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Abstract. An unbiased shift of the two-sided Brownian motion (Bt : t ∈ R) is a random time T such
that (BT+t : t ∈ R) is still a two-sided Brownian motion. Given a pair µ, ν of orthogonal probability
measures, an unbiased shift T solves the embedding problem, if B0 ∼ µ implies BT ∼ ν. A solution
to this problem was given by Last et al. (2014), based on earlier work of Bertoin and Le Jan (1992),
and Holroyd and Liggett (2001). In this note we show that this solution minimises Eψ(T ) over all
nonnegative unbiased solutions T , simultaneously for all nonnegative, concave functions ψ. Our proof
is based on a discrete concavity inequality that may be of independent interest.
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1. Introduction. A random time T is called an unbiased shift of the two sided Brownian motion
(Bt : t ∈ R) if the shifted process (BT+t : t ∈ R) is again a two-sided Brownian motion. This notion
was introduced and studied by Last et al. in [10], where the additional requirement of measurability
of T with respect to the process (Bt : t ∈ R) is made, which we drop here for greater generality. The
concept of unbiased shifts goes back to a similar idea for coin tosses, known as the extra head problem
in [7, 12, 9], and, more generally, the concept of shift-couplings, see the work of Thorisson [15].

In [10] the authors solve the embedding problem for unbiased shifts. Namely, given two orthogonal
probability measures µ, ν on the real line such that B0 ∼ µ they construct a nonnegative unbiased
shift T∗ such that BT∗ ∼ ν. The solution of [10] can easily be described explicitly. Let (Lxt : x ∈ R, t ≥
0) be a continuous version of the local time for (Bt : t ≥ 0). We use this to build two continuous
additive functionals by letting

Lνt :=

∫
Lxt ν(dx), and Lµt :=

∫
Lxt µ(dx),

and obtain the solution as
T∗ := inf{t > 0: Lνt = Lµt }. (1.1)

Note that T∗ occurred in the context of one-sided (Skorokhod) embedding problems in the work of
Bertoin and Le Jan [2], is reminiscent of extra head schemes in [12, 9] or [14], and turns out to be
closely related to allocation and transport problems, see [8, 1].

The present paper is concerned with the problem whether this natural and explicit solution of the
embedding problem is optimal in the sense that it minimises certain moments. To see which moments
should be looked at, Last et al. [10] have investigated finiteness of moments for unbiased shifts, and
have shown that, for any unbiased shift T embedding a measure orthogonal to the initial distribution,
the random variable |T | has infinite square-root moment. Under the additional assumption that T is
a nonnegative stopping time they obtain that T has an infinite fourth-root moment. It is conjectured
in [10] that this holds without the assumption that T is a stopping time, and this conjecture will be
confirmed in this paper, see Remark 1(c) below. The results of [10] show that in order to understand
optimality we need to focus on moments of fractional order smaller than 1

2 , or more generally moments
taken with respect to concave gauge functions.
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We denote by Pµ,Eµ probability and expectation on a probability space supporting a two-sided Brow-
nian motion (Bt : t ∈ R) with B0 ∼ µ. We can now state our main result.

Theorem 1. Assume that µ and ν are two orthogonal probability measures on R. For any non-negative
unbiased shift T embedding ν and all ψ : [0,∞)→ [0,∞) concave,

Eµψ(T∗) ≤ Eµψ(T ),

where T∗ is the unbiased shift constructed in (1.1).

Remark 1

(a) This result is closely related to a similar optimality result in [14] for the case of discrete-time
Markov chains. Although our proof relies on a discrete approximation, we have been unable
to derive Theorem 1 directly from the results of [14]. Instead, we use a concavity inequality,
stated as Lemma 3.2(b) below, that may be of independent interest.

(b) We make no assumptions on measurability of T with respect to the Brownian motion, i.e., T
is allowed to use additional randomisation beyond that taken from the Brownian motion.

