
18.02 Recitation 1

• For a point A = (a1, a2, a3) in three space the vector ~A is given by ~A =
(a1, a2, a3) = a1

~i+ a2
~j + a3

~j.
• The length of the vector is | ~A| =

√
a2
1 + a2

2 + a2
3.

• Scalar multiplication of vectors: c ~A = (ca1, ca2, ca3)
Addition of vectors: ~A+ ~B = (a1 + b1, a2 + b2, a3 + b3).
• Dot product of two vectors is given by

~A. ~B = a1b1 + a2b2 + a3b3 = | ~A|.| ~B| cos θ

where θ is the angle between the two vectors. Hence two vectors are per-
pendicular ⇐⇒ ~A. ~B = 0.

Problems

1. Is (1, 1, 1) perpendicular to (1,−1, 1)? If not find a vector perpendicular to
(1, 1, 1).

2. Find a vector perpendicular to both (1, 1, 1) and (1,−1, 0).

3. Consider the triangle with vertices (0, 2), (3, 2) and (
√

3, 3). Find the angle at
the vertex (0, 2).

4. If ~A. ~B = ~A. ~C does this imply that ~B = ~C by cancellation?

See Simmons section 18.2 for more problems.
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18.02 Recitation 3

• Matrix multiplication: the ij th entry of AB is the dot product of the ith
row vector of A and jth column vector of B. For example[

a1 a2 a3

b1 b2 b3

]
.

p1 p2

q1 q2

r1 r2

 =
[
a1p1 + a2q1 + a3r1 a1p2 + a2q2 + a3r2

b1p1 + b2q1 + b3r1 b1p2 + b2q2 + b3r2

]
.

• Inverse of a 2× 2 matrix: If A =
[
a b
c d

]
then A−1 = 1

|A|

[
d −b
−c a

]
.

• Inverse of a n × n matrix: If A = (aij) then A−1 = 1
|A| (Aij)T . Here Aij

is the signed cofactor of aij defined as the determinant of the minor Mij .
The minor Mij is the (n − 1) × (n − 1) matrix obtained by removing the
row and column of aij and the sign is given by the checkerboard rule.
• 2× 2/3× 3 matrices correspond to linear transformations of the 2-plane/3-

space.
• The equation ax + by + cz = d represents a plane in 3-space with normal

vector (a, b, c). It passes through the origin ⇐⇒ d = 0.

Problems

1. (Notes 1F-3) Find all 2× 2 matrices such that A2 = 0.

2. (Notes 1G-1) If A =

 3 1 −1
−1 2 0
−1 −1 −1

, b =

8
3
0

 solve Ax = b by finding A−1.

3. Let A =
[
0 −1
1 0

]
, B =

[
1 0
0 −1

]
. Find the geometric meaning of the linear

transformations A, B, AB and BA.

4. (Notes 1E-6) Show that the distance D from the origin to the plane ax+by+cz =
d is D = |d|√

a2+b2+c2 .

5. Find the surface area of the regular tetrahedron with vertices (0, 0, 0), (1, 1, 0), (1, 0, 1)
and (0, 1, 1).
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18.02 Recitation 4

• A line in 3-space is represented by 2 linear equations a1x + b1y + c1z = d1

and a2x + b2y + c2z = d2 such that the vectors (a1, b1, c1) and (a2, b2, c2)
are not proportional. This geometrically represents the intersection of two
planes.
• A parametric equation of a line is of the form x = x0 + at, y = y0 + bt, z =

z0 + ct. This line passes through the point (x0, y0, z0) and points in the
direction (a, b, c). The corresponding non-parametric equation is x−x0

a =
y−y0

b = z−z0
c .

• A parametric equation for a curve is of the form ~r(t) = (x(t), y(t), z(t))
where ~r(t) is the position vector. The velocity vector is ~v(t) = d~r(t)

dt =

(dx
dt , dy

dt , dz
dt ) and the acceleration vector is ~a(t) = d2~r(t)

dt2 = (d2x
dt2 , d2y

dt2 , d2z
dt2 ).

• The arclength from t = a to t = b of the parametric curve is
∫ b

a
|~v(t)|dt.

Problems

1. (Notes 1E-3) Find the parametric equations for
a) The line through (1, 0,−1) and parallel to 2i− j + 3k.
b) The line through (2,−1,−1) and perpendicular to the plane x− y + 2z = 3.

2. (Notes 1E-5) The line passing through (1, 1,−1) and perpendicular to the plane
x + 2y − z = 3 intersects the plane 2x− y + z = 1 at what point?

3. (Notes 1I-3) Describe the motions of the following vector functions as t goes
from −∞ to ∞. In each case give a non-parametric (xy-equation) for the curve
that the point P = ~r(t) travels along and what part of the curve point P actually
traces
a) ~r(t) = 2 cos2 ti + sin2 tj
b) ~r(t) = cos(2t)i + cos(t)j
c) ~r(t) = (t2 + 1)i + t3j
d) ~r(t) = tan(t)i + sec(t)j.

4. (Notes 1J-6) For the helical motion ~r(t) = a cos(t)i + a sin(t)j + (bt)k calcu-
late the velocity and acceleration vectors at each point and show that they are
perpendicular.
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18.02 Recitation 5

• Given a function of several variables f(x, y, z), its partial derivative with
respect to x is defined as the limit

∂f

∂x
= lim

∆x→0

f(x + ∆x, y, z)− f(x, y, z)
∆x

.

