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Abstract

Let B = (Bt)t∈R be a two-sided standard Brownian motion. An unbiased shift of B
is a random time T , which is a measurable function of B, such that (BT+t−BT )t∈R
is a Brownian motion independent of BT . We characterise unbiased shifts in terms
of allocation rules balancing mixtures of local times of B. For any probability
distribution ν on R we construct a stopping time T ≥ 0 with the above properties
such that BT has distribution ν. We also study moment and minimality properties
of unbiased shifts. A crucial ingredient of our approach is a new theorem on the
existence of allocation rules balancing stationary diffuse random measures on R.
Another new result is an analogue for diffuse random measures on R of the cycle-
stationarity characterisation of Palm versions of stationary simple point processes.
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1 Introduction and main results

Let B = (Bt)t∈R be a two-sided standard Brownian motion in R having B0 = 0. If
T ≥ 0 is a stopping time with respect to the filtration (σ{Bs : s ≤ t})t≥0, then the shifted
process (BT+t − BT )t≥0 is a one-sided Brownian motion independent of BT . However,
the two-sided shifted process (BT+t − BT )t∈R need not be a two-sided Brownian motion.
Moreover, the example of a fixed time shows that even if it is, it need not be independent
of BT . We call a random time T an unbiased shift (of a two-sided Brownian motion) if
T is a measurable function of B and (BT+t − BT )t∈R is a two-sided Brownian motion,
independent of BT . We say that a random time T embeds a given probability measure ν
on R, often called the target distribution, if BT has distribution ν.

In this paper we discuss several examples of nonnegative unbiased shifts that are
stopping times. However, we wish to stress that nonnegative unbiased shifts are not
assumed to have the stopping time property, see for instance Example 5.11. The paper
has three main aims. The first aim is to characterise all unbiased shifts that embed a given
distribution ν. The second aim is to construct such unbiased shifts. In particular, we solve
the Skorokhod embedding problem for unbiased shifts: given any target distribution we
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find an unbiased shift which embeds this target distribution (and is also a stopping time).
The third and final aim is to discuss properties of unbiased shifts. In particular, we discuss
optimality of our solution of the Skorokhod embedding problem for unbiased shifts.

The case when the embedded distribution is concentrated at zero is of special interest.
Let ℓ0 be the local time at zero. Its right-continuous (generalised) inverse is defined by

Tr :=

{

sup{t ≥ 0 : ℓ0[0, t] = r}, r ≥ 0,

sup{t < 0 : ℓ0[t, 0] = −r}, r < 0.
(1.1)

Note that P0{T0 = 0} = 1 and P0{Tr = 0} = 0 if r 6= 0. We prove the following theorem.

Theorem 1.1. Let r ∈ R. Then Tr is an unbiased shift embedding δ0.

This result formalises the intuitive idea that two-sided Brownian motion looks globally the
same from all its (appropriately chosen) zeros, thus resolving an issue raised by Mandelbrot
in [19, p. 207, p. 385] and reinforced in [14, 30]. Another way of thinking about this result
is that if we travel in time according to the clock of local time we always see a two-sided
Brownian motion.

The property described in Theorem 1.1 is analogous to a well-known feature of the
two-sided stationary Poisson process with an extra point at the origin: the lengths of the
intervals between points are i.i.d. (exponential) and therefore shifting the origin to the
nth point on the right (or on the left) gives us back a two-sided Poisson process with
an extra point at the origin. In the Poisson case the process with an extra point at the
origin is the Palm version of the stationary process and it is a well-known characterising
property of Palm versions of stationary point processes on the line that their distributions
do not change when the origin is shifted along the points.

In fact, much of the work behind the present paper was inspired and motivated by
the recent literature on matching and allocation problems. There is a strong analogy
between the problem of finding an extra head in a two-sided sequence of independent
fair coin tosses, as discussed in [18], and the problem of finding an unbiased shift for
Brownian motion embedding a given probability distribution. Unlocking this analogy
was key to the solution of the latter problem. But the analogy extends further to the
more recent developments for spatial point processes and random measures [12, 11, 17].
In the terminology of [17], Theorem 1.1 means that Brownian motion is mass-stationary
with respect to local time, see Section 3 below. Holroyd and Peres [12] consider the
balancing of Lebesgue measure and a stationary ergodic spatial point process, obtaining
the Palm version of the point process by shifting the origin to the associated point of the
process. Last and Thorisson [17] extend these ideas to the balancing of general random
measures in an abstract group setting. This general theory, and Poisson-matching ideas
from [11], are essential for the present paper where we consider the balancing of local
times at different levels.

Theorem 1.1 is relatively elementary. To state the further main results of this paper
we now briefly introduce some notation and terminology, full details for our framework
will be given in Section 2. To begin with, it is convenient to define B as the identity on
the canonical probability space (Ω,A,P0), where Ω is the set of all continuous functions
ω : R → R, A is the Kolmogorov product σ-algebra, and P0 is the distribution of B.
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Define Px := P0{B + x ∈ ·}, x ∈ R, and the σ-finite and stationary measure

P :=

∫

Px dx. (1.2)

Expectations (resp. integrals) with respect to Px and P are denoted by Ex and EP, respec-
tively. For any t ∈ R the shift θt : Ω → Ω is defined by

(θtω)s := ωt+s. (1.3)

An allocation rule [12, 17] is a measurable mapping τ : Ω × R → R that is equivariant in
the sense that

τ(θtω, s− t) = τ(ω, s) − t, s, t ∈ R, P-a.e. ω ∈ Ω. (1.4)

A random measure ξ on R is a kernel from Ω to R such that ξ(ω,C) < ∞ for P-a.e. ω
and all compact C ⊂ R. If ξ and η are random measures, and τ is an allocation rule such
that the image measure of ξ under τ is η, that is,

∫

1{τ(s) ∈ ·} ξ(ds) = η P-a.e., (1.5)

then we say that τ balances ξ and η. If τ balances ξ and η and σ is an allocation rule
that balances η and another random measure ζ, then the allocation rule σ ◦ τ balances η
and ζ. Let ℓx be the random measure associated with the local time of B at x ∈ R. For
a locally finite measure ν on R we define

ℓν(ω, ·) :=

∫

ℓx(ω, ·) ν(dx), ω ∈ Ω. (1.6)

Since ℓx is supported by {t ∈ R : Bt = x} and B is bounded on bounded intervals, we
obtain that ℓν is P-a.e. finite on bounded sets and hence a random measure. The random
measure ℓν has the invariance property

ℓν(θtω,C − t) = ℓν(ω,C), C ∈ B, t ∈ R,P-a.s..

For any random time T we define an allocation rule τT by

τT (t) := T ◦ θt + t, t ∈ R. (1.7)

Since T = τT (0), there is a one-to-one correspondence between T and τT . Let us emphasise
again that Section 2 will provide further details regarding the notation introduced in this
paragraph.

Our key characterisation theorem is based on a result in [17], which will be recalled
as Theorem 2.1 below.

Theorem 1.2. Let T be a random time and ν be a probability measure on R. Then T is
an unbiased shift embedding ν if and only if τT balances ℓ0 and ℓν.

3



For any probability measure ν on R we denote by Pν :=
∫

Px ν(dx) the distribution of
a two-sided Brownian motion with a random starting value B0 with law ν. We show in
Section 3 that all these distributions coincide on the invariant σ-algebra. A general result
in [29] (see also [15, Theorem 10.28]) then implies that there is a random time T , possibly
defined on an extension of (Ω,A,P0), such that θTB has distribution Pν under P0. The
next two theorems yield a much stronger result. They show that T can be chosen as a
factor of B, that is, as a measurable function of B, see [12] for a similar result for Poisson
processes. Moreover, this factor is explicitly known. The proof is based on Theorem 1.2
and on a general result on the existence of allocation rules balancing stationary orthogonal
diffuse random measures on R with equal conditional intensities, see Theorem 5.1 below.

Theorem 1.3. Let ν be a probability measure on R with ν{0} = 0. Then the stopping
time

T ν := inf
{

t > 0: ℓ0[0, t] = ℓν [0, t]
}

(1.8)

embeds ν and is an unbiased shift.

The stopping time T ν was introduced in [4] as a solution of the Skorokhod embedding
problem. This problem requires finding a stopping time T ≥ 0 embedding a given dis-
tribution ν, see [24] for a survey. The idea of using mixtures of local times to solve this
problem was introduced in [23]. It has apparently not been noticed before that T ν is an
unbiased shift. The methods of the present paper are very different from the methods
of [23, 4].

It is important to note that in the two-sided framework being a stopping time is neither
necessary nor sufficient for the shifted process to be a Brownian motion. For instance,
this is not the case for another stopping time introduced in [4], which is defined similarly
to (1.8) but with ν replaced by a finite measure of mass exceeding one, see Remark 5.10.
Conversely, unbiased shifts need not be stopping times, even when they are nonnegative,
see Example 5.11.

If ν is of the form ν{0}δ0+(1−ν{0})µ where µ{0} = 0 and ν{0} > 0, then Theorem 1.3
does not apply. In fact, if ν{0} < 1 then T ν is an unbiased shift embedding µ. Still we
can use Theorem 1.3 to construct unbiased shifts without any assumptions on ν:

Theorem 1.4. Let ν be a probability measure on R. Then there exists a nonnegative
stopping time that is an unbiased shift embedding ν.

