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Abstract: We consider a model of directed polymers on a regular tree with a disorder

given by independent, identically distributed weights attached to the vertices. For suitable

weight distributions this model undergoes a phase transition with respect to its localization

behaviour. We show that, for high temperatures, the free energy is supported by a random

tree of positive exponential growth rate, which is strictly smaller than that of the full tree.

The growth rate of the minimal supporting subtree is decreasing to zero as the temperature

decreases to the critical value. At the critical value and all lower temperatures, a single

polymer suffices to support the free energy. Our proofs rely on elegant martingale methods

adapted from the theory of branching random walks.

1 Introduction and main results

In this paper we give a detailed study of the phase transition arising from the presence of a
random disorder in the very basic model of polymers on disordered trees introduced by Derrida
and Spohn in [DS88]. This phase transition becomes manifest in the behaviour of the free energy,
see [BPP93], but also in the localization behaviour of the model, which is measured in terms of
the size of the smallest subtree supporting the free energy. The model can be seen as a mean-field
version of the popular model of a directed polymer in random environment, where most of the
questions settled here are still open. For a survey of directed polymers see [CSY04], and note
also the recent important results obtained by Comets and Yoshida in [CY06].

For a precise description of the polymers on disordered trees, let d ≥ 2 and T be a d-ary tree
such that, starting from an initial ancestor in generation 0, the root ρ, each vertex has exactly
d children. A polymer is a finite or infinite self-avoiding path started in the root. We write |v|
for the generation of a vertex v and denote by Tn = {v ∈ T : |v| = n} the set of vertices in
the nth generation. Each v ∈ Tn can be identified with the unique path (v0, v1, . . . , vn) of its
ancestors from v0 = ρ to vn = v, and thus represents a polymer of length n.

Consider a non-degenerate random variable V , which has all exponential moments, i.e.

E[eβV ] <∞ for all β ∈ R .

Then we introduce the random disorder V = (V (v) : v ∈ T ) as a collection of independent
distributed weights with the same distribution as V attached to the vertices of the tree. For a
finite length polymer v ∈ Tn we introduce the Hamiltonian

Hn(v) = −
n

∑

j=1

V (vj) .

The polymer measure or finite volume Gibbs measure µn on Tn is defined by

µn =
1

Zn(β)

∑

v∈Tn

e−βHn(v)δv ,

1



where β > 0 is the inverse temperature and the normalising constant Zn(β) is the partition
function defined as

Zn(β) =
∑

v∈Tn

eβ
P

n
j=1 V (vj) .

Polymers of infinite length can be represented as a sequence (ξ0, ξ1, ξ2, . . .) of vertices, such that
ξn is a vertex in the nth generation, and moreover a child of ξn−1. Such sequences are called rays
and the set of all rays constitute the boundary of the tree, denoted by ∂T . We equip the boundary
∂T with the metric d(ξ, η) = exp(− sup{n ≥ 0 : ξn = ηn}), for ξ, η ∈ ∂T , which makes ∂T a
compact metric space.

We first review some of the basic properties of the model. Roughly speaking, one should expect
that the behaviour of the polymer depends on the inverse temperature parameter β in the
following manner: If β is small, we are in an entropy-dominated regime, where the disorder has
no big influence and limiting features are largely the same as in the case of a uniformly distributed
polymer. For large values of β we may encounter an energy-dominated regime where, due to the
disorder, the phase space breaks up into pieces separated by free energy barriers. Polymers then
follow specific tracks with large probability, an effect often called localisation.

The mathematical analysis of polymers on disordered trees is based on the family of martingales
(M (β)

n : n ≥ 0) defined by

M (β)

n = e−n(λ(β)+log d)Zn(β) , for n ≥ 0 ,

where
λ(β) = log EeβV ,

is the logarithmic moment generating function of V . It is easy to check that, for any β ≥ 0,
(M (β)

n : n ≥ 0) is a martingale with respect to the filtration Fn = σ(V (v) : |v| ≤ n), n ≥ 0. Since
the martingale is non-negative, its limit M (β) = limn→∞M (β)

n exists almost surely. An easy
application of Kolmogorov’s zero-one law shows that P{M (β) = 0} ∈ {0, 1}.
Define the function

f(β) = λ(β) + log d− βλ′(β) for β ≥ 0.

From the strict convexity of λ, we infer that f(β) < log d for all β > 0. We shall check in
Lemma 2.2 below that f has a positive root unless the law of V is bounded from above with an
atom of mass ≥ 1

d at its essential supremum. Let βc be the positive root, if it exists, and βc =∞
otherwise. Kahane and Peyrière [KP76] and Biggins [Big77] show that

M (β) > 0 almost surely, if β < βc,
M (β) = 0 almost surely, if β ≥ βc .

In this paper, we are especially interested in the free energy, defined as

ϕ(β) = lim
n→∞

1

n
logZn(β) .

It turns out that βc, if finite, is the critical parameter for a change in the qualitative behaviour
of the free energy. Indeed,

ϕ(β) =

{

λ(β) + log d if β ≤ βc ,

β
βc

(

λ(βc) + log d
)

if β > βc .
(1)

This result was stated in [DS88] and proved for a continuous time analogue. An elementary
proof, based on the study of the martingales (M (β)

n : n ≥ 0), can be found in [BPP93]. We
observe that at the critical temperature 1/βc the model undergoes a phase transition and, for
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Figure 1: The free energy for the model when P{V = 1} = 1/4 = 1−P{V = −1} and d = 2.

low temperatures, it is in a frozen state. The two phases are often called the weak disorder phase
(β < βc), and the strong disorder phase (β > βc). See Figure 1 for an illustration.

In the weak disorder phase the form of (1) seems to suggest that, asymptotically, each of the
dn polymers v ∈ Tn contributes a summand

E[eβ
P

n
j=1 V (vj)] = exp

[

nλ(β)
]

to the partition function Zn(β), and therefore the finite volume Gibbs measure does not localize
on a significantly smaller subset of Tn. However, our first main result shows that this picture is
wrong and already a vanishing proportion of paths make a significant contribution to the free
energy. These paths can be chosen to be the vertices of a tree, which we call a minimal supporting
subtree.

Theorem 1.1. Let 0 < β < βc so that we are in the weak disorder phase.

(a) Almost surely, there exists a tree T̃ ⊂ T of growth rate

lim
n→∞

1

n
log |T̃n| = f(β) < log d,

such that
lim
n→∞

1
n log

∑

v∈T̃n

eβ
Pn

j=1 V (vj ) = ϕ(β) .

(b) Almost surely for every sequence (An)n≥1 of non-empty subsets An ⊂ Tn of the vertices in
the nth generation satisfying

lim sup
n→∞

1

n
log |An| < f(β)

we have that

lim sup
n→∞

1

n
log

∑

v∈An

eβ
P

n
j=1 V (vj ) < ϕ(β) .
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Remark 1.2.

• Loosely speaking, if 0 < β < βc, vertices in generation n of the minimal supporting
subtree typically contribute a summand exp(nβλ′(β)) to the partition function Zn(β).
As the number of such vertices is of order exp(nf(β)), this is in line with the equation
f(β) + βλ′(β) = ϕ(β).

• The function f can be interpreted as a multifractal spectrum, see [Mör08] for a discussion
of further examples.

At the critical temperature, the growth rate of the minimal supporting subtree hits zero. This
suggests that in the strong disorder phase a subexponential set of polymers may support the free
energy. This is true, and our second main result even shows that a single polymer suffices.

