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Abstract

We show that in preferential attachment models with power-law exponent τ ∈

(2, 3) the distance between randomly chosen vertices in the giant component is

asymptotically equal to (4 + o(1)) log logN
− log(τ−2)

, where N denotes the number of

nodes. This is twice the value obtained for the configuration model with the

same power-law exponent. The extra factor reveals the different structure of

typical shortest paths in preferential attachment graphs.
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1. Introduction

One of the central observations in the theory of scale-free random networks is that in

the case of power-law exponents τ ∈ (2, 3) networks are ultrasmall, which means that
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the distance of two randomly chosen nodes in the giant component of a graph with

N vertices is of asymptotic order log logN . The first analytical, but mathematically

nonrigorous, evidence for this general phenomenon can be found, for example, in Cohen

and Havlin [CH03] or Dorogovtsev et al. [DMS03], and there are also some early papers

with rigorous results for specific network models, in particular the work of Reittu and

Norros [RN02] and the work of Chung and Lu [CL03].

In the present paper we refine this observation and identify graph distances including

constant factors. Our main result is a universal technique for proving lower bounds for

typical distances, which in a wide range of examples matches the upper bounds known

from the recent literature. The result is presented in the form of two theorems, which

reveal that ultrasmall networks can be divided into two different universality classes:

For the class of ultrasmall preferential attachment models the typical distances turn

out to be twice as large as for fitness models. This difference corresponds to different

structures of typical shortest paths in the network. We show that the two classes can be

easily identified from the form of the attachment probability densities in the networks.

We remark here that our work is focused on typical distances in networks, as results

on diameters (see, e.g. [DHH10]) tend to be model dependent and universality results

are not to be expected.

At least informally, we have some structural insight into typical shortest paths in

ultrasmall networks, see for example Norros and Reittu [NR08]. For the class we

call fitness models it turns out that typical vertices in the giant component can be

connected with a few steps to a core of the network. Within this core there is a

hierarchy of layers of nodes with increasing connectivity and at the top a small inner

core of highly connected nodes with very small diameter. A typical shortest path

inside the core runs from one layer to the next until the inner core is reached, and then

climbing down again until a vertex in the lowest layer of the core is again connected

to a typical vertex.

A high degree of a vertex is an indicator of its fitness and thus increases its connec-

tivity to any other vertex. Hence the layers can be identified by vertex degrees. Very

roughly speaking the jth layer consists of vertices with degree kj where

log kj ≈ (τ − 2)−j



Typical distances in ultrasmall random networks 3

and there are about
log logN
− log(τ − 2)

layers. The graph distance of two randomly chosen vertices in the giant component is

therefore (
2 + o(1)

) log logN
− log(τ − 2)

.

These asymptotics are rigorously confirmed for two variants of an inhomogeneous

random graph model, by Chung and Lu [CL03] and Norros and Reittu [NR06], and

for the configuration model by van der Hofstad et al. in [HHZ07]. See also van der

Hofstad [Hof10] for a summary of various results with detailed proofs. In general

upper bounds on the distances can be obtained by verifying the above strategy, while

our Theorem 1 provides a flexible (i.e. model-independent) approach to the lower

bound.

For the more complex class of ultrasmall preferential attachment models existing

results are far less complete. The work of Dommers et al. [DHH10] strongly suggests

that for various ultrasmall preferential attachment models the typical distance of two

vertices in the giant component is bounded from above by(
4 + o(1)

) log logN
− log(τ − 2)

.

A corresponding lower bound, and hence confirmation of the exact factor 4, is stated as

an interesting open problem by van der Hofstad and Hooghiemstra in [HH08, IV.B] and

again in [DHH10], see the remark following Theorem 1.7 and Section 1.2. Our main

result, Theorem 2, provides this bound and confirms, somewhat surprisingly, that the

upper bound is sharp. Besides the models given in [DHH10] we will also describe other

examples of random network models in the same universality class, in which Theorem 2

applies.

Loosely speaking, the shortest paths in the class of preferential attachment models

can be described as follows: Again, inside a core of highly connected vertices paths run

from bottom to top and back through a hierarchy of layers defined as before. However,

by construction of the preferential attachment models a high degree of a vertex does

not increase its connectivity to all vertices but only to those introduced late into the

system (which are typically outside the core). Therefore a path cannot directly connect
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one layer to another in one step, but it requires two steps: The paths run from one

layer to a young vertex and from there back into the next higher layer. The distance

of two typical vertices is therefore increased by a factor of two.

In the following section we formulate the precise results, consisting of two simple

hypotheses on a random network leading to the two different lower bound results, see

Theorems 1 and 2. The section also contains a brief sketch of the proof technique

and introduces the notation used in the proofs. In Section 3 we then discuss several

examples of networks in the two universality classes. In all these examples upper

bounds can either be found in the literature or derived by simple modifications of

these proofs. Section 4 is devoted to the proofs of our main results.

2. Main results

A (dynamic) network model is a sequence of random graphs (GN )N∈N with the set

of vertices of GN given by [N ] := {1, 2, . . . , N} and the set of unoriented edges of GN
given by a random symmetric subset of [N ]× [N ]. Occasionally we shall allow multiple

edges between the same pair of vertices, but this has no bearing on the connectivity

problems discussed here, and is for convenience only. We write v ↔ w if the vertices

v, w are connected by an edge in the graph GN . The graph distance is given by

dN (v, w) := min
{
n : ∃ v = v0, v1, . . . , vn = w ∈ GN such that vi−1 ↔ vi ∀ 1 ≤ i ≤ n

}
.

The main aim of this paper is to provide techniques to find lower bounds on the typical

distance, i.e. the asymptotic graph distance of two randomly chosen vertices in the

graph GN .

We start with the easier of two results, which is based on the following assumption.

Assumption FM(γ):

There exists κ such that, for all N and pairwise distinct vertices v0, . . . , v` ∈ [N ],

P
{
v0 ↔ v1 ↔ v2 ↔ · · · ↔ v`

}
≤
∏̀
k=1

κ v−γk−1 v
−γ
k N2γ−1.
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In random networks with power law exponent τ , Assumption FM(γ) is typically

satisfied for all γ > (τ − 1)−1, and we expect these networks to be ultrasmall if 1
2 <

γ < 1.

