BOCHNER LAPLACIAN AND BERGMAN KERNEL EXPANSION OF
SEMI-POSITIVE LINE BUNDLES ON A RIEMANN SURFACE

GEORGE MARINESCU AND NIKHIL SAVALE

ABSTRACT. We generalize the results of Montgomery [50] for the Bochner Laplacian on high
tensor powers of a line bundle. When specialized to Riemann surfaces, this leads to the Bergman
kernel expansion and geometric quantization results for semi-positive line bundles whose cur-
vature vanishes at finite order. The proof exploits the relation of the Bochner Laplacian on
tensor powers with the sub-Riemannian (sR) Laplacian.
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1. INTRODUCTION

The Bergman kernel of a holomorphic line bundle L on a complex manifold Y is the Schwartz
kernel of the projector from smooth sections of L onto holomorphic ones. The analysis of
the Bergman kernel, Kodaira Laplacian and holomorphic sections associated to tensor powers
L* := L®* has important applications in complex geometry (see for e.g. [21), 44]). When L is
positive, the diagonal asymptotic expansion for the Bergman kernel was first proved in [17, 6],
motivated by [60], and subsequently by a different geometric method in [20] 44]. In the present
article we prove the Bergman kernel expansion at points where the curvature of L is allowed
to vanish at finite order, in complex dimension one.

A related problem is the asymptotics of the spectrum of the Bochner (magnetic) Laplacian
on tensor powers. Besides geometric applications, the lowest eigenvalue (ground state) of
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SEMI-POSITIVE BERGMAN KERNEL 2

the Bochner Laplacian and the Bergman kernel expansion are important in the mathematical
physics of superconductors and the Quantum Hall effect [25] [40].

We now state our results more precisely. Let Y"~! be a compact Riemannian manifold of
dimension n — 1 with complex Hermitian line bundle (L, hL) and vector bundle (F hE ) We

equip these with unitary connections V¥, V¥ to obtain the Bochner Laplacian
(1.1) A= (VFE) R 0 (Vi F @ LY) - O (Vi F @ L),

on the tensor powers F' ® L*, where the adjoint above is taken with respect to the natural L?
metric. As the above is elliptic, self-adjoint and positive, one has a complete orthonormal basis

{@sz};il of L? (Y;F® Lk) consisting of its eigenvectors Akwf =\, (k) j’?, 0< X < Ar...
Denote by RY = (VL)2 € Q*(Y;iR) the purely imaginary curvature form of the unitary
connection VZ. The order of vanishing of R” at a point y € Y is now deﬁnedﬂ

ry — 2 = ord, (R") == min {I[J' (A’T*Y) 5 jiR* £0}, r,>2,

where j'RY denotes the [th jet of the curvature. We shall assume that this order of vanishing
is finite at any point of the manifold i.e.

(1.2) ri=maxry < 00.

The function y — r, being upper semi-continuous then gives a decomposition of the manifold
Y =Uj_, Y5 Y = {y € Y|r, = j} with each Y<; = Jj,_, Y} being open. One first result is
now the following.

Theorem 1. Let (L,h*) — (Y,¢™), (F,h") — (Y,9™) be Hermitian line/vector bundles

on a compact Riemannian manifold with unitary connections V¥, VI . Assuming that the
curvature R wvanishes to finite order at any point, the first eigenvalue o (k) of the Bochner

Laplacian satisfies
(1.3) Ao (k) ~ CE*",

for some constant C' and with r being (1.2)). Moreover the first eigenfunction concentrates on
Y,:

(1.4) 06 ()| = O (F7); y € Yeru.

The proof of the above result is based on pointwise, diagonal heat kernel asymptotics for the
rescaled Bochner Laplacian (see Theorem . The leading constant in ((1.3]) can be identified

(1.5) C = inf o (Dggv oy )

yeY:
in terms of the bottom of the spectrum of certain model Laplacians AgZ“YJr—Q RE defined on the
tangent space, see Section @

Without further hypotheses, the structure of the locus Y, may be quite general (locally any
closed subset of a hypersurface . To obtain further information on the small eigenvalues we
introduce additional assumptions. First we assume Y, = U;V:l Y, ; to be a union of embedded
submanifolds with dimensions d; = dim (Y, ;). Set df* := max {dj}j.vzl and let NY,; =
TY,; C TY denote the normal bundle of each Y. ;. Note that there is a natural density on each
NY, ; coming from the metric. At points y € Y;, the first non-vanishing jet of the curvature

IThe reason for this normalization, besides a simplification of resulting formulas, is the significance of Ty as
the degree of nonholonomy of a relevant sR distribution (see Proposition .
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j;*QRL € ST*QT;Y ® AQT;Y may be thought of as an element of the product with the r — 2
symmetric power. We say that the curvature R' vanishes non-degenerately along Y, if

(1.6) i (JiPRY) =0,Vs <r—2 = veT,Y,

where * above denotes the s-fold contraction of the symmetric part of j;~ 2Rl Denote by

N [cl k2T cok?/ ’"} the Weyl counting function for the number of eigenvalues of Aj and by X[, c,]
the characteristic function for the given intervals. In Section we show that under the non-
degeneracy hypothesis ([1.6)), the Schwartz kernel of the model Laplacian on the tangent space

Xlet,c2] (Aggy,jT—2R5> (U,U) =0 (‘1}|_°O> , UE NYJy,
is rapidly decaying in the normal directions. One next result is now as follows.

Theorem 2. Assuming Y, C Y to be a union of embedded submanifolds along which the
curvature vanishes non-degenerately (1.6 . the counting functéon satisfies the asymptotics

N [Cle/T CQkQ/T ~ kT Z / X[Cl,CQ] T*2Rv§> '

d7n ar Y NY;, \J

If further Y, is a union of points, the smallest etgenvalue has a complete asymptotic expansion

N
o (k) = K2 [Z Ao,jk*j/’“ + 0 (k@NH)/r)] .

