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1. Introduction and statement of the results

Let (Ws : 0 ≤ s ≤ τ) be a standard planar Brownian motion running up to the first hitting time τ of
the circle of unit radius around the origin, and consider the complement of its path, i.e.

{

x ∈ � 2 : x 6= Ws for any 0 ≤ s ≤ τ
}

.

This set is open and can be decomposed into connected components, exactly one of which is unbounded.
We denote this component by U and define its boundary ∂U as the frontier of the Brownian path.
Note that in this natural setup the frontier is a random closed curve enclosing the origin, which is
contained in the unit disc and touches the unit circle in exactly one point. The frontier can be seen as
the set of points on the Brownian path which are accessible from infinity and is therefore also called
the outer boundary of Brownian motion.

Mandelbrot conjectured, based on a simulation and the analogy of the outer boundary and the self-
avoiding walk, that the Brownian frontier has Hausdorff dimension 4/3, see [Ma82]. Rigorous con-
firmation of this conjecture, however, turned out to be a hard problem, which took a long time. In
the late nineties Bishop, Jones, Pemantle and Peres [BP97] showed that the frontier has Hausdorff
dimension strictly larger than one, and about the same time Lawler [La96] identified the Hausdorff
dimension in terms of a (then) unknown constant, the disconnection exponent ξ(2). A few years
later, Lawler, Schramm and Werner, as one of the first applications of their SLE technique, found the
explicit value of this constant and thus confirmed Mandelbrot’s conjecture.

As a planar Brownian motion has points of any finite (and indeed infinite) multiplicity, and these
points form a dense set of full dimension on the range, it is natural to ask whether there are multiple
points also on the frontier.
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To begin with, it is easy to observe that the Brownian frontier must contain double points of the
Brownian motion. The argument, which is due to Lévy [Le65], goes roughly like this: If there were
no double points on the frontier, it would by construction contain a stretch of the original Brownian
path. This would however imply that it had double points, which is a contradiction. Knowing that
there are double points on the frontier, it is natural to ask, whether the frontier contains triple points.
This problem was solved by Burdzy and Werner [BW96], who showed that, almost surely, there are
no triple points on the frontier of a planar Brownian motion.

A second natural question that comes up is how many double points one can find on the Brownian
frontier. Maybe surprisingly, it turns out that while the set

D =
{

x ∈ � 2 : x = Ws = Wt for distinct s, t ∈ [0, τ ]
}

of double points has full Hausdorff dimension on the entire path, it does not have full dimension on
the frontier. The following curious result is the main result of this paper.

Theorem 1.1. Almost surely, the set of double points on the Brownian frontier satisfies

dim
(

D ∩ ∂U
)

=

√
97 + 1

24
.

Remark 1 By a variation of the proof one can see that the same formula holds when the Brownian
motion is stopped at a fixed time, rather than the exit time τ from the unit disc.

Remark 2 Our contribution in the proof is to show that dim(D ∩ ∂U) = 2 − ξ(4), where ξ(4) is a
disconnection exponent defined in Section 2. The full result follows from the actual value of ξ(4),
which was found by Lawler, Schramm and Werner, see [LSW01].

We would like to point out that our proof of Theorem 1.1 uses a technique different from that of [La96].
The latter paper works in the time domain and uses Kaufman’s dimension doubling lemma, see e.g.
[MP10, Theorem 9.28], to move to the spatial domain. We found this approach not suitable to deal
with the lower bound in the case of double points, as it would require rather delicate estimates for
Brownian motions which are constrained both in time and space. Instead, as in other problems related
to multiple points, see e.g. [KM05], it is preferable to work directly in the plane. This allows us to
work with Brownian motion without temporal constraint. In Section 2 we give an accessible sketch of
the proof, and also state sharp estimates for disconnection probabilities, which are at the heart of our
argument, and may be of independent interest, see Theorem 2.1. Full technical details of the proof
are given in Section 3.

2. Proof of Theorem 1.1: Framework and ideas.

In the proof of this result, we consider Brownian motion up to the first exit time τ from a disc around
the origin of fixed radius R, say larger than two, and adapt the definition of the set D of double
points and the frontier U accordingly. We fix a compact square S0 of unit sidelength contained in this
disc, which does not contain the origin, and δ > 0 smaller than half the distance of S0 to the origin.
We define a suitable collection Sn = Sn(δ) of nonoverlapping compact dyadic subsquares S ⊂ S0 of
sidelength 2−n. Roughly speaking, the squares S in the collection are chosen to satisfy the following
two conditions:

• the Brownian motion (Ws : s ≥ 0) hits the square S, moves a distance of order δ, and then
hits S again before the killing time τ ;

• the union of the paths outside the square S does not disconnect its boundary ∂S from infinity.
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Clearly, these conditions are only heuristic and need to be made precise in the actual proof. In
particular we will have to make sure that, for some integer N(δ) ∈ � , when N(δ) ≤ m ≤ n and
S ∈ Sn(δ), all dyadic squares T ⊃ S with sidelength 2−m are in Sm(δ), and that

S0 ∩ D ∩ ∂U =
⋃

δ>0

∞
⋂

n=N(δ)

⋃

S∈Sn(δ)

S.

The Hausdorff dimension can then be determined with positive probability by verifying first and
second moment criteria: Let ξ > 0 and assume that there exist constants c1, c2, c3 > 0 such that

(i) for any dyadic subsquare S ⊂ S0 of sidelength 2−n, we have

c12
−ξn ≤ �

(

S ∈ Sn

)

≤ c22
−ξn;

(ii) for any pair of dyadic subsquares S, T ⊂ S0 of sidelength 2−n with distance of order 2−m,
1 ≤ m ≤ n, we have

�
(

S, T ∈ Sn

)

≤ c3 2−2ξn2ξm.