In other words, the partial derivative with respect to x is computed by
treating the other variables as constants.

• Partial derivatives satisfy the usual sum and product rules

∂(f + g)
∂x

=
∂f

∂x
+

∂f

∂x
∂(fg)
∂x

=
(

∂f

∂x

)
g + f

(
∂g

∂x

)
.

• Partial derivatives can be takes in any order. That is the mixed partials

∂2f

∂x∂y
=

∂2f

∂y∂x

are equal.

Problems

1. Find the partial derivatives with respect to x and y for

(1) xy2

(2) cos(x + y)
(3) 2y2

3x+1

(4) x ln(2x + y).

2. Check that ∂2f
∂x∂y = ∂2f

∂y∂x for the function f(x, y) = sin(x2 − y).

3. Show that the function f(x, y) = ex sin(y) satisfies Laplace’s equation

∂2f

∂x2
+

∂2f

∂y2
= 0.

4. Show that the functions f(x, t) = sin(x− t) and f(x, t) = sin(x + t) both satisfy
the wave equation

∂2f

∂x2
− ∂2f

∂t2
= 0.
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18.02 Recitation 7

• Given data points (xi, yi) for i = 1, 2, . . . , n, the least squares line is the
line y = mx + b that best fits the data in the following sense:

(i) consider the deviations di = yi − (mxi + b) of the predicted value
mxi + b from the true value xi for each of these data points

(ii) the least squares line minimizes the sum of the squares of these devi-
ations

D(m, b) =
n∑

i=1

d2
i =

n∑
i=1

[yi − (mxi + b)]2.

• D(m, b) can be minimized as a function of m and b to get the coefficients
m and b. These are generally the unique solutions of the pair of linear
equations (

n∑
i=1

xi

)
b +

(
n∑

i=1

x2
i

)
m =

(
n∑

i=1

xiyi

)
(1)

nb +

(
n∑

i=1

xi

)
m =

(
n∑

i=1

yi

)
.(2)

Problems

1. (Notes 2G-1) Find the least squares line which best fits the data points

(a) (0, 0), (0, 2), (1, 3)
(b) (0, 0), (1, 2), (2, 1)

2. (Notes 2G-2) Show that the equations (1) and (2) for the least squares line have
a unique solution unless all xi are equal. Explain geometrically why this exception
occurs. (Hint: n

(∑n
i=1 x2

i

)
− (
∑n

i=1 xi)
2 =

∑
i 6=j(xi − xj)2.)

3. (Notes 2G-4) What linear equations in a, b, c does the method of least squares
lead to, when you use it to fit a linear function z = a + bx + cy to a set of data
points (xi, yi, zi), i = 1, . . . , n.
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18.02 Recitation 8

• Given a function of two variables f(x, y), its Hessian in the matrix of second
derivatives

Hf =

[

fxx fxy

fyx fyy

]

• Given a critical point p = (x0, y0) of the function f(x, y), it is characterized
by the second-derivative test as follows (see figure 1)
(i) If detHf = fxxfyy − f2

xy > 0 and fxx > 0 then p is a local minimum,

(ii) If detHf = fxxfyy − f2
xy > 0 and fxx < 0 then p is a local maximum,

(iii) If detHf = fxxfyy − f2
xy < 0 then p is a saddle point.

• A maximum/minimum of a function f(x, y) over a given region occurs at
a local maximum/minimum in the interior of the region or a point on the
boundary.

• The differential of a function f(x, y, x) is the formal expression

df = fxdx + fydy + fzdz.

• Chain rule: If f(x, y, z) is a function of x, y and z while x, y and z are
functions of t then

∂f

∂t
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t
+

∂f

∂z

∂z

∂t
.

Problems

1. (Notes 2H-1) Find all the critical points of the following functions and classify
them

(b) 3x2 + xy + y2 − x − 2y + 4
(c) 2x4 + y2 − xy + 1
(d) x3 − 3xy + y3.

2. Find the maximum and minimum values attained by the function f(x, y) =
xy−x− y +3 at the points of the triangular region R in the xy-plane with vertices
at (0, 0), (2, 0) and (0, 4).

3. (Notes 2H-7) Find the maximum and minimum points of the function 2x2 −
2xy + y2 − 2x on the rectangle R = {(x, y)|0 ≤ x ≤ 2,−1 ≤ y ≤ 2}.

4. Use the chain rule to find ∂f
∂t

for the composite function f(x(t), y(t)). Also check
your answer by explicitly writing f as a function of t.

(a) f = ln(x2 + y2), x = sin(t), y = cos(t)
(b) f = 3xy

x2
−y2 , x = t2, y = 3t

(c) f = e−x2
−y2

, x = t, y =
√

t

(d) sin(xy), x = t, y = t4.
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Hints/Answers

1.

(b) (0, 1) local minimum.
(c) (0, 0) saddle, (1

4 , 1
8 ) local minimum, (− 1

4 ,− 1
8 ) local minimum.

(d) (0, 0) saddle, (1, 1)) local minimum.

2. Maximum: f(0, 0) = 3, Minimum: f(0, 4) = −1.

3. Maximum: (2,−1), Minimum: (1, 1).

4.