=0
Next, we consider the case when (Y"7' h™) is a complex Hermitian manifold, of even
dimension n — 1. The bundles (L, hL), (F hE ) are then assumed to be holomorphic with L
of rank one. Taking V%, VI to be the Chern connections one also has the associated Kodaira
Laplacian
07 Q" (V;FRLF) - Q™ (YV;Fe L), 0<q¢<m,
acting on tensor powers. The first eigenvalue of the above is typically 0 with ker] =
H1 (X i F® Lk) being cohomological and corresponding to holomorphic sections. The Bergman
kernel II{ (y,y') is the Schwartz kernel of the orthogonal projector IIf : Q% (Y; F @ L*) —
ker [J7. Its value on the diagonal is
Ny
I () =Y ls; )P, N{=dimH (X;F®LF),

J=1

for an orthonormal basis {s; j.vz’gl of H1? (X T F® Lk) and thus controls pointwise norms of sec-
tions in ker O] in the spirit of . To obtain the asymptotics for II{ (v, y), we specialize to
the case of Riemann surface (n — 1 = 2). Furthermore in addition to vanishing at finite order
, the curvature is assumed to be semi-positive: RL (w,w) > 0, for all w € T*Y. Under
these assumptions one has H'*! (X T F® Lk) = 0 for k > 0 with the asymptotics of the Bergman
kernel I, := TI? being given by the following.

Theorem 3. Let Y be a compact Riemann surface and (L,h*) — Y a semi-positive line
bundle whose curvature RY vanishes to finite order at any point. Let (F,h') =Y be another
Hermatian holomorphic vector bundle. Then for every N € N the Bergman kernel has the
pointwise asymptotic expansion on diagonal,

N
(1.7) Iy, (y,y) = k™ [Z ¢ (y) k™2 0 (k72N
§=0
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where ¢; are sections of End (F'), with the leading term co (y) = o8 i’ REIY (0,0) > 0 being
given in terms of the Bergman kernel of the model Kodaira Laplacian on the tangent space at

y (A.g).

Note that at points where R” is positive one has 7, = 2 and the above expansion recovers the
usual Bergman kernel expansion at these points. The presence of fractional exponents, at points
where the curvature vanishes, given in terms of the order of vanishing represents a new feature.
It would be desirable to have a more explicit formula for the leading term ¢y at vanishing
points for the curvature. As an example [27] computes the leading term explicitly in the case of
semi-positive line bundles obtained from branched coverings. Finally, we note that unlike
the Bergman kernel expansion does not exhibit any concentration phenomenon.

The result of Theorem (1| was shown by Montgomery [50] in the case when Y is a Riemann
surface with R’ vanishing to second order along a curve. It has since been actively explored
in increasing generality and refinement [23] 30, 31, 52]. We remark that our non-degeneracy
assumption ([1.6) is less restrictive than in these earlier works. As was the motivation in
[50], the proof here uses the relation of the Bochner Laplacian with the sub-Riemannian (sR)
Laplacian on the unit circle bundle of L. This is a manifestation of the semiclassical /microlocal
correspondence in this context. In particular the proof of Theorem [16| exploits a standard heat
kernel expansion for the sR Laplacian [7, 16], [41), 58] on the circle bundle. A proof of the sR
heat kernel expansion based on sR methods is the topic of recent research [3] 19).

The Bergman kernel expansion for positive line bundles on a compact complex manifold was
first proved in [I7, [61], motivated by [60], and subsequently in [20, 45] by a method similar
to the one here. We refer to [44] for a detailed account of this technique and its applications.
For semi-positive line bundles the expansion was previously only known on the positive part in
some cases. In [8] the expansion is proved on the positive part, and furthermore away from the
augmented base locus, assuming the line bundle to be ample. In [35] the expansion is proved
on the positive part when one twists by the canonical bundle (i.e. F' = Ky). In [32] a similar
expansion, on the positive part when twisted by the canonical bundle, is proved assuming h”
to be only bounded from above by a semi-positive metric. On a related note, [2] proves a
weighted estimate for the Bergman kernels of a positive but singular Hermitian line bundle
over a Riemann surface under the assumption that the curvature has singularities of Poincaré
type at a finite set.

The paper is organized as follows. In Section [2| we begin with some standard preliminaries
on sub-Riemannian geometry and the sR Laplacian. In particular gives a proof of the on-
diagonal expansion for the sR heat kernel. In Section[3]we specialize to the case of sR structures
on unit circle bundles. Here proves Theorem [l based on an analogous heat kernel expansion
for the Bochner Laplacian on tensor powers Theorem Further and prove the Weyl
law and expansion of the first value of Theorem [2] respectively. In [4] we come to the case of
the Kodaira Laplacian on tensors powers of semi-positive line bundles on a Riemann surface.
Here similar rescaling methods prove the Bergman kernel expansion Theorem [3] in There
are several applications of the Bergman kernel expansion to geometric quantization. In we
prove a version of Tian’s approximation theorem for a semi-positive integral form by induced
Fubini-Study metrics. In Section[4.3we develop the theory of Toeplitz operators. The main tool
is the expansion of their kernel, similar to that of the Bergman kernel, from which we deduce
the semiclassical behavior of their norm and composition as well as their spectral density limit.
In Section [4.4] we show the equidistribution of zeros of random sections to the semi-positive
curvature form. In Section [4.5 we prove an asymptotic formula for the holomorphic torsion in
the semi-positive case.
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2. SUB-RIEMANNIAN GEOMETRY

Sub-Riemannian (sR) geometry is the study of (metric-)distributions in smooth manifolds.
More precisely, let X™ be an n-dimensional, compact, oriented differentiable manifold X. Let
E™ C X be a rank m subbundle of the tangent bundle which is assumed to be bracket gen-
erating: sections of E generate all sections of T'X under the Lie bracket. The subbundle FE is
further equipped with a metric g%. We refer to the triple (X VB, g" ) as a sub-Riemannian (sR)
structure. Riemannian geometry corresponds to £/ = T'X.