(c) As T∗ is a stopping time, we have EµT 1/4
∗ =∞ by Theorem 8.1 in [10], and hence

EµT 1/4 =∞
for all non-negative solutions T of the embedding problem.

(d) Under mild conditions on µ, ν we have EµTα∗ <∞ for α < 1
4 by Theorem 8.2 in [10].

(e) The result is strongly reminiscent of optimality results for Skorokhod embeddings, as given,
for example, in the classical papers [3, 4]. The use of optimal transport ideas in connection
to optimal Skorokhod embeddings is also the topic of a lot of current research, of which the
paper [1] is a major highlight.

Remark 2 If µ and ν are not orthogonal we can write µ = µ̃+ µ ∧ ν and ν = ν̃ + µ ∧ ν for orthogonal
sub-probability measures µ̃, ν̃. Denoting the total mass of both measures by ρ one can enlarge the
probability space to include a Bernoulli variable U , depending only on B0, with Pµ(U = 1) = ρ such
that on the event U = 1 we have B0 ∼ 1

ρ µ̃ and on the event U = 0 we have B0 ∼ 1
1−ρ (µ ∧ ν). Then

T∗ = U inf{t > 0: Lν̃t = Lµ̃t }
is a non-negative unbiased shift embedding ν, which satisfies the inequality in Theorem 1. This follows
by splitting the expectations according to the value of U , and using monotonicity of ψ on the event
U = 0, and applying the theorem to the orthogonal probability measures 1

ρ µ̃, 1
ρ ν̃ on the event U = 1.

2. Preliminaries and outline of the proof. We recall the framework of [10], which will be used
as a main reference throughout this paper. Let (Ω,A ,P0) be such that Ω is the space of continuous
functions ω : R → R, equipped with the Borel σ-algebra A and the distribution P0 of two-sided
Brownian motion with ω0 = 0. For all x ∈ R we define Px to be the distribution of ω + x and
introduce the σ-finite measure P :=

∫
Px dx, which is invariant under the shifts ω 7→ sω defined by

(sω)(·) = ω(·− s), for all s ∈ R. As usual, expectations with respect to P,Px will be denoted by E,Ex,
respectively.

Let (`x : x ∈ R) be a continuous version of the family of local times of ω at level x, and for any locally
finite measure ν on R set `ν :=

∫
`x ν(dx). We note that the local times `x and `ν are random measures

and depend on ω ∈ Ω. When necessary, this dependence will be indicated as `·ω. We may and shall
assume that `xz+ω = `x−zω , for all x, z ∈ R, for P-almost every ω.
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A transport rule is a Markov kernel θ : Ω×R×B → [0, 1], where B is the Borel σ-algebra on R. We
use the notation θω(ds, dt) = θω(s, dt)`µ(ds), and θω(A,B) =

∫
A θω(s,B)`µ(ds) for any A,B ∈ B. An

interpretation of the Markov kernels θ(s, ·) is that each site s ∈ R sends out unit mass to the real line.
A transport rule θ is called translation invariant if θω(s,A) = θtω(s− t, A− t), for any (s,A) ∈ R×B,
t ∈ R, for P-almost every ω.

We now briefly summarise results of [10], which are derived from the abstract results of [11]. Given a
translation invariant transport rule θ we obtain an unbiased shift T by letting

Pµ(ω ∈ A, T ∈ B) =

∫∫
A
θω(0, B)Px(dω)µ(dx), for A ∈ A , B ∈ B. (2.1)

Conversely, given an unbiased shift T we can construct a transport rule θ by letting θω(s,B) = Pµ(T ∈
B− s | sω), for s ∈ R, B ∈ B, ω ∈ Ω. We use a suitably regularised version of conditional probabilities
so that θ is a translation invariant transport rule and (2.1) holds.

The transport rules associated in this way with nonnegative unbiased shifts are forward looking in the
sense that θω(s, (−∞, s)) = 0 for all s ∈ R. An unbiased shift T solves the embedding problem for a
pair of orthogonal probability measures µ, ν if and only if the associated transport rule satisfies the
balancing property ∫

θω(s, dt) `µω(ds) = `νω(dt) for P-almost all ω.