(a) 0

(b) − 9(t2+9)
(t2−9)2

(c) −(2t + 1)e−t2−t

(d) 5t4 cos(t5).
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18.02 Recitation 9

• The differential of a function f(x, y, x) is the formal expression

df = fxdx + fydy + fzdz.

• Chain rule: Let f(x, y, z) be a function of x, y and z. Let x, y and z in turn
be functions of u and v. Thus the composite w(u, v) = f(x(u, v), y(u, v), z(u, v))
is a function of u and v. The partial derivative of the composite function
w are given with the help of the chain rule via

∂w

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u
+

∂f

∂z

∂z

∂u

∂w

∂v
=

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v
+

∂f

∂z

∂z

∂v

• Given a function f(x, y, z) its gradient ∇f is the vector field

∇f = (fx, fy, fz) = fx
~i + fy

~j + fz
~k.

• The gradient vector field ∇f is normal to the level surfaces f = c. In other
words, given f(x0, y0, z0) = c consider the tangent plane to the level surface
f(x, y) = c at (x0, y0). This plane has normal vector ∇f(x0, y0).
• Consider a unit vector u = (u1, u2, u3) and a function f(x, y, z). The di-

rectional derivative of f in the direction of u at the point (x0, y0, z0) is the
limit

df

ds

∣∣∣∣
u

= lim
h→0

f(x0 + u1h, y0 + u2h, z0 + u3h)− f(x0, y0, z0)
h

.

It can be computed as the dot product of u with the gradient ∇f

df

ds

∣∣∣∣
u

= ∇f.u

Problems

1. Use the chain rule to find ∂f
∂t for the composite function f(x(t), y(t)). Also check

your answer by explicitly writing f as a function of t.

(a) f = ln(x2 + y2), x = sin(t), y = cos(t)
(b) f = 3xy

x2−y2 , x = t2, y = 3t

(c) f = e−x2−y2
, x = t, y =

√
t

(d) sin(xy), x = t, y = t4.

2. Find wu for

(a) w = x2y + y2 + x, x = u2v, y = uv2.
(b) w = es+t, s = uv, t = u + v.
(c) w = x

y , x = u2 − v2, y = u2 + v2.

3. (Notes 2D-3(c)) Find the tangent plane to the cone x2 +y2−z2 = 0 at the point
(x0, y0, z0).

1



4. (Notes 2D-1) Find the gradient of f and the directional derivative df
ds

∣∣∣
u

in the
direction u of the given vector at the given point for

(b) f = xy
z , i + 2j − 2k, (2,−1, 1)

(d) f = ln(2s + 3t), 4i− 3j, (−1, 1)
(e) f = (u + 2v + 3w)2,−2i + 2j − k, (1,−1, 1).
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18.02 Recitation 10

• Lagrange Multipliers: Consider functions f(x, y, z) and g(x, y, z). The
maximum/minimum of f under the constraint g(x, y, z) = 0 (i.e. over all
points satisfying g(x, y, z) = 0) occurs at a point (x0, y0, z0) where

∇f(x0, y0, z0) = λ∇g(x0, y0, z0)

for some scalar λ (called the Lagrange multiplier). Hence we have that

∂f

∂x
(x0, y0, z0) = λ

∂g

∂x
(x0, y0, z0)

∂f

∂y
(x0, y0, z0) = λ

∂g

∂y
(x0, y0, z0)

∂f

∂z
(x0, y0, z0) = λ

∂g

∂x
(x0, y0, z0)and

g(x0, y0, z0) = 0.

These four equations can now be solved for the four variables x0, y0, z0 and
λ.
• Non independent variables: Consider a function f(x, y, z) where x, y

and z are non-independent variables which satisfy the relation g(x, y, z) = 0.
Hence one of the variables x, y or z can be eliminated using g = 0 to consider
f as a function of the other two. The notation(

∂f

∂x

)
y

denotes the partial derivative of f considered as a function of x and y (i.e.
having eliminated z).
• This partial

(
∂f
∂x

)
y

is computed using the method of differentials as follows.

Since g(x, y, z) = 0 we have

df = fxdx+ fydy + fzdz

dg = gxdx+ gydy + gzdz = 0.

Eliminating dz gives

df =
(
fx −

fzgx

gz

)
dx+

(
fy −

fzgy

gz

)
dy.

Hence
(

∂f
∂x

)
y

=
(
fx − fzgx

gz

)
.

Problems

1. Use Lagrange multipliers to find the maximum values for the following functions
under the given constraints

(a) x+ y + z, given x2

2 + y2

4 + z2

8 = 4.
(b) z, given x2 + y2 + z2 = 1.
(c) xyz, given xy + yz + zx = 3.

1



2. Use the method of Lagrange multipliers to show that the distance of the origin
from the plane ax+ by + cz = d is given by |d|√

a2+b2+c2 .

3. (Notes 2I-2) Find the point in the first octant on the surface x3y2z = 6
√

3 closest
to the origin.

4. In each of these examples compute
(

∂x
∂u

)
v

(a) x = u2 + v + w3, where uvw = 1.
(b) x = u+ v + w, where ew = u+ w.
(c) x = ew, where w2 − w = uv.
(d) x = uv

w , where uw2 + v
w = 1.
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18.02 Recitation 11

• Consider non-independent variables satisfying the relation g(x, y, z) = 0.
The partial

(
∂f
∂x

)
y

is computed using the chain rule as follows. Since z is

treated as a function of x and y differentiating gives(
∂f

∂x

)
y

= fx + fz
∂z

∂x

0 = gx + gz
∂z

∂x
.

