18.02 Recitation 1

- For a point $A=\left(a_{1}, a_{2}, a_{3}\right)$ in three space the vector \vec{A} is given by $\vec{A}=$ $\left(a_{1}, a_{2}, a_{3}\right)=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{j}$.
- The length of the vector is $|\vec{A}|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}$.
- Scalar multiplication of vectors: $c \vec{A}=\left(c a_{1}, c a_{2}, c a_{3}\right)$

Addition of vectors: $\vec{A}+\vec{B}=\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right)$.

- Dot product of two vectors is given by

$$
\vec{A} \cdot \vec{B}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=|\vec{A}| \cdot|\vec{B}| \cos \theta
$$

where θ is the angle between the two vectors. Hence two vectors are perpendicular $\Longleftrightarrow \vec{A} \cdot \vec{B}=0$.

Problems

1. Is $(1,1,1)$ perpendicular to $(1,-1,1)$? If not find a vector perpendicular to $(1,1,1)$.
2. Find a vector perpendicular to both $(1,1,1)$ and $(1,-1,0)$.
3. Consider the triangle with vertices $(0,2),(3,2)$ and $(\sqrt{3}, 3)$. Find the angle at the vertex $(0,2)$.
4. If $\vec{A} \cdot \vec{B}=\vec{A} \cdot \vec{C}$ does this imply that $\vec{B}=\vec{C}$ by cancellation?

See Simmons section 18.2 for more problems.

Fig 1.

Fig 2.

Fig 3.

18.02 Recitation 3

- Matrix multiplication: the $i j$ th entry of $A B$ is the dot product of the i th row vector of A and j th column vector of B. For example
$\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right] \cdot\left[\begin{array}{ll}p_{1} & p_{2} \\ q_{1} & q_{2} \\ r_{1} & r_{2}\end{array}\right]=\left[\begin{array}{cc}a_{1} p_{1}+a_{2} q_{1}+a_{3} r_{1} & a_{1} p_{2}+a_{2} q_{2}+a_{3} r_{2} \\ b_{1} p_{1}+b_{2} q_{1}+b_{3} r_{1} & b_{1} p_{2}+b_{2} q_{2}+b_{3} r_{2}\end{array}\right]$.
- Inverse of a 2×2 matrix: If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ then $A^{-1}=\frac{1}{|A|}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.
- Inverse of a $n \times n$ matrix: If $A=\left(a_{i j}\right)$ then $A^{-1}=\frac{1}{|A|}\left(A_{i j}\right)^{T}$. Here $A_{i j}$ is the signed cofactor of $a_{i j}$ defined as the determinant of the minor $M_{i j}$. The minor $M_{i j}$ is the $(n-1) \times(n-1)$ matrix obtained by removing the row and column of $a_{i j}$ and the sign is given by the checkerboard rule.
- $2 \times 2 / 3 \times 3$ matrices correspond to linear transformations of the 2-plane/3space.
- The equation $a x+b y+c z=d$ represents a plane in 3 -space with normal vector (a, b, c). It passes through the origin $\Longleftrightarrow d=0$.

Problems

1. (Notes $1 \mathrm{~F}-3$) Find all 2×2 matrices such that $A^{2}=0$.
2. (Notes 1G-1) If $A=\left[\begin{array}{ccc}3 & 1 & -1 \\ -1 & 2 & 0 \\ -1 & -1 & -1\end{array}\right], b=\left[\begin{array}{l}8 \\ 3 \\ 0\end{array}\right]$ solve $A x=b$ by finding A^{-1}.
3. Let $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$. Find the geometric meaning of the linear transformations $A, B, A B$ and $B A$.
4. (Notes 1E-6) Show that the distance D from the origin to the plane $a x+b y+c z=$ d is $D=\frac{|d|}{\sqrt{a^{2}+b^{2}+c^{2}}}$.
5. Find the surface area of the regular tetrahedron with vertices $(0,0,0),(1,1,0),(1,0,1)$ and $(0,1,1)$.

18.02 Recitation 4

- A line in 3 -space is represented by 2 linear equations $a_{1} x+b_{1} y+c_{1} z=d_{1}$ and $a_{2} x+b_{2} y+c_{2} z=d_{2}$ such that the vectors $\left(a_{1}, b_{1}, c_{1}\right)$ and $\left(a_{2}, b_{2}, c_{2}\right)$ are not proportional. This geometrically represents the intersection of two planes.
- A parametric equation of a line is of the form $x=x_{0}+a t, y=y_{0}+b t, z=$ $z_{0}+c t$. This line passes through the point $\left(x_{0}, y_{0}, z_{0}\right)$ and points in the direction (a, b, c). The corresponding non-parametric equation is $\frac{x-x_{0}}{a}=$ $\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$.
- A parametric equation for a curve is of the form $\vec{r}(t)=(x(t), y(t), z(t))$ where $\vec{r}(t)$ is the position vector. The velocity vector is $\vec{v}(t)=\frac{d \vec{r}(t)}{d t}=$ $\left(\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right)$ and the acceleration vector is $\vec{a}(t)=\frac{d^{2} \vec{r}(t)}{d t^{2}}=\left(\frac{d^{2} x}{d t^{2}}, \frac{d^{2} y}{d t^{2}}, \frac{d^{2} z}{d t^{2}}\right)$.
- The arclength from $t=a$ to $t=b$ of the parametric curve is $\int_{a}^{b}|\vec{v}(t)| d t$.

Problems

1. (Notes 1E-3) Find the parametric equations for
a) The line through $(1,0,-1)$ and parallel to $2 i-j+3 k$.
b) The line through $(2,-1,-1)$ and perpendicular to the plane $x-y+2 z=3$.
2. (Notes $1 \mathrm{E}-5$) The line passing through $(1,1,-1)$ and perpendicular to the plane $x+2 y-z=3$ intersects the plane $2 x-y+z=1$ at what point?
3. (Notes 1I-3) Describe the motions of the following vector functions as t goes from $-\infty$ to ∞. In each case give a non-parametric ($x y$-equation) for the curve that the point $P=\vec{r}(t)$ travels along and what part of the curve point P actually traces
a) $\vec{r}(t)=2 \cos ^{2} t i+\sin ^{2} t j$
b) $\vec{r}(t)=\cos (2 t) i+\cos (t) j$
c) $\vec{r}(t)=\left(t^{2}+1\right) i+t^{3} j$
d) $\vec{r}(t)=\tan (t) i+\sec (t) j$.
4. (Notes 1J-6) For the helical motion $\vec{r}(t)=a \cos (t) i+a \sin (t) j+(b t) k$ calculate the velocity and acceleration vectors at each point and show that they are perpendicular.

18.02 Recitation 5

- Given a function of several variables $f(x, y, z)$, its partial derivative with respect to x is defined as the limit

$$
\frac{\partial f}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y, z)-f(x, y, z)}{\Delta x}
$$

In other words, the partial derivative with respect to x is computed by treating the other variables as constants.