If the unbiased shift is not randomised, i.e. a measurable function of ω, then the associated θ is an
allocation rule, i.e. it is of the form θω(s,A) = 1A(τω(s)) for some τω : R → R. In this case each site
s ∈ R is assigned to a new site τ(s) ∈ R, where again we drop the dependence on ω from the notation.
The allocation rule associated to the random times T∗ is given by

τ∗(s) := inf{t > s : `µ[s, t] = `ν [s, t]}, for all s ∈ R. (2.2)

Let us now outline the proof of Theorem 1. The first part looks at what happens pathwise. With every
transport rule we associate a local cost. Given a fixed ω, we show that on carefully chosen intervals
called excursions, the best possible cost is offered by the allocation rule τ∗. We do this by proving an
analogous discrete result and then taking a suitable limit. The second part of the proof uses ergodic
theory to translate the local cost optimality of τ∗ into a result on the moments of T∗.

3. Pathwise level. In what follows, we fix a path ω. An excursion E is any interval of the form
[a, τ∗(a)], for a ∈ R. Observe that τ∗ maps E onto itself. Our main goal is to show that the allocation
rule τ∗ offers the best possible cost inside an arbitrary excursion E . More precisely we will devote this
section to proving the following proposition.

Proposition 3.1. Given an excursion E, for any forward-looking transport rule θ balancing `µ and `ν ,∫∫
E×R

ψ(t− s) θ(ds, dt) +

∫∫
R×E

ψ(t− s) θ(ds, dt) ≥ 2

∫
E
ψ(τ∗(s)− s)`µ(ds), (3.1)

for all ψ : [0,∞)→ [0,∞) concave.

The left hand side in (3.1) is called the cost of the transport rule θ over the interval E . Note that
τ∗(E) = E and hence the right hand side is then the cost of the allocation rule given by τ∗ over the
same interval. By subtracting a constant from both sides of the equation we may henceforth assume
that ψ(0) = 0.

We start by establishing a similar result in a discrete setting. The inequality we establish below is
of a general nature and may be of independent interest. A map τ : A→ B between two discrete and
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disjoint sets A,B ⊂ R is the stable allocation map if

τ(a) = min
{
b ∈ B : b > a, |B ∩ [a, b]| = |A ∩ [a, b]|

}
.

Lemma 3.2. Let a1 > a2 > a3 > . . . and b1 < b2 < b3 < . . . be disjoint real sequences, such that we
have an ↘ −∞ and bn ↗∞.

(a) The stable allocation map τ : {. . . , a3, a2, a1} → {b1, b2, b3, . . .} is well-defined and there exists
N ∈ N such that τ(ai) = bi for all i ≥ N .

(b) For every concave function ψ : [0,∞) → [0,∞) and nonnegative matrix π = (πi,j : i, j ∈ N)
with the properties that

– πi,j = 0 if ai > bj,

–
∑∞

j=1 πi,j = 1 for all i ∈ {1, . . . , N},

–
∑∞

i=1 πi,j = 1 for all j ∈ {1, . . . , N},

we have
N∑
i=1

∞∑
j=1

+

∞∑
i=1

N∑
j=1

πi,jψ(bj − ai) ≥ 2

N∑
i=1

ψ(τ(ai)− ai). (3.2)

Note that the sum on the left hand side of (3.2) is over pairs of positive integers i, j with i ∧ j ≤ N ,
counting the contribution of pairs with i ∨ j ≤ N twice. In the special case that a1 < b1 we have
τ(ai) = bi for all i, and hence N ∈ N can be chosen arbitrarily. Then our result becomes the following
general result, which to the best of our knowledge is new, too.