Theorem 1. Let (GN )N∈N be a dynamic network model that satisfies Assumption FM(γ)

for some γ satisfying 1
2 < γ < 1, then, for random vertices V and W chosen indepen-

dently and uniformly from [N ], we have

dN (V,W ) ≥ 2
log logN
log( γ

1−γ )
+O(1), with high probability as N →∞.

Five examples of network models in which Theorem 1 can be applied, will be given

in Section 3. Examples 3–5 in that section refer to the class of fitness models, in

which every vertex receives an a-priori fitness value which determines its likelihood to

form future edges, including the configuration model, in which the fitness of a vertex

equals its degree. In all these cases, if the degree distribution has power law exponent

τ ∈ (2, 3), Assumption FM(γ) is satisfied for all γ > (τ−1)−1, and the theorem implies

that

dN (V,W ) ≥
(
2 + o(1)

) log logN
− log(τ − 2)

, with high probability as N →∞.

For all examples of fitness models matching upper bounds are known from the litera-

ture.

While Theorem 1 applies to preferential attachment models, it does not give an

optimal lower bound. Our main result is based on a strictly stronger assumption,

which is tailored for the use in preferential attachment models and which gives an

optimal lower bound for these models.

Assumption PA(γ):

There exists κ such that, for all N and pairwise distinct vertices v0, . . . , v` ∈ [N ],

P
{
v0 ↔ v1 ↔ v2 ↔ · · · ↔ v`

}
≤
∏̀
k=1

κ (vk−1 ∧ vk)−γ (vk−1 ∨ vk)γ−1.

In preferential attachment models with power law exponent τ , Assumption PA(γ)

is typically satisfied for all γ > (τ − 1)−1. Hence we again expect these networks to be
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ultrasmall if and only if 1
2 < γ < 1. Theorem 2, our main result, gives a lower bound

on the typical distance under this assumption.

Theorem 2. Let (GN )N∈N be a dynamic network model that satisfies Assumption PA(γ)

for some γ satisfying 1
2 < γ < 1, then, for random vertices V and W chosen indepen-

dently and uniformly from [N ], we have

dN (V,W ) ≥ 4
log logN
log( γ

1−γ )
+O(1)

with high probability.

Examples of network models in which Theorem 2 can be applied, will be given as

Examples 1–2 in Section 3. They comprise various preferential attachment models with

power law exponent τ ∈ (2, 3). In all these cases Assumption PA(γ) is satisfied for all

γ > (τ − 1)−1, and the theorem implies that

dN (V,W ) ≥
(
4 + o(1)

) log logN
− log(τ − 2)

, with high probability as N →∞.

Matching upper bounds are known from the literature.

The proof of both theorems is based on a constrained or truncated first order method,

which we now briefly explain. We start with an explanation of the (unconstrained) first

moment bound and its shortcomings. Let v, w be distinct vertices of GN . Then, for

δ ∈ N,

P{dN (v, w) ≤ 2δ} = P
( 2δ⋃
k=1

⋃
(v1,...,vk−1)

{v ↔ v1 ↔ · · · ↔ vk−1 ↔ w}
)

≤
2δ∑
k=1

∑
(v1,...,vk−1)

k∏
j=1

p(vj−1, vj),

where (v0, . . . , vk) is any collection of pairwise distinct vertices in GN with v0 = v and

vk = w and, for m,n ∈ N,

p(m,n) :=

 κ(m ∧ n)−γ(m ∨ n)γ−1 if PA(γ) holds;

κm−γ n−γ N2γ−1 if FM(γ) holds.

Note that one can assign to each path (v0, . . . , vk) the weight

p(v0, . . . , vk) :=
k∏
j=1

p(vj−1, vj), (1)
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and the upper bound is just the sum over the weights of all paths from v to w of length

no more than 2δ. The shortcoming of this bound is that the paths that contribute most

to the total weight are those that connect v, resp. w, quickly to vertices with extremely

small indices. Since these are typically not present in the network, such paths have to

be removed in order to get a reasonable estimate.

To this end we define a decreasing sequence (`k)k=0,...,δ of positive integers and

consider a tuple of vertices (v0, . . . , vn) as admissible if vk ∧ vn−k ≥ `k for all k ∈

{0, . . . , δ∧n}. We denote by A(v)

k the event that there exists a path v = v0 ↔ · · · ↔ vk

in the network such that v0 ≥ `0, . . . , vk−1 ≥ `k−1, vk < `k, i.e. a path that traverses

the threshold after exactly k steps. For fixed distinct vertices v, w ≥ `0, the truncated

first moment estimate is

P{dN (v, w) ≤ 2δ} ≤
δ∑

k=1

P(A(v)

k ) +
δ∑

k=1

P(A(w)

k ) +
2δ∑
n=1

∑
(v0,...,vn)
admissible

P
{
v0 ↔ · · · ↔ vn

}
, (2)

where the admissible paths in the last sum start with v0 = v and end with vn = w.

By assumption,

P{v0 ↔ · · · ↔ vn} ≤ p(v0, . . . , vn)

so that for v ≥ `0 and k = 1, . . . , δ,

P(A(v)

k ) ≤
N∑

v1=`1

· · ·
N∑

vk−1=`k−1

`k−1∑
vk=1

p(v, v1, . . . , vk). (3)

Given ε > 0 we choose `0 = dεNe and (`j)j=0,...,k decreasing fast enough so that the

first two summands on the right hand side of (2) together are no larger than 2ε. For

k ∈ {1, . . . , δ}, set

µ(v)

k (u) := 1l{v≥`0}
N∑

v1=`1

· · ·
N∑

vk−1=`k−1

p(v, v1, . . . , vk−1, u),

and set µ(v)
0 (u) = 1l{v=u}. To rephrase the truncated moment estimate in terms of µ,

note that p is symmetric so that, for all n ≤ 2δ and n∗ := bn/2c,

∑
(v0,...,vn)
admissible

P
{
v0 ↔ · · · ↔ vn

}
≤

N∑
v1=`1

· · ·
N∑

vn∗=`n∗

· · ·
N∑

vn−1=`1

p(v, . . . , vn∗)p(vn∗ , . . . , w)

=
N∑

vn∗=`n∗

µ(v)
n∗(vn∗)µ(w)

n−n∗(vn∗). (4)
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Using the recursive representation

µ(v)

k+1(n) =
N∑

m=`k

µ(v)

k (m) p(m,n)

we establish upper bounds for µ(v)

k (u), and use these to show that the rightmost

term in (2) remains small if δ is chosen sufficiently small. Using the input from

Assumptions PA(γ), resp. FM(γ), this will lead to the lower bounds for the typical

distance in both theorems. Detailed proofs will be given in Section 4.