Theorem 1.3. If βc <∞, then almost surely there exists a ray ξ = (ξ0, ξ1, . . .) ∈ ∂T such that
for any β ≥ βc and sets An ⊂ Tn containing the vertex ξn,

lim
n→∞

1

n
log

∑

v∈An

eβ
Pn

j=1 V (vj) = β lim
n→∞

1

n

n
∑

j=1

V (ξn) = ϕ(β) .

Directed polymer models are intimately related to the model of %-percolation introduced by
Menshikov and Zuev [MZ93], which is considered for example in [KS00] and [CPV08]. Here we
discuss an interesting implication of our results for this model.

To define %-percolation, given an infinite, connected graph and a survival parameter p ∈ (0, 1), we
declare each edge independently to be open with probability p, or closed with probability 1− p.
For % ∈ [p, 1] we say that %-percolation occurs, if there exists an infinite self-avoiding path, along
which the asymptotic proportion of open edges is at least %. Our result gives a sharp criterion
for the occurrence of %-percolation on regular trees.

Theorem 1.4. For % ∈ (0, 1],

%-percolation occurs almost surely ⇐⇒ p ≥ pc ,

where pc = 1
d if % = 1, and otherwise pc is the unique solution in the interval (0, %) of the equation

p%c(1− pc)
1−%d = %%(1− %)1−% .

Remark 1.5.

• The most interesting fact here is that %-percolation occurs at criticality, a phenomenon
which we conjecture to hold for %-percolation on arbitrary trees.

• If % = 1, then the critical p value is 1
d which is the same as for classical percolation on a

d-ary tree. However, unlike in the classical case, 1-percolation occurs at criticality. Our
proofs also show that in the case p > pc the Hausdorff dimension of the set of rays surviving
%-percolation agrees with that of the boundary of the surviving tree in classical percolation,
provided the latter is non-empty.

The remainder of this paper is structured as follows. In Section 2 we review some of the basic
properties of the function f . In Section 3 we focus on the weak disorder phase and develop some
basic ergodic theory of weighted trees, which enables us to construct and explore some properties
of the infinite volume Gibbs measures. We also give an estimate on the number of polymers of
length n for which the Hamiltonian is unusually small in terms of a coarse multifractal spectrum.
Using this, we prove Theorem 1.1 in Section 4. More subtle techniques are required to discuss
the critical case and tackle Theorem 1.3. These are developed in Section 5. Finally, in Section 6
we translate our results to the model of %-percolation and complete the proof of Theorem 1.4.
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2 Preliminaries

In this section, we review some of the properties of the function f . In particular, we establish a
necessary and sufficient condition for f to have a positive root, see Lemma 2.2. We also prove a
result about the minimum of the Hamiltonian taken over the vertices in the nth generation, see
Lemma 2.3. We start this section with a particular form of the Laplace principle.

Lemma 2.1. As β →∞,

λ′(β) =
E

[

V eβV
]

E
[

eβV
] → ess supV .

Proof. First of all, for non-degenerate V , the function λ′(·) is strictly increasing on [0,∞), since
λ′′(β) > 0. Therefore limβ→∞ λ′(β) ∈ (EV,∞] exists. Clearly, λ′(β) ≤ ess supV . Therefore, it
remains to show the reversed inequality. So fix a k such that ess inf V < k < ess supV , then

E
[

V eβV
]

≥ eβk
[

kE
[

1{V ≥ k}eβ(V−k)] + E
[

1{V < k}V eβ(V−k)]
]

.

Similarly,

E
[

eβV
]

≤ eβk
[

E
[

1{V ≥ k}eβ(V−k)] + 1
]

.

Therefore, combining the previous two inequalities we obtain

λ′(β) ≥ kE
[

1{V ≥ k}eβ(V−k)] + E
[

1{V < k}V eβ(V−k)]

E
[

1{V ≥ k}eβ(V−k)] + 1
.

Clearly, |E
[

1{V < k}V eβ(V−k)]| ≤ E|V | < ∞. So in order to show that limβ→∞ λ′(β) ≥ k it
suffices to show that the denominator in the last display diverges to infinity. Now take ε > 0
small enough such that k + ε < ess supV , then, as β →∞,

E
[

1{V ≥ k}eβ(V−k)] ≥ eβεP{V > k + ε}+ P{k ≤ V ≤ k + ε} → ∞

Letting k → ess supV , we see that limβ→∞ λ′(β) ≥ ess supV , which completes the proof.

We require the Legendre-Fenchel transform λ∗ of λ defined as

λ∗(α) = sup
β∈R

{αβ − λ(β)} ,

see Figure 2 for an illustration.

The next result, which can be found in [Com05], gives us a necessary and sufficient condition for
f to have a positive root.

Lemma 2.2. f has a positive root if and only if

• either V is unbounded,

• or w := ess supV is finite and P{V = w} < 1
d .

Proof. Using the Legendre-Fenchel transform, we find that

f(β) = log d+ λ(β) − βλ′(β) = log d− λ∗(λ′(β)) . (2)

Since f(0) = log d and f is strictly decreasing and continuous, f has a positive root if and only
if limβ→∞ f(β) < 0. But if ess supV = ∞, then λ′(β) → ∞ by Lemma 2.1, which implies that
f(β)→ −∞, so that f has a positive root.
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Figure 2: The Legendre-Fenchel transform of λ. Let α ∈ R. If l is the unique line of support of
λ at β with slope α, then −λ∗(α) is equal to the y-coordinate of the intersection point of l with
the vertical axis.

Now suppose that w := ess supV <∞. Using λ′(β)→ w and lower semi-continuity of λ∗,

lim
β→∞

λ∗(λ′(β)) = λ∗(w) = sup
β

(

βw − log E
[

eβV
])

= − inf
β

(

log(P{V = w}+ E[1{V < w} eβ(V−w)])
)

= − log P{V = w} .

So in particular, by (2), limβ→∞ f(β) = log d+log P{V = w}. Therefore, if P{V = w} < 1
d , then

limβ→∞ f(β) < 0, i.e. f has a positive root. Conversely, if P{V = w} ≥ 1
d , then limβ→∞ f(β) ≥

0 implying that f(β) > 0 for all β ≥ 0.

By Lemma 2.1, it makes sense in the case βc = ∞ to define λ′(βc) = ess supV . With this
convention, we can prove the following lemma about the minimum of the Hamiltonian taken
over the vertices in the nth generation.

Lemma 2.3. We have

− lim
n→∞

1

n
min
v∈Tn

Hn(v) = lim
n→∞

1

n
max
v∈Tn

n
∑

j=1

V (vj) = lim
β→∞

ϕ(β)

β
= λ′(βc) .

Proof. The first equality follows from the definition of the Hamiltonian. Clearly, for β > 0,

exp
{

β max
v∈Tn

n
∑

j=1

V (vj)
}

≤ Zn(β) ≤ dn exp
{

β max
v∈Tn

n
∑

j=1

V (vj)
}

.