The obvious length function [ (v) = fol |7| dt maybe defined on the set of horizontal paths of
Sobolev regularity one connecting the two points xg, z; € X as

Qp (z0,21) = {y € H' ([0,1]; X) |7 (0) = 2o, 7 (1) = 21, ¥ (t) € By ae.}.
This allows for the definition of the sub-Riemannian distance function via
(2.1) d¥ (zg,z1) = inf  1(v).

YEQE(x0,21)

A theorem of Chow [5I, Thm 1.6.2|, shows that this distance is finite (i.e. there exists a
horizontal path connecting any two points) giving the manifold the structure of a metric space

(X, dP).
The canonical flag
(2.2) E (IB) C E; (ZE) C...Cq ET(:E) ({L") =TX
—{0} s

of the distribution E at any point x € X is defined with E;; == E;+[E;, E;], 0<j <r(z)—1
denoting the span of the jth brackets. The dual-canonical flag is defined as

={0}

where Y (r) = Eff == ker [T"X — E;] , 0 < j < r(x), are the annihilators of the canonical
flag. The number r () is called the step or degree of nonholonomy of the distribution at = and
in general depends on the point z € X. Furthermore the ranks of the subspaces E; () might
also might depend on € X (E;’s need not be vector bundles). We define m¥ (z) = dim E; (z)
and

m? (z) = (mOE, mE m¥, . . mf)
~
=0 =m =n
to be the growth vector of the distribution. It shall also be useful to define the weight vector
(wf(x),...,wf(m))::<1,...,1, 2,...2 ... gy ..., r..or )
——  N—— — ——
mq times mo—m1 times mj—m;_1 times my—m,_1 times

of the distribution at z via ij =

s, if mf, <j<mP . Finally define

Q(r) = Zj(mf () —m¥, (2))

= ijE (x).

A point is called regular if each distribution Ej is a locally trivial vector bundle near z (i.e.
m¥’s are locally constant functions near x). The significance of Q(x) is given by Mitchell’s
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measure theorem (cf. [5I, Theorem 2.8.3]): @ () is the Hausdorff dimension of (X,d”) as a
metric space at any regular point x € X. We call the distribution E equireqular if each point
r € X is regular. Hence in the equiregular case each E; is a subbundle of TX with r (z),
m¥ (z) and Q (z) all being constants independent of .

In the equiregular case a canonical volume form on X (analogous to the Riemannian volume)
can be defined starting from the sR structure. To define this, first note that any surjection
7V — W between two vector spaces allows one to pushforward a metric ¢" on V to another
m.g" on W. This is simply the metric on W induced via the identification W 2 (ker 7)* C V;
with the metric on (ker )" being the restriction of ¢V . Next for each j > 1 define the linear

surjection
B;: E® — E;/E;_,
Bj (61, Cen €j) = adéladég ...ad

é-1€j

with é; € C* (F) denoting local sections extending e; € E. The pushforward metrics g]E =

(B;), (gE)®j are now well defined on E;/E;_; and hence define canonical volume elements
det g¥ € A* (E;/E;_1)". The canonical isomorphism of determinant lines

(2.4) é) A*(E;/E;_y) = \* (é E; /Ej_1> ~A*TX

=1

along with its dual isomorphism to now gives a canonical smooth volume form

(2.5) ppopp = (X) det g € A* (T*X)

j=1
known as the Popp volume form. We remark that although the definition makes sense in general
it only leads to a smooth form in the equiregular case.

An important notion is the that of a privileged coordinate system at x. To define this,
fix a set of local orthonormal generating vector fields U, Us,...U,, near x. The E—order
ordg ., (f) of a function f € C* (X) at a point x € X is the maximum integer s € Ny for
which 377" | s; = s implies that (U7" ... Uy f) (z) = 0. Similarly the E—order ordg,, (P) of a
differential operator P at the point z € X is the maximum integer for which ordg, (Pf) >
ordg , (P)+ ordg, (f) holds for each function f € C* (X). One then has the obvious relation
ordg, (PQ) > ordg, (P) + ordg, (@) for any pair of differential operators P, (). A set of

coordinates (z1,...,x,) near a point x € X is said to be privileged if: for all j the set
g 0 0
Oxy Oxy’ = Ox,,m

J

forms a basis for £ (z) of the canonical flag and moreover each x; has E-order w? (z) at .
A privileged coordinate system always exists near any point ([6] pg. 36). Furthermore the coor-
dinate system may be chosen such that each % equals the value of some bracket monomial in
the generating vector fields at x. The Popp measure then equals the Euclidean measure dx
at the point x in these coordinates. The E—order of the monomial x in privileged coordinates
is clearly w.ae while the defining vector fields U; all have EF—order —1. A basic vector field is one
of the form 2%9,, for some j and has F—order w.a.—w;. We may then use a Taylor expansion to

write U =3 02 U j(q) with each vector field U ](Q) being a sum of basic vector fields of E-order
q. If one defines the rescaling/dilation d.x = (e“'z1,...,e""z,) in privileged coordinates, the

vector fields (A]J(q) are those appearing in the corresponding expansion (¢.), U; = ch;fl 1l J(q)
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for the defining vector fields. A differential operator P on R is said to be F—homogeneous
of ordg (P) iff (0.), P = e4#(P)P. Tt is clear that the product of two such homogeneous
differential operators Py, P, is homogeneous of ordg (P P,) = ordg (P1) + ordg (P). The
nilpotentization of the sR structure at an arbitrary x € X is the sR manifold given via

X = R”,E =R [01(71)’ . .,(Aféfl) with the metric ¥ corresponding to the identification

U s (Uj),- The nilpotentization ji of a smooth measure y at z is also defined as the lead-

j
ing part 4 = (%) under the privileged coordinate expansion (4.), u = 9@ [2210 ﬂ(q)} . These

nilpotentizations can be shown to be independent of the choice of privileged coordinates up to
sR isometry ([6] Ch. 5).

