New results and open problems about Bergman kernel asymptotics

George Marinescu & Nikhil Savale

Universität zu Köln

August 28, 2018

New trends and open problems in Geometry and Global Analysis, Castle Rauischholzhausen Marburg

イロン イボン イヨン イヨン

Bargman Karnala	Motivation
Sub-Riemannian (sR) geometry	Definitions
sR spectral geometry	Exa mp les
S ¹ , invariant sR structures & Bergman kernels	Main results
S Internet of other and a benginer kenter	Perspectives

Part I:

Survey of Bergman kernel asymptotics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Motivation

Motivation Definitions Examples Main results Perspectives

-

- Tian-Yau-Donaldson program
- Berezin-Toeplitz quantization
- Arithmetic geometry (asymptotics of the analytic torsion)
- Quantization of Chern-Simons theory
- Random Kähler geometry, quantum chaos
- Quantum Hall effect

Motivation Definitions Examples Main results Perspectives

Bergman Projection

- (X, Θ) Hermitian manifold, $\dim X = n$
- volume form $dv_X = \Theta^n/n!$
- $(L,h) \rightarrow X$ holomorphic Hermitian line bundle

•
$$L^2(X,L) =$$
 space of L^2 sections

•
$$(s,s') = \int_X \langle s(x), s'(x) \rangle_h \, dv_X(x) \, , \, s,s' \in L^2(X,L).$$

- $H^0_{(2)}(X,L) =$ space of L^2 holomorphic sections
- $P: L^2(X,L) \to H^0_{(2)}(X,L)$ Bergman projection

Motivation Definitions Examples Main results Perspectives

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Bergman Kernel

•
$$\{s_j : j = 1, \dots, d_p\}$$
 ONB of $H^0_{(2)}(X, L)$.

•
$$P(\cdot, \cdot) : X \times X \to L \boxtimes L^*$$

 $P(x, y) = \sum_{j=1}^{d_p} s_j(x) \otimes s_j(y)^*$ Bergman kernel

•
$$P(x,x) = \sum_{j=1}^{d_p} |s_j(x)|_h^2$$
 Bergman density function

•
$$(Ps)(x) = \int_X P(x,y)s(y)dv_X(y), \ s \in L^2(X,L)$$

• Bergman kernel does not depend on the choice of ONB

Motivation Definitions **Examples** Main results Perspectives

Example 1

•
$$X = \mathbb{D} \subset \mathbb{C}$$
, (L, h) trivial

•
$$H^0_{(2)}(X,L) = L^2(\mathbb{D},d\lambda) \cap \mathcal{O}(\mathbb{D})$$

• ONB:
$$\sqrt{rac{j+1}{\pi}}z^j$$
, $j=0,1,\ldots$ \rightsquigarrow Bergman kernel

$$P(z,w) = \frac{1}{\pi} \sum_{j=0}^{\infty} (j+1) z^j \overline{w}^j = \frac{1}{\pi} \frac{1}{(1-z\overline{w})^2}$$

・ロン ・御 と ・ ヨ と ・ ヨ と

= 990

Motivation Definitions **Examples** Main results Perspectives

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨ のなべ

- We are actually interested in a semiclassical limit!
- $L^p = L^{\otimes p}$
- P_p the Bergman projection on $H^0_{(2)}(X, L^p)$
- Asymptotics of $P_p(x,y)$ and $P_p(x,x)$ as $p \to \infty$

Motivation Definitions **Examples** Main results Perspectives

Example 2

• $X = \mathbb{P}^n$, Fubini-Study metric:

$$\omega_{FS} = \frac{\sqrt{-1}}{2\pi} \partial \overline{\partial} \log(|z_0|^2 + \ldots + |z_n|^2)$$

•
$$L = \mathcal{O}(1), \ h_{FS} = (|z_0|^2 + \ldots + |z_n|^2)^{-1}$$

• $H^0_{(2)}(X,L^p) = H^0(X,L^p) =$ space of homogeneous polynomials in n+1 variables of degree p

• Basis
$$s_{\alpha} \sim z^{\alpha}$$
, $\alpha \in \mathbb{N}_0^{n+1}$, $|\alpha| = p$, $\|s_{\alpha}\|_{L^2}^2 = \frac{\alpha!}{(n+p)!}$

•
$$P_p(x,y) = \sum_{|\alpha|=p} \frac{(n+p)!}{\alpha!} s_{\alpha}(x) \otimes s_{\alpha}(y)^*$$

•
$$P_p(x,x) = \frac{(n+p)!}{p!} = p^n + b_{n-1}p^{n-1} + \ldots + b_n$$

Motivation Definitions **Examples** Main results Perspectives

Curvature

- Hermitian holomorphic line bundle $(L,h) \rightarrow X$
- Curvature form $c_1(L,h) = \frac{\sqrt{-1}}{2\pi} \, (\nabla^L)^2$, (∇^L Chern connection)
- local holomorphic frame s of L on $U \subset X \leadsto$

$$|s(x)|_h^2 = e^{-2\varphi(x)}\,,\quad x\in U$$

where $\varphi: U \to \mathbb{R}$ is smooth, called local weight

•
$$c_1(L,h)|_U = dd^c \varphi = \frac{\sqrt{-1}}{\pi} \partial \overline{\partial} \varphi$$

• (L,h) positive : $\Leftrightarrow c_1(L,h)$ positive $\Leftrightarrow \left(\frac{\partial^2 \varphi}{\partial z_j \partial \overline{z}_k}\right)$ positive definite

• (L,h) semipositive : $\Leftrightarrow c_1(L,h)$ semipositive $\Leftrightarrow \left(\frac{\partial^2 \varphi}{\partial z_j \partial \overline{z}_k}\right)$ positive semidefinite

Motivation Definitions Examples Main results Perspectives

Asymptotic expansion

Theorem (Catlin 1998, Zelditch 1999)

$$(X,\omega)$$
 compact Kähler, $(L,h) o X$, with $c_1(L,h) = \omega$. Then

$$P_p(x,x) = b_0(x)p^n + b_1(x)p^{n-1} + \ldots = \sum_{j=0}^{\infty} b_j(x)p^{n-j}, p \to \infty$$

where $b_0 = 1$.