In Theorem 1.1 we have P0{BT0 = 0, T0 = 0} = 1 and P0{BTr = 0, Tr 6= 0} = 1 if
r 6= 0. It is interesting to note that unbiased shifts T (even if they are not stopping times)
are almost surely nonzero as long as the condition P0{BT = 0} < 1 is fulfilled:

Theorem 1.5. Let ν be a probability measure on R such that ν{0} < 1. Then any
unbiased shift T embedding ν satisfies

P0{T = 0} = 0. (1.9)

In contrast to the previous theorem, if T is an unbiased shift with P0{BT = 0} = 1,
then the probability P0{T = 0} may take any value:
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Theorem 1.6. For any p ∈ [0, 1] there is an unbiased shift T ≥ 0 embedding δ0 and such
that P0{T = 0} = p.

A solution T of the Skorokhod embedding problem is usually required to have good
moment properties, but some restrictions apply. For instance, if the target distribution
ν is not centered, by [21, Theorem 2.50], we must have E0

√
T = ∞. If the embedding

stopping time is also an unbiased shift the situation is worse, even when ν is centred.

Theorem 1.7. Suppose ν is a target distribution with ν{0} = 0, and the stopping time
T ≥ 0 is an unbiased shift embedding ν. Then

E0T
1/4 = ∞.

If ν additionally satisfies
∫

|x| ν(dx) <∞, the unbiased shift T = T ν satisfies

E0T
β <∞ for all β < 1/4.

Dropping the stopping time assumption we show in Theorem 8.4 that E0

√

|T | = ∞
for any unbiased shift T embedding a target distribution ν with ν{0} < 1. If the target
distribution is concentrated at zero and T is nonnegative but not identically zero, we show
in Theorem 8.5 that E0T = ∞. Nonnegativity is important in this result, Example 8.6
provides an unbiased shift with P0{T 6= 0} = 1 that has exponential moments.

Theorem 7.6 further shows that, in addition to the nearly optimal moment properties
stated above, the stopping times T ν defined in (1.8) are also minimal in a sense analogous
to the definition in [22] (see also [6], or [24] for a survey). This means that if S ≥ 0 is
another unbiased shift embedding ν such that P0{S ≤ T} = 1, then P0{S = T} = 1.
Our discussion of minimality is based on a notion of stability of allocation rules, which is
similar to the one studied in [11].

The results for Brownian motion stated above will be developed in a general frame-
work, which goes much beyond the Brownian setting, see Sections 3 and 5. They are
heavily reliant on the general Palm theory from [17]. The most important results, which
are also of independent interest, are Theorem 3.1, characterising mass-stationarity, and
Theorem 5.1, formulating general conditions on the existence of balancing allocation rules.

The structure of the paper is as follows. Section 2 presents essential background on
Palm measures and local time. Section 3 establishes a general result on mass-stationarity
for diffuse random measures on the line, Theorem 3.1, implying a result (Theorem 3.4)
containing Theorem 1.1 as a special case. Section 4 proves a result (Theorem 4.1) contain-
ing Theorem 1.2 as a special case. Section 5 presents the key general result on balancing
diffuse random measures, Theorem 5.1, implying a result (Theorem 5.7) containing Theo-
rem 1.3 as a special case. Section 6 proves Theorems 1.4, 1.5 and 1.6. In Sections 7 and 8
we establish minimality and moment properties of unbiased shifts, including Theorem 1.7.
Section 9 finally discusses extensions of the central results above from Brownian motion
to a more general class of Lévy processes.

2 Preliminaries on Palm measures and local times

In order to present and develop some Palm theory on which the results of this paper
rely, we need a framework more general than the Brownian setting in the introduction.
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Consider a σ-finite measure space (Ω,A,P) equipped with a flow {θt : t ∈ R} of measurable
bijections θt : Ω → Ω such that (ω, t) 7→ θt(ω) is measurable, θ0 is the identity on Ω, and
θs+t = θs ◦ θt for all s, t ∈ R. We assume that P is stationary, that is

P = P ◦ θs, s ∈ R. (2.1)

By the stationary Brownian case we mean the important example when Ω is the class of
all continuous functions ω : R → R with the flow given by (1.3), A is the Kolmogorov
product σ-algebra, and the measure P is given by (1.2). We use the term Brownian case
when the stationary P is (possibly) replaced by other Brownian measures like P0 and Px.
In the Brownian case we let B = (Bt)t∈R denote the identity on Ω. Since P{B0 ∈ C} <∞
for any compact C ⊂ R, the measure P is indeed σ-finite, and the proof of (2.1) is based
on the stationary increments of B, see [31]. Corollary 3.3 below provides an alternative
definition of P. More general Lévy processes will be discussed in Section 9.

Random measures and (balancing) allocation rules are defined as in Section 1. A
random measure ξ is called invariant if

ξ(θtω,C − t) = ξ(ω,C), C ∈ B, t ∈ R,P-a.s., (2.2)

where B is the Borel σ-algebra on R. In this case the Palm measure Qξ of ξ (with respect
to P) is defined by

Qξ(A) := EP

∫

1[0,1](s)1A(θs) ξ(ds), A ∈ A. (2.3)

This is a σ-finite measure on (Ω,A). If the intensity Qξ(Ω) of ξ is positive and finite,
Qξ can be normalised to yield the Palm probability measure of ξ. This measure can be
interpreted as the conditional distribution (with respect to P) given that the origin 0 ∈ R

is a typical point in the mass of ξ, see [15, Chapter 11] for some fundamental properties
of Palm probability measures. The invariance property (2.2) implies the refined Campbell
theorem

EP

∫

f(θs, s) ξ(ds) = EQξ

∫

f(θ0, s) ds, (2.4)

for any measurable f : Ω × R → [0,∞) where, as in (2.3), EQ denotes integration with
respect to the measure Q. The relevance of Palm measures for this paper stems from the
following result in [17].

Theorem 2.1. Consider two invariant random measures ξ and η on R and an allocation
rule τ . Then τ balances ξ and η if and only if

Qξ{θτB ∈ ·} = Qη,

where θτ : Ω → Ω is defined by θτ (ω) := θτ(ω,0)ω, ω ∈ Ω.

In the remainder of this section we consider the Brownian case. Recall that ℓx is the
random measure associated with the local time of B at x ∈ R (under P0). This means
that

∫

f(Bs, s) ds =

∫∫

f(x, s) ℓx(ds) dx P0-a.s. (2.5)
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for all measurable f : R2 → [0,∞). The global construction in [25] (see also [15, Propo-
sition 22.12] and [21, Theorem 6.43]) guarantees the existence of a version of local times
with the following properties. The random measure ℓ0 is Px-a.e. diffuse for any x ∈ R and

ℓ0(θtω,C − t) = ℓ0(ω,C), C ∈ B, t ∈ R, Px-a.s., x ∈ R, (2.6)

ℓy(ω, ·) = ℓ0(ω − y, ·), ω ∈ Ω, y ∈ R, (2.7)
∫

1{Bt 6= x} ℓx(ω, dt) = 0, ω ∈ Ω, x ∈ R. (2.8)

Equation (2.7) implies that ℓy is Px-a.e. diffuse for any x ∈ R and is invariant in the sense
of (2.6). From Fubini’s theorem we infer that these properties do also hold for the random
measure ℓν defined by (1.6).

Remark 2.2. Invariant random measures of the form (1.6) are closely related to contin-
uous additive functionals of Brownian motion, see e.g. [15, Chapter 22]. Indeed, if ξ is an
invariant random measure then the process At := ξ[0, t], t ≥ 0, is additive in the sense
that As+t = As + At ◦ θs for all s, t ≥ 0 (P-a.s.). Conversely, if (At)t≥0 is additive and
continuous (Px-a.s. for all x ∈ R), and if At depends only on the restriction of B to the
interval [0, t], then [15, Chapter 22] implies that there is a locally finite measure ν, the
Revuz measure of (At), such that (At)t≥0 = (ℓν [0, t])t≥0 Px-a.s. for all x ∈ R.

The following result is essentially from [9], see also [31]. Combined with Theorem 2.1
it will yield a short proof of Theorem 1.2, see Section 4.

Lemma 2.3. Let y ∈ R. Then Py is the Palm measure of ℓy.

Proof. Let f : Ω × R → [0,∞) be measurable. By definition (1.2) of P we have

EP

∫

f(θsB, s) ℓ
y(B, ds) =

∫

E0

∫

f(θsB + x, s) ℓy(B + x, ds) dx.

By (2.7) this equals
∫

E0

∫

f(θsB + x, s) ℓy−x(B, ds) dx = E0

∫∫

f(θsB − x+ y, s) ℓx(B, ds) dx,

where the equality comes from a change of variables and Fubini’s theorem. By (2.5) this
equals

E0

∫

f(θsB − Bs + y, s) ds.

Since P0{θsB −Bs + y ∈ ·} = Py, we obtain

EP

∫

f(θsB, s) ℓ
y(B, ds) = Ey

∫

f(B, s) ds (2.9)

and hence the assertion.

Equation (2.9) is the refined Campbell theorem (2.4) in the case ξ = ℓy. In particular,
it implies that ℓy has intensity 1:

EPℓ
y([0, 1]) = 1. (2.10)
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3 Mass-stationarity

In this section we show that the property in Theorem 1.1 characterises mass-stationarity
(defined below) not only of local times of Brownian motion but of general diffuse random
measures on the line. As in Section 2 we consider a measurable space (Ω,A), equipped
with a flow {θt : t ∈ R}. We consider a σ-finite measure Q on (Ω,A) but do not assume
that Q is stationary. The key example in the Brownian case is Q = Px.