These conditions imply that dim(S0 ∩ D ∩ ∂U) ≤ 2 − ξ almost surely and dim(S0 ∩ D ∩ ∂U) ≥ 2 − ξ
with positive probability, see [MP10, Theorem 10.43]. This is a standard technique (sometimes called
second moment method) in fractal geometry and not too hard to verify, for example using the mass
distribution principle.

To get hold of the constant ξ we first recall the definition of the disconnection exponents of planar
Brownian motion. Let B(z, r) the open disc of radius r with centre z and suppose (W (i)

s : s ≥ 0), for
i ∈ {1, . . . , k}, are independent Brownian motions started on the unit circle ∂B(0, 1), and stopped
upon leaving the concentric disc B(0, en) of radius en. We denote by Bn the union of their paths, and
by Vn the event that the set Bn does not disconnect the origin from infinity, i.e. the origin is in the
unbounded connected component of the complement of Bn. The disconnection exponent ξ(k) is then
defined by the requirement that there exist positive constants c1 and c2 such that, for any n ∈ � ,

c1 exp{−n ξ(k)} ≤ � (Vn) ≤ c2 exp{−n ξ(k)} . (2.1)

Lawler [La96] showed that the disconnection exponents are well-defined by this requirement, and
Lawler, Schramm and Werner [LSW01] found the explicit values

ξ(k) =
(
√

24k + 1 − 1)2 − 4

48
.

The intuition behind our proof is that locally the paths of a Brownian motion seen from a typical
double point look like four Brownian motions started at this point. Roughly speaking, each of the two
segments of the path crossing in the double point, is split into a part prior to hitting the double point,
and a part after hitting the double point, amounting to four paths altogether. Hence the probability
that a disc or square of diameter 2−n containing this double point is not disconnected from infinity by
these paths should be of order 2−nξ(4). In reality, things are a bit more delicate and this observation
is only correct up to a factor, which is polynomial in n. Indeed, when we place a small disc around a
potential double point, and split a path, which is conditioned to hit this disc, at the first hitting time,
the time-reversal of the path up to this instant spends somewhat less time in the critical area near
the disc and therefore non-disconnection probabilities are slightly larger than for Brownian motion
starting on the circle. Here is the rigorous statement behind our argument.

Theorem 2.1. Suppose (W (i)
s : s ≥ 0) for i ∈ {1, . . . , k} are independent Brownian motions started

uniformly on the circle ∂B(0, 1
2 en), and stopped upon leaving the disc B(0, en), n ≥ 2, i.e. at times

T (i)
n = inf{s > 0 : |W (i)

s | = en}.
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Denote by

Bn =
k

⋃

i=1

{

W (i)
s : 0 ≤ s ≤ T (i)

n

}

the union of the paths, and by Vn the event that Bn does not disconnect the unit disc B(0, 1) from
infinity. Then there exist constants c1, c2 > 0 independent of n and the starting positions, such that

c1 nk e−nξ(2k) ≤ �
(

Vn

∣

∣ T (i)

0 < T (i)
n for all 1 ≤ i ≤ k

)

≤ c2 nk e−nξ(2k).
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Figure 1. The second moment estimate. The small black squares S, T have side-
length 2−n and distance of order 2−m, for n ≥ m. The dark grey annulus has outer
radius of order δ and inner radius of order 2−m, whereas the two light grey annuli have
outer radius of order 2−m and inner radius of order 2−n.

Considering that � (T (i)

0 < T (i)
n ) is a constant multiple of 1

n
, and applying Brownian scaling, we infer

from this that (i) holds with ξ = ξ(4). To explain that Theorem 2.1 also yields the second order
estimate (ii) we refer to Figure 1. Observe that if both squares marked S and T are in Sn and have
distance of order 2−m, for some m ≤ n, then

• twice a square of sidelength 2−n is hit from a distance of order δ, which has a probability of
at most a constant multiple of 1/n2,

• independently, twice a square of sidelength 2−n is hit from a distance of order 2−m, which has
a probability of at most a constant multiple of m2/n2.

Conditional on these hitting events,

• the large white disc is not disconnected from infinity by the paths in the dark grey annulus
that surrounds it, which, by Theorem 2.1, has a probability of at most a constant multiple
of m22−mξ(4),

• independently, the two small white discs inside are not disconnected from infinity by the
paths in the light grey annuli that surround them, which has a probability of at most a
constant multiple of ((n/m)22−(n−m)ξ(4))2. This is easily seen by removing the conditioning
in Theorem 2.1 and then using Brownian scaling.



5

Altogether, the probability of the event S, T ∈ Sn is at most a constant multiple of 2−mξ(4) 2−2(n−m)ξ(4),
which readily implies (ii). These arguments show that, with positive probability,

dim
(

D ∩ ∂U
)

= 2 − ξ(4) =

√
97 + 1

24
.

To verify that this holds almost surely, we observe that Wτ is always a point on the frontier. The
previous arguments can be adapted to show that there is a positive probability that the double points
on the frontier intersected with any small disc around this point have the given Hausdorff dimension.
Then a variant of Blumenthal’s zero-one law can be applied and yields the result with probability one.

Let us mention that our technique of proof can also be used to show that the dimension of the frontier
itself is 2− ξ(2) = 4/3. However, in this case the original proof given by Lawler [La96] is easier. Also,
the non-existence of triple points on the frontier follows rather easily from the fact that ξ(6) > 2, and
indeed most of [BW96] is devoted to the derivation of this estimate, at a time when exact values of
intersection exponents were not yet available.