- Partial derivatives satisfy the usual sum and product rules

$$
\begin{aligned}
\frac{\partial(f+g)}{\partial x} & =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial x} \\
\frac{\partial(f g)}{\partial x} & =\left(\frac{\partial f}{\partial x}\right) g+f\left(\frac{\partial g}{\partial x}\right)
\end{aligned}
$$

- Partial derivatives can be takes in any order. That is the mixed partials

$$
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}
$$

are equal.

Problems

1. Find the partial derivatives with respect to x and y for
(1) $x y^{2}$
(2) $\cos (x+y)$
(3) $\frac{2 y^{2}}{3 x+1}$
(4) $x \ln (2 x+y)$.
2. Check that $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$ for the function $f(x, y)=\sin \left(x^{2}-y\right)$.
3. Show that the function $f(x, y)=e^{x} \sin (y)$ satisfies Laplace's equation

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0
$$

4. Show that the functions $f(x, t)=\sin (x-t)$ and $f(x, t)=\sin (x+t)$ both satisfy the wave equation

$$
\frac{\partial^{2} f}{\partial x^{2}}-\frac{\partial^{2} f}{\partial t^{2}}=0
$$

Tangent plane equation:

Figure 1.

Critical points

Local Maxima Local minima

saddle point.

Figure 2.

18.02 Recitation 7

- Given data points $\left(x_{i}, y_{i}\right)$ for $i=1,2, \ldots, n$, the least squares line is the line $y=m x+b$ that best fits the data in the following sense:
(i) consider the deviations $d_{i}=y_{i}-\left(m x_{i}+b\right)$ of the predicted value $m x_{i}+b$ from the true value x_{i} for each of these data points
(ii) the least squares line minimizes the sum of the squares of these deviations

$$
D(m, b)=\sum_{i=1}^{n} d_{i}^{2}=\sum_{i=1}^{n}\left[y_{i}-\left(m x_{i}+b\right)\right]^{2}
$$

- $D(m, b)$ can be minimized as a function of m and b to get the coefficients m and b. These are generally the unique solutions of the pair of linear equations

$$
\begin{align*}
\left(\sum_{i=1}^{n} x_{i}\right) b+\left(\sum_{i=1}^{n} x_{i}^{2}\right) m & =\left(\sum_{i=1}^{n} x_{i} y_{i}\right) \tag{1}\\
n b+\left(\sum_{i=1}^{n} x_{i}\right) m & =\left(\sum_{i=1}^{n} y_{i}\right) . \tag{2}
\end{align*}
$$

Problems

1. (Notes 2G-1) Find the least squares line which best fits the data points
(a) $(0,0),(0,2),(1,3)$
(b) $(0,0),(1,2),(2,1)$
2. (Notes 2G-2) Show that the equations (1) and (2) for the least squares line have a unique solution unless all x_{i} are equal. Explain geometrically why this exception occurs. (Hint: $n\left(\sum_{i=1}^{n} x_{i}^{2}\right)-\left(\sum_{i=1}^{n} x_{i}\right)^{2}=\sum_{i \neq j}\left(x_{i}-x_{j}\right)^{2}$.)
3. (Notes 2G-4) What linear equations in a, b, c does the method of least squares lead to, when you use it to fit a linear function $z=a+b x+c y$ to a set of data points $\left(x_{i}, y_{i}, z_{i}\right), i=1, \ldots, n$.

18.02 Recitation 8

- Given a function of two variables $f(x, y)$, its Hessian in the matrix of second derivatives

$$
H_{f}=\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right]
$$

- Given a critical point $p=\left(x_{0}, y_{0}\right)$ of the function $f(x, y)$, it is characterized by the second-derivative test as follows (see figure 1)
(i) If $\operatorname{det} H_{f}=f_{x x} f_{y y}-f_{x y}^{2}>0$ and $f_{x x}>0$ then p is a local minimum,
(ii) If $\operatorname{det} H_{f}=f_{x x} f_{y y}-f_{x y}^{2}>0$ and $f_{x x}<0$ then p is a local maximum,
(iii) If $\operatorname{det} H_{f}=f_{x x} f_{y y}-f_{x y}^{2}<0$ then p is a saddle point.
- A maximum/minimum of a function $f(x, y)$ over a given region occurs at a local maximum/minimum in the interior of the region or a point on the boundary.
- The differential of a function $f(x, y, x)$ is the formal expression

$$
d f=f_{x} d x+f_{y} d y+f_{z} d z
$$

- Chain rule: If $f(x, y, z)$ is a function of x, y and z while x, y and z are functions of t then

$$
\frac{\partial f}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial t}
$$

Problems

1. (Notes $2 \mathrm{H}-1$) Find all the critical points of the following functions and classify them
(b) $3 x^{2}+x y+y^{2}-x-2 y+4$
(c) $2 x^{4}+y^{2}-x y+1$
(d) $x^{3}-3 x y+y^{3}$.
2. Find the maximum and minimum values attained by the function $f(x, y)=$ $x y-x-y+3$ at the points of the triangular region R in the $x y$-plane with vertices at $(0,0),(2,0)$ and $(0,4)$.
3. (Notes $2 \mathrm{H}-7$) Find the maximum and minimum points of the function $2 x^{2}-$ $2 x y+y^{2}-2 x$ on the rectangle $R=\{(x, y) \mid 0 \leq x \leq 2,-1 \leq y \leq 2\}$.
4. Use the chain rule to find $\frac{\partial f}{\partial t}$ for the composite function $f(x(t), y(t))$. Also check your answer by explicitly writing f as a function of t.
(a) $f=\ln \left(x^{2}+y^{2}\right), x=\sin (t), y=\cos (t)$
(b) $f=\frac{3 x y}{x^{2}-y^{2}}, x=t^{2}, y=3 t$
(c) $f=e^{-x^{2}-y^{2}}, x=t, y=\sqrt{t}$
(d) $\sin (x y), x=t, y=t^{4}$.

Hints/Answers

1.

(b) $(0,1)$ local minimum.
(c) $(0,0)$ saddle, $\left(\frac{1}{4}, \frac{1}{8}\right)$ local minimum, $\left(-\frac{1}{4},-\frac{1}{8}\right)$ local minimum.
(d) $(0,0)$ saddle, $(1,1))$ local minimum.
2. Maximum: $f(0,0)=3$, Minimum: $f(0,4)=-1$.
3. Maximum: $(2,-1)$, Minimum: $(1,1)$.
4.
(a) 0
(b) $-\frac{9\left(t^{2}+9\right)}{\left(t^{2}-9\right)^{2}}$
(c) $-(2 t+1) e^{-t^{2}-t}$
(d) $5 t^{4} \cos \left(t^{5}\right)$.