Let ξ be a diffuse and invariant random measure on R ((2.2) is assumed to hold
Q-almost everywhere) and let λ denote Lebesgue measure on R. Then ξ is called mass-
stationary if, for all bounded Borel subsets C of R with λ(C) > 0 and λ(∂C) = 0 and all
measurable functions f : Ω × R → [0,∞),

EQ

∫∫

1C(u)
1C−u(s)

ξ(C − u)
f(θs, s+ u) ξ(ds) du = EQ

∫

1C(u)f(θ0, u) du, (3.1)

using the convention that any integration over a set of measure zero yields zero. Mass-
stationarity is a formalisation of the intuitive idea that the origin is a typical location in
the mass of a random measure. The property (3.1) can be interpreted probabilistically as
saying that, if the set C is placed uniformly at random around the origin and the origin
shifted to a location chosen according to the mass distribution of ξ in this randomly placed
set, then the distribution of ξ does not change.

The property (3.2) in the following theorem is a new characterisation of mass-
stationarity. It is similar to the well-known characterisation by cycle-stationarity in the
simple point process case (see e.g. [15, Theorem 11.4]) and is certainly more transparent
than (3.1). It is however restricted to the diffuse case on the line while (3.1) works for
general random measures in a group setting. The formula (3.3) below is also new, but
the equivalence of mass-stationarity and Palm measure property was established in [17]
for Abelian groups and in [16] for general locally compact groups.

Theorem 3.1. Assume that Q{ξ(−∞, 0) < ∞} = Q{ξ(0,∞) < ∞} = 0 and let Sr,
r ∈ R, be the generalised inverse of the diffuse random measure ξ defined as in (1.1).
Then

Q
{

θSr
∈ ·

}

= Q, r ∈ R, (3.2)

if and only if ξ is mass-stationary and if and only if Q is the Palm measure of ξ with
respect to a σ-finite stationary measure P. The measure P is uniquely determined by Q

as follows: for each w > 0 and each measurable function f : Ω → [0,∞),

EPf = w−1EQ

∫ Sw

0

f ◦ θs ds. (3.3)

Proof. First assume (3.2). Then, Q{ξ[0, ε] = 0} = Q{ξ[S1, S1 + ε] = 0} = 0, for any
ε > 0, where the second identity comes from ξ[S1,∞) > 0 Q-a.e. and the definition of S1.
This easily implies that

Sr = −S−r ◦ θSr
Q-a.e., r ∈ R. (3.4)
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Let C ⊂ R be a bounded Borel with λ(C) > 0 and λ(∂C) = 0. Changing variables
and noting that, for any s in the support of ξ, we have ξ(C − v+ s) > 0 for λ-a.e. v ∈ C,
we obtain that the left-hand side of (3.1) equals

EQ

∫∫

1C(v − s)
1C(v)

ξ(C − v + s)
f(θs, v) ξ(ds) dv

= EQ

∫∫

1C(v − Sr)
1C(v)

ξ(C − v + Sr)
f(θSr

, v) dr dv,

where we have changed variables to get the equality. The key observation (3.4) and
assumption (3.2) yield that the above equals

EQ

∫∫

1C(v + S−r)
1C(v)

ξ(C − v)
f(θ0, v) dr dv

= EQ

∫∫

1C(v + s)
1C(v)

ξ(C − v)
f(θ0, v) ξ(ds) dv = EQ

∫

1C(v)f(θ0, v) dv.

Thus (3.1) holds, that is, ξ is mass-stationary.
By [17, Theorem 6.3] equation (3.1) is equivalent to the existence of a stationary

σ-finite measure P such that Q is the Palm measure of ξ with respect to P. Mecke’s [20]
inversion formula (see also [17, Section 2]) implies that P is uniquely determined by Q

and that, moreover, P{ξ(−∞, 0) <∞} = P{ξ(0,∞) <∞} = 0.
Fix w > 0. For the claim that P defined by (3.3) is stationary when (3.2) holds, see

Lemma 3.2 below. To show that Q is then the Palm measure of ξ with respect to this P let
f : Ω → [0,∞) be measurable and use (3.3) for the first step in the following calculation,

wEP

∫

1[0,1](s)f ◦ θs ξ(ds) = EQ

∫∫

1[0,1](s)1[0,Sw](t)f(θsθt) θtξ(ds) dt

= EQ

∫∫

1[0,1](v − t)1[0,Sw](t)f(θv) ξ(dv) dt

= EQ

∫∫

1[0,1](Sr − t)1[0,Sw](t)f(θSr
) dr dt

= EQ

∫∫

1[0,1](−S−r − t)1[0,Sw(θS
−r

)](t)f dr dt

= EQf

∫∫

1[−1,0](u)1[S−r, S−r+w](u) dr du

= wEQf,

where we have used (3.2) and (3.4) for the fourth identity and the final identity holds
since the double integral equals w.

Finally, if Q is the Palm measure of ξ with respect to a σ-finite stationary measure P,
then Theorem 2.1 implies (3.2) once we have shown for any r ∈ R that the allocation rule
τ r defined by τ r(t) := Sr ◦ θt + t balances ξ with itself, that is,

∫

1{τ r(s) ∈ ·} ξ(ds) = ξ P-a.e.
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Assume r ≥ 0. Then, outside the P-null set A := {ξ(−∞, 0) <∞)} ∪ {ξ(0,∞) <∞} we
obtain for any a < b (interpreting ξ[s, a] as −ξ[a, s] for s ≥ a) that

∫

1{a ≤ τ r(s) < b} ξ(ds) =

∫

1{s ≤ b, ξ[s, a] ≤ r, ξ[s, b] > r} ξ(ds)

=

∫

1{s ≤ b, r < ξ[s, b] ≤ r + ξ[a, b]} ξ(ds) = ξ[a, b], (3.5)

which implies the desired balancing property. The case r < 0 can be treated similarly.

Lemma 3.2. Let S ≥ 0 be a random time and P be the measure defined by setting, for
each measurable function f : Ω → [0,∞),

EPf = EQ

∫ S

0

f ◦ θs ds.

If Q{θS ∈ ·} = Q, then ξ is stationary under P.

Proof. For each f as above and t ∈ R,

EPf(θt) = EQ

∫ S+t

t

f(θs) ds

= EQ

∫ S

t

f(θs) ds+ EQ

∫ S+t

S

f(θs) ds

= EQ

∫ S

t

f(θs) ds+ EQ

∫ t

0

f(θs) ds

= EQ

∫ S

0

f(θs) ds = EPf,

where the third identity follows from the assumption that θS has the same distribution
as θ0 under Q.

In the remainder of this section we consider the Brownian case. As a corollary of
Theorem 3.1 we obtain an alternative construction of the stationary measure (1.2) by
integrating over time rather than space.

Corollary 3.3. Let r > 0 and Tr be defined by (1.1). Then

P(A) :=

∫

Px(A) dx = r−1 E0

∫ Tr

0

1{θsB ∈ A} ds, A ∈ A.

Generalizing our earlier definition, for any probability measure µ on R, we call a
random time T an unbiased shift under Pµ if (BT+t − BT )t∈R under Pµ is a Brownian
motion independent of BT . The following result contains Theorem 1.1 as a special case.

Theorem 3.4. Let µ be a probability measure on R and let Sr, r ∈ R, be the gener-
alised inverse of ℓµ defined as in (1.1). Then each Sr is an unbiased shift under Pµ and
Pµ{BSr

∈ ·} = µ.

10



Proof. Lemma 2.3 and Fubini’s theorem imply that Pµ is the Palm measure of ℓµ with
respect to P. Hence the result follows from Theorem 3.1.

The invariant σ-algebra is defined by

I := {A ∈ A : θtA = A for all t ∈ R}. (3.6)

We now apply Theorem 1.1 to prove the following result which we need in the proof of
Theorem 1.3 in Section 5.

Theorem 3.5. Let A ∈ I. Then either Px(A) = 0 for all x ∈ R (in which case P(A) = 0)
or Px(A

c) = 0 for all x ∈ R (in which case P(Ac) = 0).

Proof. We first show that

P0(A) ∈ {0, 1}. (3.7)

We use here the random times Tn (see (1.1)) for integers n. By Theorem 1.1, for any
integer n, the processes (BTn−t)t≥0 and (BTn+t)t≥0 are independent one-sided Brownian
motions. This implies that the processes

Wn := (B(Tn+t)∧(Tn+1−Tn))t≥0,

are independent under P0. Since, by (2.6),

inf{t ≥ 0: ℓ0(θTnB, [0, t]) = 1} = inf{t ≥ 0: ℓ0(B, [Tn, Tn + t]) = 1} = Tn+1 − Tn

holds P0-a.s. for any n ∈ Z, the Wn have the distribution of a one-sided Brownian mo-
tion stopped at the time its local time at 0 reaches the value 1. Clearly we have that
B = F ((Wn)n∈Z) for a suitably defined measurable function F . By invariance of A and
definition of the family (Wn)n∈Z,

{F ((Wn)n∈Z) ∈ A} = {B ∈ A} = {θT1B ∈ A} = {F ((Wn+1)n∈Z) ∈ A},

where the final equation holds P0-a.s. As iid sequences are ergodic under shifts, see e.g.
Theorem 8.45 in [7], the invariant sets above have measure zero or one, implying (3.7).

The refined Campbell theorem (2.9) implies (with λ denoting Lebesgue measure)

Px(A) = λ(C)−1EP1Aℓ
x(C), x ∈ R, (3.8)

provided that 0 < λ(C) <∞. Assume now that P0(A) = 0. Then (3.8) implies that

P(A ∩ {ℓ0(C) > 0}) = 0

for all compact C ⊂ R. Letting C ↑ R, we obtain P(A ∩ {ℓ0 6= 0}) = 0, that is,

Px(A ∩ {ℓ0 6= 0}) = 0 λ-a.e. x.