• Tian (1990):
$$P_p(x,x) = b_0(x)p^n + O(p^{n-1})$$

•
$$b_1 = rac{1}{8\pi} r(\omega)$$
, $r(\omega) =$ scalar curvature of ω (Z. Lu)

•
$$\pi^2 b_2 = -\frac{\Delta r(\omega)}{48} + \frac{1}{96} |R^{TX}|^2 - \frac{1}{24} |\operatorname{ric}_{\omega}|^2 + \frac{1}{128} r(\omega)^2$$

(Z. Lu, X. Wang)

э

Motivation Definitions Examples Main results Perspectives

Compatibility with Riemann-Roch-Hirzebruch

$$\begin{split} &\int_X P_p(x,x) dv_X = \int_X \sum_j |S_j|_h^2 dv_X = \dim H^0(X,L^p) \\ &\int_X P_p(x,x) dv_X = \int_X (b_0(x)p^n + b_1(x)p^{n-1} + b_2(x)p^{n-2} + O(p^{n-3})) \, dv_X \\ &= p^n \int_X \frac{\omega^n}{n!} + p^{n-1} \int_X \frac{r(\omega)}{8\pi} \frac{\omega^n}{n!} + p^{n-2} \int_X b_2(x) \frac{\omega^n}{n!} + O(p^{n-3}) \\ &= p^n \int_X \frac{c_1(L)^n}{n!} + p^{n-1} \int_X \frac{c_1(X)}{2} \frac{c_1(L)^{n-1}}{(n-1)!} + \\ &+ p^{n-2} \int_X \{ \operatorname{td} \ (T^{(1,0)}X) \}^{(4)} \frac{c_1(L)^{n-2}}{(n-2)!} \\ &+ O(p^{n-3}) \end{split}$$

Motivation Definitions Examples Main results Perspectives

Asymptotic expansion variation

Theorem

 (X,Θ) compact Hermitian, $(L,h) \to X$ positive, $\omega = c_1(L,h).$ Then

$$P_p(x,x) = b_0(x)p^n + b_1(x)p^{n-1} + \ldots = \sum_{j=0}^{\infty} b_j(x)p^{n-j}, p \to \infty$$

where $b_0 = c_1(L,h)^n / \Theta^n$ and

$$b_1 = \frac{1}{8\pi} b_0 \left[r(\omega) - 2\Delta_\omega \log(\det b_0) \right]$$

 $\alpha_1(x),\ldots,\alpha_n(x)$ eigenvalues of $c_1(L,h)$ w.r.t. $\Theta \rightsquigarrow$

$$b_0(x) = \alpha_1(x) \dots \alpha_n(x)$$

◆□ ▶ ◆周 ▶ ◆ ヨ ▶ ◆ ヨ ▶ ○ ヨ ○ の Q (>)

Motivation Definitions Examples Main results Perspectives

Proof (local index theorem: Dai/Liu/Ma, Ma/-)

- Localization uses spectral gap of the Kodaira Laplacian $\Box_p = \overline{\partial}^* \overline{\partial} : \Omega^{0,0}(X, L^p) \to \Omega^{0,0}(X, L^p)$
- Spec $(\Box_p) \subset \{0\} \cup [C_0 p C_1, \infty), C_0 = \inf_{x \in X} \alpha_1(x)$

•
$$f \in C_0^\infty(\mathbb{R}), \ F = \widehat{f} \rightsquigarrow$$

$$\left|F(\Box_p)(x,y) - P_p(x,y)\right|_{C^l} = O(p^{-\infty})$$

- $F(\Box_p)(x,y)$ depends only on geometric data on $B(x,\varepsilon)$
- $ullet \sim P_p(x,y)$ depends only on local data
- Work on $B^{TX}(0,\varepsilon)\equiv B(x,\varepsilon)$ with a local model Laplacian
- Rescale coordinates and develop the rescaled operator in Taylor series

Motivation Definitions Examples Main results Perspectives

Interpretation of the first term b_0

- $P_p(x,x) = b_0(x)p^n + O(p^{n-1}) \rightsquigarrow$ holomorphic sections are spread everywhere over X ($b_0(x) \neq 0$).
- They concentrate where the curvature is strong
- $P_p(x, y)$ localizes near each fixed point x and equals approximatively a "peak section" which is close to a Gaussian $p^n \exp(-|x-y|^2/\sqrt{p})$.
- To prove this kind of localization is a key point.
- Can put peak sections near every point and they decay quickly enough that they nearly don't overlap each other.
- Heuristically then, in the limit we can find an L²-orthonormal basis of sections parametrized by the points of X, each point x corresponding to a section localized entirely at x.