Classification of critical points
(Second Derivative test t)

Local maxima Local minima
$\operatorname{det} H_{f}>0$ $f_{x x}<0$
eg.

$$
f(x, y)=-x^{2}-y^{2}
$$

$$
\begin{gathered}
\operatorname{det} H_{f}>0 \\
f_{x x}>0
\end{gathered}
$$

eg.

$$
f(x, y)=x^{2}+y^{2}
$$

Saddle point $\operatorname{det} H_{f}<0$
eg.

$$
f(x, y)=x^{2}-y^{2}
$$

Hessian: $H_{f}=\left[\begin{array}{ll}f_{x x} & f_{x y} \\ f_{y x} & f_{y y}\end{array}\right]$

Figure 1.

18.02 Recitation 9

- The differential of a function $f(x, y, x)$ is the formal expression

$$
d f=f_{x} d x+f_{y} d y+f_{z} d z
$$

- Chain rule: Let $f(x, y, z)$ be a function of x, y and z. Let x, y and z in turn be functions of u and v. Thus the composite $w(u, v)=f(x(u, v), y(u, v), z(u, v))$ is a function of u and v. The partial derivative of the composite function w are given with the help of the chain rule via

$$
\begin{aligned}
\frac{\partial w}{\partial u} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial u}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial u} \\
\frac{\partial w}{\partial v} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial v}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial v}
\end{aligned}
$$

- Given a function $f(x, y, z)$ its gradient ∇f is the vector field

$$
\nabla f=\left(f_{x}, f_{y}, f_{z}\right)=f_{x} \vec{i}+f_{y} \vec{j}+f_{z} \vec{k}
$$

- The gradient vector field ∇f is normal to the level surfaces $f=c$. In other words, given $f\left(x_{0}, y_{0}, z_{0}\right)=c$ consider the tangent plane to the level surface $f(x, y)=c$ at $\left(x_{0}, y_{0}\right)$. This plane has normal vector $\nabla f\left(x_{0}, y_{0}\right)$.
- Consider a unit vector $u=\left(u_{1}, u_{2}, u_{3}\right)$ and a function $f(x, y, z)$. The directional derivative of f in the direction of u at the point $\left(x_{0}, y_{0}, z_{0}\right)$ is the limit

$$
\left.\frac{d f}{d s}\right|_{u}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+u_{1} h, y_{0}+u_{2} h, z_{0}+u_{3} h\right)-f\left(x_{0}, y_{0}, z_{0}\right)}{h}
$$

It can be computed as the dot product of u with the gradient ∇f

$$
\left.\frac{d f}{d s}\right|_{u}=\nabla f \cdot u
$$

Problems

1. Use the chain rule to find $\frac{\partial f}{\partial t}$ for the composite function $f(x(t), y(t))$. Also check your answer by explicitly writing f as a function of t.
(a) $f=\ln \left(x^{2}+y^{2}\right), x=\sin (t), y=\cos (t)$
(b) $f=\frac{3 x y}{x^{2}-y^{2}}, x=t^{2}, y=3 t$
(c) $f=e^{-x^{2}-y^{2}}, x=t, y=\sqrt{t}$
(d) $\sin (x y), x=t, y=t^{4}$.
2. Find w_{u} for
(a) $w=x^{2} y+y^{2}+x, x=u^{2} v, y=u v^{2}$.
(b) $w=e^{s+t}, s=u v, t=u+v$.
(c) $w=\frac{x}{y}, x=u^{2}-v^{2}, y=u^{2}+v^{2}$.
3. (Notes 2D-3(c)) Find the tangent plane to the cone $x^{2}+y^{2}-z^{2}=0$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$.
4. (Notes 2D-1) Find the gradient of f and the directional derivative $\left.\frac{d f}{d s}\right|_{u}$ in the direction u of the given vector at the given point for
(b) $f=\frac{x y}{z}, i+2 j-2 k,(2,-1,1)$
(d) $f=\ln (2 s+3 t), 4 i-3 j,(-1,1)$
(e) $f=(u+2 v+3 w)^{2},-2 i+2 j-k,(1,-1,1)$.

18.02 Recitation 10

- Lagrange Multipliers: Consider functions $f(x, y, z)$ and $g(x, y, z)$. The maximum/minimum of f under the constraint $g(x, y, z)=0$ (i.e. over all points satisfying $g(x, y, z)=0)$ occurs at a point $\left(x_{0}, y_{0}, z_{0}\right)$ where

$$
\nabla f\left(x_{0}, y_{0}, z_{0}\right)=\lambda \nabla g\left(x_{0}, y_{0}, z_{0}\right)
$$

for some scalar λ (called the Lagrange multiplier). Hence we have that

$$
\begin{aligned}
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}, z_{0}\right) & =\lambda \frac{\partial g}{\partial x}\left(x_{0}, y_{0}, z_{0}\right) \\
\frac{\partial f}{\partial y}\left(x_{0}, y_{0}, z_{0}\right) & =\lambda \frac{\partial g}{\partial y}\left(x_{0}, y_{0}, z_{0}\right) \\
\frac{\partial f}{\partial z}\left(x_{0}, y_{0}, z_{0}\right) & =\lambda \frac{\partial g}{\partial x}\left(x_{0}, y_{0}, z_{0}\right) \text { and } \\
g\left(x_{0}, y_{0}, z_{0}\right) & =0
\end{aligned}
$$

These four equations can now be solved for the four variables x_{0}, y_{0}, z_{0} and λ.

- Non independent variables: Consider a function $f(x, y, z)$ where x, y and z are non-independent variables which satisfy the relation $g(x, y, z)=0$. Hence one of the variables x, y or z can be eliminated using $g=0$ to consider f as a function of the other two. The notation

$$
\left(\frac{\partial f}{\partial x}\right)_{y}
$$

denotes the partial derivative of f considered as a function of x and y (i.e. having eliminated z).

- This partial $\left(\frac{\partial f}{\partial x}\right)_{y}$ is computed using the method of differentials as follows. Since $g(x, y, z)=0$ we have

$$
\begin{aligned}
d f & =f_{x} d x+f_{y} d y+f_{z} d z \\
d g & =g_{x} d x+g_{y} d y+g_{z} d z=0
\end{aligned}
$$

Eliminating $d z$ gives

$$
d f=\left(f_{x}-\frac{f_{z} g_{x}}{g_{z}}\right) d x+\left(f_{y}-\frac{f_{z} g_{y}}{g_{z}}\right) d y
$$

Hence $\left(\frac{\partial f}{\partial x}\right)_{y}=\left(f_{x}-\frac{f_{z} g_{x}}{g_{z}}\right)$.