3. Examples

In this section we give five examples, corresponding to the best understood models

of ultrasmall networks in the mathematical literature. Examples 1–2 are of preferen-

tial attachment type and will be discussed using our main result, Theorem 2, while

Examples 3–5 are of fitness type and will be discussed using Theorem 1.

Example 1. (Preferential attachment with fixed outdegree.)

This class of models is studied in the work of Hooghiemstra, van der Hofstad and

coauthors. We base our discussion on the paper [DHH10], where three qualitatively

similar models are considered, see also [Hof10] for a survey. We focus on the first

model studied in [DHH10], which is most convenient to define, the two variants can

be treated with the same method. The model depends on two parameters, an integer

m ≥ 1 and a real δ > −m. Roughly speaking, in every step a new vertex is added to

the network and connected to m existing vertices with a probability proportional to

their degree plus δ. Note that in the case m = 1 the network has the metric structure

of a tree, making this a degenerate case of less interest. The case famously studied by

Bollobás and Riordan [BR04] corresponds to δ = 0 and m ≥ 2 and leads to a network

with τ = 3 and typical distance logN/ log logN , so that it lies outside the class of

ultrasmall networks.

We first generate a dynamic network model (GN ) for the case m = 1. By Z[n,N ],

n ≤ N , we denote the degree of vertex n in GN (with the convention that self-loops

add two towards the degree of the vertex to which they are attached).

• G1 consists of a single vertex, labelled 1, with one self loop.
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• In each further step, given GN , we insert one new vertex, labelled N + 1, and

one new edge into the network such that the new edge connects the new vertex

to vertex m ∈ [N ] with probability

P
{
m↔ N + 1

∣∣GN} =
Z[m,N ] + δ

N(2 + δ) + 1 + δ
,

or to itself with probability

1 + δ

N(2 + δ) + 1 + δ
.

To generalise the model to arbitrary values of m, we take the graph G′mN constructed

using parameters m′ = 1 and δ′ = δ/m, and merge vertices m(k− 1) + 1, . . . ,mk in the

graph G′mN into a single vertex denoted k, keeping all edges. We obtain asymptotic

degree distributions which are power laws with exponent τ = 3 + δ
m , so that we expect

the model to be in the ultrasmall range if and only if −m < δ < 0.

Proposition 3.1. For independent, uniformly chosen vertices V and W in the giant

component of the preferential attachment model with parameters m ≥ 2, −m < δ < 0,

we have

dN (V,W ) = (4 + o(1))
log logN
− log(1 + δ

m )
with high probability.

Remark 3.1. The upper bound can be proved by an adaption of the argument in

[DHH10], see below. This paper leaves the problem of finding a lower bound open. We

resolve this problem by verifying Assumption PA(γ) for γ = (2 + δ
m )−1 and applying

Theorem 2.

Proof. For the lower bound we look at m = 1 first. In this case, we have, for

1 ≤ m < n ≤ N ,

P{m↔ n} =
EZ[m,n− 1] + δ

n(2 + δ)− 1
. (5)

It is easy to see that

E
[
Z[m,n] + δ

∣∣Z[m,n− 1]
]

=
(
Z[m,n− 1] + δ

) n(2 + δ)
n(2 + δ)− 1

,

and hence

E
[
Z[m,n] + δ

]
= (1 + δ)

Γ(n+ 1)Γ(m− 1
2+δ )

Γ(n+ 1+δ
2+δ )Γ(m)

.
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In particular there exist constants 0 < c < C such that

c
( n
m

) 1
2+δ ≤ EZ[m,n] ≤ C

( n
m

) 1
2+δ

for all 1 ≤ m < n.

Combining this with (5) yields, for γ = 1
2+δ and a suitable κ1 > 0, that

P{m↔ n} ≤ C (n/m)γ + δ

n(2 + δ)− 1
≤ κ1n

γ−1m−γ for all 1 ≤ m < n. (6)

To verify PA(γ), following [DHH10, Lemma 2.1] we find that for distinct vertices

v0, . . . , vl all events of the form {vj−1 ↔ vj ↔ vj+1} with j ∈ {1, . . . , l − 1} and vj <

vj−1, vj+1, and all events {vj−1 ↔ vj} which are not part of these, are nonpositively

correlated, in the sense that the probability of all of them occurring is smaller than the

product of the probabilities. Recalling also (6) it remains to show that for m < v,w,

P{v ↔ m↔ w} ≤ κ2 v
γ−1wγ−1m−2γ , (7)

for some finite constant κ2 > 0. To this end we let {(Z(k,m)
n )n≥m : k,m ∈ N} denote the

collection of right-continuous Markov jump processes starting at Z(k,m)
m− = k, jumping

instantly at time m and subsequently at integer time-steps following the rule

P
{
Z(k,m)
n = Z(k,m)

n− + 1
∣∣Z(k,m)

n−
}

=
Z(k,m)
n− + δ

n(2 + δ)− δ
= 1− P

{
Z(k,m)
n = Z(k,m)

n−
∣∣Z(k,m)

n−
}
.