SOA

Motivation Definitions Examples Main results Perspectives

Interpretation of the second term b_1

•
$$P_p(x,x) = b_0(x)p^n + b_1(x)p^{n-1} + O(p^{n-2})$$

- $b_1(x)$ is essentially the scalar curvature of the metric $\omega=c_1(L,h)$
- Scalar curvature measures the difference in volume of a small geodesic ball compared with the volume of a Euclidean ball of the same radius.
- So the scalar curvature tells us how closely we can push together the peaked sections making up our L^2 -orthonormal basis from above.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

Motivation Definitions Examples Main results Perspectives

Tian's approximation

Theorem

$$(L,h) \to X$$
 positive, Kodaira map:
 $\Phi_p : X \to \mathbb{P}(H^0(X,L^p)^*), x \mapsto \{S \in H^0(X,L^p) : S(x) = 0\}$ Then
 $\left|\frac{1}{p}\Phi_p^*(\omega_{FS}) - c_1(L,h)\right|_{C^\ell} \le \frac{C_\ell}{p}$

Proof.

$$\begin{split} \frac{1}{p} \Phi_p^*(\omega_{FS}) &= c_1(L,h) + \frac{\sqrt{-1}}{2\pi p} \partial \overline{\partial} \log P_p(x,x) \\ c_1(L,h) &+ \frac{\sqrt{-1}}{2\pi p} \partial \overline{\partial} \log p^n \left(b_0(x) + O\left(\frac{1}{p}\right) \right) \end{split}$$

Generalizations

Motivation Definitions Examples Main results Perspectives

ж.

- Semipositive bundles (asymptotics on the positive part)
- Noncompact manifolds (asymptotics on compact sets)
- Orbifolds
- Symplectic manifolds
- Singular metrics

Open questions

Motivation Definitions Examples Main results Perspectives

ж.

- Semipositive bundles (asymptotics near degenerate points)
- Noncompact manifolds (uniform asymptotics near infinity)
- Complex spaces (asymptotics near singularities)
- Manifolds with boundary (asymptotics near the boundary)
- Partial Bergman kernels

Sub-Riemannian (sR) geometry

・ロト (日下・ヨト・ヨト ヨー・クタウ

Examples Hausdorff dimension Abnormal geodesics

Part II:

Semipositive Bergman kernels & sub-Riemannian geometry

Sub-Riemannian (s R) geometry Examples Hausdorff dimension Abnormal geodesics

Sub-Riemannian (sR) geometry

Sub-Riemannian (sR) geometry is the study of metric distributions $(Y, E \subset TY, g^E)$ inside the tangent space.

Subbundle E is assumed to be *bracket-generating*.

Peculiar phenomena (Hausdorff dimension & abnormal geodesics..) arise.

References:

- R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications. 2002.
- M. Gromov, Carnot-Carathéodory spaces seen from within, 1996, (in Bellaïche & Risler, Sub-Riemannian geometry)

Sub-Riemannian (s R) geometry Examples Hausdorff dimension Abnormal geodesics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

Bracket-generating distributions

 $E \subset TY$ bracket generating: $C^{\infty}(E)$ generates $C^{\infty}(TY)$ under Lie bracket [,].

Examples:

1. Contact case: $E^{2m} = \ker \alpha \subset TY^{2m+1}$; rank $d\alpha|_E = 2m$. Normal form (Darboux): $\alpha = dy_3 - y_2 dy_1$; $E = \mathbb{R} \left[\partial_{y_2}, \partial_{y_1} + y_2 \partial_{y_3} \right]$ Generation (1 step): $[\partial_{y_2}, \partial_{y_1} + y_2 \partial_{y_3}] = \partial_{y_3}$

Sub-Riemannian (sR) geometry Examples Hausdorff dimension Abnormal geodesics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

Bracket-generating distributions

 $E \subset TY$ bracket generating: $C^{\infty}(E)$ generates $C^{\infty}(TY)$ under Lie bracket [,].

Examples:

1. Contact case: $E^{2m} = \ker \alpha \subset TY^{2m+1}$; rank $d\alpha|_E = 2m$. Normal form (Darboux): $\alpha = dy_3 - y_2 dy_1$; $E = \mathbb{R} \left[\partial_{y_2}, \partial_{y_1} + y_2 \partial_{y_3} \right]$ Generation (1 step): $[\partial_{y_2}, \partial_{y_1} + y_2 \partial_{y_3}] = \partial_{y_3}$

2. Quasi-contact case: $E^{2m+1} = \ker \alpha \subset TX^{2m+2}$; rank $d\alpha|_E = 2m$. Normal form (Darboux): $\alpha = dy_3 - y_2 dy_1$; $E = \mathbb{R}\left[\partial_{y_2}, \partial_{y_1} + y_2 \partial_{y_3}\right]$ Generation (1 step): $\left[\partial_{y_2}, \partial_{y_1} + y_2 \partial_{y_3}\right] = \partial_{y_3}$

Sub-Riemannian (sR) geometry Examples Hausdorff dimension Abnormal geodesics

イロト イポト イヨト イヨト 一日

Bracket-generating distributions

 $E \subset TY$ bracket generating: $C^{\infty}(E)$ generates $C^{\infty}(TY)$ under Lie bracket [,].