We would further like to note that our method can be used to estimate the dimension of another type
of sets. Burdzy and Werner conjectured [BW96] that there are no times t such that Wt is a triple point
on the outer boundary of the set {Ws : s ∈ [0, t]}. These points may be called pioneer-triple points.
Analogously defining pioneer-double and ordinary pioneer points of Brownian motion, our technique
can be used to give the dimension of these sets as 2 − ξ(5), 2 − ξ(3) and 2 − ξ(1), the latter being
already known from [LSW01]. Unfortunately 2−ξ(5) is equal to zero, so that our result neither proves
nor disproves the conjecture of Burdzy and Werner.

3. Proof of Theorem 1.1: Details.

For a Brownian motion (Wt : t ≥ 0) and sets A1, A2, . . . we define recursively

τ(A1) := inf
{

t > 0: Wt ∈ A1

}

,

τ(A1, . . . , An) := inf
{

t > τ(A1, . . . , An−1) : Wt ∈ An

}

.

For any bounded set A we denote by B(A, r) the disc of radius r around the barycentre of A.

We keep the notation introduced in the previous section; recall in particular the meaning of the fixed
parameters δ > 0 and R > 2, on which all constants of this section may depend. Divide S0 into its
dyadic subsquares,

Si,j
n := [x + i2−n, x + (i + 1)1−n] × [y + j2−n, y + (j + 1)2−n], for i, j ∈ {0, . . . , 2n − 1},

where (x, y) ∈ � 2 denotes the bottom left corner of S0.

Definition 3.1. Let N(δ) be the smallest integer satisfying 2−n < δ/16. For n ≥ N(δ) define the
collection Sn of δ-good squares to be the set of all S = S i,j

n with the following properties:

(1) S is visited twice and between the visits the motion travels a distance close to δ; more precisely

τ(S, ∂B(S, δ − 1√
2
2−n), S) < τ ;

(2) B(S, 2−n) is not disconnected from infinity by the path {Ws : s ∈ [0, τ ]}.

We write Sn for the union of all S ∈ Sn.
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The difference of (1/
√

2) 2−n between the subtractive corrections for n−1 and n is exactly the distance
between the centres of two dyadic squares S i,j

n ⊂ Sk,l

n−1. It ensures that if Si,j

n is δ-good, then so is

Sk,l

n−1. It is easy to see that a point x which is contained in every member of a decreasing sequence
of δ-good squares is a double point, with two visits to x separated by an excursion reaching ∂B(x, δ).
We therefore have

S0 ∩ D ∩ ∂U =
⋃

δ>0

∞
⋂

n=N(δ)

⋃

S∈Sn

S.

As explained in the previous section, the main step in the proof is to establish the following lemma,
which implies that dim(D ∩ ∂U) ≤ 2 − ξ(4) almost surely, and dim(D ∩ ∂U) ≥ 2 − ξ(4) with positive
probability.

Lemma 3.2. There exist constants c1, c2, c3 > 0 such that for any n ≥ m ≥ N(δ) and any dyadic
subsquare S ⊂ S0 of sidelength 2−n, we have

c1 2−ξ(4)n ≤ �
(

S ∈ Sn

)

≤ c2 2−ξ(4)n,

and for any pair of dyadic subsquares S, T ⊂ S0 of sidelength 2−n with distance in [ 122−m, 2−m], we
have

�
(

S, T ∈ Sn

)

≤ c3 2−2ξ(4)n 2ξ(4)m.

The following three sections are devoted to the proof of this lemma. In the course of the proof, we also
provide the arguments needed to prove Theorem 2.1. The proof of Theorem 1.1 is then completed in
Section 3.5 by means of a zero-one argument.

3.1 From Brownian paths to excursions. Given an annulus A = clB(x, r1 ∨ r2) \ B(x, r1 ∧ r2)
we define an excursion from ∂B(x, r1) to ∂B(x, r2) as a continuous curve γ : [0, τ ] → A with

γ[0, τ ] ∩ ∂B(x, r1) = {γ(0)}, and γ[0, τ ] ∩ ∂B(x, r2) = {γ(τ)}.
To define a Brownian excursion, start a Brownian motion {Wt : t ≥ 0) uniformly on ∂B(x, r1) and
define σ = sup{t ≤ τ(∂B(x, r2)) : Wt ∈ ∂B(x, r1)}. Then the random curve (Yt : 0 ≤ t ≤ τ) with
τ = τ(∂B(x, r2)) − σ and Yt = Wt+σ defines a Brownian excursion from ∂B(x, r1) to ∂B(x, r2). As
described, for example, in [LSW02] or [MS09], the time-reversal of a Brownian excursion from ∂B(x, r1)
to ∂B(x, r2) is a Brownian excursion from ∂B(x, r2) to ∂B(x, r1).

Fix a square S ⊂ S0 of sidelength r1 := 2−n and radii r1 < r2 < r3 sufficiently small to ensure r3 < δ
and r2 < 2

3 r3. With such a configuration we associate natural curves and excursions embedded in a
Brownian motion (Ws : s ≥ 0) as follows: Let

t(1)1 = τ
(

B(S, r2)
)

, t(1)2 = τ
(

B(S, r1)
)

,

t(1)3 = τ
(

S, ∂B(S, r1)
)

, t(1)4 = τ
(

S, ∂B(S, r2)
)

,

and define the curves

W (1)

1 : [0, t(1)2 − t(1)1 ] → � 2 \ B
(

S, r1

)

, W (1)

1 (t) = W
t
(1)
1 +t

,

W (1)

2 : [0, t(1)4 − t(1)3 ] → clB
(

S, r2

)

, W (1)

2 (t) = W
t
(1)
3 +t

.