On the other hand, by (2.7), Px{ℓ0 6= 0} = P0{ℓ−x 6= 0} = 1 for λ-a.e. x so that Px(A) = 0
for λ-a.e. x. Therefore P(A) = 0. By (3.8) this implies Px(A) = 0 for all x ∈ R.

11



4 Unbiased shifts and balancing allocation rules

In this section we consider the Brownian case and prove the following result which contains
Theorem 1.2 as a special case. Let µ be a probability measure on R and recall from
Section 3 that a random time T is an unbiased shift under Pµ if (BT+t −BT )t∈R is under
Pµ a Brownian motion independent of BT .

Theorem 4.1. Let T be a random time and µ, ν be probability measures on R. Then the
following two assertions are equivalent.

(i) T is an unbiased shift under Pµ and Pµ{BT ∈ ·} = ν.

(ii) The allocation rule τT defined by (1.7) balances ℓµ and ℓν.

Proof. First we recall from Section 2 that the random measures ℓµ and ℓν are invariant
in the sense of (2.2).

Let us first assume that (i) holds. Then we have for any A ∈ A that

Pµ{θTB ∈ A} =

∫

Pµ{θTB −BT + x ∈ A} ν(dx)

=

∫

P0{B + x ∈ A} ν(dx) = Pν(A).

Lemma 2.3 and Fubini’s theorem imply that Pν is the Palm measure of ℓν . Therefore we
obtain from Theorem 2.1 that τT balances ℓµ and ℓν .

Assume now that (ii) holds. By Theorem 2.1 we obtain for any A ∈ A that

Pµ{θTB ∈ A} =

∫

Px(A)ν(dx).

This implies

Pµ{θTB −BT ∈ A′, BT ∈ C} =

∫

C

Px{B − x ∈ A′} ν(dx) = P0(A
′)ν(C)

for any A′ ∈ A and any C ∈ B. This yields (i).

Remark 4.2. An extended allocation rule is a mapping τ : Ω × R → [0,∞] that has
the equivariance property (1.4). The balancing property (1.5) can then be defined as
before. Using these concepts, Theorem 4.1 can be proved for a subprobability measure
ν 6= 0. The conditions in (i) have to be replaced with Pµ{θTB − BT ∈ · | T < ∞} = P0,
Pµ{T <∞, BT ∈ ·} = ν and the independence of θTB −BT and BT under Pµ{·|T <∞}.

5 Existence of unbiased shifts

In this section we prove a result (Theorem 5.7) containing Theorem 1.3 as a special case.
The proof is based on the following new balancing result for general random measures
on the line, which is inspired by [11]. As in Section 2 we consider a σ-finite measure
space (Ω,A,P), equipped with a flow {θt : t ∈ R} such that P is stationary. The invariant
σ-algebra I is defined as at (3.6).
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Theorem 5.1. Let ξ and η be invariant orthogonal diffuse random measures on R with
finite intensities. Assume further that

EP

[

ξ[0, 1]
∣

∣I
]

= EP

[

η[0, 1]
∣

∣I
]

P-a.e.

Then the mapping τ : Ω × R → R, defined by

τ(s) := inf{t > s : ξ[s, t] = η[s, t]}, s ∈ R, (5.1)

is an allocation rule balancing ξ and η.

We start the proof of Theorem 5.1 with an analytic lemma. Here and later it is
convenient to work with the continuous function f : R → R, defined by

f(t) :=

{

ξ[0, t] − η[0, t], if t ≥ 0,

η[t, 0] − ξ[t, 0], if t < 0.

Lemma 5.2. Suppose ξ and η are orthogonal diffuse measures. Then
∫

1{τ(s) ∈ ·} ξ(ds) = η(·) on [0, a],

provided that f(t) ≥ 0 for all t ∈ (0, a).

The proof of Lemma 5.2 rests on three further lemmas.

Lemma 5.3.

(a) For ξ-almost every s there exists sn ↓ s with f(sn) > f(s).

(b) For η-almost every s there exists sn ↓ s with f(sn) < f(s).

Proof. It suffices to prove (a), as (b) follows by reversing the roles of ξ and η. Recall that
ξ and η are orthogonal and hence there exists a Borel set A with η(A) = 0 and ξ(Ac) = 0.
We need to show that, for each ǫ > 0,

ξ(Aǫ) = 0 where Aǫ := {s ∈ A : f(t) ≤ f(s) for all t ∈ [s, s+ ǫ)}.

Given any δ > 0 we may choose an open set O ⊃ A with η(O) < δ. We can cover Aǫ
by a countable collection I of nonoverlapping intervals [s, s + ǫs], s ∈ Aǫ, 0 < ǫs ≤ ǫ,
such that (s, s+ ǫs) ⊂ O. Indeed, suppose that O′ is a connected component of O, which
intersects Aǫ. If there is a minimal element s in O′ ∩ Aǫ let ǫs be the minimum of ǫ and
the distance of s to the right endpoint of O′. Add the interval [s, s+ǫs] to the collection I
and remove it from Aǫ and O. If no such minimum exists we can pick a strictly decreasing
sequence sn ∈ O′ ∩ Aǫ, n ∈ N, converging to the infimum. Let ǫs1 be the minimum of ǫ
and the distance of s1 to the right endpoint of O′, and, for i ≥ 2, let ǫsi be the minimum
of ǫ and si−1− si. Add all intervals [si, si + ǫsi ] to the collection I and remove their union
from Aǫ and O. Note that after one such step (performed in every connected component)
all of Aǫ in connected components of length at most ǫ will be removed, and the lower
bound of the intersection of all other connected components with Aǫ, if finite, is increased
by at least ǫ. Also, after one step, the intersection of any connected component with Aǫ is
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either empty or bounded from below. Therefore, every set of the form [−M,M ]∩Aǫ will
be completely covered after finitely many steps by nonoverlapping intervals, as required.
Observe that ξ(I) ≤ η(I) for every interval in the collection, and hence

ξ(Aǫ) ≤
∑

I∈I

ξ(I) ≤
∑

I∈I

η(I) ≤ η(O) ≤ δ.

The result follows as δ > 0 was arbitrary.

We now fix a ≥ 0 and decompose f on [0, a] according to its backwards running
minimum m given by

m(t) = min{f(s) : t ≤ s ≤ a},
see Figure 1 for illustration. The nonnegative function f −m can be decomposed on [0, a]
into a family E of excursions e : [0,∞) → [0,∞) with starting times te ∈ [0, a]. Note that
an excursion e : [0,∞) → [0,∞) is a function such that there exists a number σe > 0,
called the lifetime of the excursion, such that e(0) = 0, e(s) > 0 for all 0 < s < σe, and
e(s) = 0 for all s ≥ σe. Formally putting e(s) = 0 for all s < 0 the decomposition can be
written as

f(t) −m(t) =
∑

(e,te)∈E

e(t− te).

Note that the intervals (te, te + σe), (e, te) ∈ E , are disjoint. We denote by C the comple-
ment of their union in [0, a], i.e. C = {t ∈ [0, a] : f(t) = m(t)}.

s a

m

f

t τ (t)τ (s)0

Figure 1: A schematic picture of the function f and its backwards running minimum m,
in bold. The set C is marked bold on the abscissa, and instances of the mapping t 7→ τ(t)
are indicated by dashed lines.

Lemma 5.4. For every (e, te) ∈ E we have

ξ{s ∈ (te, te + σe) : τ(s) ≤ a} = ξ(te, te + σe) = η(te, te + σe).
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Proof. We only have to show that τ(s) ≤ a for ξ-almost every s ∈ (te, te + σe). By
Lemma 5.3 (a), for ξ-almost every s ∈ (te, te + σe), there exists sn ↓ s such that f(sn) >
f(s). As f(s) > f(te + σe), by continuity of f , we infer that there exists s∗ ∈ (s, te + σe)
such that f(s∗) = f(s). Therefore τ(s) ≤ s∗ ≤ a as required.

Lemma 5.5. We have
ξ{s ∈ C : τ(s) ≤ a} = η(C) = 0.

Proof. First observe that if s ∈ C, then f(t) ≥ f(s) for all t ∈ (s, a]. If f(t) > f(s) for
all t ∈ (s, a] then τ(s) > a. Otherwise there exists a maximal t ∈ (s, a] with f(s) = f(t).
Then f(t) is a true local minimum of f in the sense that there exists r > 0 with f(s) ≥ f(t)
for all s ∈ (t − r, t) and f(s) > f(t) for all s ∈ (t, (t + r) ∧ a). In particular there are at
most countably many levels f(s) where this can happen. Fixing such a level l we note
that ξ{s ∈ C : f(s) = l} = η{s ∈ C : f(s) = l}. Summing over all these levels we see
that ξ{s ∈ C : τ(s) ≤ a} ≤ η(C). We conclude the proof by showing that η(C) = 0.
Lemma 5.3 (b) ensures that, for η-almost every s ∈ [0, a] there exists sn ↓ s such that
f(sn) < f(s), which implies that s 6∈ C. Hence the stated equality follows.

Proof of Lemma 5.2. Taking the sum over the equations in the previous two lemmas we
obtain ξ{s ≥ 0: τ(s) ≤ a} = η[0, a]. This implies

∫

1{0 ≤ τ(s) ≤ a} ξ(ds) = η[0, a], a ≥ 0,

as any s < 0 with f(s) < 0 satisfies τ(s) 6∈ [0, a], and Lemma 5.3 (a) implies that ξ-almost
every s < 0 with f(s) ≥ 0 satisfies τ(s) < 0, and so ξ{s < 0: 0 < τ(s) ≤ a} = 0.

Proof of Theorem 5.1. Define

ξ∞ :=

∫

1{τ(s) = ∞, s ∈ ·} ξ(ds),

η∗ :=

∫

1{τ(s) ∈ ·} ξ(ds).