An invariant definition of the nilpotentization can be given at regular points x € X. First
define the nilpotent Lie algebra

g = (E1), © (E2/E1), @ ... © (Epn/En-1),

with the Lie bracket [.,.] : g.®¢. — g, given by the brackets of corresponding vector field exten-
sions. The algebra is clearly graded with the j graded component (gx)j = (E;/E;-,), with the
bracket preserving the grading [(gx) 0 (92) ]} C (9x);;- Associated to the nilpotent Lie algebra
¢, is a unique simply connected Lie group G with the exponential map giving a diffeomorphism
exp : g, — G. The nilpotentization of the sR structure <X , E, gF ) at x can then be identified

with X := G and the metric distribution E , g¥ obtained via left translation of (E4),, g, . The
canonical identification A"g, = A" [(El)x @ (Ey/E1),@...® (Er(x)/Er(x),l)gJ = AT, X gives

~

the nilpotentization ji of the measure p on X.

One may also profitably view sR geometry as a limit of a Riemannian geometry. Namely
choose a complement E' C TX, E & E' = TX , with a metric g% giving rise to a family of
Riemannian metrics

1
(2.6) 9" = 9" ®—g"

which converge g/* — g% as ¢ — 0. We call the above a family of Riemannian metrics
extending /taming g*.
We prove a first proposition in this regard.

Proposition 4. Let d° denote the distance function for the Riemannian metrics (2.6)). Then
for each x1,x5 € X one has

d° (.Tl, xg) — dE (.ﬁlﬁ'l, l’g)

converges to the sR distance (2.1) as e — 0.

Proof. Let ~; be a sequence of (constant speed) geodesics connecting xq,zy for a sequence of
metrics g/ *; ¢; — 0. Since any g”-geodesic also has g/*-length d” (1, 22) we have

(2.7) 19 (y;) < d (21, 22),

V7. For these constant speed geodesics their gz;X -energy

(2.8) E9 (y;) = </01 Iy

1/2
32;)() =¥ ('Yj) )
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is bounded and hence so is their gZ%-energy. Thus by the Banach-Alauglou theorem a sub-
sequence of ~;, — Hl,, 7 converges weakly. Furthermore from " " this limit is hor-
g

Je=1

izontal. By weak convergence and Cauchy-Schwartz lim inf [“a fyjq) > liminf /<! (fyjq) >
liminf [ (,) > d¥ (21, 2). From this and (2.7) the proposition follows. O

2.1. sR Laplacian. We shall be interested in the sub-Riemannian (sR) Laplacian. It shall
be useful to define it as acting on sections of an auxiliary complex Hermitian vector bundle
with connection (F,h",V¥) of rank {. To define this first define the sR-gradient Vit Es e
C>®(X; E® F) of a section s € C* (X; F') by the equation

(2.9) hEx <V9E’Fs,v ® s’) =h" (Vs ), YWweC®(X;E),s €C®(X;F),

where hP¥ = ¢gF @ h¥. Next one defines the divergence (adjoint) of this gradient. In the
sR context, the lack of canonical volume form presents a difficulty in doing so; hence we shall
choose an auxiliary non-vanishing volume form . The divergence (VZF );w € C® (X, F) of

a section w € C* (X; E ® F) is now defined to be the formal adjoint satisfying

(2.10) / <(V9E’F>Zw, 5> p=— / <w, ng:Fs> u, Vse C®(X;F).

The sR-Laplacian acting on sections of F' is defined by the equation
Age g, = (ngvF)* o VINF L 0% (X; F) = O (X F).

m
In terms of a local orthonormal frame {U;}7", for £, we have the expression
(2.11) Agpps = I |~V + (VEU;) V|

j=1
with (VE Uj): being the divergence of the vector field U; with respect to .

Remark 5. To remark on how the choice of the auxiliary form g affects the Laplacian, let
1/ = hu denote another non-vanishing volume form where h is a positive smooth function on

X. From (2.11)), it now follows easily that one has the relation
Ay gy =W P Age g B2+ B2 (A s, 0P 1d

with Aye , denoting the sR Laplacian on functions (i.e. with F© = C). Thus the two corre-
sponding Laplacians are conjugate modulo a zeroth-order term.

The sR Laplacian A e, is non-negative and self adjoint with respect to the obvious inner
product (s, s’y = [, ' (s,8')p, s,8' € C> (X; F). Its principal symbol is easily computed to
be the Hamiltonian

(2.12) 0 =0 (Dgr ) (2,€) = HE (2,€) = |&| > € € (1" X)
while its sub-principal symbol is zero. The characteristic variety is
(213)  Za,, = {8 €T X|o (Agery) (2.6) = 0} = {(2,6) | €], = 0} = B+

is the annihilator of £. From the local expression and the bracket generating condition
on E, the Laplacian Ak ., is seen to be a sum of squares operator of Hormander type [33]. It
is then known to be hypoelliptic and satisfies the optimal sub-elliptic estimate [54] with a gain
of % derivatives

(2.14) 812 < € [(Ayrps,s) + sl2] . Vs € C% (X; F)
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where 7 = sup,.x 7 (x) is the total step of the distribution. For X non-compact, one also has
the local subelliptic estimate

(2.15) 1s5r < O [(Age pups, os) + lleslia], Vs € O (X; F)

and ¢, € C* (X) with ¢ =1 on spt (¢).
Thus the sR Laplacian has a compact resolvent, a discrete spectrum of non-negative eigen-
values 0 < \g < A\; < ... approaching infinity and a well-defined heat kernel e tReE P,

Remark 6. For each point p € E+ on the characteristic variety (2.13)) the Hessian VZo of
the symbol as well as the fundamental matrix F, : T,M — T,M , V%o (.,.) = w(., F,.) are
invariantly defined (here w denotes the symplectic form on the cotangent space). Under the
condition

(2.16) trtF, = Z pu>0
puESpect (iFp)

Vp € E*, the Laplacian Age gy, is known to satisfy a better subelliptic estimate with loss of
1 derivative [34]. Furthermore, the heat kernel and trace asymptotics under this assumption
were shown in [47, [48].

