörters (Bath) Shifting Brownian motion 7 / 1



Liggett’s solution of the extra head problem

We come back to the extra head problem.

Problem: In a biinfinite sequence of independent fair coins find a coin that landed
heads so that all other coins are still independent fair coins!

Solution (Liggett 2001): If the coin at zero does not show heads, turn the next
coin to its right until the number of heads and tails you have seen agrees. Pick
the last coin you turned, which automatically shows heads.

T HT T H H

Peter Mörters (Bath) Shifting Brownian motion 7 / 1



Liggett’s solution of the extra head problem

Why is this true?

Use the sequence of coins to build a random walk.

T T H T T H H H

Shifting the chosen coin to the origin means shifting the random walk
by exactly one excursion.

Reversing a random walk excursion leaves its distribution invariant.
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The stable matching algorithm
Problem: Find a shift-invariant matching of red and blue points that minimizes
the tail probabilities of the typical distance of matched points!

Stable matching algorithm:

Match any pair of red and blue points that are nearest to each other.

Remove matched points, and apply same procedure repeatedly.
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The stable matching algorithm

We let F (r) be the expected number of red points in the box [0, 1]d matched to a
blue point at distance no more than r , and define a random variable X denoting
the typical matching length as

P∗{X ≤ r} = F (r).

Holroyd, Pemantle, Peres and Schramm (2008)

If d = 1, 2 every shift-invariant matching of red and blue points satisfies

E∗X d/2 =∞.

The stable matching in d = 1 has the property that

E∗Xα <∞ for all α <
1

2
.

How is this related to the extra head problem?
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The stable matching algorithm

In d = 1 we modify the algorithm so that only matchings with the blue point to
the left of the red point are allowed. Then a blue point is matched if its neighbour
to the right is red. Matched pairs are removed and the procedure continues.

Starting from a blue point count the number of blue and red points as you
move along the line, the matching red point is the first instance when we
have counted the same number of red and blue points.

The length X corresponds to the first return time to the origin of the
associated random walk (with exponential holding times).

The return time satisfies P∗{X > r} ≤ Cr−
1
2 .
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Shifting Brownian motion

An unbiased shift of B is a random time T , which is a function of B, such that
(BT+t − BT )t∈R is a Brownian motion independent of BT .

Embedding problem: Given a probability measure ν find an unbiased shift T such
that BT has the distribution ν.

Tool: There exist stochastic processes (Lxt : t ≥ 0) on the line called local times
such that the value Lxt quantifies how much time B has spent at level x up to
time t. In formulas ∫ t

0

f (Bs) ds =

∫
R
f (x) Lxt dx .

Given a probability measure ν we can generalise the family of local times to a
process (Lνt : t ≥ 0) given by

Lνt =

∫
Lxt dν(x),

called the additive functional with Revuz-measure ν.
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Shifting Brownian motion

Theorem 1: Last, M and Thorisson (2012)

Suppose that ν is a probability measure with ν{0} = 0. Then

T = inf{t > 0: L0t = Lνt }

is an unbiased shift and B(T ) has law ν.

T

B(T)
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Shifting Brownian motion

Theorem 1: Last, M and Thorisson (2012)

Suppose that ν is a probability measure with ν{0} = 0. Then

T = inf{t > 0: L0t = Lνt }

is an unbiased shift and B(T ) has law ν.

T

B(T)

The embedding property has been observed in a different context
by Bertoin, Le Gall (1992).
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Shifting Brownian motion

Theorem 1: Last, M and Thorisson (2012)

Suppose that ν is a probability measure with ν{0} = 0. Then

T = inf{t > 0: L0t = Lνt }

is an unbiased shift and B(T ) has law ν.

T

B(T)

If ν{0} > 0, say ν = εδ0 + (1− ε)µ with µ{0} = 0,
then T is an unbiased shift embedding µ.
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Shifting Brownian motion

Theorem 2: Last, M and Thorisson (2012)

Any stopping time T which is an unbiased shift embedding some ν with ν{0} = 0
satisfies

ET
1
4 =∞.

If
∫
|x | dν(x) <∞ then the T constructed in Theorem 1 satisfies

ETα <∞ for all α <
1

4
.

Our T has optimal tail behaviour amongst all stopping times solving the
embedding problem for unbiased shifts.

Open: Is there a better T which is not a stopping time?

If ν = δ0 there exists unbiased shifts T 6= 0 with exponential moments.
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How is this related to the matching problems?

General theory of Last and Thorisson (2009) shows that

A random time T is an unbiased shift embedding ν.

if and only if

The mapping τ : R→ R given by τ(t) = T ◦ θt + t satisfies
`0 ◦ τ−1 = `ν P-almost surely.

Here `ν is the random measure on the line with distribution function given by
(Lνt : t ∈ R), and P is the ‘law’ of stationary Brownian motion.

New problem: Find a matching τ between the two random measures `0 and `ν .
This is a continuous version of the Poisson matching problem on the line!
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How is this related to the matching problems?

Our solution for this matching problem is also analogous to the solution of the
Poisson matching and extra head problems.

We look at the random function f (t) = L0t − Lνt , t ≥ 0.

0

The mapping τ maps points of increase of f onto points of decrease and
transports the measure `0 onto `ν .

Warning! This function f , not the Brownian motion, is the analogue of the
random walk appearing in the extra head and matching problems!
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Why is the critical exponent equal to 1
4?

The function f does not behave like a random walk because it has long flat
pieces, and therefore return times to zero are typically longer.

Looking at the time-change

Ur := inf{t > 0: L0t + Lνt = r}

with respect to a clock which does not tick during the flat pieces of f , and defining

f̃ (r) := f (Ur ), for all r > 0,

we obtain an object which sufficiently resembles a random walk and has
return times with tails of order t−

1
2 .

As Ur ∼ r2 by Brownian scaling, the return times for the original f
have tails of order t−

1
4 .
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And why is always ET 1
4 =∞?

By the Barlow-Yor inequality, for all stopping times T ,

E0(L0T )p ≤ C E0T
p
2 .

Hence it suffices to show E0(L0T )
1
2 =∞.

We look at the `0 mass that is not matched within an interval∫
1{0 ≤ s ≤ Tt , τ(s) 6∈ [0,Tt ]} `0(ds) ≥

(
L0Tt
− LνTt

)
+
.

By the central limit theorem the RHS has expectation of order
√
t.

The expectation of the LHS is

E0

∫ Tt

0

1{τ(s)− s > Tt − s} `0(ds) =

∫ t

0

P0{τ(Ts)− Ts > Tt − Ts} ds

=

∫ t

0

P0{T > Tt−s} ds = E0[L0T ∧ t].

If E0(L0T )
1
2 <∞ the RHS would be of strictly smaller order than t

1
2 ,

contradicting the central limit theorem.
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