Note that (Z[m,n])n≥m = (Z(1,m)
n )n≥m in law and that, for m < n, the event {m↔ n}

corresponds to {∆Z(k,m)
n = 1}, where we write ∆Z(k,m)

n := Z(k,m)
n − Z(k,m)

n− . Note also

that Z(k0,m)
n is stochastically dominated by Z(k,m)

n for k ≥ k0. Hence, for m < n1 < n2,

E
[
Z(2,m)
n2

∣∣∆Z(2,m)
n1

= 1
]

=
m−n2+2∑
j=2

m−n1+1∑
k=2

j P{Z(2,m)
n2

= j |Z(2,m)
n1− = k,∆Z(2,m)

n1
= 1}

× P{Z(2,m)
n1− = k |∆Z(2,m)

n1
= 1}

≤
m−n2+2∑
j=2

m−n1+1∑
k=2

j P{Z(k+1,n1)
n2 = j} (k + δ) P{Z(2,m)

n1− = k}
(n1(2 + δ) + 1 + δ) P{∆Z(2,m)

n1 = 1}

=
m−n1+1∑
k=2

(k + δ) P{Z(2,m)
n1− = k}EZ(k+1,n1)

n2

(n1(2 + δ) + 1 + δ) P{∆Z(2,m)
n1 = 1}

.

As in the derivation of (6) the expectation in the last line can be bounded from above

by c0(k+1)nγ2n
−γ
1 , for some c0 > 0. Similarly, we obtain P{∆Z(2,m)

n1
= 1} ≥ c1nγ−1

1 m−γ

and

E
[
(Z(2,m)

n1− )2
]
≤ c2m−

2
2+δ n

2
2+δ
1 ,
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for further constants c1, c2 > 0. Summarising, we obtain

E
[
Z(2,m)
n2

∣∣∆Z(2,m)
n1

= 1
]
≤ c3nγ2n

−2γ
1 mγ

m−n1+1∑
k=2

k2P
{
Z(2,m)
n1− = k

}
≤ c4 nγ2m−γ ,

for some c3, c4 > 0, and this establishes (7). Finally, passing from m = 1 to general m

can be achieved by a simple union bound.

For the upper bound we work directly in the graph G2N with m ≥ 2 and δ ∈ (−m, 0).

Using the terminology of [DHH10], we define the core of G2N to be

coreN = {m ∈ [N ] : Z[m,N ] ≥ (logN)σ},

where σ > −m
δ . [DHH10, Theorem 3.1] states that the diameter of the core in G2N is

bounded by (4+o(1)) log logN | log(1+ δ
m )|−1, thus all we need to show is that for fixed

ε > 0, a uniformly chosen vertex V ∈ [b(2− ε)Nc] can be connected to the core using

no more then o(log logN) edges in G2N . This is done in two steps. For the first step

we explore the neighbourhood of V in GM , for M = b(2− ε)Nc, until we find a vertex

w with degree Z[w,N ] ≥ u0, where u0 will be determined below. Denote by Sk, k ≥ 0

the set of all vertices in GM that can be reached from V using exactly k different edges

from GM . If we fix u ∈ N and set T (V )
u = min{k : Sk ∩ {n : Z[n,N ] ≥ u} 6= ∅}, then it

is straightforward to verify, similarly to the proof of [DHH10, Theorem 3.6], that we

can find a large constant Cu,ε > 0, such that

P{T (V )
u > Cu,ε} < ε, (8)

if N is sufficiently large. The second step is now to show that any vertex w sat-

isfying Z[w,N ] ≥ u0, for sufficiently large u0, can be joined to the core by using

O(log log logN) edges. To this end we apply [DHH10, Lemma A.1], like in the proof of

[DHH10, Proposition 3.3], to obtain that for any vertex j ∈M = {d(2−ε)Ne, . . . , 2N}

and any vertex a ∈ [N ] with Z[a,N ] ≥ ua,

P{j ↔ a, j ↔ b for some b with Z[b,N ] ≥ ub|GM} ≥
cuau

−(1+ δ
m )

b

N
,

for a positive constant c, with probability exceeding 1 − o(N−1) and as long as both
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ua and ub do not exceed a small power of N . Hence, with the same probability,

P{@j ∈M : j ↔ a,j ↔ b for some b with Z[b,N ] ≥ ub|GM}

≤

(
1−

cuau
−(1+ δ

m )

b

N

)#M

≤ exp
(
− 2cεuau

−(1+ δ
m )

b

)
.

(9)

Starting from the initial vertex w with Z[w,N ] ≥ u0 and defining for k ≥ 1,

uk+1 =
(

εcuk

log(k + 1)− 1
2 log ε

) 1
1+ δ

m
, (10)

it is straightforward to check that, for ua = uk and ub = uk+1, the right hand side

of (9) equals ε(k + 1)−2. Summing over these error bounds, we therefore obtain that

(10) defines an increasing sequence (uk)Kk=0 of lower bounds on degrees at time N , for

which we have assured that with probability at least 1− π2

6 ε there is a path of length

2K which alternates between high degree vertices and vertices from M and connects

w to a vertex of degree uK . The recursive definition (10) implies that

log uK ≥

(
1

1 + δ
m

)K
(log u0 − Cε),

for some large Cε > 0, thus, if u0 = exp(2Cε), we can connect w to a vertex belonging

to coreN by choosing K ≥ Dσ,ε log log logN , where Dσ,ε > 0 depends only on σ and ε.

Fixing u = exp(2Cε) in (8) and starting the above construction in u0 = u, we obtain

that for a uniformly chosen vertex V ∈ G2N ,

P{d2N (V, coreN ) > 2Dσ,ε log log logN + Ce2Cε ,ε} ≤
(

2 +
π2

6

)
ε,

if N is sufficiently large, showing that the diameter of coreN is the dominating contri-

bution to typical distances in G2N .

A different class of preferential attachment models was introduced in [DM09] and

further studied in [DM12]. Here a new vertex is connected to any existing vertex

independently with a probability depending (possibly nonlinearly) on its degree. In this

model the number of edges created in every step is asymptotically Poisson distributed.

Example 2. (Preferential attachment with variable outdegree.) This model is studied

in the work of Dereich, Mörters and coauthors, see [DM11] for a survey. The model
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depends on a concave function f : N∪{0} → (0,∞), which is called the attachment rule.