Similarly, we define curves associated with further visits to B(S, r1). Indeed, for i ≥ 2, let

t(i−1)

5 = inf
{

t ≥ t(i−1)

4 : Wt ∈ ∂B
(

S, r3

)}

,

and let W (i)

1 ,W (i)

2 be defined as before, but for the Brownian motion started at time t(i−1)

5 . The next
lemma states that these curves are almost independent.
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Lemma 3.3. Let (X (i)

t : 0 ≤ t ≤ τ (i)), 1 ≤ i ≤ 2k, be independent Brownian motions started uniformly
on ∂B(S, r2) and stopped upon reaching ∂B(S, r1), if 1 ≤ i ≤ k, and started uniformly on ∂B(S, r1)
and stopped upon reaching ∂B(S, r2), if k < i ≤ 2k. Then the law of this family, and the joint law of
the curves

(

W (i)

1 (t) : 0 ≤ t ≤ t(i)2 − t(i)1

)

, i ≤ k;
(

W (i)

2 (t) : 0 ≤ t ≤ t(i)4 − t(i)3

)

, i ≤ k;

are mutually absolutely continuous with densities bounded by constants, which do not depend on the
choice of the radii r1, r2, r3, but may depend on the choice of δ.

Proof. By the Harnack principle, the laws of W (t(1)

1 ) and X (1)

0 are absolutely continuous with a bounded

density. Moreover, conditional on these points, the curves W (1)

1 and X (1) have the same law. Given

their endpoints W (t(1)

2 ) and X (1)

τ (1) , using the Harnack principle again, the laws of W (t(1)

3 ) and X (k+1)

0 ,
are absolutely continuous with a bounded density and, conditional on these points, the curves W (1)

2
and X (k+1) have the same law. Together with the strong Markov property, this implies that the
unconditional laws of the pairs (W (1)

1 ,W (1)

2 ) and (X (1), X(k+1)) are mutually absolutely continuous
with bounded densities. Iterating this argument further completes the proof. �

For the lower bounds we need to study configurations of curves, which not only fail to disconnect,
but do not even come close to doing so. To make this precise we introduce the notion of an α-nice
configuration, which is a relaxation of the same notion in [LSW02].

Definition 3.4. Suppose that (γ (1)
s : 0 ≤ s ≤ τ (1)), . . . , (γ(k)

s : 0 ≤ s ≤ τ (k)) are planar curves started
on the boundary of a fixed annulus A and stopped upon reaching the opposite boundary circle. This
configuration of curves is called α-nice if

(i)
{

γ(i)
s : 0 ≤ s ≤ τ (i)} \ A ⊂ B(γ(i)

0 , α |γ(i)

0 |), and

(ii) the set

k
⋃

i=1

{

γ(i)

t : 0 ≤ t ≤ τ (i)
}

∪
k

⋃

i=1

B
(

γ(i)

0 , α |γ(i)

0 |
)

∪
k

⋃

i=1

B
(

γ(i)

τ (i) , α |γ(i)

τ (i) |
)

does not disconnect the centre of the annulus from infinity.

Note that condition (i) is void if the curves are excursions between the bounding circles of the annulus.

As we often argue on an exponential scale, it is convenient to introduce the abbreviation Ca for
∂B(0, ea) and to denote by A(a, b) the annulus between the circles Ca and Cb. In several instances we
will use that, for a planar Brownian motion started in x and 0 < ea < |x| < eb,

�
(

τ(Ca) < τ(Cb)
)

=
b − log |x|

b − a
, (3.1)

see [MP10, Theorem 3.18]. The following key lemma identifies the disconnection probabilities for
Brownian excursions. Its proof is postponed to Section 3.3.

Lemma 3.5. Fix a positive integer k and, for n1 < n2, suppose that

(Y (i)

t : 0 ≤ t ≤ τ (i)), for i ∈ {1, . . . , k},
are independent Brownian excursions from Cn1 to Cn2. Let p(n1, n2, k) be the probability that the union
of these excursions does not disconnect Cn1 from infinity and pα(n1, n2, k) be the probability that they
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form an α-nice configuration. Then there exist constants C1, C2 > 0, independent of n1, n2, and an
α0 > 0 such that, for every α ∈ [0, α0],

C1 (n2 − n1)
k e(n1−n2) ξ(k) ≤ pα(n1, n2, k) ≤ p(n1, n2, k) ≤ C2 (n2 − n1)

k e(n1−n2) ξ(k).

The following result is the main tool from this section. It is derived from Lemma 3.5 by extracting
suitable excursions from the curves.

Lemma 3.6. Fix integers 0 ≤ ` ≤ k and, for n1 < n2, suppose that

(X(i)

t : 0 ≤ t ≤ τ (i)), for i ∈ {1, . . . , k},
are independent Brownian motions, which in the case 1 ≤ i ≤ ` are started uniformly in Cn1 and
stopped upon reaching Cn2 , and in the case ` < i ≤ k are started uniformly in Cn2 and stopped upon
reaching Cn1. Let q(n1, n2, k) be the probability that the union of the k paths does not disconnect
Cn1 from infinity, and qα(n1, n2, k) be the probability that the paths form an α-nice configuration.
Then there exist constants C3, C4 > 0, independent of n1, n2, and an α0 > 0 such that, for every
α ∈ [0, α0/2],

C3 αk e(n1−n2) ξ(k) ≤ qα(n1, n2, k) ≤ q(n1, n2, k) ≤ C4 e(n1−n2) ξ(k).