2.1.1. sR heat kernel. We are interested in the asymptotics of the heat kernel e BB, As a
first step we show the finite propagation speed for the corresponding wave equation.

Lemma 7 (Finite propagation speed). Let f (z;t) be the unique solution to the initial value
problem

(00 + V/Bgerp) f =0
flx,0)=fo e CF (X5 F).
Then the solution satisfies
sptf (x;t) C {y|EI:17 € sptfy; d¥ (z,y) < |t|}
Proof. The result maybe restated in terms of the Schwartz kernel K (x,y) of ¢V BoB P as
spt Ky © {(2,y) |d" (z,y) < [t]}.

We choose a family of metrics g/ ¥ (2.6) extending g”. The Riemannian Laplacian Ayjrx .,
(still coupled to the form p) is written

(2.17) Agrx pu = Bgr gy + eAgE',Ru
where A, is the sR Laplacian on the complementary distribution E'. Via the min-max

A A
principle for small eigenvalues this leads to the L? convergence H[OQET]X’F‘“ — H[OgLE]’F * of the

corresponding spectral projectors onto any given interval [0, L]. Following this one has the
weak convergence K; — K,; with K (x,y) denoting the Schwartz kernel of ¢""VBIX Pu  The
proposition now follows from the finite propagation speed of Ajrx p, along with d° — d¥ as
¢ — 0 by Proposition [] . O

Next we show how the above finite propagation result leads to a localization for the heat
kernel. To state this, fix a Riemannian metric g”% and a privileged coordinate ball BgTX (x)
centered at a point x of radius ¢ (depending on z). Let Uy, ..., U,, be generating vector fields
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on this ball. Let x € C2°([—1,1];[0,1]) with y = 1 on [—1,1]. Define the modified measure

and vector fields via
) ds x,x’) .
fi+x <+> (n—0),

- (-1) ds"r (x,2") (—1) .
0 =0V 4x |22 (1-uf"), 1<i<m,

i

T

on R™ in terms of the nilpotentization at x given by these privileged coordinates. These modified
vector fields can be seen to be bracket generating for p sufficiently small. The connection on F

takes the form V¥ =d+ A, A € Q! <BgTX ();u (l)), A(0) =0, in terms of an orthonormal

trivialization for F over the ball. A modified connection on R™ is now defined as VI =

d+x (— A. A formula similar to (2.11)) now gives an sR Laplacian on R" via
Byrpps =3 |-92 s+ (vEUj)y@s}.
m
Jj=1 =

Being semi-bounded from below, it is essentially self-adjoint and has a well defined heat kernel
- -1
on R" using functional calculus. Furthermore its resolvent maps (A B py— z) D Hp L —

Hi; , by the corresponding subelliptic estimate. We now have the localization lemma for the

heat kernel.
Lemma 8. The heat kernel satisfies

dE(z,a:/)2

(2.18) e_tAgE,F,u (1‘7 ;13,) < Ot 2r—le——3

uniformly Vx,z' € X and t < 1. Further there exists o > 0 (depending on x) such that

(2.19) e o rn (1, 2) — e BB r (x,2") < Cpe™ 1ot
for d¥ (z,2") < o1 ast — 0.

Proof. Both claims are standard applications of finite propagation Lemma [7} With the cutoff
x as before, write the heat kernel in terms of the wave operator

1 e JA e Tat
(2.20{A3E F‘ueftAgE’F,u (:U, I/) = 7 / d€e SV AGE P (x7 x') D <
ik T

(2.21) —/dgelgx/m (z,2') {1 —X (51)} ng\e/j%’

Vq > 1. By finite propagation, the integral (2.20) maybe restricted to |¢| > d¥ (z,2’). The
integral estimate

2

i / z&sDQQ r
27 Jig|>aP (a.ar) V4

E 72
o1 _d (x,x)
<ct 2q 2e It

bl
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now gives the bound

dE(a; z/)2
—2q—1 — )
HL2—>L2 <ct 2e 8t ,

which combines with the sub-elliptic estimate ) to give (2.18). For (2.19)), note that the

second summand of (2.21)) is exponentially decaymg O (exp(—

5,712

). Next for o; sufficiently

16t>
small, BgIE (x) C Bg” (x). Thus finite propagation and Aje g, = A9E7F7M on Bgf (x) give that
the corresponding first summands for Az g ,, Aje g, agree for d¥ (z,2') < g. O

We now give the on diagonal expansion for the sR heat kernel.

Theorem 9. There exist smooth sections A; € C* (X; End(F))such that

(2.22) [e_tAgEﬁFv#]u (x,x) = [Ao (2) + A1 ()t + ...+ Ay () N + O (V)]

1Q(x)/2
Ve € X, N € N. The leading term Ag = [e‘Aévﬂ] (0,0) is a multiple of the identity given in
[

terms of the scalar heat kernel on the nilpotent approximation.

Proof. By Lemma [§, it suffices to demonstrate the expansion for the localized heat kernel
e BB m (0,0) at the point x. Next, the heat kernel of the rescaled sR-Laplacian

(2.23) Ao =6 (0:), Dge
under the privileged coordinate dilation satisfies
(2.24) e A5 r (z,2") = Q@A p p, (0., 0.2") .