Problems

1. Use Lagrange multipliers to find the maximum values for the following functions under the given constraints
(a) $x+y+z$, given $\frac{x^{2}}{2}+\frac{y^{2}}{4}+\frac{z^{2}}{8}=4$.
(b) z, given $x^{2}+y^{2}+z^{2}=1$.
(c) $x y z$, given $x y+y z+z x=3$.
2. Use the method of Lagrange multipliers to show that the distance of the origin from the plane $a x+b y+c z=d$ is given by $\frac{|d|}{\sqrt{a^{2}+b^{2}+c^{2}}}$.
3. (Notes 2I-2) Find the point in the first octant on the surface $x^{3} y^{2} z=6 \sqrt{3}$ closest to the origin.
4. In each of these examples compute $\left(\frac{\partial x}{\partial u}\right)_{v}$
(a) $x=u^{2}+v+w^{3}$, where $u v w=1$.
(b) $x=u+v+w$, where $e^{w}=u+w$.
(c) $x=e^{w}$, where $w^{2}-w=u v$.
(d) $x=\frac{u v}{w}$, where $u w^{2}+\frac{v}{w}=1$.

18.02 Recitation 11

- Consider non-independent variables satisfying the relation $g(x, y, z)=0$. The partial $\left(\frac{\partial f}{\partial x}\right)_{y}$ is computed using the chain rule as follows. Since z is treated as a function of x and y differentiating gives

$$
\begin{aligned}
\left(\frac{\partial f}{\partial x}\right)_{y} & =f_{x}+f_{z} \frac{\partial z}{\partial x} \\
0 & =g_{x}+g_{z} \frac{\partial z}{\partial x}
\end{aligned}
$$

Plugging the value $\frac{\partial z}{\partial x}=-\frac{g_{x}}{g_{z}}$ from the second equation into the first gives

$$
\left(\frac{\partial f}{\partial x}\right)_{y}=\left(f_{x}-\frac{f_{z} g_{x}}{g_{z}}\right)
$$

Problems

1. Use the method of Lagrange multipliers to show that the distance of the origin from the plane $a x+b y+c z=d$ is given by $\frac{|d|}{\sqrt{a^{2}+b^{2}+c^{2}}}$.
2. (Notes 2I-2) Find the point in the first octant on the surface $x^{3} y^{2} z=6 \sqrt{3}$ closest to the origin.
3. In each of these examples compute $\left(\frac{\partial x}{\partial u}\right)_{v}$
(a) $x=e^{w}$, where $w^{2}-w=u v$.
(b) $x=\frac{u v}{w}$, where $u w^{2}+\frac{v}{w}=1$.
(c) $x=u^{2}+v w$, where $\sin w+u=\frac{v}{w}$.
4. Find the equation of the tangent plane to the surface $z^{2}=11 x^{2}+3 x y+2 y^{2}$ at the point $(1,2,5)$.
5. Find the direction in which the directional derivative of $f(x, y)=\frac{2 x y}{x^{2}+y^{2}}$ is maximized at the point $(1,2)$ and find the value of this directional derivative.

18.02 Recitation 12

- A partial differential equation is an equation involving a function and its derivatives. For example the equation

$$
f_{t}+\left(f_{x}\right)^{3}+6 f f_{x}=0
$$

is a partial differential equation for the function of two variables $f(x, t)$.

- Partial Differential Equations in Physics -

Wave equation Consider the vertical diaplacement function $y=f(x, t)$ of a taut string. It satisfies the one dimensional equation wave equation

$$
\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial f}{\partial t^{2}}
$$

The x, y and z components of the electric and magnetic field in vacuum also satisfy the three dimensional wave equation.
Heat equation Let $h(x, y, z, t)$ be the time-dependent temperature function in a room. It satisfies the equation heat equation

$$
\frac{\partial^{2} h}{\partial x^{2}}+\frac{\partial^{2} h}{\partial y^{2}}+\frac{\partial^{2} h}{\partial z^{2}}=\frac{\partial h}{\partial t}
$$

Laplace's equation Assuming the temperature function h of a room is in a steady state (i.e. does not change with time) it will satisfy Laplace's equation

$$
\frac{\partial^{2} h}{\partial x^{2}}+\frac{\partial^{2} h}{\partial y^{2}}+\frac{\partial^{2} h}{\partial z^{2}}=0
$$

The gravitational/electrostatic potential functions in vacuum (i.e. a region free of mass/charge) also satisfy Laplace's equation.

Problems

1. (Notes 2K-5) Find solutions to the one-dimensional heat equation $w_{x x}=w_{t}$ having the form

$$
w=\sin (k x) e^{r t}
$$

satifying the additional conditions $w(0, t)=w(1, t)=0$ for all t. Interpret your solution physically. What happens to the temparature as $t \rightarrow \infty$?
2. (Notes 2K-3) Find all solutions to the two-dimensional Laplace equation of the form

$$
h=a x^{2}+b x y+c y^{2}
$$

for some constants a, b and c. Show that they can be written in the form $c_{1} f_{1}(x, y)+$ $c_{2} f_{2}(x, y)$ for certain fixed polynomials $f_{1}(x, y)$ and $f_{2}(x, y)$ with arbitrary constants c_{1} and c_{2}.
3. For what constant c will the function

$$
h=\frac{e^{-\frac{c x^{2}}{t}}}{\sqrt{t}}
$$

satisfy the one-dimensional heat equation?

Figure 1.

Figure 2 .

18.02 Recitation 14

- Given a function of two variables $f(x, y)$ and a region R in the plane, the integral of f over R is expressed in polar coordinates by

$$
\iint_{R} f(x, y) d x d x=\iint_{R} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

- Consider a function of two variables $f(x, y)$ and a region R in the plane. Let $x(u, v), y(u, v)$ be written as functions of u, v. The integral of f can then be expressed with respect to the new variables u, v as

$$
\iint_{R} f(x, y) d x d y=\iint_{R} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

where

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right|
$$

is the Jacobian of the change of variables.

Problems

1. Use polar coordinates to evaluate
(a) $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \frac{1}{\sqrt{4-x^{2}-y^{2}}} d x d y$
(b) $\int_{0}^{1} \int_{x}^{\sqrt{4-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y$
(c) $\int_{0}^{1} \int_{x}^{1} x^{2} d y d x$
(d) The area enclosed by the cardiod $r=1-\cos \theta$.
2. Find the center of mass of the part of the annulus $\left\{1<x^{2}+y^{2}<b^{2}\right\}$ in the upper half plane. For what b does the center of mass lie outside the annulus itself?
3. Find the area of the region in the first quadrant bounded by the lines $y=x, y=$ $2 x$ and the hyperbolas $x y=1, x y=2$.
4. Evaluate the integral $\iint_{T} \sin \left(\frac{x+y}{x-2 y}\right) d x d y$ where T is the triangle with vertices $(1,0),(4,0)$ and $(3,1)$.
5. Use elliptical coordinates $x=a r \cos \theta, y=b r \sin \theta$ to show that the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\pi a b$.