Examples:

1. Contact case: $E^{2m} = \ker \alpha \subset TY^{2m+1}$; rank $d\alpha|_E = 2m$. Normal form (Darboux): $\alpha = dy_3 - y_2 dy_1$; $E = \mathbb{R} \left[\partial_{y_2}, \partial_{y_1} + y_2 \partial_{y_3} \right]$ Generation (1 step): $[\partial_{y_2}, \partial_{y_1} + y_2 \partial_{y_3}] = \partial_{y_3}$

2. Quasi-contact case: $E^{2m+1} = \ker \alpha \subset TX^{2m+2}$; rank $d\alpha|_E = 2m$. Normal form (Darboux): $\alpha = dy_3 - y_2 dy_1$; $E = \mathbb{R}\left[\partial_{y_2}, \partial_{y_1} + y_2 \partial_{y_3}\right]$ Generation (1 step): $\left[\partial_{y_2}, \partial_{y_1} + y_2 \partial_{y_3}\right] = \partial_{y_3}$

3. Martinet case: $E^2 = \ker \alpha \subset TY^3$, $Z^2_{\text{union of hypersurfaces}} = \{\alpha \land d\alpha = 0\} \subset Y$ with $TY \pitchfork E$. Normal form: $\alpha = dy_3 - y_2^2 dy_1$; $E = \mathbb{R} \left[\partial_{y_2}, \partial_{y_1} + y_2^2 \partial_{y_3} \right]$

Generation (2 step) $[\partial_{y_2}, \partial_{y_1} + y_2^2 \partial_{y_3}] = 2y_2 \partial_{y_3}$, $[\partial_{y_2}, [\partial_{y_2}, \partial_{y_1} + y_2^2 \partial_{y_3}]] = 2\partial_{y_3}$

Sub-Riemannian (s R) geometry Examples Hausdorff dimension Abnormal geodesics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Flag, metric & dimension

In general defines canonical flag:

$$\{0\} = E_0 \subset \underbrace{E_1}_{=E} \subset \ldots \subset E_{r(y)} = TY$$

by $E_{j+1} = [E, E_j], j \ge 1$. Step = r(y), Growth vector = $k^E(y) = (\dim E_0, \dim E_1, \dots, \dim E_{r(y)})$.

Sub-Riemannian (s R) geometry Examples Hausdorff dimension Abnormal geodesics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Flag, metric & dimension

In general defines canonical flag:

$$\{0\} = E_0 \subset \underbrace{E_1}_{=E} \subset \ldots \subset E_{r(y)} = TY$$

by $E_{j+1} = [E, E_j], j \ge 1$. Step=r(y), Growth vector = $k^E(y) = (\dim E_0, \dim E_1, \dots, \dim E_{r(y)})$. E called equiregular if $k^E(y)$ is constant.

Sub-Riemannian (s R) geometry Examples Hausdorff dimension Abnormal geodesics

Flag, metric & dimension

In general defines canonical flag:

$$\{0\} = E_0 \subset \underbrace{E_1}_{=E} \subset \ldots \subset E_{r(y)} = TY$$

by $E_{j+1} = [E, E_j], j \ge 1$. Step=r(y), Growth vector = $k^E(y) = (\dim E_0, \dim E_1, \dots, \dim E_{r(y)})$. E called equiregular if $k^E(y)$ is constant.

(Chow-Rashevsky '37) E bracket-generating \implies any two $y_1, y_2 \in Y$ connected by *horizontal* path $\gamma \in C^{0,1}([0,1]_t;Y), \gamma(t) \in E_{\gamma(t)}$ a.e.

$$\left(Y,d^{E}
ight)$$
 is a metric space with $d^{E}= ext{inf}_{\gamma ext{ horizontal}}\int_{0}^{1}dt \; |\dot{\gamma}\left(t
ight)|.$

Sub-Riemannian (sR) geometry Examples Hausdorff dimension Abnormal geodesics

(a)

Flag, metric & dimension

In general defines canonical flag:

$$\{0\} = E_0 \subset \underbrace{E_1}_{=E} \subset \ldots \subset E_{r(y)} = TY$$

by $E_{j+1} = [E, E_j], j \ge 1$. Step=r(y), Growth vector = $k^E(y) = (\dim E_0, \dim E_1, \dots, \dim E_{r(y)})$. E called equiregular if $k^E(y)$ is constant.

(Chow-Rashevsky '37) E bracket-generating \implies any two $y_1, y_2 \in Y$ connected by *horizontal* path $\gamma \in C^{0,1}([0,1]_t;Y), \gamma(t) \in E_{\gamma(t)}$ a.e.

$$\left(Y,d^{E}
ight)$$
 is a metric space with $d^{E}= ext{inf}_{\gamma ext{ horizontal}}\int_{0}^{1}dt\ |\dot{\gamma}\left(t
ight)|.$

(Ball-Box Thm) $\underbrace{Q(y)}_{\text{Hausdorff dimension}} := \lim_{\varepsilon \to 0} \frac{\ln \operatorname{vol} B_{\varepsilon}(y)}{\ln \varepsilon} = \sum_{j=1}^{r(x)} j \left[k_j \left(y \right) - k_{j-1} \left(y \right) \right] > n$

Geodesics

Sub-Riemannian (sR) geometry Examples Hausdorff dimension Abnormal geodesics

◆□ ▶ ◆□ ▶ ★ 臣 ▶ ★ 臣 ▶ ○ 臣 ○ の Q @

A geodesic connecting two points y_1, y_2 is a distance minimizer

Sub-Riemannian (sR) geometry Examples Hausdorff dimension Abnormal geodesics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Geodesics

A geodesic connecting two points y_1, y_2 is a distance minimizer

(Bismut '84) (Y, d^E) metric complete \implies any two $y_1, y_2 \in X$ connected by geodesic $\gamma \in C^{0,1}([0,1]_t;Y)$

Sub-Riemannian (sR) geometry Examples Hausdorff dimension Abnormal geodesics

Geodesics

A geodesic connecting two points y_1, y_2 is a distance minimizer

(Bismut '84) (Y, d^E) metric complete \implies any two $y_1, y_2 \in X$ connected by geodesic $\gamma \in C^{0,1}([0,1]_t;Y)$

Hamiltonian trajectories $H(y,\xi) := \left\| \xi |_{E_y} \right\|^2$ project to minimizers (always horizontal).