Plugging the value ∂z
∂x = − gx

gz
from the second equation into the first gives(

∂f

∂x

)
y

=
(

fx −
fzgx

gz

)
.

Problems

1. Use the method of Lagrange multipliers to show that the distance of the origin
from the plane ax + by + cz = d is given by |d|√

a2+b2+c2 .

2. (Notes 2I-2) Find the point in the first octant on the surface x3y2z = 6
√

3 closest
to the origin.

3. In each of these examples compute
(

∂x
∂u

)
v

(a) x = ew, where w2 − w = uv.
(b) x = uv

w , where uw2 + v
w = 1.

(c) x = u2 + vw, where sin w + u = v
w .

4. Find the equation of the tangent plane to the surface z2 = 11x2 + 3xy + 2y2 at
the point (1, 2, 5).

5. Find the direction in which the directional derivative of f(x, y) = 2xy
x2+y2 is

maximized at the point (1, 2) and find the value of this directional derivative.

1



18.02 Recitation 12

• A partial differential equation is an equation involving a function and its
derivatives. For example the equation

ft + (fx)3 + 6ffx = 0
is a partial differential equation for the function of two variables f(x, t).
• Partial Differential Equations in Physics -

Wave equation Consider the vertical diaplacement function y = f(x, t)
of a taut string. It satisfies the one dimensional equation wave equation

∂2f

∂x2
=

∂f

∂t2
.

The x, y and z components of the electric and magnetic field in vacuum
also satisfy the three dimensional wave equation.
Heat equation Let h(x, y, z, t) be the time-dependent temperature func-
tion in a room. It satisfies the equation heat equation

∂2h

∂x2
+

∂2h

∂y2
+

∂2h

∂z2
=

∂h

∂t
.

Laplace’s equation Assuming the temperature function h of a room is
in a steady state (i.e. does not change with time) it will satisfy Laplace’s
equation

∂2h

∂x2
+

∂2h

∂y2
+

∂2h

∂z2
= 0.

The gravitational/electrostatic potential functions in vacuum (i.e. a region
free of mass/charge) also satisfy Laplace’s equation.

Problems

1. (Notes 2K-5) Find solutions to the one-dimensional heat equation wxx = wt

having the form
w = sin(kx)ert

satifying the additional conditions w(0, t) = w(1, t) = 0 for all t. Interpret your
solution physically. What happens to the temparature as t→∞?

2. (Notes 2K-3) Find all solutions to the two-dimensional Laplace equation of the
form

h = ax2 + bxy + cy2

for some constants a, b and c. Show that they can be written in the form c1f1(x, y)+
c2f2(x, y) for certain fixed polynomials f1(x, y) and f2(x, y) with arbitrary constants
c1 and c2.

3. For what constant c will the function

h =
e−

cx2
t

√
t

satisfy the one-dimensional heat equation?

1





18.02 Recitation 14

• Given a function of two variables f(x, y) and a region R in the plane, the
integral of f over R is expressed in polar coordinates by∫ ∫

R

f(x, y)dxdx =
∫ ∫

R

f(r cos θ, r sin θ)rdrdθ.

• Consider a function of two variables f(x, y) and a region R in the plane.
Let x(u, v), y(u, v) be written as functions of u, v. The integral of f can
then be expressed with respect to the new variables u, v as∫ ∫

R

f(x, y)dxdy =
∫ ∫

R

f(x(u, v), y(u, v))
∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ dudv,
where

∂(x, y)
∂(u, v)

=
∣∣∣∣ xu xv

yu yv

∣∣∣∣
is the Jacobian of the change of variables.

Problems

1. Use polar coordinates to evaluate

(a)
∫ 1

0

∫√1−x2

0
1√

4−x2−y2
dxdy

(b)
∫ 1

0

∫√4−x2

x
x√

x2+y2
dxdy

(c)
∫ 1

0

∫ 1

x
x2dydx

(d) The area enclosed by the cardiod r = 1− cos θ.

2. Find the center of mass of the part of the annulus {1 < x2 + y2 < b2} in the
upper half plane. For what b does the center of mass lie outside the annulus itself?

3. Find the area of the region in the first quadrant bounded by the lines y = x, y =
2x and the hyperbolas xy = 1, xy = 2.

4. Evaluate the integral
∫ ∫

T
sin
(

x+y
x−2y

)
dxdy where T is the triangle with vertices

(1, 0), (4, 0) and (3, 1).

5. Use elliptical coordinates x = ar cos θ, y = br sin θ to show that the area enclosed
by the ellipse x2

a2 + y2

b2 = 1 is πab.

1



18.02 Recitation 15

• A vector field F (x, y) in the plane is a vector function of two variables

F (x, y) = (f(x, y), g(x, y)) = f(x, y)i+ g(x, y)j.

• Given a curve C in the plane and a vector field ~F = fi+ gj define the line
integral to be

(1)
∫

C

F.dr =
∫

C

(fdx+ gdy) =
∫ b

a

(
f(x(t), y(t))

dx

dt
+ g(x(t), y(t))

dy

dt

)
dt,

where (x(t), y(t)) is a parametrization for the curve C. The first two terms
in the equality (1) are notations for the line integral while the last term is
the definition.