18.02 Recitation 15

- A vector field $F(x, y)$ in the plane is a vector function of two variables

$$
F(x, y)=(f(x, y), g(x, y))=f(x, y) i+g(x, y) j
$$

- Given a curve C in the plane and a vector field $\vec{F}=f i+g j$ define the line integral to be

$$
\begin{equation*}
\int_{C} F \cdot d r=\int_{C}(f d x+g d y)=\int_{a}^{b}\left(f(x(t), y(t)) \frac{d x}{d t}+g(x(t), y(t)) \frac{d y}{d t}\right) d t \tag{1}
\end{equation*}
$$

where $(x(t), y(t))$ is a parametrization for the curve C. The first two terms in the equality (1) are notations for the line integral while the last term is the definition.

Problems

1. (Notes 4A-3) Write down an expression for each of the following vector fields
(a) Each vector has the same direction and magnitude as $i+2 j$.
(b) The vector at (x, y) is directed radially towards the origin with magnitude r^{2}.
(c) The vector at (x, y) is tangent to the circle through (x, y) with center at the origin, clockwise direction, magnitude r^{2}.
2. (Notes 4B-1) For each of the vector fields F and curves C evaluate $\int_{C} F . d r$
(a) $F=\left(x^{2}-y\right) i+2 x j, C_{1}, C_{2}$ both run from $(-1,0)$ to $(1,0)$ with C_{1} along the x-axis and C_{2} along the parabola $y=1-x^{2}$.
(b) $F=x y i-x^{2} j, C$: quarter circle running from $(0,1)$ to $(1,0)$.
(c) $F=y i-x j, C$: the triangle with vertices $(0,0),(0,1),(1,0)$ oriented clockwise.
(d) $F=y i, C$: ellipse $x=2 \cos t, y=\sin t$ oriented clockwise.
(e) $F=6 y i+x j, C$ is the curve $x=t^{2}, y=t^{3}$ running from $(1,1)$ to $(4,8)$.
(f) $F=(x+y) i+x y j, C$ is the broken line running from $(0,0$ to $(0,2)$ to $(1,2)$.
3. Calculate the work done by a space shuttle when it moves in the gravitational force field

$$
F=-G m_{1} m_{2} \frac{(x i+y j)}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}
$$

along the trajectory $(x(t), y(t))=(t \cos t, t \sin t)$ as t varies from $t=2 \pi$ to $t=4 \pi$.
4. (Notes 4B-3) For $F=i+j$ find a line segment C such that $\int_{C} F . d r$ is
(a) minimum (over all curves between the same endpoints as C)
(b) maximum
(c) zero.

18.02 Recitation 16

- Consider a vector field $F(x, y)=M(x, y) i+N(x, y) j$ in the plane. The following are equivalent
(a) the vector field is the gradient $F=\nabla f$ of some function f
(b) the line integral $\int_{C} F . d r=f(b)-f(a)$ for some function f on the plane and where b and a are the two endpoints of the curve C
(c) the line integral $\int_{C} F . d r=0$ for any closed curve C in the plane
(d) $M_{y}=N_{x}$.

We say that the vector field F is conservative in case any of the above is satisfied. The statement (b) above is referred to as the fundamental theorem of line integrals.

- Given a conservative vector field $F=M i+N j$, a function f satisfying $F=\nabla f$ is called a potential function for the vector field F. Such a potential function can be found in the following two ways
(a) $f(x, y)=\int_{C} F . d r$ where C is any curve joining (x, y) to some fixed point $\left(x_{0}, y_{0}\right)$
(b) setting $f_{x}=M$ we may solve

$$
f=\int_{0}^{x} M d x+g(y)
$$

for some function $g(y)$ which in turn can be found from $f_{y}=N$ via

$$
g(y)=C+\int_{0}^{y}\left(N-\int_{0}^{x} M_{y} d x\right) d y
$$

for some constant C.

Problems

1. Use geometry to compute the line integrals $\int_{C} F . d r$ where $F=\frac{x i+y j}{x^{2}+y^{2}}$ and the curve C is
(a) the semicircle in the upper half plane joining $(2,0)$ to $(-2,0)$
(b) the straight line joining $(1,1)$ to $(4,4)$
2. (Notes 4C-1) Let $f=x^{3} y+y^{3}$ and C be the curve $y^{2}=x$ from $(1,-1)$ to $(1,1)$. Calculate $F=\nabla f$. Then find $\int_{C} F . d r$ in three different ways
(a) directly
(b) using path independence to replace C by a simpler path.
(c) by using fundamental theorem of line integrals.
3. Find the value of a for which the following vector fields are conservative and find the corresponding potential functions
(a) $\left(y^{2}+2 x\right) i+a x y j$
(b) $e^{x+y}((x+a) i+x j)$
(c) $\left(a x y+x^{2}\right) i+\left(x^{2}+y^{2}\right) j$.
4. Check whether the gravitational vector field

$$
F=-G m_{1} m_{2} \frac{(x i+y j)}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}
$$

is conservative and if so find its potential function.

18.02 Recitation 17

- Given a vector field $F=M(x, y) i+N(x, y) j$ its curl is defined as the function

$$
\operatorname{curl} F=N_{x}-M_{y} .
$$

The divergence of the vector field is defined to be the function

$$
\operatorname{div} F=M_{x}+N_{y}
$$

- Given a vector field $F=M(x, y) i+N(x, y) j$ and a curve C the flux of F across C is defined to be

$$
\int_{C} F . n d s=\int_{C} M d y-N d x
$$

- Green's Theorem in Tangential form: Consider a vector field $F=$ $M(x, y) i+N(x, y) j$. If R is a region with boundary being curve C then

$$
\int_{C} M d x+N d y=\iint_{R}\left(N_{x}-M_{y}\right) d A
$$

Here the curve C is traversed so that the region R is on the right. The equation (1) can also be read as

$$
\int_{C} F . d r=\iint_{R} \operatorname{curl} F d A
$$

- Green's Theorem in Normal form: Consider a vector field $F=M(x, y) i+$ $N(x, y) j$. If R is a region with boundary being curve C then

$$
\int_{C} M d y-N d x=\iint_{R}\left(M_{x}+N_{y}\right) d A
$$

Here the curve C is traversed so that the region R is on the right. The equation (2) can also be read as