Proof. We start with the upper bound. Let σ(i)

1 = 0 and, for j ≥ 1, if 1 ≤ i ≤ ` define stopping times

τ (i)

j = inf
{

t > σ(i)

j : X(i)

t ∈ Cn1−1 ∪ Cn2

}

, σ(i)

j+1 = inf
{

t > τ (i)

j : X(i)

t ∈ Cn1

}

,

and similarly, if ` < i ≤ k,

τ (i)

j = inf
{

t > σ(i)

j : X(i)

t ∈ Cn1 ∪ Cn2+1

}

, σ(i)

j+1 = inf
{

t > τ (i)

j : X(i)

t ∈ Cn2

}

.

By (3.1) the random variables N (i), defined by τ (i)

N(i) = τ (i), are geometric with success probabil-

ity 1/(n2 − n1 + 1). Define the paths

X(i)

j
: [0, τ (i)

j − σ(i)

j ] → � 2, X(i)

j (t) = X (i)

σ
(i)
j +t

.

In particular, the paths X (i)

N(i) contain an excursion from Cn1 to Cn2 , if 1 ≤ i ≤ `, or from Cn2 to Cn1 ,
if ` < i ≤ k. Using this, together with the strong Markov property, the Harnack principle, and the
time-reversibility of excursions, we obtain, for a suitable constant C > 0,

q(n1, n2, k) ≤ C p(n1, n2, k)

∞
∑

`1,...,`k=1

k
∏

i=1

�
(

N (i) = `i

)

×
`i−1
∏

j=1

�
(

X(i)

j does not disconnect Cn1 from infinity
∣

∣τ (i)

j < τ (i)
)

.

As the factors in the second line are bounded from above by a constant ρ < 1, we obtain

q(n1, n2, k) ≤ C p(n1, n2, k)
1

(n2 − n1 + 1)k

∞
∑

`1=1

ρ`1−1 . . .

∞
∑

`k=1

ρ`k−1

≤ C C2 (1 − ρ)−k e(n1−n2) ξ(k).

For the lower bound we consider last exit times σ(i) defined by

σ(i) = sup
{

t < τ (i) : |X(i)

t | = |X (i)

0 |
}

.
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Observe that the intersection of the events

(1)
{

X(i)

t : 0 ≤ t ≤ σ(i)
}

⊂ B
(

X(i)

0 , α |X (i)

0 |
)

for all 1 ≤ i ≤ k,

(2) the set

k
⋃

i=1

{

X(i)

t : σ(i) ≤ t ≤ τ (i)
}

∪
k

⋃

i=1

B
(

X(i)

σ(i) , 2α |X (i)

0 |
)

∪
k

⋃

i=1

B
(

X(i)

τ (i) , 2α |X (i)

τ (i) |
)

does not disconnect Cn1 from infinity,

imply that the configuration is α-nice. By (3.1) the probability of (1) is bounded from below by
a constant multiple of (α/(n2 − n1))

k. Conditional on (1) the paths {X (i)

t : σ(i) ≤ t ≤ τ (i)} are
independent Brownian excursions and hence the probability of (2) is bounded from below by a constant
multiple of p2α(n1, n2, k). Combining these two estimates and using Lemma 3.5 implies the result. �

Remark 3 Lemma 3.6 implies that in the definition of Brownian disconnection exponents we can
allow that any of the paths, instead of starting in ∂B(0, 1) and being stopped on leaving B(0, en),
start on ∂B(0, en) and are stopped on hitting B(0, 1). Observe also that Theorem 2.1 is an immediate
consequence of Lemma 3.6.

3.2 Proof of Lemma 3.2. We now complete the proof of Lemma 3.2 using the framework provided
in the previous section. We start with the easiest part.

Lemma 3.7. There exists a constant c2 > 0 such that, for any n ≥ N(δ), and any dyadic subsquare
S ⊂ S0 of sidelength 2−n, we have

�
(

S ∈ Sn

)

≤ c2 2−ξ(4)n.

Proof. The event {S ∈ Sn} implies that, for r1 = 2−n, r2 = δ
2 and r3 = δ − 2−n− 1

2 , the embedded

paths W (1)

1 ,W (1)

2 ,W (2)

1 ,W (2)

2 do not disconnect the disc B(S, 2−n) from infinity. Combining Lemma 3.3
and Lemma 3.6, for ` = 2 and k = 4, gives the result. �

The idea of the corresponding lower bound is to describe an explicit event, which implies S ∈ Sn. The
crucial part of this event is that W (1)

1 ,W (1)

2 ,W (2)

1 ,W (2)

2 form a configuration of α-nice curves.

Lemma 3.8. There exists a constant c1 > 0 such that, for any n ≥ N(δ), and any dyadic subsquare
S ⊂ S0 of sidelength 2−n, we have

c1 2−ξ(4)n ≤ �
(

S ∈ Sn

)

.

Proof. We keep the choice of r1 = 2−n, r2 = δ
2 and r3 = δ−2−n− 1

2 as in the proof of the upper bound,

and fix 0 < α < α0. Define two strips S1 and S2 as the set of all points of distance at most α δ
2 to the

straight line

• connecting the origin with the nearest point in ∂B(S, δ
2), respectively,

• connecting W
t
(2)
4

with the nearest point in ∂B(S, 2R).

Now look at the five events

(1) the path {Ws : 0 ≤ s ≤ t(1)1 } remains in the strip S1,

(2) the path {Ws : t(1)2 ≤ s ≤ t(1)3 } remains in the set B(S, 2−n) ∪ B(W
t
(1)
2

, α2−n),
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S

1S

2

x

0

Figure 2. Illustration of the strategy for the Brownian path explained in Lemma 3.8.
The three circles around the solid square S have radii r1 < r2 < r3. The indicated
configuration of curves is α-nice as the shaded disc is not disconnected from infinity
by the union of the paths and the small solid discs. The initial and final parts of the
path have to remain in the shaded strips, and the dashed path does not disconnect the
point x from infinity.