Problems

1. (Notes 4A-3) Write down an expression for each of the following vector fields

(a) Each vector has the same direction and magnitude as i+ 2j.
(b) The vector at (x, y) is directed radially towards the origin with magnitude

r2.
(c) The vector at (x, y) is tangent to the circle through (x, y) with center at

the origin, clockwise direction, magnitude r2.

2. (Notes 4B-1) For each of the vector fields F and curves C evaluate
∫

C
F.dr

(a) F = (x2 − y)i + 2xj, C1, C2 both run from (−1, 0) to (1, 0) with C1 along
the x-axis and C2 along the parabola y = 1− x2.

(b) F = xyi− x2j, C: quarter circle running from (0, 1) to (1, 0).
(c) F = yi−xj, C: the triangle with vertices (0, 0), (0, 1), (1, 0) oriented clock-

wise.
(d) F = yi, C: ellipse x = 2 cos t, y = sin t oriented clockwise.
(e) F = 6yi+ xj, C is the curve x = t2, y = t3 running from (1, 1) to (4, 8).
(f) F = (x+y)i+xyj, C is the broken line running from (0, 0 to (0, 2) to (1, 2).

3. Calculate the work done by a space shuttle when it moves in the gravitational
force field

F = −Gm1m2
(xi+ yj)

(x2 + y2)
3
2

along the trajectory (x(t), y(t)) = (t cos t, t sin t) as t varies from t = 2π to t = 4π.

4. (Notes 4B-3) For F = i+ j find a line segment C such that
∫

C
F.dr is

(a) minimum (over all curves between the same endpoints as C)
(b) maximum
(c) zero.

1
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• Consider a vector field F (x, y) = M(x, y)i + N(x, y)j in the plane. The
following are equivalent
(a) the vector field is the gradient F = ∇f of some function f
(b) the line integral

∫
C

F.dr = f(b)−f(a) for some function f on the plane
and where b and a are the two endpoints of the curve C

(c) the line integral
∫

C
F.dr = 0 for any closed curve C in the plane

(d) My = Nx.
We say that the vector field F is conservative in case any of the above
is satisfied. The statement (b) above is referred to as the fundamental
theorem of line integrals.
• Given a conservative vector field F = Mi + Nj, a function f satisfying

F = ∇f is called a potential function for the vector field F . Such a potential
function can be found in the following two ways
(a) f(x, y) =

∫
C

F.dr where C is any curve joining (x, y) to some fixed
point (x0, y0)

(b) setting fx = M we may solve

f =
∫ x

0

Mdx + g(y)

for some function g(y) which in turn can be found from fy = N via

g(y) = C +
∫ y

0

(
N −

∫ x

0

Mydx

)
dy,

for some constant C.

Problems

1. Use geometry to compute the line integrals
∫

C
F.dr where F = xi+yj

x2+y2 and the
curve C is

(a) the semicircle in the upper half plane joining (2, 0) to (−2, 0)
(b) the straight line joining (1, 1) to (4, 4)

2. (Notes 4C-1) Let f = x3y + y3 and C be the curve y2 = x from (1,−1) to (1, 1).
Calculate F = ∇f . Then find

∫
C

F.dr in three different ways

(a) directly
(b) using path independence to replace C by a simpler path.
(c) by using fundamental theorem of line integrals.

3. Find the value of a for which the following vector fields are conservative and find
the corresponding potential functions

(a) (y2 + 2x)i + axyj
(b) ex+y((x + a)i + xj)
(c) (axy + x2)i + (x2 + y2)j.

4. Check whether the gravitational vector field
1



F = −Gm1m2
(xi + yj)

(x2 + y2)
3
2

is conservative and if so find its potential function.

2
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• Given a vector field F = M(x, y)i + N(x, y)j its curl is defined as the
function

curlF = Nx −My.

The divergence of the vector field is defined to be the function

divF = Mx + Ny.

• Given a vector field F = M(x, y)i + N(x, y)j and a curve C the flux of F
across C is defined to be∫

C

F.nds =
∫

C

Mdy −Ndx.

• Green’s Theorem in Tangential form: Consider a vector field F =
M(x, y)i + N(x, y)j. If R is a region with boundary being curve C then

(1)
∫

C

Mdx + Ndy =
∫ ∫

R

(Nx −My)dA.

Here the curve C is traversed so that the region R is on the right. The
equation (1) can also be read as∫

C

F.dr =
∫ ∫

R

curlFdA.

• Green’s Theorem in Normal form: Consider a vector field F = M(x, y)i+
N(x, y)j. If R is a region with boundary being curve C then

(2)
∫

C

Mdy −Ndx =
∫ ∫

R

(Mx + Ny)dA.

Here the curve C is traversed so that the region R is on the right. The
equation (2) can also be read as∫

C

F.nds =
∫ ∫

R

divFdA.

Problems

1. (Notes 4D-1) For each of the vector fields F and curves C evaluate
∫

C
F.dr both

directly and using Green’s theorem

(a) F = 2yi + xj, C : x2 + y2 = 1
(b) F = x2(i + j), C : rectangle joining (0, 0), (2, 0), (0, 1) and (2, 1)
(c) F = xyi + y2j, C : y = x2 and y = x, 0 ≤ x ≤ 1.