Hence, it follows that

1

nβ
logZn(β)− 1

β
log d ≤ max

v∈Tn

∑n
j=1 V (vj)

n
≤ 1

nβ
logZn(β) . (3)

If βc <∞, then we know from (1) that

lim
β→∞

ϕ(β)

β
=
λ(βc) + log d

βc
= λ′(βc) ,

by definition of βc. Moreover, if βc = ∞, then again by (1), we know that ϕ(β) = λ(β) + log d
for all β > 0. Also, the Legendre-Fenchel transform of λ satisfies λ∗(λ′(β)) = λ′(β)β − λ(β) and
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log d

EV esssupV

0 α

log(d P{V = w})

log d − λ
∗(α)

(a) V with P{V = 1} = 1 −P{V = 0} < 1/d.

log d

EV esssupV

0 α

log(d P{V = w})

log d − λ
∗(α)

(b) V with P{V = 1} = 1 − P{V = 0} ≥ 1/d.

log d

EV esssupV

0 α

log(d P{V = w})

log d − λ
∗(α)

(c) V uniformly distributed on [0, 1].

log d

EV-1 1
α

log d− λ
∗(α)

(d) V standard normally distributed.

Figure 3: The function α 7→ log d− λ∗(α) for four typical cases. Writing w = ess supV , Figure
(a) shows the case that V is bounded, but 0 < P{V = w} < 1

d , whereas in (b) V is bounded, but
P{V = w} ≥ 1

d , in (c) V is still bounded, but P{V = w} = 0. Finally, in (d), V is unbounded.
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the proof of Lemma 2.2 shows that limβ→∞ λ∗(λ′(β)) = − logP{V = w}. Therefore, we can
conclude that

lim
β→∞

ϕ(β)

β
= lim

β→∞
λ(β)

β
= lim

β→∞

(

λ′(β)− λ∗(λ′(β))

β

)

= ess supV = λ′(βc) ,

by Lemma 2.1 and the convention λ′(βc) = ess supV . Hence, in either case, letting first n→∞
and then β →∞ in (3) yields the statement of Lemma 2.3.

3 Ergodic theory and the multifractal spectrum

In the next two sections we concentrate on the weak disorder phase, in other words we assume
that β < βc, so that the martingale limit M (β) is positive.

3.1 Ergodic theory on weighted trees

We develop the ergodic theory for a tree with attached weights in analogy to the ergodic theory
on Galton-Watson trees developed by Lyons, Pemantle and Peres in [LPP95]. We take advantage
of the fact that, in the weak disorder regime, the martingale convergence can be used to construct
the infinite-volume Gibbs measure on the boundary of the tree. For this purpose, we extend a
finite length polymer v = (v0, . . . , vn) to an infinite length polymer v+ ∈ ∂T by defining vi+1 to
be the left-most child of vi for all i ≥ n. This enables us to interpret the finite volume Gibbs
measures µn as probability measures on the boundary ∂T using the convention µn(v+) = µn(v)
for any v ∈ Tn. We will frequently use this identification in the sequel.

For a vertex v ∈ Tn, let B(v) = {ξ ∈ ∂T : ξn = v} and let T (v) be the subtree consisting of
all vertices that have v as an ancestor, with v as a root. Then we can define the infinite-volume
Gibbs measure µ(β) by

µ(β)(B(v)) := eβ
Pn

j=1 V (vj )−n(λ(β)+log d)M
(β)(v)

M (β)

where M (β)(v) is defined as the almost sure limit of

M (β)

n (v) =
∑

w∈Tn(v)

exp
(

β
n

∑

j=1

V (wj)− n(λ(β) + log d)
)

,

which exists since (M (β)
n (v), n ≥ 0) and (M (β)

n , n ≥ 0) have the same law. Then, we see that
almost surely for v such that |v| = k, as n→∞,

µ(β)

n (B(v)) =
1

Zn(β)
eβ

Pk
j=1 V (vj)

∑

w∈Tn−k(v)

eβ
Pn−k

j=1 V (wj)

= eβ
P

k
j=1 V (vj)−k(λ(β)+log d) M

(β)

n−k(v)

Mβ
n

→ µ(β)(B(v)) ,

in other words, almost surely, µ(β)
n converges weakly to µ(β).

The central result of this section is the following proposition.

Proposition 3.1. If β < βc, for P-almost every disorder and µ(β)-almost every path ξ ∈ ∂T ,

lim
n→∞

1

n

n
∑

j=1

V (ξj) = λ′(β) , (4)

and

lim
n→∞

− 1

n
logµ(β)(B(ξn)) = f(β) . (5)
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Let SpinedTrees = {(V , ξ) : V = (V (v) : v ∈ T ), ξ ∈ ∂T} be the space of weights attached to
the vertices of the d-ary tree with marked spine, endowed with the product topology. For any
vertex w ∈ T we denote by V(w) = (V (v) : v ∈ T (w)) the family of weights on the tree T (w).
There is a canonical shift

θ : SpinedTrees→ SpinedTrees, θ(V , ξ) =
(

V(ξ1), (ξ1, ξ2, . . .)
)

.

Our aim is to show that θ is a measure-preserving transformation with respect to the measure

ν(d(V , ξ)) = µ(β)

V (dξ)M (β)

V P(dV) ,

where the subscript V indicates the dependence of µ(β)

V and M (β)

V on the underlying disorder.

Lemma 3.2. The shift θ is ν-preserving.

Proof. Let A be a Borel set in SpinedTrees . Then,

ν(θ−1A) =

∫

1θ−1A(V , ξ)µ(β)

V (dξ)M (β)

V P(dV)

=

∫

∑

|v|=1

1{ξ1=v}(ξ) 1A(V(v), (v, ξ2, ξ3, . . .))µ
(β)

V (dξ)M (β)

V P(dV) .
(6)

For any vertex v = (v0, . . . , vn) ∈ T we interpret ∂T (v) as a subset of ∂T by identifying
(v, ξ1, ξ2, . . .) ∈ ∂T (v) with (v0, . . . , vn, ξ1, ξ2, ξ3, . . .) ∈ ∂T . Hence, for v ∈ T and A ⊂ ∂T (v),

µ(β)

V(v)(A) =
µ(β)

V (A)

µ(β)

V (B(v))
.

Hence, recalling that µ(β)

V (B(v)) = eβV (v)−λ(β)−log dM
(β)

V(v)

M
(β)
V

, and using independence of the weights,

ν(θ−1A) =

∫

∑

|v|=1

∫

1A(V(v), (v, ξ2, . . .))µ
(β)

V (B(v))µ(β)

V(v)(d(v, ξ2, . . .))M
(β)

V P(dV)

=
1

d

∑

|v|=1

∫

eβV (v)−λ(β)

∫

1A(V(v), (v, ξ2, . . .)µ
(β)

V(v)(d(v, ξ2, . . .)) M
(β)

V(v)P(dV)

= E
[

eβV−λ(β)
]

∫

1A(V , ξ)µ(β)

V (dξ)M (β)

V P(dV) = ν(A) .

Lemma 3.3. The shift θ is ergodic.