Roughly speaking, in every step a new vertex is added to the network and oriented

edges from the new vertex to existing vertices are introduced independently with a

probability proportional to the current degree of the existing vertex.

More precisely, to generate a dynamic network model (GN ) we assume that f satisfies

f(0) ≤ 1 and f(1)− f(0) < 1. An important parameter derived from f is the limit

γ := lim
n→∞

f(n)
n

,

which always exists with 0 ≤ γ < 1, by concavity. By Z[n,N ], n ≤ N , we denote the

number of younger vertices to which vertex n is connected in GN .

• G1 consists of a single vertex, labelled 1, and no edges.

• In the (N + 1)st step, given GN , we insert one new vertex, labelled N + 1, and

independently for any m ∈ [N ] we introduce an edge from N + 1 to m with

probability
f(Z[m,N ])

N
.

By [DM09, Theorem 1.1(b)] the conditional distribution given GN of the number of

edges created in the (N+1)st step converges to a Poisson distribution and the empirical

distribution of the degrees converges to a power law with exponent τ = 1 + 1
γ , or more

precisely to a random probability vector (µk) satisfying

lim
k→∞

logµk
log k

= 1 +
1
γ
.

We therefore expect the network to be ultrasmall if and only if γ > 1
2 .

Proposition 3.2. For independent, uniformly chosen vertices V and W in the giant

component of the preferential attachment model with attachment rule f and derived

parameter γ > 1
2 , we have

dN (V,W ) = (4 + o(1))
log logN
log( γ

1−γ )
with high probability.

Remark 3.2. The upper bound can be proved by adapting the argument of [DHH10],

see the forthcoming thesis [Mön12] for details. For the lower bound we verify Assump-

tion PA(γ + ε), for any ε > 0, and apply Theorem 2.
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Proof. We first note that, for v < w ∈ [N ],

P{v ↔ w} =
Ef(Z[v, w − 1])

w − 1
.

To estimate the expectation we note that by concavity, given ε > 0 there exists k such

that, for all n ≥ k, we have f(n) ≤ f(k) + (γ + ε)(n − k). An easy calculation (see

[DM12, Lemma 2.7]) shows that

Ef(Z[v, w − 1]) ≤ C1w
γ+εv−γ−ε for a suitable constant C1 > 0. (11)

We now use (11) to verify PA(γ + ε). For v < w ∈ [N ], all events {v ↔ w} with

different values of v are independent. Hence P{v0 ↔ · · · ↔ vn} can be decomposed

into factors of the form P{vj−1 ↔ vj ↔ vj+1} with vj < vj−1, vj+1 and factors of the

form P{vj−1 ↔ vj} for the remaining edges. It remains to estimate factors of the latter

form. We may assume v < u < w and get

P{u↔ v ↔ w} =
E[f(Z[v, u− 1])f(Z[v, w − 1])]

(u− 1)(w − 1)
.

Arguing as in the derivation of (11) we get, for a suitable constant C2 > 0,

E
[
f(Z[v, w − 1])

∣∣Z[v, u− 1] = k
]
≤ C2 f(k)wγ+εu−γ−ε.

Hence

E
[
f(Z[v, u− 1])f(Z[v, w − 1])

]
≤ C2 E

[
f(Z[v, u− 1])2

]
wγ+εu−γ−ε,

and, using a similar argument as above, we obtain C3 > 0 such that

E
[
f(Z[v, u− 1])2

]
≤ C3u

2γ+εv−2γ−ε.

Summarising, we obtain a constant C4 > 0 such that

P{u↔ v ↔ w} ≤ C4u
γ−1+εv2γ−εwγ−1+ε,

as required to complete the proof.

We now give three examples of random networks in the universality class of fitness

models. The first two belong to the wide class of inhomogeneous random graphs, whose

essential feature is the independence between different edges.
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Example 3. (Expected degree random graph.) This model is studied in the work of

Chung and Lu, see [CL03] or [CL06] for a survey. In its general form the model depends

on a triangular scheme w(N)
1 , . . . , w(N)

N of positive weights, where the weight w(N)
i plays

the role of the expected degree of vertex i in GN . The model is defined by the following

two requirements:

• for every pair (i, j) with 1 ≤ i 6= j ≤ N the events {i↔ j} are independent,

• for every pair (i, j) with 1 ≤ i 6= j ≤ N we have

P{i↔ j} =
w(N)
i w(N)

j

`N
∧ 1, where `N :=

N∑
i=1

w(N)
i .

Proposition 3.3. For independent, uniformly chosen vertices V and W in the ex-

pected degree random graph with weights satisfying

c
(
N
i

)γ ≤ w(N)
i ≤ C

(
N
i

)γ for all 1 ≤ i ≤ N,

for some γ > 1
2 and constants 0 < c ≤ C, we have

dN (V,W ) = (2 + o(1))
log logN
log( γ

1−γ )
with high probability.

Proof. The upper bound is sketched in [CL03]. For the lower bound we have to

check Assumption FM(γ). Note that, using the upper bound on the weights,

P{i↔ j} ≤ w
(N)
i w

(N)
j

`N
≤ C2N2γ

`N
(ij)−γ .

From the lower bound on the weights we get that `N ≥ cN , for some c > 0, and hence

P{i ↔ j} ≤ κN2γ−1i−γj−γ for a suitable κ. Using the independence assumption we

see that Condition FM(γ) holds, and the lower bound follows from Theorem 1.

Example 4. (Conditionally Poissonian random graph.) This model is studied in the

work of Norros and Reittu, see [NR06]. It is based on drawing an independent,

identically distributed sequence Λ1,Λ2, . . . of positive capacities. Conditional on this

sequence, the dynamical network model is constructed as follows:

• G1 consists of a single vertex, labelled 1, and no edges.

• In the (N + 1)st step, given GN , we insert one new vertex, labelled N + 1, and

independently for any m ∈ [N ] we introduce a random number of edges between
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N + 1 and m according to a Poisson distribution with parameter

ΛiΛN+1

LN+1
for Ln :=

n∑
k=1

Λk.