2. Use Green’s theorem to evaluate
∫

C
Pdx + Qdy where

(a) P = 2y +
√

9 + x3, Q = 5x + earctan y, C is the positively oriented circle
x2 + y2 = 4

1



(b) P = −y2 + exp(ex), Q = arctan y, C is the boundary of the region between
the parabolas y = x2 and x = y2.

3. (Notes 4D-4) Show that
∫

C
−y3dx + x3dy is positive along any simple closed

curve C directed counterclockwise.

4. (Notes 4D-5) Show that the value of the integral
∫

C
xy2dx+(x2y+2x)dy around

any square C in the xy plane only depends on the size of the square and not upon
its position.

5. (Notes 4F-3) Verify Green’s theorem in normal form for the vector field F =
xi + yj where C is the closed curve formed by the upper half of the unit circle and
the x axis interval [−1, 1].

2
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• Given a function f(x, y) and a curve C the line integral of f with respect
to arclength is defined to be∫

C

f ds =
∫ b

a

f(x(t), y(t))
√

x′(t)2 + y′(t)2dt

for some parametrization (x(t), y(t)) of C.
• Given a vector field F = M(x, y)i + N(x, y)j and a curve C the flux of F

across C is ∫
C

F.n ds =
∫
C

Mdy −Ndx.

Here n is the unit normal vector to the curve C obtained by rotating the
unit tangent vector clockwise by angle π

2 .
• Given a vector field F = M(x, y)i + N(x, y)j its divergence is defined to be

the function

divF = Mx + Ny.

• Green’s Theorem in Normal form: Consider a vector field F = M(x, y)i+
N(x, y)j. If R is a region with boundary being curve C then

(1)
∫
C

Mdy −Ndx =
∫ ∫

R

(Mx + Ny)dA.

Here the curve C is traversed so that the region R is on the right. The
equation (1) can also be read as∫

C

F.nds =
∫ ∫

R

divFdA.

Problems

1. Calculate curl and divergence for the vector fields

(a) x3i + y3j
(b) 2xi + 3yj
(c) xi− yj.

Calculate the flux of each of the above vector fields across the positively unit circle
x2 +y2 = 1. Now verify Green’s theorem in normal form for the above vector fields.

2. (Notes 4E-1) Let F = −yi + xj. Evaluate
∫
C

F.n ds geometrically where

(a) C is the circle of radius a centered at the origin, directed counterclockwise.
(c) C is the line running from (0, 0) to (1, 0).

3. (Notes 4E-5) Let F be defined everywhere except the origin so that the direction
of F is radially outwards and its magnitude is |F | = rm where m is an integer.
Evaluate the flux of F accross a circle of radius a. For what value of m will this
flux be independent of a?

1



4. (Notes 4F-2) Let F = ω(−yi + xj)

(a) Calculate divF and curlF .
(b) Using physical interpretations explain why it is resonable that divF = 0.
(c) Using physical interpretations explain why it is resonable that curlF = 2ω

at the origin.

2
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• Given a function f(x, y) and a curve C the line integral of f with respect
to arclength is defined to be∫

C

f ds =
∫ b

a

f(x(t), y(t))
√

x′(t)2 + y′(t)2dt

for some parametrization (x(t), y(t)) of C.
• Given a vector field F = M(x, y)i + N(x, y)j and a curve C the flux of F

across C is ∫
C

F.n ds =
∫
C

Mdy −Ndx.

Here n is the unit normal vector to the curve C obtained by rotating the
unit tangent vector clockwise by angle π

2 .
• Given a vector field F = M(x, y)i + N(x, y)j its divergence is defined to be

the function

divF = Mx + Ny.

• Green’s Theorem in Normal form: Consider a vector field F = M(x, y)i+
N(x, y)j. If R is a region with boundary being curve C then

(1)
∫
C

Mdy −Ndx =
∫∫

R

(Mx + Ny)dA.

Here the curve C is traversed so that the region R is on the right. The
equation (1) can also be read as∫

C

F.nds =
∫∫

R

divFdA.

• Extended Green’s theorem: Consider a region R with boundary being
the union of curves C1, . . . , Cm. We orient the curves Ci such that the
region R lies on the right while traversing Ci in the positively oriented
direction. Then the generalized Green’s theorem says∫

C1

F.dr + . . . +
∫
Cm

F.dr =
∫∫

R

curlF dA

for any vector field F .
• A simply connected region is a region R consisting of one piece and with

the property: for any simple closed curve C contained in R the interior of
C lies in R.

• For a continously differentiable vector field F defined on a simple connected
region R, the following are equivalent:
(a) there exits a continuously differentiable function f defined on R such

that ∇f = F
(b) curlF = 0 for all points in R.
The above are not necessarily equivalent for a non-simply connected region.

1



Problems

1. Calculate curl and divergence for the vector fields

(a) x3i + y3j
(b) 2xi + 3yj
(c) xi− yj.

Calculate the flux of each of the above vector fields across the positively unit circle
x2 +y2 = 1. Now verify Green’s theorem in normal form for the above vector fields.

2. (Notes 4E-1) Let F = −yi + xj. Evaluate
∫
C

F.n ds geometrically where

(a) C is the circle of radius a centered at the origin, directed counterclockwise.
(c) C is the line running from (0, 0) to (1, 0).