Proof. By Proposition 15.5 in [LP05], the shift is ergodic with respect to the measure ν if and
only if every set A of weights satisfying

∑

V(v)∈A
|v|=1

µ(β)

V (B(v)) = 1A(V) P-almost surely (7)

has P(A) ∈ {0, 1}. Therefore, let A be a set satisfying (7), then in particular,

V ∈ A ⇐⇒ V(v) ∈ A for all v such that |v| = 1 . (8)

By iteration, (8) implies that A is a tail event with respect to the i.i.d. family of weights. Invoking
Kolmogorov’s zero-one law, we can deduce that P(A) = 0 or 1, as required.
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Since by the previous two lemmas θ is ν-preserving and ergodic, the pointwise ergodic theorem
gives us that for P-almost every V and µ(β)

V -almost every ξ ∈ ∂T ,

lim
n→∞

1

n

n
∑

j=1

V (ξj) = ν[V (ξ1)] , (9)

where ν[ · ] denotes the expectation with respect to the measure ν. We find

ν[V (ξ1)] =

∫

V (ξ1)µ(β)

V (dξ)M (β)

V P(dV) =

∫

∑

|v|=1

V (v)µ(β)

V {ξ1 = v}M (β)

V P(dV)

=
∑

|v|=1

∫

V (v) eβV (v)−λ(β)−log dM (β)

V(v) P(dV)

= E
[

V eβV−λ(β)
]

E
[

M (β)

V
]

=
E[V eβV ]

E[eβV ]
= λ′(β) ,

where we have used independence and the fact that E[M (β)

V ] = 1. Hence, we have proved the
first part of Proposition 3.1. Similarly, for the second part, note that

lim
n→∞

− 1

n
logµ(β)

V (B(ξn)) = log d+ λ(β) − lim
n→∞

β
1

n

n
∑

j=1

V (ξj)− lim
n→∞

1

n
log

M (β)

V (ξn)

M (β)

V
. (10)

Hence by the first part of Proposition 3.1, it suffices to show that the second limit converges
to 0. The following lemma from ergodic theory, which can be found for instance in [LPP95,
Lemma 6.2], allows us to evaluate the last term.

Lemma 3.4. If S is a measure-preserving transformation on a probability space, g is finite and
measurable, and g−Sg is bounded below by an integrable function, then g−Sg is integrable with
integral 0.

Looking at g(V , ξ) = M (β)

V and using that M (β)

V(ξ1)
= M (β)

V (ξ1), we obtain

g − θg = logM (β)

V − logM (β)

V (ξ1) = − logµ(β)

V (B(ξ1)) + βV (ξ1)− λ(β) − log d

≥ βV (ξ1)− λ(β) − log d ,

where the latter is integrable. Hence by the ergodic theorem and Lemma 3.4, for P-almost every
disorder V and µ(β)

V -almost every ξ,

lim
n→∞

1

n
log

M (β)

V (ξn)

M (β)

V
= lim

n→∞
−1

n

n
∑

j=1

log
M (β)

V (ξj−1)

M (β)

V (ξj)
= ν[logM (β)

V − logM (β)

V (ξ1)] = 0 .

Therefore (10) together with the first part implies the second part of Proposition 3.1.

3.2 A coarse multifractal spectrum

We use the ergodic theory developed in the previous section to prove the following coarse mul-
tifractal spectrum.

Proposition 3.5. For all α ≥ EV with λ∗(α) < log d,

lim
n→∞

1

n
log #

{

v ∈ Tn :

n
∑

j=1

V (vj) ≥ αn
}

= log d− λ∗(α) .
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Proof. First note that the proof of Lemma 2.2 shows that αβ − λ(β) is maximised at β ∈ [0, βc)
such that α = λ′(β). For the upper bound consider

ϕ(β) = lim
n→∞

1

n
log

∑

v∈Tn

eβ
P

n
j=1 V (vj) ≥ lim sup

n→∞

1

n
log

∑

v∈Tn

eβ
P

n
j=1 V (vj)1{Pn

j=1 V (vj)≥αn}

≥ αβ + lim sup
n→∞

1

n
log #

{

v ∈ Tn :

n
∑

j=1

V (vj) ≥ αn
}

.

Now, by the expression for the free energy in (1), we know that ϕ(β) = λ(β) + log d for β < βc.
Therefore, rearranging the previous display yields

lim sup
n→∞

1

n
log #

{

v ∈ Tn :

n
∑

j=1

V (vj) ≥ αn
}

≤ ϕ(β) − αβ

= log d+ λ(β) − λ′(β)β = log d− λ∗(α) ,

where we used the definition of β as the maximizer of the Legendre-Fenchel transform.

For the lower bound, recall that λ∗ is continuous on its domain and consider ε > 0 small enough
such that log d − λ∗(α + ε) > 0. In particular, we can find 0 < β < βc such that α+ ε = λ′(β).
Then, consider the set

E =
{

ξ ∈ ∂T : lim
n→∞

1

n

n
∑

j=1

V (ξj) = λ′(β) , lim
n→∞

− 1

n
log µ(β)(B(ξn)) = f(β)

}

.

By Proposition 3.1, µ(β)(E) = 1. Moreover, recalling that λ′(β) − ε = α, for any k ∈ N, the set
E is covered by the collection

∞
⋃

n=k

⋃

|v|=n
{v :

n
∑

j=1

V (vj) ≥ αn, µ(β)(B(v)) ≤ e−n(f(β)−ε)} .

Hence, if we write q = lim infn→∞ 1
n log #{v ∈ Tn :

∑n
j=1 V (vj) ≥ αn}, we obtain for k

sufficiently large

1 = µ(β)(E) ≤
∞
∑

n=k

∑

|v|=n
1{Pn

j=1 V (vj)≥αn}1{µ(β)(B(v))≤e−n(f(β)−ε)}µ
(β)(B(v))

≤
∞
∑

n=k

#{v ∈ Tn :

n
∑

j=1

V (vj) ≥ αn} e−n(f(β)−ε) ≤
∞
∑

n=k

en(q−f(β)+2ε) .

Therefore, if q − f(β) + 2ε < 0, the sum on the right hand side converges, so by taking k large
enough we could make the right hand side < 1 contradicting µ(β)(E) ≥ 1. Thus, we conclude
that q − f(β) + 2ε ≥ 0.

Finally, we recall that f(β) = log d + λ(β) − βλ′(β) = log d − λ∗(α + ε) so that we have shown
that

q = lim inf
n→∞

1

n
log #

{

v ∈ Tn :

n
∑

j=1

V (vj) ≥ αn
}

≥ f(β)− 2ε = log d− λ∗(α+ ε)− 2ε .

Therefore, recalling that λ∗ is continuous, we obtain the required lower bound by letting ε ↓ 0.
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4 Localisation in the weak disorder phase

In this section, we prove Theorem 1.1 using the theory developed in Section 3.

Lemma 4.1. Suppose T̃ ⊂ T is any subtree satisfying µ(β)(∂T̃ ) > 0, then

lim inf
n→∞

1
n log |T̃n| ≥ f(β).

Proof. Using Frostman’s lemma in combination with (5) we infer that the Hausdorff dimension
of ∂T̃ must be at least f(β). The Hausdorff dimension of the boundary of a tree is the logarithm
of its branching rate, which is bounded from above by the lower growth rate, see e.g. [LP05].

The next lemma enables us to choose suitable trees for Theorem 1.1(a).

Lemma 4.2. Almost surely, for any ε > 0 there exists a subtree T (ε) ⊂ T with µ(β)(∂T (ε)) ≥ 1−ε,
and a sequence δn ↓ 0 such that, for every ξ ∈ ∂T (ε) and n ≥ 1,

1

n

n
∑

j=1

V (ξj) ≥ λ′(β)− δn and µ(β)
(

B(ξn)
)

≥ e−n(f(β)+δn) .

Proof. Since ∂T is a complete separable metric space and µ(β) is a finite measure, we know that
µ(β) is regular, see [Sch05]. By Egorov’s theorem, see e.g. [Ash00], we can can pick a closed
subset Aε ⊂ ∂T with the properties that µ(β)(Aε) ≥ 1− ε and the limits of Proposition 3.1 hold
uniformly on Aε. This means that there exists δn ↓ 0 such that the displayed properties in the
lemma hold. Now define

T (ε) =
⋃

ξ∈Aε

∞
⋃

j=0

ξj ,

the set of all vertices on the rays of Aε with the tree structure inherited from T . It is clear that
T (ε) is a tree and, as Aε is compact, we have that ∂T (ε) = Aε.