$$
\int_{C} F . n d s=\iint_{R} \operatorname{div} F d A .
$$

Problems

1. (Notes 4D-1) For each of the vector fields F and curves C evaluate $\int_{C} F . d r$ both directly and using Green's theorem
(a) $F=2 y i+x j, C: x^{2}+y^{2}=1$
(b) $F=x^{2}(i+j), C$: rectangle joining $(0,0),(2,0),(0,1)$ and $(2,1)$
(c) $F=x y i+y^{2} j, C: y=x^{2}$ and $y=x, 0 \leq x \leq 1$.
2. Use Green's theorem to evaluate $\int_{C} P d x+Q d y$ where
(a) $P=2 y+\sqrt{9+x^{3}}, Q=5 x+e^{\arctan y}$, C is the positively oriented circle $x^{2}+y^{2}=4$
(b) $P=-y^{2}+\exp \left(e^{x}\right), Q=\arctan y, C$ is the boundary of the region between the parabolas $y=x^{2}$ and $x=y^{2}$.
3. (Notes 4D-4) Show that $\int_{C}-y^{3} d x+x^{3} d y$ is positive along any simple closed curve C directed counterclockwise.
4. (Notes 4D-5) Show that the value of the integral $\int_{C} x y^{2} d x+\left(x^{2} y+2 x\right) d y$ around any square C in the $x y$ plane only depends on the size of the square and not upon its position.
5. (Notes 4F-3) Verify Green's theorem in normal form for the vector field $F=$ $x i+y j$ where C is the closed curve formed by the upper half of the unit circle and the x axis interval $[-1,1]$.

18.02 Recitation 18

- Given a function $f(x, y)$ and a curve C the line integral of f with respect to arclength is defined to be

$$
\int_{C} f d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t
$$

for some parametrization $(x(t), y(t))$ of C.

- Given a vector field $F=M(x, y) i+N(x, y) j$ and a curve C the flux of F across C is

$$
\int_{C} F . n d s=\int_{C} M d y-N d x .
$$

Here n is the unit normal vector to the curve C obtained by rotating the unit tangent vector clockwise by angle $\frac{\pi}{2}$.

- Given a vector field $F=M(x, y) i+N(x, y) j$ its divergence is defined to be the function

$$
\operatorname{div} F=M_{x}+N_{y}
$$

- Green's Theorem in Normal form: Consider a vector field $F=M(x, y) i+$ $N(x, y) j$. If R is a region with boundary being curve C then

$$
\int_{C} M d y-N d x=\iint_{R}\left(M_{x}+N_{y}\right) d A
$$

Here the curve C is traversed so that the region R is on the right. The equation (1) can also be read as

$$
\int_{C} F . n d s=\iint_{R} \operatorname{div} F d A .
$$

Problems

1. Calculate curl and divergence for the vector fields
(a) $x^{3} i+y^{3} j$
(b) $2 x i+3 y j$
(c) $x i-y j$.

Calculate the flux of each of the above vector fields across the positively unit circle $x^{2}+y^{2}=1$. Now verify Green's theorem in normal form for the above vector fields.
2. (Notes 4E-1) Let $F=-y i+x j$. Evaluate $\int_{C} F . n d s$ geometrically where
(a) C is the circle of radius a centered at the origin, directed counterclockwise.
(c) C is the line running from $(0,0)$ to $(1,0)$.
3. (Notes 4E-5) Let F be defined everywhere except the origin so that the direction of F is radially outwards and its magnitude is $|F|=r^{m}$ where m is an integer. Evaluate the flux of F accross a circle of radius a. For what value of m will this flux be independent of a ?
4. (Notes 4F-2) Let $F=\omega(-y i+x j)$
(a) Calculate $\operatorname{div} F$ and $\operatorname{curl} F$.
(b) Using physical interpretations explain why it is resonable that $\operatorname{div} F=0$.
(c) Using physical interpretations explain why it is resonable that curl $F=2 \omega$ at the origin.

18.02 Recitation 19

- Given a function $f(x, y)$ and a curve C the line integral of f with respect to arclength is defined to be

$$
\int_{C} f d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t
$$

for some parametrization $(x(t), y(t))$ of C.

- Given a vector field $F=M(x, y) i+N(x, y) j$ and a curve C the flux of F across C is

$$
\int_{C} F . n d s=\int_{C} M d y-N d x
$$

Here n is the unit normal vector to the curve C obtained by rotating the unit tangent vector clockwise by angle $\frac{\pi}{2}$.

- Given a vector field $F=M(x, y) i+N(x, y) j$ its divergence is defined to be the function

$$
\operatorname{div} F=M_{x}+N_{y} .
$$

- Green's Theorem in Normal form: Consider a vector field $F=M(x, y) i+$ $N(x, y) j$. If R is a region with boundary being curve C then

$$
\begin{equation*}
\int_{C} M d y-N d x=\iint_{R}\left(M_{x}+N_{y}\right) d A \tag{1}
\end{equation*}
$$

Here the curve C is traversed so that the region R is on the right. The equation (1) can also be read as

$$
\int_{C} F . n d s=\iint_{R} \operatorname{div} F d A .
$$

- Extended Green's theorem: Consider a region R with boundary being the union of curves C_{1}, \ldots, C_{m}. We orient the curves C_{i} such that the region R lies on the right while traversing C_{i} in the positively oriented direction. Then the generalized Green's theorem says

$$
\int_{C_{1}} F . d r+\ldots+\int_{C_{m}} F . d r=\iint_{R} \operatorname{curl} F d A
$$

for any vector field F.

- A simply connected region is a region R consisting of one piece and with the property: for any simple closed curve C contained in R the interior of C lies in R.
- For a continously differentiable vector field F defined on a simple connected region R, the following are equivalent:
(a) there exits a continuously differentiable function f defined on R such that $\nabla f=F$
(b) curl $F=0$ for all points in R.

The above are not necessarily equivalent for a non-simply connected region.

Problems

1. Calculate curl and divergence for the vector fields
(a) $x^{3} i+y^{3} j$
(b) $2 x i+3 y j$
(c) $x i-y j$.

Calculate the flux of each of the above vector fields across the positively unit circle $x^{2}+y^{2}=1$. Now verify Green's theorem in normal form for the above vector fields.
2. (Notes 4E-1) Let $F=-y i+x j$. Evaluate $\int_{C} F . n d s$ geometrically where
(a) C is the circle of radius a centered at the origin, directed counterclockwise.
(c) C is the line running from $(0,0)$ to $(1,0)$.
3. (Notes 4E-5) Let F be defined everywhere except the origin so that the direction of F is radially outwards and its magnitude is $|F|=r^{m}$ where m is an integer. Evaluate the flux of F accross a circle of radius a. For what value of m will this flux be independent of a ?
4. (Notes 4F-2) Let $F=\omega(-y i+x j)$
(a) Calculate $\operatorname{div} F$ and curl F.
(b) Using physical interpretations explain why it is resonable that $\operatorname{div} F=0$.
(c) Using physical interpretations explain why it is resonable that $\operatorname{curl} F=2 \omega$ at the origin.
5. Which of the following regions are simply connected?
(a) $R=$ the unit disk $\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$
(b) $R=$ the upper half plane $\{(x, y) \mid y \geq 0\}$.
(c) $R=$ all points in the plane except the origin
(d) $R=$ all points in the plane except the first quadrant.