• We further remove each edge in GN independently with probability 1−LN/LN+1,

and thus obtain GN+1.

Recall that having possibly several edges between two vertices has no relevance for the

typical distances in the giant component. In order to be in the ultrasmall regime we

require the law of the capacities to be power laws with exponent 2 < τ < 3.

Proposition 3.4. Assume that the capacities in the conditionally Poissonian random

graph satisfy

P{Λ1 > x} = x1−τ (c+ o(1)) for all sufficiently large x,

where 2 < τ < 3 and c > 0 is constant. For independent, uniformly chosen vertices V

and W in the giant component we have

dN (V,W ) = (2 + o(1))
log logN
− log(τ − 2)

with high probability.

Remark 3.3. The upper bound is proved in [NR06, Theorem 4.2], where it is also

shown that a giant component exists. For the lower bound we verify Assumption FM(γ)

for γ = 1/(τ − 1) and apply Theorem 1.

Proof. We check that Assumption FM(γ) holds with high probability, conditionally

given the capacities. For fixed N we put the capacities in decreasing order

Λ(1)

N > Λ(2)

N > · · · > Λ(N)

N

and relabel the vertices so that the jth vertex has weight Λ(j)

N . We recall from [NR06,

Proposition 2.1] that the number of edges between vertices i and j in GN is Poisson

distributed with parameter Λ(i)

N Λ(j)

N /LN . As the edges are conditionally independent

we only have to verify that, given ε > 0 there exists κ > 0 such that

1− exp
(
− Λ

(i)
N Λ

(j)
N

LN

)
≤ κN2γ−1i−γj−γ for all 1 ≤ i < j ≤ N, (12)

with probability ≥ 1 − 2ε. By the law of large numbers LN is of order N , so that it

suffices to establish Λ(i)

N ≤ κ (N/i)γ for all 1 ≤ i ≤ N . To this end we denote by S(i)

N the
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number of potential values exceeding κ (N/i)γ . The random variable S(i)

N is binomially

distributed with parameters N and p := P{Λ1 > κ (N/i)γ} ≤ c(κ) i
N , where c(κ) ↓ 0

for κ ↑ ∞. By Bernstein’s inequality, see e.g. [Ben62, (8)],

P
{
S(i)

N > 2i
}
≤ exp

[
−i2/2

Var(S(i)

N ) + i/3

]
≤ e− 3

8 i if c(κ) < 1.

Hence we may choose M large enough so that
∑∞
i=M exp(− 3

8 i) < ε, ensuring that

with probability exceeding 1 − ε we have Λ(2i)

N ≤ κ (N/i)γ for all i ≥ M . It remains

to give bounds on Λ(1)

N , . . . ,Λ
(2M)

N . By a standard Poisson approximation result, see

e.g. [Res08, Proposition 3.21], we note that for any 1 ≤ i ≤ 2M , we have that S(i)

N

converges weakly to a Poisson distribution with parameter λ := limN→∞NP{Λ1 >

κ (N/i)γ} ≤ 2c(κ)M, and hence, by choosing κ large, we can ensure that for large N ,

we have
∑2M
i=1 P{S(i)

N > i} ≤ ε, which completes the proof.

A model which also falls in the universality class of fitness models are the random

networks with fixed degree sequence, or configuration models. This model is well

studied and very detailed results on average distances in the case of power laws with

exponent τ ∈ (2, 3) are obtained, in particular by van der Hofstad et al. in [HHZ07].

Example 5. (Random networks with fixed degree sequence.) The idea behind this class

of models is to enforce a particular power-law exponent by fixing the degree sequence of

the network in a first step. We therefore choose a sequence D1, D2, . . . of independent

and identically distributed random variables with values in the nonnegative integers.

For given N we assume that

LN :=
N∑
j=1

Dj

is even, which may be achieved by replacing DN by DN − 1 if necessary. Thus given

D1, . . . , DN we construct the network GN as follows:

• To any vertex m ∈ [N ] we attach Dm half-edges or stubs.

• The LN stubs are given an (arbitrary) order.

• We start by pairing the first stub with a (uniformly) randomly chosen other

stub, and continue pairing the lowest numbered unpaired stub with a remaining

randomly chosen stub until all stubs are matched.
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• Any pair of stubs are connect to form an edge.

Obviously the resulting network can have self-loop and double edges, but this has

no relevance for the typical distances in the giant component. In order to be in the

ultrasmall regime we require the law of the degrees to be a power law with exponent

2 < τ < 3.

Proposition 3.5. Assume that there exists c > 0 such that

P{D1 > x} = x1−τ (c+ o(1)) for all sufficiently large x.

For independent, uniformly chosen vertices V and W in the giant component we have

dN (V,W ) = (2 + o(1))
log logN
− log(τ − 2)

with high probability.

Remark 3.4. This and much more is proved in [HHZ07, Theorem 1.2]. For an

alternative approach to the lower bound we now verify Assumption FM(γ) for any

γ < 1/(τ − 1) and paths of length up to ` = O(log logN), which is clearly sufficient to

apply Theorem 1.

Proof. We observe that, given D1, . . . , DN , for pairwise disjoint vertices v1, . . . , v`+1,

P
{
v` ↔ v`+1

∣∣ v1 ↔ v2 ↔ · · · ↔ v`−1 ↔ v`
}
≤

Dv`Dv`+1

LN − 2
∑`
k=1Dvk

,

where the denominator is a rough lower bound on the number of stubs unaffected by

the conditioning event. In particular, P{i ↔ j} ≤ DiDj
LN−2Di

. Using the law of large

numbers one can easily see that there is a c > 0 such that

LN − 2
∑̀
k=1

Dvk ≥ cN with high probability,

for any choice of v1, . . . , v`, if ` = O(log logN). Therefore, to verify Assumption FM(γ)

we only need to find appropriate bounds on the degrees of given vertices, which can

be achieved (using the same relabeling) by a similar argument as in Example 4.
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4. Proofs

4.1. Proof of Theorem 2

In this section, we assume the validity of Assumption PA(γ) for a γ ∈ ( 1
2 , 1) with a

fixed constant κ. Given a vector (q(1), . . . , q(n)) we use the notation

q[m] :=
m∑
i=1

q(i) for all 1 ≤ m ≤ n.