Corollary 3.3. For every double-sided increasing sequence (an : n ∈ Z) that is unbounded from above
and below, every stochastic matrix π = (πi,j : i, j ∈ N), and every concave function ψ : [0,∞)→ [0,∞)
we have

n∑
i=1

∞∑
j=1

+
∞∑
i=1

n∑
j=1

πi,jψ(ai − a−j) ≥ 2
n∑
i=1

ψ(ai − a−i).

Proof of Lemma 3.2(a). Given a ∈ A the set A ∩ [a,∞) is finite, but the set B ∩ [a,∞) is infinite.
Hence, on the one hand, there exists b ∈ B such that |B ∩ [a, b]| ≥ |A ∩ [a,∞)| ≥ |A ∩ [a, b]|, while
on the other hand |B ∩ [a, a]| = 0 < 1 = |A ∩ [a, a]|. This implies that there exists b′ ∈ [a, b] with
|B ∩ [a, b′]| = |A ∩ [a, b′]|, and hence τ is well-defined.

We now show that there exists N ∈ N such that, for all n ≥ N , we have τ(an) = bn. If a1 < b1 one
can choose N = 1. Otherwise define an integer-valued function f : [b1,∞)→ R by

f(x) =
∣∣A ∩ [b1, x]

∣∣− ∣∣B ∩ [b1, x]
∣∣.

Let M ∈ Z be the minimum of f on [b1, a1]. Note that f(a1) > M and on [a1,∞) the function f is
decreasing to −∞ by downward jumps of size one. Hence there exists n > 1 with f(bn) = M − 1.
Clearly, for all m ≥ n we have |A ∩ [am, bm]| = m = |B ∩ [am, bm]| while, for j < m, we have
|A ∩ [am, bj ]| > j = |B ∩ [am, bj ]|. Hence, τ(am) = bm, as required. �

Proof of Lemma 3.2(b). This is a variant of Lemma 5.3 in [14]. We say that four points ak < ai <
bj < bl are crossed by π if πkj > 0 and πil > 0. Such a crossing can be repaired by replacing the
matrix π by a new matrix π′ given by

π′kj = πkj − (πkj ∧ πil), π′il = πil − (πkj ∧ πil),
π′ij = πij + (πkj ∧ πil), π′kl = πkl + (πkj ∧ πil),
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leaving all other entries untouched. If π satisfies the conditions of (b), then so does π′. By concavity
of the function ψ we get

ψ(bj − ak) + ψ(bl − ai) ≥ ψ(bj − ai) + ψ(bl − ak).
Hence the left hand side of (3.2) decreases when we replace π by π′, and we observe that ak < ai <
bj < bl are not crossed by π′. We say the crossing is repaired.

We systematically repair all crossings as in Section 5 of [14], i.e. in the following order

• picking bj from {b1, . . . , bn} from left to right,
• given bj picking ai < bj from {ai : 1 ≤ i ≤ n, ai < bj} from right to left,
• given ai < bj picking ak < ai from {ai+1, ai+2, . . .} from right to left,
• given ak < ai < bj picking bl from {bj+1, bj+2, . . .} from left to right.

Just as in Lemma 5.1 of [14] we see that this procedure is well-defined (taking limits in the last two
steps) and leads to a matrix π∗, which satisfies

N∑
i=1

∞∑
j=1

+
∞∑
i=1

N∑
j=1

πi,jψ(bj − ai) ≥
N∑
i=1

∞∑
j=1

+
∞∑
i=1

N∑
j=1

π∗i,jψ(bj − ai).

Moreover, π∗ crosses no four points ak < ai < bj < bl with ai, bj ∈ E and hence, as in Lemma 5.2 of [14],
we get that π∗ij = 1{τ(ai) = bj}. Plugging the entries of π∗ into the right hand side gives (3.2). �

We now use Lemma 3.2 to get a continuous inequality. Let E = [b0, a0] ⊂ R be an excursion and M =
`µ(E) > 0. Given n ∈ N we pick a1 > a2 > . . . > an such that `µ(ai, ai−1) = M

n and b1 < b2 < . . . < bn
such that `ν(bj−1, bj) = M

n , for 1 ≤ i, j ≤ n, and also such that an = b0 and bn = a0.