Proof of Theorem 1.1(a). We show that any one of the trees T (ε), ε > 0, satisfies the requirements
of Theorem 1.1(a). Indeed, as the balls B(v), v ∈ T (ε)

n are disjoint, we infer from Lemma 4.2
that there can be at most exp (n(f(β) + δn)) vertices in T (ε)

n . Hence,

1

n
log |T (ε)

n | ≤ f(β) + δn .

Recall that µ(β)(∂T (ε)) > 0. Combining this with Lemma 4.1 we obtain that

lim
n→∞

1

n
log |T (ε)

n | = f(β) . (11)

It remains to show that T (ε) supports the free energy. By (11), almost surely, there exists a
sequence εn ↓ 0, such that for all n ≥ 1,

1

n
log |T (ε)

n | ≥ f(β)− εn .

Using Lemma 4.2 again, we see that

1

n
log

(

∑

v∈T (ε)
n

eβ
P

n
j=1 V (vj)

)

≥ 1

n
log

(

en(λ′(β)β−δn) |T (ε)

n |
)

≥ λ′(β)β − δn + f(β)− εn,

which converges to λ′(β)β + f(β) = ϕ(β). The opposite bound is trivial, hence the proof of
Theorem 1.1(a) is complete.
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The proof of Theorem 1.1(a) immediately gives the following corollary.

Corollary 4.3. Almost surely, for every β < βc and for every 0 < ε < 1, there exists a tree
T (ε) ⊂ T of growth rate

lim
n→∞

1

n
log |T (ε)

n | = f(β)

such that
µ(β){ξ ∈ ∂T (ε)} ≥ 1− ε .

We can now proceed with the second part of the proof of Theorem 1.1.

Proof of Theorem 1.1(b). Since f(β) is strictly decreasing on (0, βc), we can choose β < β′ < βc

such that

lim sup
n→∞

1

n
log |An| < f(β′) < f(β) .

Now, choose ε > 0 small enough such that, for all n sufficiently large,

|An| ≤ en((f(β′)−2ε)+ε) = en(f(β′)−ε).

By Proposition 3.5 we have, for large n,

#
{

v ∈ Tn :

n
∑

j=1

V (vj) ≥ nλ′(β′)
}

≥ en(f(β′)−ε) ≥ |An| , (12)

Next, order the vertices v1, . . . , vd
n

in the nth generation of T such that

n
∑

j=1

V (v1
j ) ≥

n
∑

j=1

V (v2
j ) ≥ . . . ≥

n
∑

j=1

V (vd
n

j ).

Then, clearly

∑

v∈An

eβ
Pn

j=1 V (vj) ≤
|An|
∑

k=1

eβ
Pn

j=1 V (vk
j )

≤
∑

v∈Tn

1{v ∈ Tn :
n

∑

j=1

V (vj) ≥ nλ′(β′)} eβ
P

n
j=1 V (vj) ,

where the last inequality follows from (12). Note that by Lemma 2.3, for large n,

max
v∈Tn

1

n

n
∑

j=1

V (vj) ≤ λ′(βc) + ε.

Hence, we can write

∑

v∈Tn

1{v ∈ Tn :

n
∑

j=1

V (vj) ≥ nλ′(β′)} eβ
P

n
j=1 V (vj)

≤
N

∑

j=1

#{v ∈ Tn : αi−1 ≤ 1
n

n
∑

j=1

V (vj) ≤ αi + ε} eβn(αi+ε) ,

where αi = (1 − i
N )λ′(β′) + i

N λ
′(βc), for i = 1, . . . , N and some fixed N . By Proposition 3.5

again, for n sufficiently large,

#{v ∈ Tn :
n

∑

j=1

V (vj) ≥ nαi−1} ≤ en(−ϕ∗(αi−1)+ε)
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Combining the previous displays and taking N > 1
ε such that αi ≤ αi−1 + ε, we obtain

∑

v∈An

eβ
P

n
j=1 V (vj) ≤

N
∑

i=1

en(βαi−1−ϕ∗(αi−1)+(1+2β)ε)

≤ N exp

{

n
(

max
α∈[λ′(β′),λ′(βc)]

(βα− ϕ∗(α)) + (1 + 2β)ε
)

}

.

(13)

Since λ′(β′) > EV it follows that

max
α∈[λ′(β′),λ′(βc)]

(βα− ϕ∗(α)) ≤ max
α∈[EV,λ′(βc)]

(βα − ϕ∗(α)) = ϕ(β) , (14)

where the last equality follows from the Legendre-Fenchel duality. But now, by (1), ϕ = λ+log d
on the set [0, βc] and therefore ϕ is differentiable with derivative λ′. Legendre-Fenchel duality
implies that ϕ∗ is strictly convex on [EV, λ′(βc)]. In particular, since the maximum on the right
hand side in (14) is achieved at λ′(β) and λ′(β′) > λ′(β), it follows that the inequality is in fact
strict. Hence, we can choose ε small enough such that

max
α∈[λ′(β′),λ′(βc)]

(βα − ϕ∗(α)) + 2(1 + β)ε < ϕ(β) .

Then, for n large enough such that 1
n logN < ε, we can combine the previous display with (13)

to obtain the required inequality,

1

n
log

∑

v∈An

eβ
Pn

j=1 V (vj) ≤ 1

n
logN + max

α∈[λ′(β′),λ′(βc)]
(βα− ϕ∗(α)) + (1 + 2β)ε < ϕ(β) ,

which completes the proof of Theorem 1.1(b).

5 Localisation in the critical regime

In this section, we prove Theorem 1.3, in other words, we show that in the critical and supercrit-
ical case a single ray supports the free energy. Recalling our convention that λ′(βc) = ess supV ,
if βc =∞, Theorem 1.3 follows immediately from the following proposition. Although the result
looks similar to (4), its proof is considerably more involved as it deals with the critical case.

Proposition 5.1. Almost surely, there exists a ray ξ ∈ ∂T such that

lim
n→∞

1

n

n
∑

j=1

V (ξj) = λ′(βc) .

The proofs in this section use ideas from branching random walks as developed in Biggins and
Kyprianou [BK04] and Hambly et al. [HKK03]. We split the proof in two parts according to
whether βc is finite or infinite.

5.1 Proof of Proposition 5.1 when βc <∞
Suppose that f has a positive root, i.e. βc <∞. Recall that in this case λ(βc)+log d = βcλ

′(βc),
which we will use frequently throughout this section. The idea of the proof is to restrict attention
to those polymers where the average of the weights is smaller than the critical weight λ′(βc).
More precisely, introduce the cemetery state ∆ and define new weights by setting for v ∈ Tn and
for x ≥ 0,

Ṽ x(v) =

{

V (v) if
∑k
j=1 V (vj) < x+ kλ′(βc) for all k ≤ n ,

∆ otherwise .

14



Then, it is clear that if the weight associated to v is ∆, then all the descendants of v also have
the weight ∆. Moreover, for x = 0 we omit the superscript and write Ṽ := Ṽ 0.

The aim is now to define a martingale which induces a change of measure such that under the
new measure there exists a ray with critical weight. First of all, introduce a size-biased version
V ∗ of V , whose distribution is given by

E
[

g(V ∗)
]

= E
[

g(V )eβcV−λ(βc)
]

,

for any bounded, measurable function g. Note that

E[V ∗] =
E[V eβcV ]

E[eβcV ]
= λ′(βc).