Sub-Riemannian (sR) geometry Examples Hausdorff dimension Abnormal geodesics

${\sf Geodesics}$

A geodesic connecting two points y_1, y_2 is a distance minimizer

(Bismut '84) (Y, d^E) metric complete \implies any two $y_1, y_2 \in X$ connected by geodesic $\gamma \in C^{0,1}([0,1]_t;Y)$

Hamiltonian trajectories $H(y,\xi) := \left\| \xi |_{E_y} \right\|^2$ project to minimizers (always horizontal).

Not all minimizers obtained this way!

Sub-Riemannian (sR) geometry Examples Hausdorff dimension Abnormal geodesics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Abnormal geodesics

R. Montgomery '94 found an abonormal minimizer (not a Hamiltonian projection).

Sub-Riemannian (s R) geometry Examples Hausdorff dimension Abnormal geodesics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

Abnormal geodesics

R. Montgomery '94 found an abonormal minimizer (not a Hamiltonian projection).

Example. $Y = \mathbb{R}^3$, $E = \ker [dy_3 - y_2^2 dy_1]$, has vanishing hypersurface $Z = \{\alpha \land d\alpha = 0\} = \{y_2 = 0\}$. Consider $\gamma(t) = (t, 0, 0)$ along y_1 -axis. Minimizes regardless of metric (i.e. topological minimizer)! C^1 -isolated among horizontal curves.

Sub-Riemannian (s R) geometry Examples Hausdorff dimension Abnormal geodesics

イロト 不得 とくき とくき とうき

Abnormal geodesics

R. Montgomery '94 found an abonormal minimizer (not a Hamiltonian projection).

Example. $Y = \mathbb{R}^3$, $E = \ker [dy_3 - y_2^2 dy_1]$, has vanishing hypersurface $Z = \{\alpha \land d\alpha = 0\} = \{y_2 = 0\}$. Consider $\gamma(t) = (t, 0, 0)$ along y_1 -axis. Minimizes regardless of metric (i.e. topological minimizer)! C^1 -isolated among horizontal curves.

Lack understanding of abnormals in general Open question: Are abnormal minimizers smooth?

Sub-Riemannian (s R) geometry Examples Hausdorff dimension Abnormal geodesics

◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 のへで

Abnormal geodesics

R. Montgomery '94 found an abonormal minimizer (not a Hamiltonian projection).

Example. $Y = \mathbb{R}^3$, $E = \ker [dy_3 - y_2^2 dy_1]$, has vanishing hypersurface $Z = \{\alpha \land d\alpha = 0\} = \{y_2 = 0\}$. Consider $\gamma(t) = (t, 0, 0)$ along y_1 -axis. Minimizes regardless of metric (i.e. topological minimizer)! C^1 -isolated among horizontal curves.

Lack understanding of abnormals in general Open question: Are abnormal minimizers smooth?

Well understood in cases:

- Contact case: none.
- Quasi contact case: Integral curves of $L^E := \ker d\alpha|_E$ (topological)
- Martinet case: Integral curves of ker $\alpha|_Z =: L^E \to Z$ (topological)

sR Laplacian sR heat trace sR wave trace

-

sR Laplacian

Let $(Y, E \subset TY, g^E)$ sR manifold. Choose an auxiliary density μ to define

$$\mathrm{sR} \ \mathrm{Laplacian}: \quad \Delta_{g^E,\mu} \coloneqq \left(\nabla^{g^E} \right)^*_\mu \circ \nabla^{g^E}$$

where $g^E\left(\nabla^{g^E}f,U\right) = U\left(f\right)$, $\forall U \in C^{\infty}\left(E\right)$ is sR-gradient. Changing the density: $\Delta_{g^E,h\mu} = h^{-1/2}\Delta_{g^E,\mu}h^{1/2} + h^{-1/2}\left(\Delta_{g^E,\mu}h^{1/2}\right)$ Characteristic variety: $\Sigma = \left\{\sigma\left(\Delta_{g^E,\mu}\right) = H^E = 0\right\} = E^{\perp}$.

sR Laplacian sR heat trace sR wave trace

sR Laplacian

Let $(Y, E \subset TY, g^E)$ sR manifold. Choose an auxiliary density μ to define

$$\mathrm{sR} \ \mathrm{Laplacian}: \quad \Delta_{g^E,\mu} \coloneqq \left(\nabla^{g^E} \right)^*_\mu \circ \nabla^{g^E}$$

where $g^E\left(\nabla^{g^E}f,U\right) = U\left(f\right)$, $\forall U \in C^{\infty}\left(E\right)$ is sR-gradient. Changing the density: $\Delta_{g^E,h\mu} = h^{-1/2}\Delta_{g^E,\mu}h^{1/2} + h^{-1/2}\left(\Delta_{g^E,\mu}h^{1/2}\right)$ Characteristic variety: $\Sigma = \left\{\sigma\left(\Delta_{g^E,\mu}\right) = H^E = 0\right\} = E^{\perp}$.