(3) the path {Ws : t(2)2 ≤ s ≤ t(2)3 } remains in the set B(S, 2−n) ∪ B(W
t
(2)
2

, α2−n),

(4) the path {Ws : t(2)4 ≤ s ≤ τ} remains in the strip S2,

(5) the four curves W (1)

1 ,W (1)

2 ,W (2)

1 ,W (2)

2 are an α-nice configuration.

Using the strong Markov property, Lemma 3.3, and Lemma 3.6, we see that the probability of the
intersection of these five events is bounded from below by a constant multiple of 2−nξ(4). Given curve
segments (Ws : s ∈ [0, t(1)

4 ] ∪ [t(2)1 , τ ]) satisfying these events, we may identify a point x ∈ ∂B(S, δ
2)

which is not disconnected from B(S, 2−n) by the set

2
⋃

i,j=1

{

Wt : t(i)2j−1 ≤ t ≤ t(i)2j

}

∪
2

⋃

i=1

4
⋃

j=1

B
(

W
t
(i)
j

, α |W
t
(i)
j

|
)

.

We then additionally require

(6) the path {Ws : t(1)4 ≤ s ≤ t(2)1 } stays in B(t(1)

4 , α δ
2 ) ∪ (B(0, R) \ B(S, δ

2)) and also does not
disconnect the point x from infinity.

Observe with the help of Figure 2, that under the intersection of these six events we have {S ∈ Sn}.
The conditional probability of the sixth event is bounded from zero, with a bound depending on the
choice of δ and α. This proves the lower bound of the lemma. �

In the last part we derive the second moment estimate in Lemma 3.2 by looking at the path at two
scales, roughly speaking, the size and the distance of the two squares S, T .

Lemma 3.9. There exists a constant c3 > 0 such that for any n ≥ m ≥ N(δ) and any pair of dyadic
subsquares S, T ⊂ S0 of sidelength 2−n with distance in [ 122−m, 2−m], we have

�
(

S, T ∈ Sn

)

≤ c3 · 2−mξ(4) · 2−2(n−m)ξ(4).
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Proof. We denote by z be the middle point between the centres of S and T . If S, T ∈ Sn we know that
the Brownian path visits the sets S, ∂B(z, δ

2), S and T, ∂B(z, δ
2 ), T , both in that order, before exiting

B(0, R), but there are eight possible combinations of these events, not counting possible additional
visits of ∂B(z, δ

2). These can be described symbolically as follows:

E1 : S ; ∂B(z, δ
2) ; S ; T ; ∂B(z, δ

2) ; T

E2 : S ; ∂B(z, δ
2) ; T ; S ; ∂B(z, δ

2) ; T

E3 : S ; T ; ∂B(z, δ
2) ; S ; T

E4 : S ; T ; ∂B(z, δ
2) ; T ; S

E5 : T ; ∂B(z, δ
2 ) ; T ; S ; ∂B(z, δ

2) ; S

E6 : T ; ∂B(z, δ
2 ) ; S ; T ; ∂B(z, δ

2) ; S

E7 : T ; S ; ∂B(z, δ
2) ; T ; S

E8 : T ; S ; ∂B(z, δ
2) ; S ; T

Note that, owing to possible additional visits, these events are not disjoint. Each of the events allows
a similar estimate, and for notational convenience we focus here on the event E4, which is satisfied in
the case sketched in Figure 1. We first assume that n ≥ m + 4. In this case we define an increasing
sequence of twenty-four stopping times:

t1 = τ
(

B(z, δ
2)

)

, t2 = τ
(

B(z, 2−m+2)
)

,

t3 = τ
(

B(S, 2−m−3)
)

, t4 = τ
(

B(S, 2−n)
)

,

t5 = τ
(

S, ∂B(S, 2−n)
)

, t6 = τ
(

S, ∂B(S, 2−m−3)
)

,

t7 = τ
(

S,B(T, 2−m−3)
)

, t8 = τ
(

S,B(T, 2−n)
)

,

t9 = τ
(

S, T, ∂B(T, 2−n)
)

, t10 = τ
(

S, T, ∂B(T, 2−m−3)
)

,

t11 = τ
(

S, T, ∂B(z, 2−m+2)
)

, t12 = τ
(

S, T, ∂B(z, δ
3)

)

,

t13 = τ
(

S, T, ∂B(z, δ
2 )

)

, t14 = τ
(

S, T, ∂B(z, δ
2),B(z, 2−m+2)

)

,

t15 = τ
(

S, T, ∂B(z, δ
2 ),B(T, 2−m−3)

)

, t16 = τ
(

S, T, ∂B(z, δ
2),B(T, 2−n)

)

,

t17 = τ
(

S, T, ∂B(z, δ
2 ), T, ∂B(T, 2−n)

)

, t18 = τ
(

S, T, ∂B(z, δ
2), T, ∂B(T, 2−m−3)

)

,

t19 = τ
(

S, T, ∂B(z, δ
2 ), T,B(S, 2−m−3)

)

, t20 = τ
(

S, T, ∂B(z, δ
2), T,B(S, 2−n)

)

,

t21 = τ
(

S, T, ∂B(z, δ
2 ), T, S, ∂B(S, 2−n)

)

, t22 = τ
(

S, T, ∂B(z, δ
2), T, S, ∂B(S, 2−m−3)

)

,

t23 = τ
(

S, T, ∂B(z, δ
2 ), T, S, ∂B(z, 2−m+2)

)

, t24 = τ
(

S, T, ∂B(z, δ
2), T, S, ∂B(z, δ

2)
)

.

For 1 ≤ j ≤ 12 we define the curves

Wj : [0, t2j − t2j−1] →
� 2, Wj(t) = Wt2j−1+t.