3. (Notes 4E-5) Let F be defined everywhere except the origin so that the direction
of F is radially outwards and its magnitude is |F | = rm where m is an integer.
Evaluate the flux of F accross a circle of radius a. For what value of m will this
flux be independent of a?

4. (Notes 4F-2) Let F = ω(−yi + xj)

(a) Calculate divF and curlF .
(b) Using physical interpretations explain why it is resonable that divF = 0.
(c) Using physical interpretations explain why it is resonable that curlF = 2ω

at the origin.

5. Which of the following regions are simply connected?

(a) R=the unit disk {(x, y)|x2 + y2 ≤ 1}
(b) R=the upper half plane {(x, y)|y ≥ 0}.
(c) R= all points in the plane except the origin
(d) R= all points in the plane except the first quadrant.

2
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• Given a surface S and a paramentrization S = {(x(u, v), y(u, v), z(u, v))|(u, v) ∈
D ⊂ R2} the surface area element for S is

dS =

√(
∂(y, z)
∂(u, v)

)2

+
(
∂(z, x)
∂(u, v)

)2

+
(
∂(x, y)
∂(u, v)

)2

dudv.

• The integral with respect to surface area of a function f(x, y, z) is given in
terms of this parametrization via∫∫

S

f(x, y, z) dS =
∫∫

D

f(x(u, v), y(u, v), z(u, v))

√(
∂(y, z)
∂(u, v)

)2

+
(
∂(z, x)
∂(u, v)

)2

+
(
∂(x, y)
∂(u, v)

)2

dudv.

• Given a vector field ~F = P (x, y, z)~i+Q(x, y, z)~j+R(x, y, z)~k in space. The
flux of F across the surface S is defined as

∫∫
S

~F .~n dS =
∫∫

S

~F . ~dS =
∫∫

D

(
P
∂(y, z)
∂(u, v)

+Q
∂(z, x)
∂(u, v)

+R
∂(x, y)
∂(u, v)

)
dudv,

where ~n is the unit normal vector to the surface at the point (x, y, z) and
(x(u, v), y(u, v), z(u, v)) is a parametrization for S.
• Given a vector field ~F = P~i+Q~j +R~k in space its divergence is defined to

be the function

~∇. ~F = Px +Qy +Rz =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
.

• Divergence theorem: Given a closed surface S which bounds a solid
region R in space one has∫∫

S

F.dS =
∫∫∫

R

∇.F dV

where the left hand side denotes the flux out of the region R.

Problems

1. Find parametrizations for the surfaces

(a) The hemisphere x2 + y2 + z2 = 4, x ≥ 0
(b) Part of the cone y2 = x2 + z2 with 0 ≤ y ≤ 2
(c) Part of cylinder x2 + y2 = 1 between the z = 2 and z = 4 planes
(d) Part of the paraboloid z = x2 + y2 below the z = 1 plane.

2. Find the the flux of the vector fields F = i, F = xi and F = xi + yj + zk for
each of the surfaces in problem 1.

3. Find the surface areas of each of the parts in problem 1.

4. (Notes 6B-9) Find the center of mass of a uniform density δ = 1 hemispherical
shell of radius a which has its base on the xy-plane.

1



5. Using divergence theorem, find the flux of the vector field F out of the closed
surface S where

(a) F = x3i+y3j+z3k, and S is the surface of the cylinder x2+y2 = 9 between
z = −1 and z = 4

(b) F = (x + cos y)i + (y + sin z)j + (z + ex)k and S is the boundary of the
region bounded by the planes z = 0, y = 0, y = 2 and z = 1− x2

(c) F = xi + yj + 3k and S is the boundary of the region bounded by the
paraboloid z = x2 + y2 and the plane z = 4.

6. Show that the flux of the radial vector field F = 1
3 (xi + yj + zk) out through

the boundary of any solid region equals the volume of the region.

7. Using divergence theorem find the flux of the vector field F = ex+zj through
the non-closed upper hemisphere given by x2 + y2 + z2 = 1 and z ≥ 0.

2
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• Consider the vector field F = Pi+Qj +Rk in space. The divergence of F
is the function

∇.F =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
.

The curl of F is the vector field

∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣
=

(
∂R

∂y
− ∂Q

∂z

)
i+
(
∂P

∂z
− ∂R

∂x

)
j +

(
∂Q

∂x
− ∂P

∂y

)
k.

• Divergence theorem: Given a closed surface S which bounds a solid
region R in space one has∫∫

S

F.dS =
∫∫∫

R

∇.F dV

where the left hand side denotes the flux out of the region R.
• Consider a vector field F in space. The following are equivalent

(a) the vector field is the gradient F = ∇f of some function f
(b) the line integral

∫
C

F.dr = 0 for any closed curve C in space
(c) there exists some function f in space such that the line integral

∫
C

F.dr =
f(b)−f(a) for all curves C where b and a are the two endpoints of the
curve C

(d) the curl ∇× F = 0.
We say that the vector field F is conservative in case any of the above is
satisfied. The statement (c) above is referred to as the fundamental theorem
of line integrals and the function f is called the potential function.

Problems

1. Verify divergence theorem in the following cases

(a) F = xi+ yj + zk and S is the spherical surface x2 + y2 + z2 = 1.
(b) F = (y + z)i+ (z + x)j + (x+ y)k and S is the surface of the tetrahedron

formed by the coordinate planes and the plane x+ y + z = 1.
(c) F = y2j + yzk and S is formed by the cylinder y2 + z2 = 1 and the

coordinates planes x = 0 and x = 1.