(Hormander '67) E bracket generating $\implies \Delta_{g^E,\mu}$ is hypoelliptic (Rothschild & Stein '76) $\|f\|_{H^{1/r}}^2 \lesssim \left\langle \Delta_{g^E,\mu}f, f \right\rangle + \|f\|_{L^2}^2$ where $r = \max_{x \in X} r(x)$.

《日》 《圖》 《臣》 《臣》

sR Laplacian sR heat trace sR wave trace

sR Laplacian

Let $(Y, E \subset TY, g^E)$ sR manifold. Choose an auxiliary density μ to define

$$\mathrm{sR} \ \mathrm{Laplacian}: \quad \Delta_{g^E,\mu} \coloneqq \left(\nabla^{g^E} \right)^*_\mu \circ \nabla^{g^E}$$

where $g^E\left(\nabla^{g^E}f,U\right) = U\left(f\right), \forall U \in C^{\infty}\left(E\right)$ is sR-gradient. Changing the density: $\Delta_{g^E,h\mu} = h^{-1/2}\Delta_{g^E,\mu}h^{1/2} + h^{-1/2}\left(\Delta_{g^E,\mu}h^{1/2}\right)$ Characteristic variety: $\Sigma = \left\{\sigma\left(\Delta_{g^E,\mu}\right) = H^E = 0\right\} = E^{\perp}$.

(Hormander '67) E bracket generating $\implies \Delta_{g^E,\mu}$ is hypoelliptic (Rothschild & Stein '76) $\|f\|_{H^{1/r}}^2 \lesssim \left\langle \Delta_{g^E,\mu} f, f \right\rangle + \|f\|_{L^2}^2$ where $r = \max_{x \in X} r(x)$.

Discrete spectrum (φ_j, λ_j) ; $\Delta_{g^E, \mu} \varphi_j = \lambda_j \varphi_j$, on a compact manifold. Spectral asymptotics questions: Weyl law, trace formula, propagation, ergodicity ... (mostly open)

sR Laplacian sR heat trace sR wave trace

sR Laplacian

Let $(Y, E \subset TY, g^E)$ sR manifold. Choose an auxiliary density μ to define

$$\mathrm{sR} \ \mathrm{Laplacian}: \quad \Delta_{g^E,\mu} \coloneqq \left(\nabla^{g^E}\right)^*_\mu \circ \nabla^{g^E}$$

where $g^E\left(\nabla^{g^E}f,U\right) = U\left(f\right), \forall U \in C^{\infty}\left(E\right)$ is sR-gradient. Changing the density: $\Delta_{g^E,h\mu} = h^{-1/2}\Delta_{g^E,\mu}h^{1/2} + h^{-1/2}\left(\Delta_{g^E,\mu}h^{1/2}\right)$ Characteristic variety: $\Sigma = \left\{\sigma\left(\Delta_{g^E,\mu}\right) = H^E = 0\right\} = E^{\perp}$.

(Hormander '67) E bracket generating $\implies \Delta_{g^E,\mu}$ is hypoelliptic (Rothschild & Stein '76) $\|f\|_{H^{1/r}}^2 \lesssim \left\langle \Delta_{g^E,\mu} f, f \right\rangle + \|f\|_{L^2}^2$ where $r = \max_{x \in X} r(x)$.

Discrete spectrum (φ_j, λ_j) ; $\Delta_{g^E, \mu} \varphi_j = \lambda_j \varphi_j$, on a compact manifold. Spectral asymptotics questions: Weyl law, trace formula, propagation, ergodicity ... (mostly open)

Do Hausdorff dimension, abnormal geodesics play a role?

sR Laplacian sR heat trace sR wave trace

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

sR heat trace

Does the spectrum see the Hausdorff dimension?

sR Laplacian sR heat trace sR wave trace

sR heat trace

Does the spectrum see the Hausdorff dimension?

Theorem (Ben Arous 1989, Léandre 1992... Barilari 2011, Colin de Verdiere-Hillairet-Trélat)

There exist $a_{j}(y) \in C^{\infty}(Y)$, j = 0, 1, ...,

$$e^{-t\Delta_{g^{E},\mu}}(y,y) \sim t^{-Q(y)/2} \left[\sum_{j=0}^{\infty} a_{j}(y) t^{j}\right]$$

The expansion is in general <u>not</u> uniform in $x \in X$. Does not yield trace asymptotics.

-

sR Laplacian sR heat trace sR wave trace

sR heat trace

Does the spectrum see the Hausdorff dimension?

Theorem (Ben Arous 1989, Léandre 1992... Barilari 2011, Colin de Verdiere-Hillairet-Trélat)

There exist $a_j(y) \in C^{\infty}(Y)$, $j = 0, 1, \ldots$,

$$e^{-t\Delta_{g^{E},\mu}}(y,y) \sim t^{-Q(y)/2} \left[\sum_{j=0}^{\infty} a_{j}(y) t^{j}\right]$$

The expansion is in general <u>not</u> uniform in $x \in X$. Does not yield trace asymptotics.

Theorem (Métivier 1976, Colin De Verdiere-Hillairet-Trélat)

If E is equiregular

$$N\left(\lambda\right) \sim \underbrace{\frac{\lambda^{Q/2}}{\prod \left(Q/2+1\right)} \int_X a_0}_{=\operatorname{vol}\left\{H^E \leq \lambda\right\}}.$$

George Marinescu & Nikhil Savale

sR Laplacian sR heat trace sR wave trace

э.