Therefore, if (V ∗j , j ≥ 1) is a sequence of independent random variables with the same distribution
as V ∗, then the random walk with increments given by (V ∗j ) has a drift λ′(βc). Now, define

τ = inf{n ≥ 1 :
∑n

j=1 V
∗
j < nλ′(βc)} as the first time that the random walk with increments

(V ∗j ) grows slower than its drift. Then, we set for x > 0,

h(x) = E

[ τ
∑

i=0

1
{

n
∑

j=1

V ∗j − nλ′(βc) ∈ [0, x)
}

]

,

as the expected number of visits of the normalised random walk with increments (V ∗j − λ′(βc))
to [0, x) before hitting (−∞, 0). Furthermore, we set h(0) = 1.

For x ≥ 0, we define the martingale (W x
n : n ≥ 0) by

W x
n =

∑

v∈Tn

h(x−∑n
j=1 V (vj) + nλ′(βc))

h(x)
eβc

P

n
j=1 V (vj)−n(λ(βc)+log d) 1{Ṽ x(v)6=∆} .

Again, for x = 0 we omit the superscript and write Wn = W 0
n . In order to prove that this defines

a martingale, we need the following facts, see Lemma 10.1 in [BK04].

Lemma 5.2.

(i) As x→∞, h(x)
x → C, for some constant C > 0.

(ii) For x ≥ 0, we have E
[

h(x− V ∗ + λ′(βc))1{x− V ∗ + λ′(βc) > 0}
]

= h(x).

Now, the proof that (W x
n : n ≥ 0) is a martingale with respect to the filtration given by Fn =

σ(V (v) : |v| ≤ n) is a straight-forward calculation.

Lemma 5.3. The process (W x
n : n ≥ 1) defines a martingale of mean one.

Proof. Recall that λ(βc) + log d = βcλ
′(βc). Then

h(x)E[W x
n+1 | Fn] = E

[

∑

v∈Tn+1

h
(

x−
n+1
∑

j=1

(V (vj)− λ′(βc))
)

eβc
Pn+1

j=1 (V (vj)−λ′(βc))1
{

Ṽ x(v) 6= ∆
}

∣

∣

∣
Fn

]

=
∑

v∈Tn

Ṽ x(v)6=∆

∑

w∈T1(v)

E
[

h
(

x−
n

∑

j=1

V (vj)− V (w) + (n+ 1)λ′(βc)
)

× eβc(
P

n
j=1 V (vj )+V (w)−(n+1)λ′(βc))1

{
∑n

j=1 V (vj) + V (w) < x+ (n+ 1)λ′(βc)
}

∣

∣

∣
Fn

]

.
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Now note that V (w) is independent of Fn and recall the definition of V ∗. Then we can continue
the display with

=
∑

v∈Tn

Ṽ x(v)6=∆

eβc(
P

n
j=1 V (vj)−nλ′(βc))E

[

h
(

x−
n

∑

j=1

V (vj) + nλ′(β) − V ∗ + λ′(βc)
)

× 1
{

x−∑n
j=1 V (vj) + nλ′(βc)− V ∗ + λ′(βc) > 0

}

]

=
∑

v∈Tn

Ṽ x(v)6=∆

h
(

x−
n

∑

j=1

V (vj) + nλ′(βc)
)

eβc(
Pn

j=1 V (vj)−nλ′(βc)) = h(x)W x
n ,

where we have used Lemma 5.2 (ii). This lemma also confirms that W x
n has mean 1.

Allowing the cemetery state as a possible weight in SpinedTrees we can, similarly as in Sec-
tion 3.1, extend the measure P to a measure P∗ on SpinedTrees by choosing the spine uniformly,
i.e. by choosing ξn+1 with equal probability from the children of ξn. Define the extended filtration

F∗n = σ(Fn, ξi, i = 1, . . . , n) .

We now perform a change of measure such that the weights (V (ξi)) along the spine will be chosen
such that

∑n
j=1(V (ξj) − λ′(βc)) follows the law of a random walk conditioned to stay positive.

More precisely, define the probability measure Q∗ via

dQ∗

dP∗

∣

∣

∣

∣

F∗
n

= h
(

nλ′(βc)−
n

∑

j=1

V (ξj)
)

eβc
Pn

j=1 V (ξj)−nλ(β)1{Ṽ (ξn) 6= ∆} .

From the definition it follows that under the new measure Q∗, the distribution of the weights is
constructed as follows:

• The spine ξ is chosen uniformly, i.e. ξn+1 is chosen uniformly among the children of ξn.

• The weights along the spine ξ are distributed such that their average is conditioned to be
less than the critical weight λ′(βc), i.e. if at time n the weights along the spine satisfy
s =

∑n
j=1 V (ξj) < nλ′(βc), then the weight for ξn+1 is chosen according to Doob’s h-

transform,

Q∗
[

V (ξn+1) ∈ dz
∣

∣

∣

n
∑

j=1

V (ξj) = s
]

=
h((n+ 1)λ′(βc)− (z + s))

h(nλ′(βc)− s)
1{z + s < (n+ 1)λ′(βc)} eβcz−λ(βc) P{V ∈ dz} .

• The weights of the vertices not on the spine remain unaffected by the change of measure. In
other words, if ηn is a sibling of ξn, then we generate a weight V (ηn) with the distribution
of V and attach it to ηn if

n−1
∑

j=1

V (ξj) + V (ηn) < nλ′(β′),

and otherwise ηn receives the weight ∆. Then conditionally on Ṽ (ηn) 6= ∆, the random
disorder in the tree started in ηn is given by the weights (Ṽ x(v) : v ∈ T (ηn)) for

x = nλ′(βc)−
n−1
∑

j=1

V (ξj)− V (ηn).
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If we restrict Q∗ to the σ-algebra F = σ(
⋃

n≥1 Fn), we obtain a measure Q defined on the space
of trees with weights. Moreover, we obtain its density on Fn.

Lemma 5.4.
dQ
dP

∣

∣

∣

∣

Fn

= Wn .

Proof. Writing P∗[ · ] for the expectation with respect to P∗, we obtain from the definition of
conditional expectation

dQ∗

dP∗

∣

∣

∣

∣

Fn

= P∗
[

h
(

nλ′(βc)−
n

∑

j=1

V (ξj)
)

eβc

P

n
j=1 V (ξj)−nλ(β)1{Ṽ (ξn) 6= ∆}

∣

∣

∣
Fn

]

= P∗
[

∑

v∈Tn

1{ξn = v} h
(

nλ′(βc)−
n

∑

j=1

V (vj)
)

eβc

Pn
j=1 V (vj)−nλ(β)1{Ṽ (v) 6= ∆}

∣

∣

∣
Fn

]

=
∑

v∈Tn

Ṽ (v)6=∆

h
(

nλ′(βc)−
n

∑

j=1

V (vj)
)

eβc
Pn

j=1 V (vj)−nλ(β) P∗{ξn = v} = Wn ,

which proves the claim.

The next step will be to show that Q is absolutely continuous with respect to P.

Lemma 5.5. Q is absolutely continuous with respect to P with Radon-Nikodým derivative

W := lim sup
n→∞

Wn.

Furthermore, Q∗-almost surely

lim
n→∞

1

n

n
∑

j=1

V (ξj) = λ′(βc) .