Additionally, ai, bi, for i > n, are chosen in such a way that ai ↘ −∞, bi ↗∞, and
∞

sup
i=n

(
bi+1 − bi

)
,

∞
sup
j=n

(
aj − aj+1

)
−→ 0.

Then, if τn : {. . . , a3, a2, a1} → {b1, b2, b3, . . .} is the (discrete) stable allocation map, in Lemma 3.2
we may choose N = n. Now suppose a forward-looking and balancing transport rule θ is given. We
define

πi,j =
n

M
θ((ai, ai−1], (bj−1, bj ])

and note that π = (πi,j : i, j ∈ N) satisfies the conditions of Lemma 3.2 (b). Hence we have
n∑
i=1

∞∑
j=1

+

∞∑
i=1

n∑
j=1

πi,jψ(bj − ai) ≥ 2

n∑
i=1

ψ(τn(ai)− ai). (3.3)

Multiply both sides by M/n and let n go to infinity. We will argue that the right and left hand side
of (3.3) converge to those of (3.1).

First we show convergence of the left hand side of (3.3). Given {ai}i∈N and {bj}j∈N as constructed
above, let gn(a) = ai, if a ∈ (ai, ai−1] and hn(b) = bj , if b ∈ (bj−1, bj ].

Lemma 3.4. For `µ-almost every a we have gn(a)→ a, and for `ν-almost every b we have hn(b)→ b.

Proof. It suffices to prove the first claim. The result is trivial if a ≤ b0. Given ε > 0, for `µ-almost
every a with b0 + ε < a ≤ a0 there exists η > 0 such that `µ(a − ε, a) ≥ η. Hence, for all n > M/η,
there exists ai ∈ (a− ε, a) which implies 0 < a− gn(a) < ε. �
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Note that
M

n

n∑
i=1

∞∑
j=1

πi,jψ(bj − ai) =

∫∫
E×R

ψ
(
hn(b)− gn(a)

)
θ(da, db).

Now we compare the integrand with ψ
(
b − a). Adding and subtracting ψ(b − gn(a)) and then using

the triangle inequality we get

|ψ(hn(b)− gn(a))− ψ(b− a)| ≤ |ψ(hn(b)− gn(a))− ψ(b− gn(a))|+ |ψ(b− a)− ψ(b− gn(a))|
≤ ψ(hn(b)− b) + ψ(a− gn(a)),

where in the second inequality we used the sub-additivity of ψ as follows,

|ψ(hn(b)− gn(a))− ψ(b− gn(a))| = ψ(hn(b)− gn(a))− ψ(b− gn(a))

= ψ(hn(b)− b+ b− gn(a))− ψ(b− gn(a)) ≤ ψ(hn(b)− b).
Using this estimate on the integrand, we get

0 ≤
∫∫
E×R

ψ
(
hn(b)− gn(a)

)
− ψ(b− a) θ(da, db) ≤

∫∫
E×R

ψ(hn(b)− b) + ψ(a− gn(a)) θ(da, db).

The integrand on the right is bounded and converges to zero, θ-almost everywhere, by Lemma 3.4.
Hence the left hand side of (3.3), multiplied by M

n , converges to the required limit,∫∫
E×R

+

∫∫
R×E

ψ(b− a) θ(da, db).

Second we show convergence of the right hand side of (3.3). The key to this is the following lemma.

Lemma 3.5. For `µ-almost every a ∈ E, we have limn→∞ τn(gn(a)) = τ∗(a).

Proof. We define
f : [a, τ∗(a)]→ [0,∞), f(x) = `µ[a, x]− `ν [a, x],

and
fn : [a, τ∗(a)]→ R, fn(x) = M

n

(
|{i : ai ∈ [gn(a), x]}| − |{j : bj ∈ [gn(a), x]}|

)
.

The proof is organised into five steps.