Spectrum and dynamics

Does the spectrum see the abnormals?

Theorem (Melrose 1984) (X^3, E^2) 3D contact. Then $\begin{pmatrix} & it \sqrt{\Delta E} \end{pmatrix}$

sing spt
$$\left(tr \ e^{it} \sqrt{\Delta_{g^E,\mu}} \right) \subset \{0\} \cup \{ lengths \ of \ (normal) \ geodesics \}$$

$$N(\lambda) \sim c\lambda^2 + O\left(\lambda^{3/2}\right).$$

sR Laplacian sR heat trace sR wave trace

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Spectrum and dynamics

Does the spectrum see the abnormals?

Theorem (Melrose 1984)

 $\left(X^3,E^2
ight)$ 3D contact. Then

sing
$$spt\left(tr \ e^{it\sqrt{\Delta_g E_{,\mu}}}\right) \subset \{0\} \cup \{lengths \ of \ (normal) \ geodesics\}$$
$$N(\lambda) \sim c\lambda^2 + O\left(\lambda^{3/2}\right).$$

Theorem (Colin De Verdiere-Hillairet-Trélat 2018)

 (X^3, E^2) 3D contact. Suppose Reeb flow is ergodic. Then one has quantum ergodicity (QE): \exists density one subsequence $\{j_k\}_{k=1}^{\infty}$ of \mathbb{N} s.t. $|\varphi_{j_k}| \rightharpoonup \frac{1}{vol(X)}$.

sR Laplacian sR heat trace sR wave trace

Spectrum and dynamics

Does the spectrum see the abnormals?

Theorem (Melrose 1984)

 $\left(X^3,E^2
ight)$ 3D contact. Then

sing
$$spt\left(tr \ e^{it\sqrt{\Delta_g E_{,\mu}}}\right) \subset \{0\} \cup \{lengths \ of \ (normal) \ geodesics\}$$
$$N(\lambda) \sim c\lambda^2 + O\left(\lambda^{3/2}\right).$$

Theorem (Colin De Verdiere-Hillairet-Trélat 2018)

 (X^3, E^2) 3D contact. Suppose Reeb flow is ergodic. Then one has quantum ergodicity (QE): \exists density one subsequence $\{j_k\}_{k=1}^{\infty}$ of \mathbb{N} s.t. $|\varphi_{j_k}| \rightarrow \frac{1}{vol(X)}$.

Theorem (S.)

 (X^4, E^3) 4D quasi-contact. Suppose any invariant subset of characteristic foliation $L^E \subset TX$ is of zero or full measure (and $L_Z \mu_{Popp} = 0$). Then one has quantum ergodicity (QE).

Circle bundles Bochner Laplacian Bergman kernel

= nan

Circle bundles

Circle bundles Bochner Laplacian Bergman kernel

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● の < @

Circle bundles

Natural place for sR-structures:
$$\begin{pmatrix} Y^n, E^{n-1}, g^E \\ S^1L, HX \text{ horizontal } \pi^*g^TX \end{pmatrix}$$
 with $(L, h^L, \nabla^L) \rightarrow (X^{n-1}, g^{TX})$ is a Hermitian line bundle with connection. Equivalently consider sR structure invariant by a free and transversal S^1 action

Proposition:
$$\underbrace{r(y)}_{\text{step of }E} -2 = \operatorname{ord}\left(R_{\pi(y)}^{L}\right)$$

Circle bundles Bochner Laplacian Bergman kernel

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● の < ○

Circle bundles

Natural place for sR-structures:
$$\begin{pmatrix} Y^n, E^{n-1}, g^E \\ S^1L, HX \text{ horizontal } \pi^*g^{TX} \end{pmatrix}$$
 with $(L, h^L, \nabla^L) \rightarrow (X^{n-1}, g^{TX})$ is a Hermitian line bundle with connection. Equivalently consider sR structure invariant by a free and transversal S^1 action.

Proposition:
$$\underbrace{r(y)}_{\text{step of }E} -2 = \operatorname{ord}\left(R_{\pi(y)}^{L}\right)$$

E bracket generating $\iff R^L$ vanishes to finite order (i.e. $r = \max_{x \in X} r_x < \infty$)

Circle bundles Bochner Laplacian Bergman kernel

◆□ ▶ ◆□ ▶ ★ 臣 ▶ ★ 臣 ▶ ○ 臣 ○ の Q @

Circle bundles

Natural place for sR-structures:
$$\begin{pmatrix} Y^n, E^{n-1}, g^E \\ S^1L, HX \text{ horizontal } \pi^*g^{TX} \end{pmatrix}$$
 with $(L, h^L, \nabla^L) \rightarrow (X^{n-1}, g^{TX})$ is a Hermitian line bundle with connection. Equivalently consider sR structure invariant by a free and transversal S^1 action.