Rearranging and setting x = 2’ = 0, t = 1; gives

_Q(a:) EFM(O 0)_@75AEFM(0 0)

and it suffices to compute the expansion of the left hand side above as the dilation ¢ — 0. To
this end, first note that the rescaled Laplacian has an expansion under the privileged coordinate
dilation

(2.25) Aoy, = (Zs Em) +eNHRIM YN,

Here each A;@ P is an e-independent second order differential operator of homogeneous F—order

j — 2. While each R™ is an e-dependent second order differential operators on R" of E-order
at least N — 1. The coefficient functions of A;Jbz oy A€ polynomials (of degree at most j + 2r)

while those of R™) are uniformly (in £) C*°-bounded. The first term is a scalar operator given
in terms of the nilpotent approximation

(2.26) A = Ay g i (U( 1)

Jj=1

at the point x. This expansion (2.25)) along with the subelliptic estimates now gives

-1 -1
A€ . (A0 - _ -2
(Bsomu—2) = (A2, —2) =04 perrs (me] ),
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Vs € R. More generally, we let I; = {p = (po,p1,--.)|Pa € N,> po = j} denote the set of
partitions of the integer j and define

(2.27) c=> (A, - )

pGIj

18 (A9 _Z>—1]
EFN EF,U, .

Then by repeated applications of the subelliptic estimate we have

N
-1
A& _ _E Jjor N+1 —2Nwp—2
(A9E7F,M Z) e Cj = IOCA)HS+N<1/’I‘ 2) ( |IH1,Z| s
Jj=0

oc

~ M /.
Vs € R. A similar expansion as ([2.25)) for the operator (AZE rut 1> (A;E T Z>, M e N,

)

also gives
(2.28)

—-M
A € A€ iz N+1 —2Nwy,—2
(Bor 1) (Bgem— ) § :g Car =0, onsrmsne (V4 [mz]”

loc loc

—2Nw,—2\ . .
for operators C ,, = OH@ N (5N+1 [Tmz| " ), j=0,...,N, with

loc loc

-1
z A (0 0
CO,M - <A;E)7F7p/ + 1) (A(E FU Z) .

For M > 0 sufficiently large, Sobolev’s inequality gives an expansion for the corresponding
Schwartz kernels of in CY (R™ x R"). The heat kernel expansion now follows by plugging
the resolvent expansion into the Helffer-Sjostrand formula. Finally, to see that the expansion
only involves only even powers of ¢ (or that (2.22)) has no half-integer powers of t), note that

the operators A in the expansion (2.25) change sign by (— )] under the rescaling ¢_;.
The integral expresswn 1} corresponding to C7 (0,0) then changes sign by (—=1)? under this
change of variables giving C (0,0) = 0 for j odd. O

We note that one may similarly prove an on diagonal expansion

(2.29) Iz (tAgE’F’u)]‘u (x,x) = [Af (z) + AT (2) t+ ...+ AL () tV + O (¢Y)]

tQ(=)/2
Vo € S (R), by plugging the resolvent expansion ([2.28)) into the Helffer-Sjostrand formula for
¢, in the final step above. However both the above and the expansion Theorem [9] hold only
pointwise along the diagonal. In particular the leading order @ (z) is in general a function
of the point  on the diagonal. This hence does not immediately give heat trace or spectral
function asymptotics for the sR Laplacian as the expansion might not be uniform or integrable
in . However in the equiregular case, where @ () = @ is constant, a uniform set of privileged
coordinates (privileged at each point in a neighborhood of x) maybe chosen in the proof. This
gives the uniformity of the expansion in x and one obtains the following.

Theorem 10. In the equiregular case there is a trace expansion

tr e tRE P =

th/2 [ao +ait+...+anth +0 (tN” , Vre X,NeN,



SEMI-POSITIVE BERGMAN KERNEL 13

with leading term given by

wo= [ [e%5] 0.0
X 12
. / (e8] (0,0) rpogy
X HPopp

Thus, the Weyl counting functions satisfies
N (\) = #8Spec (Aye £,) N[0, A]
A2 (1+0(1)) A
= “2ar1(0,0) p.
ranty J ], o0

The above two theorems are by now well known cf. [49] 58, [7, 59], 41} 16]. The sR proof based
on privileged coordinate dilations is from [3], [19].

3. BOCHNER LAPLACIAN ON TENSOR POWERS

A natural place where sub-Riemannian structures arise is on unit circle bundles. To precise,
let us consider (X B, gE) to be a corank 1 sR structure on an n-dimensional manifold X (i.e.
rankE = n — 1). We assume that there is a free S* action on X with respect to which the sR
structure is invariant and transversal (i.e. the generator e € C* (T'X) of the action and F are
transversal at each point). The quotient Y := X/S! is a then a manifold with a Riemannian
metric g7 induced from ¢¥. Equivalently, the natural projection 7 : X — Y is a principal S*
bundle with connection given by the horizontal distribution E. Let L := X x, S' — Y be the
Hermitian line associated to the standard one dimensional representation p of S with induced
connection V¥ and curvature RY. It is possible to restate the bracket generating condition in
terms of the curvature R*. First note that since the distribution is of corank 1, the growth
vector at z is simply a function of the step r (z) and given by

m” (z) = <O,n—1,n—1,...,n—1,n>.
r(x)f‘ftimes

Equivalently, the canonical flag (2.2)) is given by

(2) = E;, 1<j<r(z)-1
O\ TX; j=r(x) '

E.

J

Also note that the weight vector at x is
(1,1,...,1,T(93)>,
—_————
n—1 times

while the Hausdorff dimension is given by @ (x) = n—1+7 (x). On account of the S’ invariance,
each of m¥ (z) 7 (z) and Q (x) descend to functions on the base manifold Y. The degree of

nonholonomy 7 (x) at x is now characterized in terms of the order of vanishing of the curvature
RE.