Recall that by Lemma 5.2 we have η∗ = η on [s,∞) provided ξ[s, t] ≥ η[s, t] for all t ≥ s.
By Lemma 5.3 this holds for ξ∞-a.e. s. Moreover, by invariance of ξ∞ and stationarity of
P we have that P{ξ∞(−∞, s] = 0, ξ∞ 6= 0} = 0 for all s ∈ R. We infer that

η∗ = η P-a.e. on {ξ∞ 6= 0}. (5.2)

Using the refined Campbell theorem (2.4) twice, we obtain

EP1{ξ∞ 6= 0}
∫ 1

0

1{τ(s) <∞} ξ(ds)

= EP

∫ 1

0

1{ξ∞ ◦ θs 6= 0, τ(θs, 0) <∞} ξ(ds)

= Qξ

{

ξ∞ 6= 0, τ(0) <∞
}

= EQξ

∫

1{ξ∞ 6= 0, τ(0) + s ∈ [0, 1]} ds

= EP

∫

1{ξ∞ 6= 0, τ(s) ∈ [0, 1]} ξ(ds)

= EP1{ξ∞ 6= 0} η∗[0, 1].

(5.3)
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Using first (5.2) and then our assumption gives

EP1{ξ∞ 6= 0}η∗[0, 1] = EP1{ξ∞ 6= 0}η[0, 1] = EP1{ξ∞ 6= 0}ξ[0, 1],

and together with (5.3) we infer that

EP1{ξ∞ 6= 0}
∫ 1

0

1{τ(s) <∞} ξ(ds) = EP1{ξ∞ 6= 0} ξ[0, 1],

and therefore τ(s) < ∞ for ξ-a.e. s, P-a.e. In particular, this implies that τ is a well-
defined allocation rule. An analogous argument implies that

τ−1(s) > −∞ η-a.e. s, P-a.e.,

where
τ−1(s) = sup{t < s : ξ[t, s] = η[t, s]}

is the inverse of τ . We now use this to show that τ balances ξ and η. Fixing a < b we aim
to show that η∗[a, b] = η[a, b]. If f(t) ≥ f(a) for all t ∈ [a, b] this holds by Lemma 5.2.
Otherwise we apply this lemma to suitably chosen alternative intervals. To this end let

a∗ := min{s ∈ [a, b] : f(s) ≤ f(t) for all a ≤ t ≤ b}

be the leftmost minimiser of f on [a, b]. As η(a∗ − 1
n
, a∗] ≥ f(a∗ − 1

n
) − f(a∗) > 0 for

all sufficiently large n ∈ N, we find a decreasing sequence sn with τ(sn) ↓ a∗ and hence
f(sn) → f(a∗). Then sn ↓ s ∈ [−∞, a] and f(s) = f(a∗) if s 6= −∞.

Assuming first that s 6= −∞ we obtain from Lemma 5.2 that
∫

1{τ(s) ∈ ·} ξ(ds) = η(·) on [s, b],

which implies the statement. Now assume that s = −∞. In this case we get η∗ = η on
[sn, τ(sn)] and on [a∗, b] for every n, and the result follows as n→ ∞.

The following is a counterpart of Theorem 5.1 for simple point processes.

Theorem 5.6. Let ξ and η be invariant simple point processes on R defined on some
probability space equipped with a flow and an invariant σ-finite measure. Assume that ξ
and η have finite intensities and that

EP[ξ[0, 1] | I] = EP[η[0, 1] | I].

Then

τ(s) := inf{t ≥ s : ξ[s, t] = η[s, t]}, s ∈ R, (5.4)

is an allocation rule balancing ξ and η.

The allocation rule τ in Theorem 5.6 is a one-sided (and one-dimensional) version of
the stable matching procedure described in [11]. It can be proved by adapting the ideas
of Theorem 5.1 to a discrete and therefore much simpler setup.

Theorem 5.1 implies the following result which contains Theorem 1.3 as a special case.
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Theorem 5.7. Consider the Brownian case. If µ and ν are orthogonal probability mea-
sures on R then the stopping time

T µ,ν := inf
{

t > 0: ℓµ[0, t] = ℓν [0, t]
}

(5.5)

is an unbiased shift under Pµ and Pµ{BTµ,ν ∈ ·} = ν.

Proof. Theorem 3.5 implies that almost surely EP[ℓµ[0, 1]|I] = EP[ℓν [0, 1]|I]. By
assumption and (2.8) the invariant random measures ℓµ and ℓν are orthogonal. Hence we
can combine Theorems 5.1 and 4.1 to obtain the result.

Remark 5.8. Assume in Theorem 1.3 that ν is a subprobability measure. Then T takes
the value ∞ with positive P0-probability. Indeed, by Remark 4.2, defining the extended
allocation rule τ by τ(s) := s + T ◦ θs we get that τ balances the restriction of ℓ0 to
{s : τ(s) <∞} and ℓν . Assertion (i) of Theorem 4.1 remains valid in the sense explained
in Remark 4.2. The embedding property P0{T <∞, BT ∈ ·} = ν was proved in [4].

Remark 5.9. Assume in Theorem 1.3 that ν is a locally finite measure with ν(R) > 1
and ν{0} = 0. Then P0{T < ∞} = 1 and τ balances ℓ0 and η :=

∫

1{τ(s) ∈ ·} ℓ0(ds).
The proof of Theorem 5.1 still yields the inequality η ≤ ℓν . In particular η is a diffuse (and
invariant) random measure with intensity 1. The additive and continuous process (At)t≥0

given by At := η[0, t] is adapted to the filtration (σ{Bs : s ≤ t})t≥0. However, since
Theorem 22.25 in [15] applies only to one-sided Brownian motion we cannot conclude
that the process (At)t≥0 is of the form (ℓν

′

[0, t])t≥0 for some probability measure ν ′, and
therefore it does not follow that the associated stopping time is an unbiased shift. The
case ν = 2δ1 gives an example where it is easy to see that this may not be the case.
Another example is discussed in Remark 5.10 below.

Remark 5.10. In [4] stopping times of the form discussed in Remark 5.9 are use to
embed a given probability measure ν ′ with

∫

|x| ν ′(dx) < ∞ and ν ′{0} = 0. Indeed, as
in [4, p. 547] define ρ(x) := 2

∫

1{y > x}(y − x) ν ′(dy) for x ≥ 0 and ρ(x) := 2
∫

1{y <
x}(x−y) ν ′(dy) for x < 0. Let m0 be the maximum of the two numbers 2

∫∞

0
y ν ′(dy) and

−2
∫ 0

−∞
y ν ′(dy). It is proved in [4] that

T := inf
{

t > 0: ℓ0[0, t] < m0

∫

ℓx[0, t]ρ−1(x) ν ′(dx)
}

(5.6)

embeds ν ′ and satisfies E0ℓ
0[0, T ] = m0. This T is of the form (1.8) with ν(R) > 1,

provided that ρ > 0 ν ′-almost everywhere. This solution of the embedding problem is
optimal in the sense that E0ℓ

x[0, S] ≥ E0ℓ
x[0, T ], x ∈ R, for any other stopping time

S ≥ 0 embedding ν ′. The idea of using first passage times of additive functionals with
infinite Revuz measures to embed probability distributions goes back to [23]. The fact
that E0ℓ

0[0, T ] <∞ reveals that T cannot be an unbiased shift, as we show in Theorem 8.1
that this expectation is infinite for unbiased shifts.

The nonnegative unbiased shifts in Theorem 1.3, Theorem 1.4 and in Theorem 1.1
are all stopping times. In the next example we construct a nonnegative unbiased shift
embedding a distribution not concentrated at zero, which is not a stopping time.
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Example 5.11. Let x ∈ R \ {0}. We define an allocation rule τ that balances ℓ0 and
ℓx and such that T := τ(0) is nonnegative but not a stopping time. The mapping τ
is the composition of the following five allocation rules. Let τ1 = τ4 balance ℓ0 and ℓx

according to Theorem 1.3. Let τ2 balance ℓx and ℓx by shifting forward one mass-unit,
that is , let τ2(0) be defined by (1.1) with r = 1 and with ℓ0 replaced with ℓx. Let
τ3 balance ℓx and ℓ0 according to Theorem 1.3. Finally define τ5 by shifting backward
one mass-unit in the local time at x, that is, let τ5 be defined by (1.1) with r = −1
and ℓ0 replaced with ℓx. The composition τ of these allocation rules balances ℓ0 and ℓx.
Moreover, T := τ(0) ≥ τ1(0) ≥ 0. However, T is not a stopping time. This example can
be extended to a general target distribution ν.

6 Target distributions with an atom at zero

In this section we prove Theorems 1.4, 1.5, and 1.6. In contrast to the previous section
we allow here for an atom at 0.

Proof of Theorem 1.4. Let y ∈ R \ {0} such that ν{y} = 0 and define

µ := ν − ν{0}δ0 + ν{0}δy.

Theorems 1.2 and 1.3 imply that the allocation rule

τ ′(s) := inf
{

t > s : ℓ0[s, t] = ℓµ[s, t]
}

, s ∈ R,

balances ℓ0 and ℓµ. The same theorems imply that there is an allocation rule τ ′′ that
balances ℓy and ℓ0. Define

τ(s) :=

{

τ ′(s), if Bτ ′(s) 6= y,

τ ′′(τ ′(s)), if Bτ ′(s) = y.