Step 1: |f(x)− fn(x)| ≤ 4M
n .

Proof. Denote k1 = |{i : ai ∈ [gn(a), x]}| and k2 = |{j : bj ∈ [gn(a), x]}|, then fn(x) = M
n (k1 − k2) and

`µ[a, x] = (k1 − 1)
M

n
+ `µ[gn(x), x]− `µ[gn(a), a],

and hence |`µ[a, x]− k1
M
n | ≤

2M
n . Similarly, |`ν [a, x]− k2

M
n | ≤

2M
n , which implies the statement. �

Recall that τ∗(a) = inf{x > a : f(x) = 0} and

τn(gn(a)) = inf{x > gn(a) : fn(x) = 0}.

Step 2: For `µ-almost every a ∈ E , there exists ε0 > 0 such that,

f(a+ x) ≥ 5
6`
µ[a, a+ x] for all x ∈ (0, ε0), and

f(τ∗(a)− x) ≥ 5
6`
ν [τ∗(a)− x, τ∗(a)] for all x ∈ (0, ε0).

Proof. For `µ-almost every a ∈ E , there exists ε0 > 0 such that,

`ν [a, a+ x] ≤ 1
6`
µ[a, a+ x] for all x ∈ (0, ε0).

see, e.g., Section 1.6, Theorem 3 in [6]. This implies the first property, and the second is analogous. �
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Step 3: Let Gn := {ai : i ∈ {1, . . . , n}, 6∃bj ∈ [ai, ai−7]}. Then, for `µ-almost every a ∈ E , there exists
arbitrarily large n with gn(a) ∈ Gn.

Proof. Let η > 0. For `µ-almost every x ∈ E , there exists δ0 > 0 such that [x− δ0, x+ δ0] ⊂ E and

`ν [x− δ, x+ δ] ≤ η`µ[x− δ, x+ δ], for all 0 < δ < δ0,

see, e.g., Section 1.6, Theorem 3 in [6]. Supposing that, for some k ∈ N,

(k+2)M
n ≤ `µ[x− δ, x+ δ] ≤ (k+3)M

n

we have ∣∣{ai : i ∈ {1, . . . , n}, ai ∈ [x− δ, x+ δ]
}∣∣ ≥ k + 1

and ∣∣{bj : j ∈ {1, . . . , n}, bj ∈ [x− δ, x+ δ]
}∣∣ ≤ 1 + η(k + 3).

By the pigeonhole principle therefore∣∣{ai ∈ [x− δ, x+ δ] : ai 6∈ Gn
}∣∣ ≤ 7(1 + η(k + 3)).

Hence, given ε > 0, we can find η, and hence δ0(x) > 0, such that

`µ{a ∈ [x− δ, x+ δ] : gn(a) 6∈ Gn} < ε
4M `µ[x− δ, x+ δ], for all 0 < δ < δ0(x) and n ≥ n0(δ, x).

Let
E(δ) := {x ∈ E : δ0(x) > δ}.

We now fix a global δ > 0 with `µ(E \ E(δ)) < ε
2 . We then cover E(δ) by finitely many intervals

[x1 − δ, x1 + δ], . . . , [xm − δ, xm + δ] with xi ∈ E(δ) such that each of the centres x1, . . . , xm is only
contained in one of the intervals. Let n0 := maxmi=1 n0(δ, xi). Then, for all n ≥ n0, we have

`µ{a ∈ E : gn(a) 6∈ Gn} ≤
m∑
i=1

`µ{a ∈ [xi − δ, xi + δ] : gn(a) 6∈ Gn}+ `µ(E \ E(δ))

≤ ε

4M

m∑
i=1

`µ[xi − δ, xi + δ] +
ε

2
≤ ε

4M
2`µ(E) +

ε

2
= ε.

The result follows as ε > 0 was arbitrary. �

Step 4: Using Step 3, for `µ-almost every a, we can choose n such that gn(a) ∈ Gn and

5M
n ≤ min{f(y) : y ∈ [a+ ε, τ∗(a)− ε]}.