Although the twelve curves we have now defined are not independent, arguing with the Harnack
principle as in Lemma 3.3 shows that this may be assumed at the expense of a constant multiplicative
factor. The event S, T ∈ Sn implies that, on the large scale, the curves W1,W6,W7,W12 do not
disconnect B(z, 2−m+2) from infinity, and, on the small scale, the curves W2,W3,W10,W11 do not
disconnect B(S, 2−n) from infinity, and the curves W4,W5,W8,W9 do not disconnect B(T, 2−n) from
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infinity. Using Lemma 3.6 now shows that, for a suitable constant C > 0,

�
({

S, T ∈ Sn

}

∩ E4

)

≤ C · 2−mξ(4) · 2−2(n−m)ξ(4).

This also holds in the degenerate case n < m + 4, in which we can neglect the small scale and apply
the first moment bound to a square with sidelength of order 2−m, which contains both S and T . The
final result follows now by summing over all estimates for E1, . . . , E8, in which we only have to define
the stopping times suitably, in order to avoid an overlap of the intervals defining the twelve curves. �

3.3 Proof of Lemma 3.5 We follow the lines of [LSW02]. Recall that A(0, n) denotes the an-
nulus between the circles C0 and Cn and suppose that (Y (i)

t : 0 ≤ t ≤ τ (i)) are independent Brownian
excursions across A(0, n) for i ∈ {1, . . . , k}. The set

A(0, n) \
k

⋃

i=1

{

Y (i)

t : 0 ≤ t ≤ τ (i)
}

contains at most k connected components joining C0 and Cn. As defined in [LSW02] we let Ln(j)
be π times the extremal distance between C0 and Cn in the j-th of these components and Lk

n be the
minimum of these extremal distances over all 1 ≤ j ≤ k. The crucial fact about extremal distances
used here is that Lk

n is finite if and only if the excursions do not disconnect C0 from infinity.

The following lemma is Theorem 3.1 in [LSW02].

Lemma 3.10. For any λ0 > 0 and any k ∈ � , there exist ξ(k, λ) such that

� [

e−λLk
n

]

� nke−nξ(k,λ),

where � means that the ratio of the two sides is bounded away from zero and infinity by constants not
depending on the choice of λ ∈ (0, λ0] and n ≥ 1.

Letting λ ↓ 0 in the previous lemma shows that the probability that the excursions do not disconnect
C0 from infinity equals

�
(

Lk
n < ∞

)

= lim
λ↓0

� [

e−λLk
n

]

� nke−nξ(k),

where ξ(k) = limλ↓0 ξ(k, λ). In [LSW02] it is shown, using a similar argument for Brownian motion in
place of Brownian excursion, that this ξ(k) is also the disconnection exponent for Brownian motion
as defined in our framework.

We now adapt Lemma 4.1 in [LSW02] for our purpose, remembering that our notion of an α-nice
configuration is relaxed compared to the notion in [LSW02].

Lemma 3.11. There exists an α0 > 0 such that, for any λ0 > 0,

� [

e−λLk
n �

α-nice

]

� nke−nξ(k,λ),

where the implied constants are not depending on the choice of λ ∈ (0, λ0], α ∈ (0, α0] and n ≥ 1.

Proof. We assume that n ≥ 3, and recall that Lemma 4.1 in [LSW02] implies that for any j ≤ k, ε > 0
there is α0 > 0 such that, for all 0 < α ≤ α0,

� [

e−λLn(j)
]

− � [

e−λLn(j) �
α-nice

]

≤ ε
� [

e−λLk
n−2

]

.
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Hence, using Lemma 3.10 in the last step,

� [

e−λLk
n �

not α-nice

]

≤
k

∑

j=1

( � [

e−λLn(j)
]

− � [

e−λLn(j) �
α-nice

]

)

≤ k ε
� [

e−λLk
n−2

]

≤ nke−nξ(k,λ) ×
(

ε k c2

(

1 − 2
n

)k
e2ξ(k,λ)

)

.

The bracket can be made arbitrarily small by choice of ε > 0. The result now follows by combining
this inequality with Lemma 3.10. �

The proof of Lemma 3.5 is completed by the following lemma together with Brownian scaling.

Lemma 3.12. Suppose (Y (i)

t : 0 ≤ t ≤ τ (i)) are independent Brownian excursions across A(0, n) for
i ∈ {1, . . . , k}. Then there exists an α0 > 0 such that, for every α ∈ [0, α0],

�
(

Lk
n < ∞

)

� nke−nξ(k), and

�
(

{Lk
n < ∞} ∩ {α-nice}

)

� nke−nξ(k).

Proof. We use monotone convergence and Lemma 3.10 to see

�
(

Lk
n < ∞

)

= lim
λ↓0

� [

e−λLk
n

]

� lim
λ↓0

nke−nξ(k,λ) = nke−nξ(k),

and the second estimate is proved the same way using Lemma 3.11. �

3.4 The zero-one law. It remains to show that dim(D ∩ ∂U) ≥ 2 − ξ(4) not only with positive
probability, but actually with probability one. To do this, we need to identify a point on the frontier
and establish a variant of Blumenthal’s zero-one law for the germ-σ−algebra of Brownian motion
around that point. As explained in [La96], one can use the point on the path which has the minimal
coordinate in a suitable direction and derive the result from a result of Burdzy and San Martin [BS89].
This technique can be used to prove the result for Brownian motion running for unit time (recall
Remark 1), and also to show in our context that any disc B is, almost surely, either disconnected from

infinity (and hence does not contain any points on the frontier) or has dim(D∩∂U ∩B) = 1
24(

√
97+1).