Proof. By a standard measure theoretic result, see for instance Lemma 11.2. in [LP05],

dQ
dP

= W ⇐⇒ W <∞ Q-almost surely . (15)

Denote by G = σ(V (ξk) : k = 1, 2, . . .) the σ-algebra containing all the information about the
weights along the spine. The first step is to calculate the conditional expectation Q∗[Wn | G].
With this in mind, consider a path v ∈ Tn. Decomposing according to the last common ancestor
with the spine,

Q∗
[

h
(

nλ′(βc)−
n

∑

j=1

V (vj)
)

eβc
Pn

j=1 V (vj)−n(λ(βc)+log d) 1{Ṽ (v) 6= ∆}
∣

∣

∣
G
]

=

n
∑

m=0

h
(

mλ′(βc)−
m

∑

j=1

V (ξj)
)

eβc
Pm

j=1 V (ξj)−m(λ(βc)+log d)Q∗{max{k : vk = ξk} = m}

× E
[ n

∏

i=m+1

h(iλ′(βc)−
Pi

j=1 V (vj)

h((i−1)λ′(βc)−
Pi−1

j=1 V (vj )
eβcV (vi)−λ(βc) 1{Pi

j=1 V (vj)<iλ′(βc)}

∣

∣

∣

∣

Fm
]

≤
n

∑

m=0

h
(

mλ′(βc)−
m

∑

j=1

V (ξj)
)

d−n eβc

P

m
j=1 V (ξj)−m(λ(βc)+log d) ,

where we used the fact that under Q∗ the weights of the vertices not on the spine have the
same distribution as under P∗, so that we can apply Lemma 5.2 (ii) repeatedly to show that the
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conditional expectation of the product is equal to 1. Summing over all v ∈ Tn we obtain from
the previous equation

Q∗[Wn | G] ≤
n

∑

m=0

h
(

mλ′(βc)−
m

∑

j=1

V (ξj)
)

eβc

P

m
j=1 V (ξj)−m(λ(βc)+log d) .

Recall that
∑n
j=1 V (ξj) under Q∗ has the law of a random walk conditioned to stay strictly below

nλ′(βc). In other words, −∑n
j=1 V (ξj) + nλ′(βc) follows the law of a random walk conditioned

to stay positive. It is known, see for instance [HKK03] where they treat the case of a random
walk conditioned to stay non-negative, that Q∗-almost surely for any ε > 0, there exist constants
C1, C2 > 0 such that for all sufficiently large n,

C1n
1
2−ε ≤ −

n
∑

j=1

V (ξj) + nλ′(βc) ≤ C2n
1
2+ε . (16)

Hence, using that by Lemma 5.2, h(x)/x → C as x → ∞, the previous estimate shows that,
Q∗-almost surely

lim sup
n→∞

Q∗[Wn | G] <∞ .

By Fatou’s lemma we can conclude that lim infn→∞Wn is also Q∗-almost surely finite, so in
particular it is Q-almost surely finite. From the representation in Lemma 5.4, we see that 1/Wn

is a nonnegative super-martingale under Q and hence it has a Q-almost sure limit. Hence, Q-
almost surely W = lim supn→∞Wn = lim infn→∞Wn < ∞, so that by (15), Q is absolutely
continuous with respect to P with Radon-Nikodým derivative W . Moreover, (16) shows that
Q∗-almost surely

lim
n→∞

1

n

n
∑

j=1

V (ξj) = λ′(βc) .

Now, we are finally in the position to complete the proof of Proposition 5.1.

Proof of Proposition 5.1 when βc <∞. By Lemma 5.5, we know that Q∗-almost surely, the
weights along the spine satisfy

lim
n→∞

1

n

n
∑

j=1

V (ξj) = λ′(βc) . (17)

Now projecting down onto F , we see that Q-almost surely there exists a ray ξ ∈ ∂T that
satisfies (17). But since Q is absolutely continuous with respect to P, we can deduce that

P
{

there exists ξ ∈ ∂T with lim
n→∞

1
n

n
∑

j=1

V (ξj) = λ′(βc)
}

> 0 .

But the event in question is a tail event with respect to the i.i.d. family of weights, so that by
Kolmogorov’s zero-one law it follows that the event has probability 1.

5.2 Proof of Proposition 5.1 when βc =∞
We now consider the case that f does not have a positive root. By Lemma 2.2 this implies
that w = ess supV is finite and P{V = w} ≥ 1

d . We start by considering the special case of a
Bernoulli disorder. Therefore, assume that P{V = 1} = p = 1−P{V = 0} with p ≥ 1

d . At the
end of this section we will see that it is easy to generalize the result and to prove Proposition 5.1
for a general disorder with βc =∞.

18



Lemma 5.6. For the Bernoulli disorder with success probability p ≥ 1
d , almost surely, there

exists a ray ξ ∈ ∂T such that

lim
n→∞

1

n

n
∑

j=1

V (ξj) = 1 .

As in the previous Section 5.1 we use a change of measure argument. In this case, our aim is to
produce a new measure under which the spine has an asymptotic average weight equal to 1.

Proof. Fix p ∈ [ 1
d , 1). Define a sequence (pi)i≥1 of increasing numbers in [p, 1) that converges

to 1 by setting pi = max{( 1
i )

2/i, p}. As before, let P be the probability measure such that the
random variables (V (v) : v ∈ T ) are independent random variables with Bernoulli distribution
with success probability p. Next, we extend P to a probability measure P∗ on the set of spined
trees such that the spine is chosen uniformly. Also, set F∗n = σ(V (v), |v| ≤ n, ξ(j), j ≤ n) and
denote its projection onto the trees with random weights by Fn = σ(V (v), |v| ≤ n). Then, we
can define a new probability measure Q∗ on the set of spined trees by setting

dQ∗

dP∗

∣

∣

∣

∣

F∗
n

=

n
∏

i=1

(

pi
p

)V (ξi)(1− pi
1− p

)1−V (ξi)

.

It is easy to check that the right hand side defines a martingale under P∗, which implies that
the measure Q∗ is well-defined. Moreover, under the new measure the spine ξ is still chosen
uniformly, but V (ξi) is now Bernoulli with success probability pi, whereas if v 6= ξi, for any i,
V (v) is still Bernoulli with success probability p.

Now, we can define Q as the projection of Q∗ onto F = σ(
⋃

n≥1 Fn). Then, as before

dQ∗

dP∗

∣

∣

∣

∣

Fn

= P∗
[

n
∏

i=1

(

pi
p

)V (ξi) (

1− pi
1− p

)1−V (ξi) ∣

∣

∣
Fn

]

= P∗
[

∑

v∈Tn

1{v=ξn}

n
∏

i=1

(

pi
p

)V (v) (

1− pi
1− p

)1−V (v)
∣

∣

∣
Fn

]

=
∑

v∈Tn

1

dn

n
∏

i=1

(

pi
p

)V (v) (

1− pi
1− p

)1−V (v)

=: Mn .

Clearly, (Mn, n ≥ 0) defines a martingale with respect to P and the filtration (Fn, n ≥ 0). As
in the proof of Lemma 5.5, our aim will be to show that M = lim supn→∞Mn < ∞, Q-almost
surely. For this purpose define G = σ(V (ξi) : i ≥ 1) and consider the conditional expectation

Q∗[Mn | G] = Q∗
[

∑

v∈Tn

n
∑

m=0

1{max{k:vk=ξk}=m}
1

dn

n
∏

i=1

(

pi
p

)V (v) (

1− pi
1− p

)1−V (v)
∣

∣

∣
G
]

=

n
∑

m=0

m
∏

i=1

(

pi
p

)V (ξi) (

1− pi
1− p

)1−V (ξi) 1

dn
#{v ∈ Tn : max{k : vk = ξk} = m}

≤
n

∑

m=0

1

dm

m
∏

i=1

(

pi
p

)V (ξi) (

1− pi
1− p

)1−V (ξi)

.