Recall that gn(a) = ai, if a ∈ (ai, ai−1]. In this case we also write g(k)
n (a) = ai−k.

By Step 1 and choice of n we have

fn(x) ≥ f(x)− 4M
n ≥

M
n for all x ∈

[
a+ ε, τ∗(a)− ε

]
.

By Step 2, using again Step 1,

fn(x) ≥ f(x)− 4M
n ≥

5
6`
µ[a, g(7)

n (a)]− 4M
n ≥

M
n for all x ∈

[
g(7)
n (a), a+ ε

]
,

and the fact that gn(a) ∈ Gn implies that

fn(x) ≥ M
n for all x ∈

[
gn(a), g(7)

n (a)
]
.

We thus obtain that
τn(gn(a)) = inf{x > gn(a) : fn(x) = 0} ≥ τ∗(a)− ε.
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Step 5: For `µ-almost every a, we have, for sufficiently large n,

τn(gn(a)) ≤ τ∗(a) + ε.

Proof. Recall that hn(b) = bj , if b ∈ (bj−1, bj ]. In this case we also write h(k)
n (b) = bj+k. We note

from Step 1 that fn(τ∗(a)) ≤ 4M
n . Let G′n := {bj : j ∈ {1, . . . , n}, 6 ∃ai ∈ [bj , bj+5]}. Then, as in

Step 3, for `µ-almost every a, there exists arbitrarily large n with hn(τ∗(a)) ∈ G′n. We infer that
τn(gn(a)) ≤ h(5)

n (τ∗(a)) ≤ τ∗(a) + ε, if n is large enough. �

The result follows by combining Steps 4 and 5, as ε > 0 was arbitrarily small. �

To conclude we note that, using Lemmas 3.4 and 3.5,

lim
n→∞

M

n

n∑
i=1

ψ(τn(ai)− ai) = lim
n→∞

∫
E
ψ(τn(gn(a))− gn(a)) `µ(da)

=

∫
E

lim
n→∞

ψ(τn(gn(a))− gn(a)) `µ(da) =

∫
ψ(τ∗(a)− a) `µ(da),

by bounded convergence.

4. Ergodicity. Denote by P(µ) =
∫
Px µ(dx) the law of two-sided Brownian motion with ω0 ∼ µ or,

in other words, the push-forward of Pµ under (Bt : t ∈ R). This is a measure on the path space (Ω,A )
introduced at the beginning of Section 2. For r ∈ R define Sr to be the generalized inverse of the local
time `µ, that is

Sr :=

{
sup{t ≥ 0 : `µ[0, t] = r}, if r ≥ 0,
sup{t < 0 : `µ[t, 0] = −r}, if r < 0.

(4.1)

Then P(µ) is invariant under the shifts Sr : (ωs) 7→ (ωSr+s), for every r ∈ R, by Theorem 3.4 in [10].
In order to show that the family of shifts (Sr) is ergodic, we need to show that any invariant set A
is trivial, i.e. P(µ)(A) ∈ {0, 1}. We follow a classical approximation approach. By [5, Appendix A.3]
there exist sets Ar ∈ σ(ωs : s ∈ [S−r, Sr]), r > 0, such that P(µ)(A∆Ar) → 0 as r → ∞, where ∆
denotes the symmetric difference of the two sets. As A is invariant under the shift S2r we get

P(µ)(A∆S2rAr) = P(µ)(S2rA∆S2rAr) = P(µ)(S2r(A∆Ar)) = P(µ)(A∆Ar)→ 0.

Hence there exists rn ↗∞ such that
∞∑
n=1

P(µ)(A∆S2rnArn) <∞,

and A \
⋂
s>0

⋃
rn>s

S2rnArn and
⋂
s>0

⋃
rn>s

S2rnArn \A are P(µ)-nullsets. This implies

P(µ)(A) = P(µ)

( ⋂
s>0

⋃
rn>s

S2rnArn

)
∈ {0, 1},

using that the latter event is a tail event and hence trivial, see e.g. [13, Theorem 2.9].