Then we have for any Borel set C ⊂ R outside a fixed P-null set that

∫

1{τ(s) ∈ C} ℓ0(ds)

=

∫

1{τ(s) ∈ C,Bτ ′(s) 6= y} ℓ0(ds) +

∫

1{τ(s) ∈ C,Bτ ′(s) = y} ℓ0(ds)

=

∫

1{τ ′(s) ∈ C,Bτ ′(s) 6= y} ℓ0(ds) +

∫

1{τ ′′(τ ′(s)) ∈ C,Bτ ′(s) = y} ℓ0(ds)

=

∫

1{s ∈ C,Bs 6= y} ℓµ(ds) +

∫

1{τ ′′(s) ∈ C,Bs = y} ℓµ(ds)

=

∫

1{x 6= 0}1{s ∈ C} ℓx(ds) ν(dx) + ν{0}
∫

1{τ ′′(s) ∈ C} ℓy(ds)

=

∫

1{x 6= 0}1{s ∈ C} ℓx(ds) ν(dx) + ν{0}ℓ0(C) = ℓν(C),

where we have used (2.8) (and ν{y} = 0) in the penultimate equation. Hence τ balances
ℓ0 and ℓν . Theorem 1.2 now implies that T := τ(0) is an unbiased shift embedding ν.
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Proof of Theorem 1.5. Let T be any unbiased shift embedding ν and define τ := τT .
Outside a fixed P-null set we obtain for any Borel set C ⊂ R that

∫

1{s ∈ C, τ(s) = s} ℓ0(ds) =

∫

1{τ(s) ∈ C, τ(s) = s} ℓ0(ds)

=

∫

1{τ(s) ∈ C, τ(s) = s, Bτ(s) = 0} ℓ0(ds)

≤
∫

1{τ(s) ∈ C,Bτ(s) = 0} ℓ0(ds) =

∫

1{s ∈ C,Bs = 0} ℓν(ds) = ν{0}ℓ0(C),

where we have used (2.8) to obtain the final identity. This implies that

1{τ(s) = s} ≤ ν{0} ℓ0-a.e. s, P-a.e.

Assuming now that ν{0} < 1 we obtain τ(s) 6= s for ℓ0-a.e. s, P-almost everywhere.
Lemma 2.3 now implies (1.9).

Proof of Theorem 1.6. Let τ ′ := τT ′ , where T ′ is given by (1.8) with ν = pδ1 + (1 − p)δ2.
Define an invariant random measure ξ by ξ(dt) := 1{Bτ ′(t) = 2} ℓ0(dt). The allocation
rule

τ ′′(s) := inf
{

t > s : ξ[s, t] = 1
}

balances ξ with itself. Define

τ(s) :=

{

s, if Bτ ′(s) = 1,

τ ′′(s), if Bτ ′(s) = 2.

It is easy to see that τ balances ℓ0 with itself. Lemma 2.3 and Theorem 1.2 (or a direct
calculation) implies that T := τ(0) satisfies

P0{T = 0} = P0{Bτ ′(0) = 0} = p.

Since T is an unbiased shift, the proof is complete.

7 Stability and minimality of balancing allocations

We first work in the general setting of Section 2. The following definition is a one-
sided version of the notion of stability introduced in [11] for point processes. We call an
allocation rule τ : Ω × R → R balancing ξ and η right-stable if τ(s) ≥ s for all s ∈ R and

ξ ⊗ ξ
{

(s, t) : t < s ≤ τ(t) < τ(s)
}

= 0 P-a.e.

Roughly speaking this means that the mass of pairs (s, t) such that s would prefer the
partner of t over its own partner, while τ(t) would prefer s over t as a partner, vanishes.

Theorem 7.1. Let ξ and η be invariant random measures satisfying the conditions of
Theorem 5.1, and suppose τ : Ω×R → R is the allocation rule constructed in the theorem.
Then τ is right-stable.
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Proof. By Lemma 5.3 (a) and continuity of f , we have for ξ-a-e. s that f(s) < f(r) for
all r ∈ (s, τ(s)). Hence ξ ⊗ ξ-almost every pair (s, t) with t < s ≤ τ(t) < τ(s) satisfies
f(t) < f(s) < f(τ(t)) contradicting the definition of τ .

Right-stable allocation rules have a useful minimality property.

Theorem 7.2. Any right-stable allocation rule τ balancing two measures ξ and η is
minimal in the sense that if σ is another allocation rule balancing ξ and η such that
s ≤ σ(s) ≤ τ(s) for ξ-almost every s ∈ R, then ξ{s : σ(s) < τ(s)} = 0.

Proof. By right-stability of τ we have, for ξ-almost every a,

s ∈ [a, τ(a)] ⇐⇒ τ(s) ∈ [a, τ(a)] ξ-a.e. s. (7.1)

From the assumption s ≤ σ(s) ≤ τ(s) and (7.1) we obtain for any t ∈ [a, τ(a)] that
τ(s) ∈ [a, t] implies σ(s) ∈ [a, t] for ξ-almost every s. Therefore

η[a, t] =

∫

1{τ(s) ∈ [a, t]} ξ(ds) ≤
∫

1{σ(s) ∈ [a, t]} ξ(ds) = η[a, t].

This implies
1{τ(s) ∈ [a, t]} = 1{σ(s) ∈ [a, t]} ξ-a.e. s ∈ R.

Therefore τ and σ coincide ξ-almost everywhere on τ−1([a, τ(a)]).
Now fix some b ∈ R and recall the definition of the backwards running minimum

m(t) = min{f(s) : t ≤ s ≤ b} and the set C = {t ≤ b : m(t) = f(t)}. We have seen
that the complement of C consists of countably many intervals (a, τ(a)) as above and
therefore τ and σ coincide ξ-almost everywhere on τ−1((−∞, b] \C). On the other hand,
by Lemma 5.5 we have ξ(τ−1(C)) = η(C) = 0, as required to finish the argument.

Remark 7.3. In the point process case the allocation rule (5.4) is right-stable and it is
not difficult to show that it is the unique right-stable allocation balancing ξ and η. We
conjecture that this uniqueness property also holds in the general case and therefore can
be added to Theorem 7.1.

Remark 7.4. One could define an allocation rule τ to be stable if

ξ ⊗ ξ
{

(s, t) : |s− τ(t)| < |s− τ(s)|, |s− τ(t)| < |t− τ(t)|
}

= 0.

The rule τ of Theorem 5.1 does not satisfy this. We do not know if stable allocation rules
in the above sense exist, or if they are unique.

In the remainder of this section we consider the Brownian case. An unbiased shift T
is called minimal unbiased shift if P0{T ≥ 0} = 1 and if any other unbiased shift S such
that P0{0 ≤ S ≤ T} = 1 and P0{BT ∈ ·} = P0{BS ∈ ·} satisfies P0{S = T} = 1. The
following theorem provides more insight into the set of all minimal unbiased shifts. The
result and its proof are motivated by Proposition 2 in [22].

Theorem 7.5. Let T be an unbiased shift embedding the probability measure ν and such
that P0{T ≥ 0} = 1. Then there exists a minimal unbiased shift T ∗ embedding ν and such
that P0{0 ≤ T ∗ ≤ T} = 1.
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Proof. Let T denote the set of all unbiased shifts S embedding ν and such that P0{0 ≤
S ≤ T} = 1. This is a partially ordered set, where we do not distinguish between elements
that coincide P0-a.s. By the Hausdorff maximal principle (see, e.g. [7, Section 1.5]) there
is a maximal chain T ′ ⊂ T . This is a totally ordered set that is not contained in a strictly
bigger totally ordered set. Let

α := sup
S∈T ′

E0e
−S.

Then there is a sequence Sn, n ∈ N, such that E0e
−Sn → α as n→ ∞. Since T ′ is totally

ordered it is no restriction of generality to assume that the Sn are decreasing P0-a.s.
Define T ∗ := limn→∞ Sn. By construction and monotone convergence

E0e
−T ∗

= α. (7.2)

We also note that P0{0 ≤ T ∗ ≤ T} = 1.
We claim that T ∗ is a minimal unbiased shift embedding ν and first show that T ∗ is

an unbiased shift. Let k ∈ N, and consider continuous and bounded functions f : Rk → R

and g : R → R. Let t1, . . . , tk ∈ R. Since Sn ∈ T for any n ∈ N we have that

E0f(BSn+t1 −BSn
, . . . , BSn+tk −BSn

)g(BSn
) = E0f(Bt1 , . . . , Btk)

∫

g(x) ν(dx). (7.3)

By bounded convergence the above left-hand side converges towards

E0f(BT ∗+t1 −BT ∗ , . . . , BT ∗+tk −BT ∗)g(BT ∗)

as n→ ∞. The monotone class theorem implies that T ∗ is an unbiased shift embedding ν.
It remains to show the minimality property of T ∗. Assume on the contrary that there is

some unbiased shift S embedding ν such that P0{0 ≤ S ≤ T ∗} = 1 and P0{S < T ∗} > 0.
The last two relations imply that

E0e
−S > E0e

−T ∗

.

By (7.2) this means that S /∈ T ′. On the other hand, since P0{S ≤ T ∗ ≤ T} = 1, we
have that S ∈ T , contradicting the maximality property of T ′.

As announced in the introduction the stopping time T ν is a minimal unbiased shift:

Theorem 7.6. Let ν be a probability measure on R with ν{0} = 0. Then T ν defined by
(1.8) is a minimal unbiased shift.

Proof. Let S be an unbiased shift embedding ν and such that P0{0 ≤ S ≤ T ν} = 1.
Theorem 1.2 implies that the allocation rules τS and τT ν balance ℓ0 and ℓν . By Theo-
rem 7.1, τT ν is right-stable P-a.e. The assumptions yield ℓ0{s : s ≤ τS(s) ≤ τT ν (s)} = 0
P-a.e. By Theorem 7.2 we therefore have ℓ0{s : τS(s) < τT ν (s)} = 0 P-a.e. This readily
implies that P0{S = T ν} = 1.
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8 Moments of unbiased shifts

In this section we consider the Brownian case and discuss moment properties of unbiased
shifts. The following two theorems together were stated as Theorem 1.7 in the introduc-
tion.