In order to prove the statement of Theorem 3.2 we can use a slightly easier argument, and use the
endpoint Wτ of the path, which is easily seen to be always on the frontier. The time reversal of
(Wt : t ∈ [0, τ ]) for which, by rotational invariance, we may assume that Wτ = 1, is the image under
the analytic map

f : � → B(0, 1), f(z) = exp{iz}
of a half-plane excursion started at zero. Half-plane excursions, as discussed in [La05], can be written

as (Yt : t ≥ 0) with Yt := Bt + iB̂t where (Bt : t ≥ 0) is a real Brownian motion and (B̂t : t ≥ 0) an
independent three-dimensional Bessel process both started at zero. Note that the restriction of f to
a subset of B(0, π) ∩ � is a conformal map and that any small neighbourhood of 1 in B(0, 1) is the
image of some small neighbourhood of zero in � . By the conformal invariance of Brownian excursions
(up to time change) and the fact that conformal mappings preserve the Hausdorff-dimension of sets,
it will hence be sufficient to consider the lower bound on the dimension of the double points on the
frontier for a half-plane excursion in neighbourhoods of zero. We therefore now denote by D the set
of double points of a half-plane excursion (Yt : t ≥ 0).
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Let I(a) := {z ∈ � : =(z) ∈ [0, a)} and J(a) := {z ∈ � : =(z) ∈ [a,∞)} and we denote by Ta the first
hitting time of J(a), i.e. Ta := inf{s > 0 : Ys ∈ J(a)}. For a set A ⊂ � , we write U(A) for the union
of the unbounded connected components of � \ A. We initially focus on the half-plane excursion up
to time T3b, where b > 0 is some small constant, and require the following variant of our main result
so far.

Lemma 3.13. For every b > 0 there is a positive probability that

dim
(

B(0, b) ∩ D ∩ ∂U({Ys : s ∈ [0, T3b]} ∪ J(2b))
)

≥ 2 − ξ(4).

Let us first argue how to complete the proof using Lemma 3.13. Note first that the probability in
Lemma 3.13 is independent of b, which is clear by scaling invariance. Also, by the transience of the
excursion, there is a positive probability, independent of b, that once the excursion has reached J(3b)
it never visits I(2b) again. This implies that, for every b, the event

Ab :=
{

dim
(

B(0, b) ∩ D ∩ ∂U({Ys : s ∈ [0, T∞]})
)

≥ 2 − ξ(4)
}

has a positive probability p, independent of b. It is easy to see that, for b′ < b, we have Ab′ ⊂ Ab

and therefore
⋂

b>0 Ab is an event of the germ-σ-algebra of the half-plane excursion, which is trivial
by Blumenthal’s zero-one law. Hence this intersection and all events Ab must have probability one,
because

�
(

⋂

b>0

Ab

)

= inf
b>0

� (Ab) = p > 0.

So it remains to show Lemma 3.13, and by scaling invariance it suffices to discuss the case b = 2. The
following lemma is a variant of the lower bound proved in the previous sections.

Lemma 3.14. Let (Wt : t ≥ 0) be a planar Brownian motion started in some point z and stopped at
the first hitting time T of the circle ∂B(z, 1

2 ). Fix γ = 1
10 and an arbitrary square S0 of sidelength 1

8

in the upper half of B(z, 1
2 ) with distance more than 2γ from both the horizontal line through z and

the circle ∂B(z, 1
2 ). Let

Γ := {Ws : 0 ≤ s ≤ T} ∪ B(WT , γ) ∪
{

x ∈ B(z, 1
2 ) : =(x) ≤ =(z)

}

,

and define ∂U(Γ) to be the boundary of the unbounded component of the complement of Γ. Then, with
positive probability,

dim (S0 ∩ D ∩ ∂U(Γ)) ≥ 2 − ξ(4).

We now divide the strong Markov process {Yt : t ∈ [0, T6]} into three parts: First the part up to the
first hitting time T1 of J(1), second the part from T1 up to the time T when the process has moved
a distance of 1/2 from its starting point YT1 , and third the remaining part starting from T up to the
first hitting time T6 of J(6). For the three parts we require the following events:

(1) The first part remains in a small vertical strip around its starting point, more precisely

{Yt : t ∈ [0, T1]} ⊂ S := {z ∈ � : <(z) ∈ [−γ, γ]}.
(2) The second part satisfies dim (S0 ∩ D ∩ ∂U(Γ)) ≥ 2− ξ(4) where the implied sets are defined

as in Lemma 3.14 for the process (YT1+t : t ≥ 0) in place of the Brownian motion.

(3) The third part intersects neither the strip S nor the disc B(YT1 ,
1
2) except possibly inside the

ball B(YT , γ).

Observe, possibly with the help of Figure 3, that under the intersection of these three events we have

dim(S0 ∩ D ∩ ∂U({Yt : t ∈ [0, T6]} ∪ J(4))) ≥ 2 − ξ(4).
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0

1

4

6

So

S

J(4)

Figure 3. Any point in S0 ∩ ∂U(Γ) is also in U({Yt : t ∈ [0, T6]} ∪ J(4))), as the third
part avoids the set {Yt : t ∈ [0, T1]} completely and hits the set {Yt : t ∈ [T1, T ]}, i.e.
the dashed second part of the path, only inside B(YT , γ).

Moreover, the three events, and by the strong Markov property also their intersection, have positive
probability. Indeed, for events (1) and (3) this is obvious. For event (2) recall from [La05, 5.3]
that, given YT1 , the process (YT1+s : s ∈ [0, T2 − T1]) is distributed like an ordinary Brownian motion
conditioned to hit J(2) before the real line. It is therefore absolutely continuous with respect to
Brownian motion and the claim follows from Lemma 3.14. This completes the proof of Lemma 3.13.
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