We adopt the notation of the discussion at the end of Section 2. In particular recall

the definition of µ(v)

k and the key estimates (2), (3) and (4), which combined give

P{dN (v, w) ≤ 2δ} ≤
δ∑

k=1

µ(v)

k [`k−1]+
δ∑

k=1

µ(w)

k [`k−1]+
2δ∑
n=1

N∑
u=`n∗

µ(v)
n∗(u)µ(w)

n−n∗(u). (13)

The remaining task of the proof is to choose δ ∈ N and 2 ≤ `δ ≤ . . . ≤ `0 ≤ N which

allow the required estimates for the right hand side. To do so we will make use of the

recursive representation

µ(v)

k+1(n) =
N∑

m=`k

µ(v)

k (m) p(m,n) for k ∈ {0, . . . , δ − 1} and n ∈ [N ],

where µ(v)
0 (n) = 1l{v = n} and

p(m,n) = κ(m ∧ n)−γ(m ∨ n)γ−1.

Denote by µ̄(v)

k (m) = 1l{m≥`k} µ
(v)

k (m) the truncated version of µ(v)

k and conceive µ(v)

k

and µ̄(v)

k as row vectors. Then

µ(v)

k+1 = µ̄(v)

k PN , (14)

where PN = (p(m,n))m,n=1,...,N . Our aim is to provide a majorant of the form

µ(v)

k (m) ≤ αkm−γ + 1{m>`k−1}βkm
γ−1 (15)

for suitably chosen parameters αk, βk ≥ 0. Key to this choice is the following lemma.

Lemma 1. Suppose that 2 ≤ ` ≤ N , α, β ≥ 0 and q : [N ]→ [0,∞) satisfies

q(m) ≤ 1l{m ≥ `}(αm−γ + βmγ−1) for all m ∈ [N ].
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Then there exists a constant c > 1 (depending only on γ and κ) such that

qPN (m) ≤ c
(
α log

(N
`

)
+ β N2γ−1

)
m−γ + 1l{m > `}c

(
α`1−2γ + β log

(N
`

))
mγ−1

for all m ∈ [N ].

Proof. One has

qPN (m) = 1l{m > `}
m−1∑
k=`

q(k) p(k,m) +
N∑

k=m∨`

q(k) p(k,m)

≤ 1l{m > `}
m−1∑
k=`

κ(αk−γ + βkγ−1)k−γmγ−1 +
N∑

k=m∨`

κ(αk−γ + βkγ−1)kγ−1m−γ

≤ κ

(
α

N∑
k=m∨`

k−1 + β

N∑
k=m∨`

k2γ−2

)
m−γ

+ 1l{m > `}κ

(
α

m−1∑
k=`

k−2γ + β

m−1∑
k=`

k−1

)
mγ−1

≤ κ
(
α log

(
m

`− 1

)
+

β

2γ − 1
N2γ−1

)
m−γ

+ 1l{m > `}κ
(

α

1− 2γ
(`− 1)1−2γ + β log

(
m

`− 1

))
mγ−1.

This immediately implies the assertion since ` ≥ 2 by assumption.

We apply Lemma 1 iteratively. Fix ε > 0 small and start with

`0 = dεNe, α1 = κ(εN)γ−1 and β1 = κ(εN)−γ .

Fix v ≥ `0. Then, for all m ∈ [N ],

µ(v)
1 (m) = p(v,m) ≤ κ`γ−1

0 m−γ + 1{m > `0}κ`−γ0 mγ−1

≤ α1m
−γ + 1{m > `0}β1m

γ−1.

Now suppose that, for some k ∈ N, we have chosen αk, βk and an integer `k−1 such

that

µ(v)

k (m) ≤ αkm−γ + βkm
γ−1 for all m ∈ [N ].

We choose `k as an integer satisfying

6ε
π2k2

≥ 1
1− γ

αk`
1−γ
k , (16)



Typical distances in ultrasmall random networks 21

and assume `k ≥ 2. Pick αk+1, βk+1 such that

αk+1 ≥ c
(
αk log

(
N
`k

)
+ βkN

2γ−1
)
,

βk+1 ≥ c
(
αk`

1−2γ
k + βk log

(
N
`k

))
.

(17)

By the induction hypothesis we can apply Lemma 1 with ` = `k and q(m) = µ̄(v)

k (m).

Then, using (14),

µ(v)

k+1(m) ≤ αk+1m
−γ + 1l{m > `k}βk+1m

γ−1 for all m ∈ [N ], (18)

showing that the induction can be carried forward up to the point where `k < 2, say

in step K. Summing (18) over m ≤ `k−1 and using (16) we obtain

µ(v)

k [`k − 1] ≤ 1
1− γ

αk`
1−γ
k ≤ 6ε

π2k2
.

Hence the first two summands on the right hand side in (13) are together smaller than

2ε. It remains to choose δ = δ(N) as large as possible while ensuring that δ < K and

lim
N→∞

2δ∑
n=1

N∑
u=`n∗

µ(v)
n∗(u)µ(w)

n−n∗(u) = 0.

To this end assume that `k is the largest integer satisfying (16) and the parame-

ters αk, βk are defined via equalities in (17). To establish lower bounds for the decay

of `k we investigate the growth of ηk := N/`k > 0.

Going backwards through the definitions yields, that for an integer k ≥ 0 with

k + 1 < K and if the right hand side is smaller or equal to (N/3)1−γ , one has

(
η−1
k+2 + 1

N

)γ−1 ≤ c2(k+2)2

k2 ηγk + 2c2 (k+2)2

(k+1)2 η
1−γ
k+1 log ηk+1.

In particular, it follows that K > k + 2 in that case.