Theorem 8.1. Suppose ν is a target distribution with ν{0} = 0, and the stopping time
T ≥ 0 is an unbiased shift embedding ν. Then

E0T
1/4 = ∞.

Proof. We start the proof with a reminder of the Barlow-Yor inequality [2], which states
that, for any p > 0 there exist constants 0 < c < C such that, for all stopping times T ,

cE0T
p/2 ≤ E0 sup

x
ℓx[0, T ]p ≤ C E0T

p/2.

Hence it suffices to verify that E0ℓ
0[0, T ]1/2 = ∞.

The proof of this fact uses an argument similar to that in the proof of Theorem 2 in [11].
Let τ = τT be the allocation rule associated with T and set Tr = sup{s ≥ 0: ℓ0[0, s] = r}
for r > 0, as at (1.1). Then, on the one hand,

E0

∫

1{0 ≤ s ≤ Tr, τ(s) /∈ [0, Tr]} ℓ0(ds) = E0

∫ Tr

0

1{τ(s) − s > Tr − s} ℓ0(ds)

=

∫ r

0

P0{τ(Ts) − Ts > Tr − Ts} ds =

∫ r

0

P0{T ◦ θTs > Tr−s ◦ θTs} ds

=

∫ r

0

P0{T > Ts} ds = E0[ℓ
0[0, T ] ∧ r],

where we have used the strong Markov property at Ts (or Theorem 1.1) for the fourth
step and change of variable for the second and fifth steps. On the other hand, the fact
that τ balances ℓ0 and ℓν easily implies that

∫

1{0 ≤ s ≤ Tr, τ(s) /∈ [0, Tr]} ℓ0(ds) ≥ (ℓ0[0, Tr] − ℓν [0, Tr])+.

Hence, combining these two facts with the obvious fact that ℓ0[0, Tr] = r, we get

E0[ℓ
0[0, T ] ∧ r] ≥ E0(r − ℓν [0, Tr])+. (8.1)

We now show that

lim inf
r→∞

r−1/2E0(r − ℓν [0, Tr])+ > 0. (8.2)

To this end we apply a concentration inequality of Petrov for arbitrary sums of inde-
pendent random variables, see [26, Theorem 2.22]. It shows that there exists a constant
C > 0 such that, for all ε > 0 and r ≥ 1,

P
{

ℓν [0, Tr] ∈ [r − ε
√
r, r + ε

√
r]
}

≤ C ε.
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Now observe that E0ℓ
ν [0, Tr] = r, which is an immediate consequence of the second Ray-

Knight theorem (see Theorem 2.3 in Chapter XI of [27]) but can also be derived from
general Palm theory. Hence, by Markov’s inequality,

E0(r − ℓν [0, Tr])+ = 1
2
E0|r − ℓν [0, Tr]| ≥ 1

2
ε
√
r P

{

|r − ℓν [0, Tr]| > ε
√
r
}

≥ 1
2
ε(1 − Cε)

√
r,

as required to prove (8.2). Combining (8.1) and (8.2) gives

lim inf
r→∞

r−1/2E0[ℓ
0[0, T ] ∧ r] > 0.

Finally, assume for contradiction that E0[ℓ
0[0, T ]1/2] < ∞. Since r−1/2(ℓ0[0, T ] ∧ r) ≤

ℓ0[0, T ]1/2, dominated convergence implies that r−1/2E0[ℓ
0[0, T ]∧ r] → 0 as r → ∞, which

is in contradiction to the last display.

Note that the unbiased shifts T ν satisfy the conditions of Theorem 8.1 if ν has finite
mean. The next result shows that they have nearly optimal moment properties.

Theorem 8.2. Let ν satisfy
∫

|x| ν(dx) < ∞, and let T = T ν be the stopping time
constructed in (1.8). Then, for all β ∈ [0, 1/4),

E0T
β <∞. (8.3)

The proof of Theorem 8.2 uses a result similar to Theorem 4 (ii) in [12] and Theo-
rem 2 in [11], which is of independent interest and may also serve as another example for
Theorem 5.1. We consider the ‘clock’

Ur := inf
{

t > 0: ℓ0[0, t] + ℓν [0, t] = r
}

and random measures ξ and η on the positive reals given by

ξ[0, r] := ℓ0[0, Ur], η[0, r] := ℓν [0, Ur], r ≥ 0.

Proposition 8.3. Let ξ and η be defined as above and let S := inf{t > 0: ξ[0, t] = η[0, t]}.
Then E0S

1/2 = ∞, but for some c > 0 we have P0{S > t} ≤ ct−1/2, for all t ∈ R.

Proof. The proof of E0S
1/2 = ∞ is very similar to Theorem 2 in [11] and is therefore

omitted. We prove here the upper bound for the tail asymptotics (only this part is
needed). This result is similar to Theorem 6 (ii) in [11], but due to the specific form of S
we can use a more direct argument.

For any i ∈ N let Yi = η{s ≥ 0: i − 1 < ξ[0, s] ≤ i}. As in the proof of Theorem 8.1
the second Ray-Knight theorem implies that Yi has mean one. Together with Jensen’s
inequality we get

E0[Y
2
i ] = E0(ℓ

ν [0, T1])
2 ≤ E0

∫

(ℓx[0, T1])
2 ν(dx) =

∫

(1 + |x|) ν(dx) (8.4)

which is finite by assumption. Summarising, the sequence Y1, Y2, . . . is an i.i.d. sequence
of random variables with mean one and finite variance. Define, for n ∈ N,

Rn :=
n

∑

i=1

1 + Yi, Un :=
n

∑

i=1

1 − Yi.
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Let σ := inf{n ≥ 1: Un < 0} and fix a ∈ (0, 1/2). Then, for any t > 0,

P0{S > t} ≤ P0{Rσ > t} ≤ P0{Un ≥ 0 for all n ≤ at} + P0{R⌊at⌋ > t}.

By a classical result of Spitzer [28], see also [8, Theorem 1a in Section XII.7], the first
term on the above right-hand side is bounded by a constant multiple of (at)−1/2. By
Chebyshev’s inequality we have

P0{R⌊at⌋ > t} ≤ 1

(t− 2⌊at⌋)2 E0

[

(R⌊at⌋ − 2⌊at⌋)2
]

=
⌊at⌋

(t− 2⌊at⌋)2 E0[(1 − Y1)
2],

which is bounded by a constant multiple of t−1. This completes the proof.

Proof of Theorem 8.2. The variable S, defined in Proposition 8.3, satisfies

S = ℓ0[0, T ] + ℓν [0, T ] = 2ℓ0[0, T ].

It remains to relate the tail behaviour of ℓ0[0, T ] (which we know) to that of T (which we
require). To this end we observe that for θ ∈ R and t > 3

4
, using [21, Theorem 6.10],

P0

{

inf
s>t

1
√

s/ log s
ℓ0[0, s] < 1/θ

}

= P0

{

inf
s>t

1
√

s/ log s
max
0≤r≤s

|Br| < 1/θ
}

≤
∞
∑

k=0

P0

{ 1√
t+ k

max
0≤r≤t+k

|Br| <
2

θ
√

log(t+ k)

}

.

By a step in the proof of Chung’s law of the iterated logarithm, see e.g. [13, (2.1)],

P0

{ 1√
t

max
0≤r≤t

|Br| < x
}

≤ 4

π
e−

π2

8x2 , x > 0,

and hence we have

P0

{

inf
s>t

1
√

s/ log s
ℓ0[0, s] < 1/θ

}

≤ t−1/4,

for a sufficiently large constant θ. For sufficiently large t we have

P0

{ T

θ2 log T
> t

}

≤ P0{ℓ0[0, T ] >
√
t} + P0

{

inf
s>t

1
√

s/ log s
ℓ0[0, s] < 1/θ

}

,

and the right hand side in this inequality is bounded by a constant multiple of t−1/4. The
result follows directly by integration.

Next we turn to unbiased shifts T embedding a measure ν 6= δ0, which need neither be
stopping times, nor nonnegative. We conjecture that any such shift satisfies E0|T |1/4 = ∞.
At the moment we can only prove the following weaker result.

Theorem 8.4. If T is an unbiased shift embedding a probability measure ν 6= δ0, then

E0

√

|T | = ∞.
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Proof. The idea of this proof is due to Alex Cox. We work under the probability
measure P0. By definition of an unbiased shift B+ := (BT+t − BT : t ≥ 0) and B− :=
(BT−t − BT : t ≥ 0) are independent Brownian motions. Moreover, the pair (B+, B−) is
independent of BT . Assume that BT ≥ x, where x > 0 is chosen such that ν[x,∞) > 0.
(If there is no such x > 0 we find an x < 0 such that ν(−∞, x] > 0 and assume BT ≤ x.)
If T > 0, then B−

T = −BT ≤ −x, so that

T ≥ S− := inf{t ≥ 0: B−
t = −x}.

If T < 0, then B+
−T = −B−

T ≤ −x, so that

−T ≥ S+ := inf{t ≥ 0: B+
t = −x}.

Hence |T | ≥ S− ∧ S+ =: S. It is well-known that E0

√
S− = ∞ and E0

√
S+ = ∞. Since

S− and S+ are independent, this property transfers to S. It follows that

E0

√

|T | ≥ E01{BT ≥ x}
√
S = ν[x,∞)E0

√
S = ∞.