Proposition:
$$\underbrace{r(y)}_{\text{step of }E} -2 = \operatorname{ord} \left(R_{\pi(y)}^L \right)$$

E bracket generating $\iff R^L$ vanishes to finite order (i.e. $r = \max_{x \in X} r_x < \infty$)

Decomposition $X = \bigcup_{j=2}^{r} X_j$, $X_j = \{x | r_x = j\}$

Circle bundles Bochner Laplacian Bergman kernel

・ロン ・四 と ・ ヨ と ・ ヨ と

∃ 990

Bochner Laplacian

$$\begin{aligned} & \mathsf{Fourier:} \ C^{\infty}\left(Y\right) = \oplus_{p=-\infty}^{\infty} C^{\infty}\left(X, L^{p}\right); \underbrace{\Delta_{g^{E}, \mu_{Y}}}_{\text{sR Laplacian}} = \oplus_{p=-\infty}^{\infty} \underbrace{\Delta_{p}}_{=\left(\nabla^{L^{p}}\right)^{*} \nabla^{L^{p}} \text{Bochner}} \end{aligned}$$

George Marinescu & Nikhil Savale Bergman kernel

Circle bundles Bochner Laplacian Bergman kernel

イロト イポト イヨト イヨト

3

Bochner Laplacian

Fourier:
$$C^{\infty}(Y) = \bigoplus_{p=-\infty}^{\infty} C^{\infty}(X, L^p); \underbrace{\Delta_{gE, \mu_Y}}_{\text{sR Laplacian}} = \bigoplus_{p=-\infty}^{\infty} \underbrace{\Delta_p}_{=(\nabla^{L^p})^* \nabla^{L^p} \text{Bochner}}$$

Theorem (Marinescu-S.)

The first eigenfunction/eigenvalue (ψ^p_0,λ^p_0) of the Bochner Laplacian Δ_p satisfy

$$\lambda_0^p \sim c_0 p^{2/r} \left| \psi_0^p \left(x \right) \right| = O \left(p^{-\infty} \right), \quad x \notin X_r.$$

Circle bundles Bochner Laplacian Bergman kernel

Bochner Laplacian

$$\begin{aligned} & \mathsf{Fourier:} \ C^{\infty}\left(Y\right) = \oplus_{p=-\infty}^{\infty} C^{\infty}\left(X, L^{p}\right); \underbrace{\Delta_{g^{E}, \mu_{Y}}}_{\text{sR Laplacian}} = \oplus_{p=-\infty}^{\infty} \underbrace{\Delta_{p}}_{=\left(\nabla^{L^{p}}\right)^{*} \nabla^{L^{p}} \text{Bochner}} \end{aligned}$$

Theorem (Marinescu-S.)

The first eigenfunction/eigenvalue (ψ^p_0,λ^p_0) of the Bochner Laplacian Δ_p satisfy

$$\lambda_0^p \sim c_0 p^{2/r} \left| \psi_0^p \left(x \right) \right| = O \left(p^{-\infty} \right), \quad x \notin X_r.$$

Theorem (Marinescu-S.)

Assume X_r submanifold with R^L non-degenerate

$$\lambda_0^p \sim p^{2/r} \left[c_0 + c_1 p^{-1/r} + c_2 p^{-2/r} + \ldots \right]$$
$$N \left(a p^{2/r}, b p^{2/r} \right) \sim p^{dim(X_r)} C_{a,b}$$

R. Montgomery '95 (dimY = 2, r = 3), Helffer-Mohamed '96, Helffer-Kordyukov '09 (Y_r hypersurface of transverse vanishing).

Circle bundles Bochner Laplacian Bergman kernel

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨ のなべ

Bergman kernel

If X cpx. and L holomorphic one has Kodaira Laplacian $\Box_p: \Omega^{0,*}(X; L^p) \rightarrow \Omega^{0,*}(X; L^p).$ 2D Weitzenbock formula:

$$2\Box_p = \Delta_p + k \left[R^L \left(w, \overline{w} \right) \right], \text{ on } \Omega^{0,1}.$$

Circle bundles Bochner Laplacian Bergman kernel

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨ のなべ

Bergman kernel

If X cpx. and L holomorphic one has Kodaira Laplacian $\Box_p : \Omega^{0,*}(X; L^p) \rightarrow \Omega^{0,*}(X; L^p).$ 2D Weitzenbock formula:

$$2\Box_{p}=\Delta_{p}+k\left[R^{L}\left(w,\overline{w}\right)\right],\quad\text{on }\Omega^{0,1}.$$

Mckean-Singer and hypoelliptic estimate: Spec $(\Box_k) \subset \{0\} \cup [c_1 p^{2/r} - c_2, \infty)$ for semipositive R^L .

Circle bundles Bochner Laplacian Bergman kernel

Bergman kernel

If X cpx. and L holomorphic one has Kodaira Laplacian $\Box_p: \Omega^{0,*}(X; L^p) \rightarrow \Omega^{0,*}(X; L^p).$ 2D Weitzenbock formula:

$$2\Box_p = \Delta_p + k \left[R^L \left(w, \overline{w} \right) \right], \quad \text{on } \Omega^{0,1}.$$

Mckean-Singer and hypoelliptic estimate: Spec $(\Box_k) \subset \{0\} \cup [c_1 p^{2/r} - c_2, \infty)$ for semipositive R^L .

Local index theory technique of Bismut-Lebeau '91, Dai-Liu-Ma '06 gives

Theorem (Marinescu-S.)

For dim X = 2 & R^L semi-positive of finite order

$$P_{p}(x,x) \sim p^{2/r_{x}} \left[\sum_{j=0}^{N} b_{j}(x) p^{-j/r_{x}} \right]$$

where $r_x - 2 = ord(R_x^L)$.

R. Berman 2009 (on positive part away from base locus), Hsiao-Marinescu 2014 (on positive part when twisted by canonical).

Circle bundles Bochner Laplacian Bergman kernel

Thank you.