Lemma 4.1. Let T ≥ 0 be an unbiased shift and θ be the associated transport rule. Furthermore
let ψ : [0,∞) → [0,∞) be concave with ψ(0) = 0. Let Srµ+ν be the generalized inverse of the local

time `µ+ν . Then, P(µ+ν)-almost surely,

lim
r→∞

1

r

∫∫ Srµ+ν

0
ψ(t− s) θ(ds, dt) = lim

r→∞

1

r

∫∫ 0

S−r
µ+ν

ψ(t− s) θ(ds, dt) = 1
2 Eµψ(T ),
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and,

lim
r→∞

1

r

∫ Srµ+ν

0

∫
ψ(t− s) θ(ds, dt) = lim

r→∞

1

r

∫ 0

S−r
µ+ν

∫
ψ(t− s) θ(ds, dt) = 1

2 Eµψ(T ).

Proof. By the ergodic theorem, P(µ+ν)-almost surely,

lim
r→∞

1

r

∫∫ Srµ+ν

0
ψ(t− s) θ(ds, dt) = lim

r→∞

1

r

∫ Srµ+ν

0

(∫
ψ(t− s) θ(s, dt)

)
`µ+ν(ds)

= lim
r→∞

1

r

∫ r

0

(∫
ψ(t− Ssµ+ν) θ(Ssµ+ν , dt)

)
ds

= 1
2 E

(µ+ν)

∫
ψ(t) θ(0, dt) = 1

2 Eµψ(T ).

Similarly, we obtain P(µ+ν)-almost surely,

lim
r→∞

1

r

∫ Srµ+ν

0

∫
ψ(t− s) θ(ds, dt) = 1

2 E
(µ+ν)

∫
ψ(−s)θ(ds, 0)

= 1
2 E

(ν)

∫
ψ(−s) θ(ds, 0).

Using the generalized Campbell formula, see [10, (2.4)], we get

E(ν)

∫
ψ(−s) θ(ds, 0) = E(ν)

∫ (∫
ψ(−s)1{s+ r ∈ [0, 1]} θω(ds, 0)

)
dr

= E
∫ (∫

ψ(−s)1{s+ r ∈ [0, 1]} θrω(ds, 0)

)
`ν(dr)

= E
∫∫

1{t ∈ [0, 1]}ψ(r − t) θω(dt, r)`ν(dr),

where in the last equation we used the shift-invariance of θ. Using the balancing property first and
then the generalized Campbell formula again this equals

E
∫∫

1{t ∈ [0, 1]}ψ(r − t) θω(t, dr)`µ(dt) = E(µ)

∫
ψ(t) θ(0, dt) = Eµψ(T ).

The claims about backward time follow in the same manner. �

Proof of Theorem 1. Define for u > 0 the stopping times

ρ(u) = inf{t ≥ 0 : `µ([0, t])− `ν([0, t]) = −u},
σ(u) = sup{t ≤ 0 : −`µ([t, 0]) + `ν([t, 0]) = −u}.

We have ρ(u)↗∞ and σ(u)↘ −∞, as u→∞, and, for all u > 0, the interval [σ(u), ρ(u)] forms an
excursion. Hence, by Proposition 3.1,∫ ρ(u)

σ(u)

∫
ψ(t− s) θ(ds, dt) +

∫ ∫ ρ(u)

σ(u)
ψ(t− s) θ(ds, dt) ≥ 2

∫ ρ(u)

σ(u)
ψ(τ∗(s)− s) `µ(ds).

Applying Lemma 4.1 the left hand side is asymptotically equal to 1
2 `

µ+ν([σ(u), ρ(u)])Eµψ(T ), and the

right hand side to 1
2 `

µ+ν([σ(u), ρ(u)])Eµψ(T∗), which concludes the proof. �
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