Unbiased shifts embedding δ0 also have bad moment properties if they are nonnegative
(or, by time-reversal, nonpositive) but not identically zero. The result can be compared
with Theorem 3 (i) in [11]. However, the proofs are very different.

Theorem 8.5. If T ≥ 0 is an unbiased shift such that P0{BT = 0} = 1 and P0{T > 0} >
0, then

E0T = ∞.

Proof. We assume for contradiction that m := E0T <∞. Define a probability measure P∗

on Ω by setting EP∗f(B) = 1
m
E0

∫ T

0
f(θsB) ds for each bounded nonnegative measurable

function f . By Lemma 3.2, P∗ is stationary. To show that, on the invariant σ-algebra I,
the process B has the same distribution under P∗ as under P0, take A ∈ I and recall from
Theorem 3.5 that P0{B ∈ A} ∈ {0, 1}. But P∗{B ∈ A} = 1

m
E01{B ∈ A}T = 0 or 1

according as P0{B ∈ A} = 0 or 1, as required. By [29, Theorem 2] we infer from this that

1

t

∫ t

0

P0{θsB ∈ ·} ds→ P∗{B ∈ ·}, t→ ∞,

with respect to the total variation norm. On the other hand, for every r > 0,

1

t

∫ t

0

P0{|Bs| ≤ r} ds→ 0, t→ ∞,

implying P∗{|B0| ≤ r} = 0 for all r > 0, which is a contradiction.

In contrast to the two theorems above, we shall see below that unbiased shifts can
have good moment properties if they can assume both signs.
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Example 8.6. We construct a nonzero unbiased shift T embedding δ0, which has Eeλ|T | <
∞ for some λ > 0. Let {(ai, bi) : i ∈ Z} be the countable collection of maximal nonempty
intervals (a, b) with the property that Bt 6= 0 for all a < t < b and |Bs| ≥ 1 for some
s ∈ (a, b). We assume that the collection is ordered such that bi < ai+1 for all i ∈ Z. We
define an allocation rule τ by the requirement that, for bi < s < ai+1,

τ(s) =

{

sup{r < ai+1 : ℓ0(r, ai+1) = ℓ0(bi, s)}, if ℓ0(bi, s) ≤ 1
2
ℓ0(bi, ai+1),

inf{r > bi : ℓ
0(s, ai+1) = ℓ0(bi, r)}, if ℓ0(bi, s) >

1
2
ℓ0(bi, ai+1).

It is easy to see that τ balances ℓ0 with itself, and hence by Theorem 1.2, we have that
T = τ(0) is an unbiased shift embedding δ0. Moreover, we have |T | ≤ S1 + S2 where
S1 = inf{t > 0: |Bt| = 1} and S2 = − sup{t < 0: |Bt| = 1}. S1 and S2 are obviously
independent and identically distributed, and it is easy to see that they, and hence |T |,
have the required moment property.

Remark 8.7. If T ≥ 0 is an unbiased shift such that P0{BT = 0} = 1 and P0{T > 0} > 0,
then we conjecture that E0

√
T = ∞ (strengthening Theorem 8.5), but we cannot prove

this without additional assumptions. One such assumption (covering Tr defined in (1.1)
for r > 0) is that P0{T > s} > 0 for some s > 0 such that {T > s} is P0-almost surely in
the σ-algebra generated by {Bt : t ≤ s}. Indeed, in this case we have

E0

√

|T | ≥ E01{T > s}
√
T ≥ E01{T > s}

√

s+ T0 ◦ θs,

where T0 := inf{t > 0: Bt = 0}. By the Markov property

E0

√

|T | ≥ E01{T > s}EBs

√

T0 = ∞,

since Ex
√
T0 = ∞ for all x 6= 0 and P0{Bs = 0} = 0. Note that this argument does not

use that T is unbiased.

9 Unbiased shifts of Lévy processes

In this section we extend some of our previous results to a larger class of Lévy processes.
A Lévy process is a right-continuous real-valued stochastic process X = (Xt)t∈R with left-
hand limits and X0 = 0, having independent and stationary increments, see e.g. [3, 15].
In particular the (left-continuous) process (X−t)t≥0 is independent of X+ := (Xt)t≥0 and
has the same finite-dimensional distributions as −X+. We assume that X is recurrent,
see [3] for a definition.

For convenience, we also assume that X is given as the identity on its canonical space
(Ω,A,P0), where Ω is the set of all right-continuous functions ω : R → R with left-hand
limits and A is the Kolmogorov product σ-algebra. As in the Brownian case we define
Px := P0{X + x ∈ ·}, x ∈ R, and P by (1.2). This P has the stationarity property (2.1),
where the shifts are defined by (1.3). This setting is a special case of the one established
in Section 2.

The Lévy-Khinchine formula states that

E0e
iϑXt = e−tψ(ϑ), t ≥ 0, (9.1)
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where

ψ(ϑ) = iaϑ+
σ2ϑ2

2
+

∫

(

1 − eiϑx + iϑx1{|x| ≤ 1}
)

Π(dx), ϑ ∈ R.

Here a ∈ R, σ2 ≥ 0 and the Lévy measure Π satisfies Π{0} = 0 and
∫

x2 ∧ 1 Π(dx) < ∞.
We assume that, first,

∫

ℜ
( 1

u+ ψ(ϑ)

)

dϑ <∞, u > 0,

which means that points are not essentially polar, and, second, that either σ2 > 0 or
∫

|x| ∧ 1 Π(dx) = ∞, which means that the Lévy process is of unbounded variation.
These two assumptions imply that the origin is regular for itself, see Theorème 8 in [5].
Theorem 4 in [10] then implies that there are random (local time) measures ℓx, x ∈ R,
such that (ω, x) 7→ ℓx(ω,C) is measurable for all Borel sets C ⊂ R and (2.5) holds.
Moreover, ℓx is P0-a.s. diffuse for any x ∈ R. In order to apply the techniques of this
paper we need a perfect version of local times satisfying (2.6), (2.7), and (2.8). To achieve
this we assume the conditions (Rβ) and (H) of [1, Theorem 1.2]. We do not formulate
these (somewhat technical) assumptions here, but only mention that they are satisfied
by a strictly α-stable Lévy process, whenever α > 1. (The case α = 2 corresponds to
Brownian motion while for α < 2 the Lévy measure is given by Π(dx) = c+x

−α−1 dx on
(0,∞) and Π(dx) = c−|x|−α−1 dx on (−∞, 0).)

As in the Brownian case we define for any locally finite measure µ on R the invariant
random measure ℓµ by (1.6). If µ is a probability measure, then we call a random time
T an unbiased shift under Pµ :=

∫

Px µ(dx) if (XT+t −XT )t∈R is independent of XT and
has distribution P0 under Pµ.

Theorem 9.1. Let T be a random time and µ, ν be probability measures on R. Then T
is an unbiased shift under Pµ and Pµ{XT ∈ ·} = ν if and only if the allocation rule τT
defined by (1.7) balances ℓµ and ℓν.

Proof. The proof of Lemma 2.3 yields that Px is the Palm measure of ℓx with respect
to P. Therefore Pµ is the Palm measure of ℓµ and the proof of Theorem 4.1 applies without
change.

Theorem 9.2. Let µ be a probability measure on R and let Sr, r ∈ R, be the gen-
eralised inverse of ℓµ defined as in (1.1). Then Sr is an unbiased shift under Pµ and
Pµ{XSr

∈ ·} = µ.

Proof. In order to apply Theorem 3.1 we need to show that Pµ{ℓµ(0,∞) < ∞} =
0. Since the Lévy process −X also satisfies our general assumptions, this implies
Pµ{ℓµ(−∞, 0) < ∞} = 0. Clearly, it is enough to prove Px{ℓy(0,∞) < ∞} = 0 for
all x, y ∈ R. By the spatial homogeneity (2.7) this is equivalent to

P0{ℓx(0,∞) <∞} = 0, x ∈ R. (9.2)

By Proposition V.4 in [3] the generalized inverse of (ℓ0[0, t])t≥0 is (under P0) a (fi-
nite) subordinator, so that (9.2) holds for x = 0. Spatial homogeneity implies that
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Px{ℓx(0,∞) < ∞} = 0. As the origin is regular for itself, the results in [3, Chapter II]
(see in particular Theorems II.16 and II.19) imply that our process is not only recurrent
but that the origin is point-recurrent and that T ′

x := inf{t ≥ 0 : Xt = x} is finite P0-a.s.
Hence (9.2) follows from the strong Markov property applied to T ′

x, which is a stopping
time with respect to a suitable augmentation of the natural filtration.

Theorem 9.3. Let A ∈ I be a shift-invariant set. Then either Px(A) = 0 for all x ∈ R

or Px(A
c) = 0 for all x ∈ R.

Proof. The proof of Theorem 3.5 applies provided that P0{ℓx 6= 0} = 1 for λ-a.e.
x ∈ R. But this follows from (9.2).

Thanks to Theorem 5.1 the previous result implies the following generalization of
Theorem 5.7.

Theorem 9.4. Let µ and ν be orthogonal probability measures on R. Then the stopping
time T := T µ,ν defined by (5.5) is an unbiased shift under Pµ and Pµ{XT ∈ ·} = ν.

Theorems 1.4, 1.5 and 1.6 as well as the minimality properties stated in Theorems 7.5
and 7.6 do also hold in the present more general setting. It would be interesting to study
the moment properties of unbiased shifts of Lévy processes. The proof of Theorem 1.7
makes significant use of the properties of Brownian motion. Theorem 8.5, however, is
still true in the Lévy case while the proof of Theorem 8.4 can be extended beyond the
Brownian case.
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