Limits of triple integrals

Figure 1

Cylindrical coordinates

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& z=z
\end{aligned}
$$

Figure 2 .

Spherical wordinates

18.02 Recitation 22

- Given a surface S and a paramentrization $S=\{(x(u, v), y(u, v), z(u, v)) \mid(u, v) \in$ $\left.D \subset \mathbb{R}^{2}\right\}$ the surface area element for S is

$$
d S=\sqrt{\left(\frac{\partial(y, z)}{\partial(u, v)}\right)^{2}+\left(\frac{\partial(z, x)}{\partial(u, v)}\right)^{2}+\left(\frac{\partial(x, y)}{\partial(u, v)}\right)^{2}} d u d v
$$

- The integral with respect to surface area of a function $f(x, y, z)$ is given in terms of this parametrization via

$$
\iint_{S} f(x, y, z) d S=\iint_{D} f(x(u, v), y(u, v), z(u, v)) \sqrt{\left(\frac{\partial(y, z)}{\partial(u, v)}\right)^{2}+\left(\frac{\partial(z, x)}{\partial(u, v)}\right)^{2}+\left(\frac{\partial(x, y)}{\partial(u, v)}\right)^{2}} d u d v
$$

- Given a vector field $\vec{F}=P(x, y, z) \vec{i}+Q(x, y, z) \vec{j}+R(x, y, z) \vec{k}$ in space. The flux of F across the surface S is defined as

$$
\iint_{S} \vec{F} \cdot \vec{n} d S=\iint_{S} \vec{F} \cdot \overrightarrow{d S}=\iint_{D}\left(P \frac{\partial(y, z)}{\partial(u, v)}+Q \frac{\partial(z, x)}{\partial(u, v)}+R \frac{\partial(x, y)}{\partial(u, v)}\right) d u d v
$$

where \vec{n} is the unit normal vector to the surface at the point (x, y, z) and $(x(u, v), y(u, v), z(u, v))$ is a parametrization for S.

- Given a vector field $\vec{F}=P \vec{i}+Q \vec{j}+R \vec{k}$ in space its divergence is defined to be the function

$$
\vec{\nabla} \cdot \vec{F}=P_{x}+Q_{y}+R_{z}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}
$$

- Divergence theorem: Given a closed surface S which bounds a solid region R in space one has

$$
\iint_{S} F \cdot d S=\iiint_{R} \nabla \cdot F d V
$$

where the left hand side denotes the flux out of the region R.

Problems

1. Find parametrizations for the surfaces
(a) The hemisphere $x^{2}+y^{2}+z^{2}=4, x \geq 0$
(b) Part of the cone $y^{2}=x^{2}+z^{2}$ with $0 \leq y \leq 2$
(c) Part of cylinder $x^{2}+y^{2}=1$ between the $z=2$ and $z=4$ planes
(d) Part of the paraboloid $z=x^{2}+y^{2}$ below the $z=1$ plane.
2. Find the the flux of the vector fields $F=i, F=x i$ and $F=x i+y j+z k$ for each of the surfaces in problem 1.
3. Find the surface areas of each of the parts in problem 1.
4. (Notes 6B-9) Find the center of mass of a uniform density $\delta=1$ hemispherical shell of radius a which has its base on the $x y$-plane.
5. Using divergence theorem, find the flux of the vector field F out of the closed surface S where
(a) $F=x^{3} i+y^{3} j+z^{3} k$, and S is the surface of the cylinder $x^{2}+y^{2}=9$ between $z=-1$ and $z=4$
(b) $F=(x+\cos y) i+(y+\sin z) j+\left(z+e^{x}\right) k$ and S is the boundary of the region bounded by the planes $z=0, y=0, y=2$ and $z=1-x^{2}$
(c) $F=x i+y j+3 k$ and S is the boundary of the region bounded by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=4$.
6. Show that the flux of the radial vector field $F=\frac{1}{3}(x i+y j+z k)$ out through the boundary of any solid region equals the volume of the region.
7. Using divergence theorem find the flux of the vector field $F=e^{x+z} j$ through the non-closed upper hemisphere given by $x^{2}+y^{2}+z^{2}=1$ and $z \geq 0$.

18.02 Recitation 23

- Consider the vector field $\mathbf{F}=P i+Q j+R k$ in space. The divergence of \mathbf{F} is the function

$$
\nabla \cdot \mathbf{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}
$$

The curl of \mathbf{F} is the vector field

$$
\begin{aligned}
\nabla \times \mathbf{F} & =\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right| \\
& =\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) i+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) j+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) k
\end{aligned}
$$

- Divergence theorem: Given a closed surface S which bounds a solid region R in space one has

$$
\iint_{S} F \cdot d S=\iiint_{R} \nabla \cdot F d V
$$

where the left hand side denotes the flux out of the region R.

- Consider a vector field \mathbf{F} in space. The following are equivalent
(a) the vector field is the gradient $\mathbf{F}=\nabla f$ of some function f
(b) the line integral $\int_{C} \mathbf{F} . d r=0$ for any closed curve C in space
(c) there exists some function f in space such that the line integral $\int_{C} \mathbf{F} . d r=$ $f(b)-f(a)$ for all curves C where b and a are the two endpoints of the curve C
(d) the curl $\nabla \times \mathbf{F}=0$.

We say that the vector field F is conservative in case any of the above is satisfied. The statement (c) above is referred to as the fundamental theorem of line integrals and the function f is called the potential function.

Problems

1. Verify divergence theorem in the following cases
(a) $\mathbf{F}=x i+y j+z k$ and S is the spherical surface $x^{2}+y^{2}+z^{2}=1$.
(b) $\mathbf{F}=(y+z) i+(z+x) j+(x+y) k$ and S is the surface of the tetrahedron formed by the coordinate planes and the plane $x+y+z=1$.
(c) $\mathbf{F}=y^{2} j+y z k$ and S is formed by the cylinder $y^{2}+z^{2}=1$ and the coordinates planes $x=0$ and $x=1$.
2. Using divergence theorem find the flux of the vector field $F=e^{x+z} j$ through the non-closed upper hemisphere given by $x^{2}+y^{2}+z^{2}=1$ and $z \geq 0$.
3. (Notes 6D-1) Find the line integrals $\int_{C} \mathbf{F} . d r$ for
(a) $\mathbf{F}=y i+z j-x k$ and C is the twisted cubic $(x, y, z)=\left(t, t^{2}, t^{3}\right)$ running from $(0,0,0)$ to $(1,1,1)$.
(b) $\mathbf{F}=y i+z j-x k$ and C is the line running from $(0,0,0)$ to $(1,1,1)$.
(c) $\mathbf{F}=y i+z j-x k$ and C is the broken line segment running from $(0,0,0)$ to $(1,0,0)$ to $(1,1,0)$ to $(1,1,1)$.
(d) $\mathbf{F}=z x i+z y j+x k$ and C is the helix $(x, y, z)=(\cos t, \sin t, t)$ from $(1,0,0)$ to $(1,0,2 \pi)$.
4. (Notes 6E-3) For each vector field below find its curl and find a potential function if the curl is zero
(a) $x i+y j+z k$
(b) $(2 x y+z) i+x^{2} j+x k$
(c) $\left(y^{2} z^{2}\right) i+\left(x^{2} z^{2}\right) j+\left(x^{2} y^{2}\right) k$
(d) $y z i+x z j+x y k$.