2. Using divergence theorem find the flux of the vector field F = ex+zj through
the non-closed upper hemisphere given by x2 + y2 + z2 = 1 and z ≥ 0.

3. (Notes 6D-1) Find the line integrals
∫

C
F.dr for

(a) F = yi + zj − xk and C is the twisted cubic (x, y, z) = (t, t2, t3) running
from (0, 0, 0) to (1, 1, 1).

(b) F = yi+ zj − xk and C is the line running from (0, 0, 0) to (1, 1, 1).
1



(c) F = yi + zj − xk and C is the broken line segment running from (0, 0, 0)
to (1, 0, 0) to (1, 1, 0) to (1, 1, 1).

(d) F = zxi+zyj+xk and C is the helix (x, y, z) = (cos t, sin t, t) from (1, 0, 0)
to (1, 0, 2π).

4. (Notes 6E-3) For each vector field below find its curl and find a potential function
if the curl is zero

(a) xi+ yj + zk
(b) (2xy + z)i+ x2j + xk
(c) (y2z2)i+ (x2z2)j + (x2y2)k
(d) yzi+ xzj + xyk.

2
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• Stokes’ theorem: Consider a vector field F in space. If S is a surface
with boundary C then∫

C

F.dr =
∫∫

S

curlF.dS,

where the orintations of S and C are compatible via the right hand rule.

Problems

1. Verify Stokes’ theorem when S is the hemisphere z =
√

1− x2 − y2 and

(a) F = xi + yj + zk
(b) F = yi− xj + zk

2. Use Stokes theorem to compute
∫

C
F.dr where

(a) F = 2zi + xj + 3yk and C is the intersection of the plane z = y with the
cylinder x2 + y2 = 4 orineted counterclockwise when viewed from above.

(b) F = (y − x, x − z, x − y) and C is the boundary of the part of the plane
x + 2y + z = 2 that lies in the first octant oriented counterclockwise when
viewed from above.

3. Use Stokes theorem to evaluate
∫∫

S
curlF.dS where F = 2yi + 3xj + ezk and

S is part of the paraboloid z = x2 + y2 below the plane z = 4 with normal vector
pointing upwards.

4. (Notes 6F-4) Show by direct calculation that div(curlF) = 0 for any vector field
F. Now show that ∫∫

S

curlF.dS = 0

for any closed surface S using both Divergence and Stokes’ theorems.

1



18.02 Recitation 25

• Vector Calculus: Any successive composition in the following diagram is
zero

{functions} grad−→
∇
{vector fields} curl−→

∇×
{vector fields} div−→

∇·
{functions}.

In other words we have

curl(gradf) = 0 (∇× (∇f) = 0) and
div(curlF ) = 0 (∇ · (∇× F) = 0).

The non-successive composition is the Laplacian of a function

∇2f = ∇ · (∇f) = div(gradf) =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
.

Problems

1. Prove the identities curl(gradf) = 0, div(curlF ) = 0 and

div(gradf) =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
.

2. Show that for any closed surface S∫∫
S

curlF.dS = 0

using both Divergence and Stokes’ theorems.

3. (Notes 6H-3) Prove that for any scalar function φ and vector field F one has

(a) ∇ · (φF) = φ∇ · F + F · ∇φ
(b) ∇× (φF) = φ∇× F + (∇φ)× F
(c) ∇ · (F×G) = G · ∇ × F− F · ∇ ×G

1
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• Vector Calculus: Any successive composition in the following diagram is
zero

{functions} grad−→
∇
{vector fields} curl−→

∇×
{vector fields} div−→

∇·
{functions}.

In other words we have

curl(gradf) = 0 (∇× (∇f) = 0) and
div(curlF ) = 0 (∇ · (∇× F) = 0).

The non-successive composition is the Laplacian of a function

∇2f = ∇ · (∇f) = div(gradf) =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
.

• Maxwell’s equations:

Law Differential form Integral form
Gauss’ Law ∇ · E = ρ

∫∫
S
E · dS = Q

Gauss’ Law for Magnetism ∇ ·B = 0
∫∫

S
B · dS = 0

Faraday’s Law ∇× E = −Bt

∫
C
E · dr = − ∂

∂t

∫∫
S
B · dS

Ampere’s Law ∇×B = j + Et

∫
C
B · dr = I + ∂

∂t

∫∫
S
E · dS

E and B are the electric and magenetic fields while Q, I, ρ and j are total
charge, total current, charge density and current density respectively.

Problems

1. Prove the identities curl(gradf) = 0, div(curlF ) = 0 and

div(gradf) =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
.

2. Show that for any closed surface S∫∫
S

curlF · dS = 0

using both Divergence and Stokes’ theorems.

3. (Notes 6H-3) Prove that for scalar functions f, g and vector fields F,G one has

(a) ∇(fg) = f∇g + g∇f .
(b) ∇ · (fF) = f∇ · F + F · ∇f
(c) ∇× (fF) = f∇× F + (∇f)× F
(d) ∇ · (F×G) = G · ∇ × F− F · ∇ ×G

4. Show how to go back and forth between the integral and differential forms of
Maxwell’s equations. Do the same with the equations for charge conservation

ρt = −∇ · j and Qt = −I.
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