Proposition 11. The degree of nonholonomy

r(z) — 2= ord (R")
(3.1) = min {{[j},, (R") # 0}
where jﬁr(x) (RY) denotes the l-th jet of the curvature R*.
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Proof. In terms of local coordinates on Y and a local orthonormal section 1 for L, we may write
VE =d+ia"; a* € Q' (Y), while E = ker [df + a*| with 6 being the induced coordinate on
each fiber of X. The proposition now follows on noting [U;, U;] = (daL)ij 0y = RZ»L]OQ for the

local generating vector fields U; = 0,, — af(%, 1<7<n—-1 O

Thus we see that the bracket generating condition is equivalent to the curvature R” having a
finite order of vanishing at each point of Y. Horizontal curves on X can also be characterized in
terms of the base Y. Namely, a horizontal curve 4 on X corresponds to a pair (7, s) of a curve
~ on the base Y along with an parallel orthonormal section s of L along it |s| = 1,V§3 =0,
with the correspondence simply being given by projection/lift. The length of 4 is simply the
length of v on the base. It is clear that the horizontal lift of a Riemannian geodesic on Y is
a sR geodesic on X. The sR distance function on X is now also characterized in terms of the
holonomy distance on the base manifold Y

dﬁol 1 ly ) s (Y2, ly,)) = inf l
(Y1, 1y1) 5 (Y2, 1)) (o () ()

QL (Y1, 1) ; (2, 1)) = { (v, 8) Iy € H' ([0,1];Y) ,s € H' (7 L),
()—yl, (1) = 1o,
s(0) =1y, s (1) =1y,
]s|:1,V,§5:Oa.e. }
Vy, €Y, l,, € L,,,5=1,2.

3.0.2. Structure of Y,. As noted before, the function y +— r, is upper semi-continuous and gives
a decomposition of the manifold Y = (Jj_, Y}; Vj = {y € Y|r, = j} with each Y; := U;:':o Y
being open. We next address the structure of Y, , the locus of highest vanishing order for the
curvature.

Proposition 12. The subset Y, C Y is locally the closed subset of a hypersurface.

Proof. First express the curvature R* = Rl5dy; A dy; in some coordinates centered at y € Y.
By definition one has

(3.2) ORE=0, Vi,j=12....n—1,acNj" |o|<r—3, while
(3.3) 8°‘°RL #0, for some ip,jo=1,2,...,n—1, ap € NI |ag| =7 — 2,

10Jo
with Y, being described by the above equations near y. The second equation ({3.3) implies that
one of the functions 8“R1Lj, |a] = r — 3, has a non-zero differential and cuts out a hypersurface.
O

The following examples show that this is the most that can be said about Y, in general.

Example 13. Let 0 € S C Ry, be any arbitrary (non-empty) closed subset. By the Whitney
extension theorem, there exists f € C* (R,,) such that S = f~(0). The (closed) two form
RE = (y? + f?) dy1dy, on R2 is the curvature form of some connection on trivial line bundle on
R2. We clearly have r = 4 with Yi={yly1=f=0}={0} x SCR? in this example.

Y1,Y2
Example 14. Let 0 € S C RyQ ys D€ any arbitrary (non-empty) closed subset. By the Whitney
extension theorem, there exists f € C> (R2, ) such that S = f~!(0). The (closed) two form
RE = yydyrdys + f (y2, y3) dyadys on Rz is the curvature form of some connection on trivial line
bundle on R}. We clearly have r = 3 with Y3 = {yly1 = f (y2,43) =0} = {0} x SC R} in

this example.
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3.1. Smallest eigenvalue. The unit circle bundle of L being X, the pullback C = 7*L — X
is canonically trivial with the identification 7*L > (z,l) — 2~ 'l € C. Pulling back sections
then gives the identification

(3.4) C™(X) ® C = @pezC™ (Y L) .

Each summand on the right hand side above corresponds to an eigenspace of e with eigenvalue
—ik. While horizontal differentiation d” on the left corresponds to differentiation with respect
to the tensor product connectionVX" on the right hand side above. Pick px an invariant
density on X (e.g. the pullback of the Riemannian density) inducing a density py on Y.
Pick an auxiliary complex Hermitian vector bundle with connection (F, ", V¥) on 'Y and we
denote by the same notation its pullback to X. This now defines the sR Laplacian Az, -
C>(X;F) - C>(X; F) acting on sections of F. By invariance, the sR Laplacian commutes
[AgE, Fixo e} = 0, preserves the decomposition and acts via

(3.5) Aye gy = Orezli
on each component where A, := <VF®Lk> VEOLY . (oo (Y; F® Lk) — O (Y; F® Lk) is the

Bochner Laplacian (1.1]) on the tensor powers F'® L*, with adjoint being taken with respect to
py. As a first result we show how the subelliptic estimate (2.14]) immediately gives a general
spectral gap property for the Bochner Laplacian.

Proposition 15. There exist constants ¢y, ¢y > 0, such that one has Spec (Ay) C [clk2/7“ — Co, oo)
for each k.

Proof. The subelliptic estimate (2.14]) on the circle bundle is

2
0" < sl < C [ Bgr s, s) + s13a] , Vs € O (X5 F)

Letting s = 7*s’ be the pullback of an orthonormal eigenfunction s’ of A, with eigenvalue A on
the base gives k2" < C' (X + 1)as required. d

The spectral gap above was earlier shown for symplectic curvature 28] 43| (where r = 2)
and for surfaces with curvature vanishing to first order along a curve [50] (where r = 3).

3.1.1. Heat kernels. Next we would like to investigate the heat kernel of the Bochner Laplacian
Ag. From (3.5), we have the relation

(36) e_TAk (yh 92) - |:/ do G_TAQE’F’HX (ly17 ly2€i6) 6—ik9 lyl X Z;Q

between the heat kernels with [, [,, denoting two unit elements in the fibers of L above y1, y»

respectively. We again note that the kernels are computed with respect to the densities iy, py
chosen before. The above relation together with ([2.18]) first gives

(3.7) e_kzﬁA’“ (y1,92) = CE,Nk’N, VN € N,

when d (y1,y2) > € > 0. If we choose a coordinate system centered at a point y € Y and a
trivialization 1 of L that is parallel along coordinate rays starting at the origin, the connection
form can be expressed in terms of the curvature as V¥ = d + ia®,

(3.8) ay (z) = /0 dppx R, (px) .