18.02 Recitation 24

- Stokes' theorem: Consider a vector field \mathbf{F} in space. If S is a surface with boundary C then

$$
\int_{C} F \cdot d r=\iint_{S} c u r l \mathbf{F} \cdot d S
$$

where the orintations of S and C are compatible via the right hand rule.

Problems

1. Verify Stokes' theorem when S is the hemisphere $z=\sqrt{1-x^{2}-y^{2}}$ and
(a) $\mathbf{F}=x i+y j+z k$
(b) $\mathbf{F}=y i-x j+z k$
2. Use Stokes theorem to compute $\int_{C} \mathbf{F} . d r$ where
(a) $\mathbf{F}=2 z i+x j+3 y k$ and C is the intersection of the plane $z=y$ with the cylinder $x^{2}+y^{2}=4$ orineted counterclockwise when viewed from above.
(b) $\mathbf{F}=(y-x, x-z, x-y)$ and C is the boundary of the part of the plane $x+2 y+z=2$ that lies in the first octant oriented counterclockwise when viewed from above.
3. Use Stokes theorem to evaluate $\iint_{S} \operatorname{curl} \mathbf{F} . d S$ where $\mathbf{F}=2 y i+3 x j+e^{z} k$ and S is part of the paraboloid $z=x^{2}+y^{2}$ below the plane $z=4$ with normal vector pointing upwards.
4. (Notes $6 \mathrm{~F}-4)$ Show by direct calculation that $\operatorname{div}(\operatorname{cur} l \mathbf{F})=0$ for any vector field F. Now show that

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d S=0
$$

for any closed surface S using both Divergence and Stokes' theorems.

18.02 Recitation 25

- Vector Calculus: Any successive composition in the following diagram is zero
$\{$ functions $\} \xrightarrow[\nabla]{\text { grad }}\{$ vector fields $\} \underset{\nabla \times}{\stackrel{\text { curl }}{ }}\{$ vector fields $\} \xrightarrow[\nabla]{\text { div }}\{$ functions $\}$.
In other words we have

$$
\begin{aligned}
\operatorname{curl}(\operatorname{grad} f) & =0 & & (\nabla \times(\nabla f)=0) \quad \text { and } \\
\operatorname{div}(\operatorname{curl} F)=0 & & (\nabla \cdot(\nabla \times \mathbf{F})=0) &
\end{aligned}
$$

The non-successive composition is the Laplacian of a function

$$
\nabla^{2} f=\nabla \cdot(\nabla f)=\operatorname{div}(\operatorname{grad} f)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

Problems

1. Prove the identities $\operatorname{curl}(\operatorname{grad} f)=0, \operatorname{div}(\operatorname{curl} F)=0$ and

$$
\operatorname{div}(\operatorname{grad} f)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

2. Show that for any closed surface S

$$
\iint_{S} \operatorname{curl} l \mathbf{F} \cdot d S=0
$$

using both Divergence and Stokes' theorems.
3. (Notes 6H-3) Prove that for any scalar function ϕ and vector field \mathbf{F} one has
(a) $\nabla \cdot(\phi \mathbf{F})=\phi \nabla \cdot \mathbf{F}+\mathbf{F} \cdot \nabla \phi$
(b) $\nabla \times(\phi \mathbf{F})=\phi \nabla \times \mathbf{F}+(\nabla \phi) \times \mathbf{F}$
(c) $\nabla \cdot(\mathbf{F} \times \mathbf{G})=\mathbf{G} \cdot \nabla \times \mathbf{F}-\mathbf{F} \cdot \nabla \times \mathbf{G}$

18.02 Recitation 26

- Vector Calculus: Any successive composition in the following diagram is zero

In other words we have

$$
\begin{aligned}
\operatorname{curl}(\operatorname{grad} f) & =0 & & (\nabla \times(\nabla f)=0) \\
\operatorname{div}(\operatorname{curl} F) & =0 & & (\nabla \cdot(\nabla \times \mathbf{F})=0)
\end{aligned}
$$

The non-successive composition is the Laplacian of a function

$$
\nabla^{2} f=\nabla \cdot(\nabla f)=\operatorname{div}(\operatorname{grad} f)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

- Maxwell's equations:

Law	Differential form	Integral form
Gauss' Law	$\nabla \cdot E=\rho$	$\iint_{S} E \cdot d S=Q$
Gauss' Law for Magnetism	$\nabla \cdot B=0$	$\iint_{S} B \cdot d S=0$
Faraday's Law	$\nabla \times E=-B_{t}$	$\int_{C} E \cdot d r=-\frac{\partial}{\partial t} \iint_{S} B \cdot d S$
Ampere's Law	$\nabla \times B=j+E_{t}$	$\int_{C} B \cdot d r=I+\frac{\partial}{\partial t} \iint_{S} E \cdot d S$

E and B are the electric and magenetic fields while Q, I, ρ and j are total charge, total current, charge density and current density respectively.

Problems

1. Prove the identities $\operatorname{curl}(\operatorname{grad} f)=0, \operatorname{div}(\operatorname{curl} F)=0$ and

$$
\operatorname{div}(\operatorname{grad} f)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

2. Show that for any closed surface S

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d S=0
$$

using both Divergence and Stokes' theorems.
3. (Notes $6 \mathrm{H}-3$) Prove that for scalar functions f, g and vector fields \mathbf{F}, \mathbf{G} one has
(a) $\nabla(f g)=f \nabla g+g \nabla f$.
(b) $\nabla \cdot(f \mathbf{F})=f \nabla \cdot \mathbf{F}+\mathbf{F} \cdot \nabla f$
(c) $\nabla \times(f \mathbf{F})=f \nabla \times \mathbf{F}+(\nabla f) \times \mathbf{F}$
(d) $\nabla \cdot(\mathbf{F} \times \mathbf{G})=\mathbf{G} \cdot \nabla \times \mathbf{F}-\mathbf{F} \cdot \nabla \times \mathbf{G}$
4. Show how to go back and forth between the integral and differential forms of Maxwell's equations. Do the same with the equations for charge conservation

$$
\rho_{t}=-\nabla \cdot j \quad \text { and } \quad Q_{t}=-I
$$