It is easy to check inductively that for any solution of this system there exist

constants b, B > 0 (not depending on N) such that,

ηk ≤ b exp
(
B
(√

γ
1−γ

)k) (19)
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for k < K and, moreover, the right hand side exceeds (N/3)1−γ before step K . We

now use (18) to estimate

2δ∑
n=1

N∑
u=`k

µ(v)
n∗(u)µ(w)

n−n∗(u) ≤ 2
δ∑

k=1

N∑
u=`k

(
αku

−γ + βku
γ−1
)2

≤ 4
2γ−1

δ∑
k=1

(
α2
k`

1−2γ
k + β2

kN
2γ−1

)
≤ 4

2γ−1 δ
(
α2
δ`

1−2γ
δ + β2

δN
2γ−1

)
.

Using (16) and (19) the first summand in the bracket can be estimated by

α2
δ`

1−2γ
δ ≤

(
δ−2 6ε

π2 (1− γ)
)2
`−1
δ ≤

(
6ε
bπ2 (1− γ)

)2 1
Nδ4

exp
(
B
(

γ
1−γ

)δ/2)
.

Using equality in (17) we get βδ ≤ c(αδ`
1−2γ
δ + αδN

1−2γ log(N/`δ)). Noting that the

second summand on the right hand side is bounded by a multiple of the first, we

find a constant C1 > 0 such that β2
δN

2γ−1 ≤ C1α
2
δ`

1−2γ
δ , and thus, for a suitable

constant C2 > 0,
2δ∑
n=1

N∑
u=`k

µ(v)
n∗(u)µ(w)

n−n∗(u) ≤ C2
1

Nδ3
exp

(
B
(

γ
1−γ

)δ/2)
.

Hence, for a suitable constant C > 0, choosing

δ ≤ log logN

log
√

γ
1−γ

− C

we obtain that the term we consider goes to zero as O((log logN)−3). Note from (19)

that this choice also ensures that `δ ≥ 2. We have thus shown that

P
{
dN (v, w) ≥ 2δ

}
≤ 2ε+O

(
(log logN)−3

)
,

whenever v, w ≥ `0 = dεNe, which implies the statement of Theorem 2.

4.2. Proof of Theorem 1

In this section, we assume validity of Assumption FM(γ) for some γ ∈ ( 1
2 , 1) with a

fixed constant κ ≥ 1. Recall again the notation and framework from the introductory

chapter. We use the same approach as in the proof of Theorem 2 but now we have to

consider the symmetric matrix PN := (p(m,n))m,n∈[N ] given by

p(m,n) := κm−γn−γN2γ−1 for m,n ∈ [N ]. (20)

We obtain the following lemma, which is the analogue of Lemma 1.



Typical distances in ultrasmall random networks 23

Lemma 2. Suppose that 2 ≤ ` ≤ N and q : [N ]→ [0,∞) satisfies

q(m) ≤ 1l{m ≥ `}mγ−1`−γ for all m ∈ [N ].

Then, for all m ∈ [N ],

qPN (m) ≤ κm−γNγ−1
(
N
`

)γ log
(
N
`−1

)
.

Proof. By (20) and the assumption on q,

qPN (m) =
N∑
i=1

q(i)p(i,m) ≤ κm−γ`−γN2γ−1
N∑
i=`

1
i ≤ κm

−γ`−γN2γ−1 log
(
N
`−1

)
,

which implies the statement of the lemma.

For fixed ε > 0 we first construct inductively a strictly decreasing sequence of

integers (`k) by letting `0 = dεNe and defining `k+1 as the largest integer such that

κ

1− γ

(
`k+1

N

)1−γ

≤ 6ε
π2(k + 1)2

(
log
(

N
`k−1

))−1
(
`k
N

)γ
. (21)

We stop once we find `k ≤ 1, say in step K. Recall the definition and recursive formula

for µ(v)

k and let µ̄(v)

k (m) := 1l{m ≥ `k}µ(v)

k (m). Then µ(v)

k+1(m) = µ̄(v)

k PN (m). We now

show, for k = 1, . . . ,K − 1, that

µ(v)

k (m) ≤ κm−γNγ−1
( N

`k−1

)γ
log
(

N
`k−1−1

)
≤ m−γ`γ−1

k , for all m ∈ [N ]. (22)

Indeed, for k = 1 the statement follows from (20) and (21). We then continue by

induction using Lemma 2. Considering the truncated first moment estimate (2) for

δ < K and our choice of (`k), we obtain from (22) that

P
(
A(v)

k

)
≤ µ(v)

k [`k − 1] ≤ κ

1− γ

(`k
N

)1−γ( N

`k−1

)γ
log
(

N
`k−1−1

)
.

Hence (21) entails that
∑δ
k=1 P

(
A(v)

k

)
≤ ε. The last step is to choose δ = δ(N) as large

as possible while ensuring that δ < K and

2δ∑
n=1

N∑
u=`n∗

µ(v)
n∗(u)µ(w)

n−n∗(u) (23)

goes to zero as N →∞. By (22) this term can be bounded by a constant multiple of

N2γ−2
∑δ
k=1 `

1−2γ
k . To verify (23) we have to bound the growth of the values ηk := N

`k
.



24 Steffen Dereich, Christian Mönch, and Peter Mörters

The choice made in (21) implies, for k < K and if the right hand side is smaller than

(N3 )1−γ , that

(
η−1
k+1 + 1

N

)γ−1
< π2κ

1−γ
(k+1)2

6ε ηγk log(2ηk), for k ≥ 0.

In particular, one has k + 1 < K in that case.

From this it is straightforward to verify inductively the existence of constants b, B >

0, which only depend on ε, κ and γ, such that

ηk ≤ b exp
(
B
(

γ
1−γ

)k)
, for k < K,

and, moreover, the right hand side exceeds (N3 )1−γ before step K.

Hence, we may choose a suitable constant C > 0 such that for

δ ≤ log logN

log
(

γ
1−γ

) − C
we have `δ ≥ 2. To complete the proof, we note that

N2γ−2
δ∑

k=1

`1−2γ
k ≤ 1

N

δ∑
k=1

η2γ−1
k ≤ δ bNB

(
γ

1−γ
)−C
−1
,

which implies convergence in (23) when C is chosen large enough.
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