Now, recall that pi ≥ p so that 1−pi

1−p ≤
pi

p . Hence, using that pi is increasing and p ≥ 1
d , we can

deduce from the previous display that

Q∗[Mn | G] ≤
n

∑

m=0

1

dm
p−m

m
∏

i=1

pi ≤
n

∑

m=0

pmm .
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Hence, lim supn→∞Q∗[Mn | G] < ∞, since pmm = 1
m2 for all m large enough. Precisely, as in

Section 5.1 we can thus deduce by Fatou’s lemma that lim infn→∞Mn is Q∗-almost surely finite
and thus Q-almost surely finite. By construction, 1

Mn
is a positive Q-martingale, which implies

that its limit exists and hence M = limn→∞Mn <∞, Q-almost surely. Therefore, Q is absolutely
continuous with respect to P with Radon-Nikodým derivative M .

We have seen thatQ∗[V (ξi)] = pi. Since pi → 1 as i→∞, it is clear that limn→∞ 1
nQ
∗[

∑n
j=1 V (ξj)] =

limn→∞ 1
n

∑n
j=1 pj = 1. Now 0 ≤ V (ξi) ≤ 1 so that by Lebesgue’s dominated convergence theo-

rem,

Q∗
[

lim sup
n→∞

(

1− 1

n

n
∑

j=1

V (ξj)
)]

≤ 1− lim
n→∞

Q∗
[ 1

n

n
∑

j=1

V (ξj)
]

= 0 .

Since 0 ≤ 1− 1
n

∑n
j=1 V (ξj) ≤ 1, we deduce that Q∗-almost surely limn→∞ 1

n

∑n
j=1 V (ξj) = 1.

Hence, Q-almost surely, there exists a ray ξ ∈ ∂T such that limn→∞ 1
n

∑n
j=1 V (ξj) = 1. As Q is

absolutely continuous with respect to P it follows that

P
{

there exists ξ ∈ ∂T with lim
n→∞

1

n

n
∑

j=1

V (ξj) = 1
}

> 0 .

As in the previous section, we deduce from Kolmogorov’s zero-one law that this probability is in
fact equal to 1, so that we have proved Lemma 5.6.

We now use the previous lemma for the Bernoulli disorder to complete the proof of Proposi-
tion 5.1. Assume that V is any random variable such that the corresponding function f has no
positive root. Recall that this means that P{V = w} ≥ 1

d for w = ess supV <∞.

Proof of Proposition 5.1 when βc =∞. Given the disorder (V (v), v ∈ T ), define the random
variables Ṽ (v) = 1{V (v) = w}. Then p := P{Ṽ (v) = 1} = P{V (v) = w} ≥ 1

d . Lemma 5.6 shows
that there exists a ray ξ ∈ ∂T such that

lim
n→∞

1

n

n
∑

j=1

Ṽ (ξj) = 1 .

Therefore,

lim inf
n→∞

1

n

n
∑

j=1

V (ξj) ≥ lim inf
n→∞

1

n

n
∑

j=1

V (ξj)1{V (ξj) = w} ≥ w lim inf
n→∞

1

n

n
∑

j=1

Ṽ (ξj) = w .

Finally, as the reversed inequality is trivial, we have completed the proof.

6 % -percolation on regular trees

We now show how the directed polymer model on trees can be interpreted in the framework
of %-percolation. Consider a d-ary tree T as before and, for p ∈ [0, 1], define the disorder
Vp = (Vp(v) : v ∈ T ) as a family of i.i.d. Bernoulli random variables with success parameter p.
An edge leading to a vertex v with weight Vp(v) = 1 is considered to be open and if Vp(v) = 0
it is defined to be closed. For % ∈ (p, 1], we say that %-percolation occurs if there exists a path
ξ ∈ ∂T such that

lim inf
n→∞

1

n

n
∑

j=1

Vp(ξj) ≥ % .
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Lemma 6.1. Fix p ∈ (0, 1) and let λp(β) = log E[eβVp ]. Let αc(p) = 1, if p ≥ 1
d , and otherwise

let αc(p) be the unique solution of λ∗p(α) = log d in the interval (p, 1). Then, if α ≤ αc(p), almost
surely, there exists ξ ∈ ∂T such that

lim inf
n→∞

1

n

n
∑

j=1

Vp(ξj) ≥ α,

but if α > αc(p) almost surely no such ξ ∈ ∂T exists.

Proof. Using Lemma 2.2 we see that the critical parameter βc = βc(p) for the polymer model
with disorder Vp is infinite if p ≥ 1

d and finite otherwise. In the latter case, this implies that
αc(p) is well-defined and αc(p) = λ′p(βc). From Proposition 5.1 we hence obtain in both cases
that there exists a ray ξ ∈ ∂T such that

lim
n→∞

1

n

n
∑

j=1

Vp(ξj) = αc(p) .

To show that there is no ray ξ ∈ ∂T along which we obtain a larger liminf, we may assume that
p < 1

d . Recall that, by (1), the free energy

ϕp(β) = lim
n→∞

1

n
log

∑

v∈Tn

eβ
P

n
j=1 Vp(vj)

satisfies ϕp(βc) = βcαc(p). Hence, for any ray ξ ∈ ∂T ,

lim inf
n→∞

1

n

n
∑

j=1

Vp(ξj) ≤
1

βc
lim inf
n→∞

∑

v∈Tn

eβc
Pn

j=1 Vp(vj ) =
ϕp(βc)

βc
= αc(p) ,

which proves the second part of Lemma 6.1.

As the next step, we give an explicit formula for αc(p) when p < 1
d . First, we compute the

logarithmic moment generating function and its derivative

λp(β) = log E[eβVp ] = log(peβ + (1− p)) and λ′p(β) =
peβ

peβ + (1− p) .

Then, using that αc(p) = λ′p(βc(p)) for the polymer with disorder Vp, we get

αc(p) =
peβc(p)

peβc(p) + (1− p) . (18)

As log d = λ∗(αc(p)) = αc(p)βc(p)− log(peβc(p) + (1− p)), we obtain

pαc(p)(1− p)1−αc(p)d = αc(p)
αc(p)(1− αc(p))

1−αc(p) . (19)

It is easy to see from Lemma 6.1 that αc( · ) is an increasing function on (0, 1
d ], and from (19)

that it is strictly increasing.

To complete the proof of Theorem 1.4 fix % ∈ (0, 1]. First note (by taking the derivative) that the
function g(p) = p%(1− p)1−% is strictly increasing on the interval (0, %] so that there is indeed a
unique solution to the equation characterising pc. In the special case % = 1 this solution is given
by pc = 1

d . Back to the general case, by (19) we have % = αc(pc). This value pc is indeed the
critical parameter, since if p ≥ pc we have αc(p) ≥ αc(pc) = % so that %-percolation occurs by
Lemma 6.1. Moreover, if p < pc, then αc(p) < αc(pc) = % so that %-percolation does not occur,
which completes the proof of Theorem 1.4.

21



References

[Ash00] R. B. Ash. Probability and measure theory. Harcourt/Academic Press, Burlington,
MA, second edition, 2000. With contributions by Catherine Doléans-Dade.
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