It is now easy to see that the induced coordinate system on the unit circle bundle X is privileged
at each point on the fiber above y.
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Next, using (3.6) with T' = &t and y; = y» belonging to this coordinate chart one has

e () = { / a0/ = B0 mex (1 (y) 1 () ) e—ik’és"’}

where . denotes the privileged coordinate dilation as before. Now setting y; = ey = 4.y, the
equations (2.24), (2.25) as in the proof of Theorem [9] give that the right hand side above has

an expansion

N 2N+1
—? —ihde0 — ey £ :

(3.9) €2 (by, dey) = / dofe” 0" e~ AW [ZO a; (.0 8) £ + o Bvan (v, 0 w]

]:
uniformly in k € N, ¢t <1 andy € Bg(0), VR > 0. A slight difference above being that the co-
efficients a; (y, ';t) above are computed with respect to the nilpotent sR Laplacian A rv jr—2pt

J glY g =

(A.5) on the product S} x R*~! rather than (2.26|) on Euclidean space. In particular the leadin
(A5 ) g
term is ag (y, 0';t) = e 2™ =285 (y, 0;y,0'). Now let e = k~+, and set 71 (y) = 1 — "2 to get

r

N
R (k) = [y e [Z oy (9.0 0) K5 10 WW)]
§=0

(3.10) =

E=1/r [Z;VZO ag; (y;t) k=" + O (k_(QN“)/T)] ; yey,
O (k™); Y€ Yara

following a stationary phase expansion in ¢'. Above we again note that the remainders are uni-
form fory € Bg (0),VR > 0. The first coefficient is aq (y; t) = [ d@'e™™ e ™2™ 285 (y 0;y, ') =

e By r2nh (y,y) while the general coefficient has the form

1o _
oay :8) = == [ 095, (ny) deds

(3.11) C3; = Z (Aggy,jwngj - Z) ! [H VAVS, (AgyTY,erRg - Z>_1]

pEla;

as in (2.27)), for some set of second-order differential operators A;, 7 =1,2,..., (see also (3.9)
below). Further p denotes an almost analytic continuation of p satisfying p (z) = e, 2 > 0.

Finally, setting y = y; =y in (3.10]), we have arrived at the following.

v

Theorem 16. The heat kernel of the Bochner Laplacian Ay has the pointwise expansion

kn0/r [Zﬁv:o az; (y; ) k=" + O (k=N ’")] yEY,

(312) e 2R (y,y) =
o (k,foo) ) ye Yﬁr—l

with leading coefficient ag (y;t) = ¢ Ao 2Ry (0,0) being the heat kernel of the model operator
(A.3) on the tangent space.

We note that the above heat kernel expansion like Theorem [Jis in general again not uniform
in the point y on the diagonal and does not immediately give heat trace asymptotics. We shall
explore the heat trace asymptotics in the next subsection

We end this subsection by showing how the heat kernel expansion of Theorem [16]immediately
gives the estimates on the first positive eigenvalue/eigenfunction of the Bochner Laplacian of
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Theorem First for any 0 < ¢t; < 5, y € Y, and R > 0 one has the following estimate at
leading order

1 B W\ _1 _1
M) 1 fBR(md(k Ty)e K2/ (kr "y, k ry)
2/r — — n 1 . 1 1
0" () ()
tA - 1/r
! In fBR(O) dye TR (y,y) + O (K7V7)
(e =t1) =\ [, o dye 085 (y,y) + O (k1)
1A Ty r_2pL
1 dye o (y,y
19 A R
(b =t1) =\ [y, 0 e 5 (y,y)

This already gives an upper bound on the first eigenvalue. To identify the constant (1.5 one
takes the limit as t; — ¢5 to obtain

‘“AQEYJT-Q%] (v y)

Ao (k) < fBR(O) dy [Aggyd’”%e

—1/r
L i © A ( rOT),
R

y,Y)

vty > 0. Using Propositionof Sectionthis now gives lim supy,_, 202(/]?
eVe >0,y € Y,, and hence

IN

/\0 (AgZ“Y ’jr—235> +

o (K
(3.14) lim sup /2( ) < inf Ao (A r—ZRZE/) .

k—o00 2/r yeY,

For the lower bound on Aq (k), first note that as in (2.29) one may prove an on diagonal
expansion

k2/r

Vo € S (R), and where the coefficient af has the form (3.11) with p replaced with an analytic
continuation of ¢. Next note that each of the terms C3; (3.11)) is holomorphic in z for Rez <

90<LA)(?J y) = k"I [af (2) + af (2) k7" 4L+ af (2) KTV 4 O (K-

inf,ey. Ao (Aggy,w%). This gives ¢ (b= A4) (3,) = O (k) YN € N, uniformly in y € Y

Thus )

VN €N, ¢ € C®°(—00, (), and hence

o (k)
(315) ylélﬁg )\0 (A 7‘72R5> < 11]?_1>10£31f ]{,‘2/
From ( -, - we have . The estimate on the eigenfunction (|1.4)) then follows from
|¢0 ’ <ere s “(y, y) on using (3.12)) and (3.13)).

3.2. Weyl law. We now prove the first part of Theorem [2] on the asymptotics of the Weyl
counting function N (cle/ " eok? ’”); under the assumption that Y, = Ujvzl Y, ; is a union of
embedded submanifolds, of dimensions d; = dim (Y} ;), along which the curvature R* vanishes
non-degenerately . By a standard Tauberian argument, this shall follow from the following
heat trace expansion.
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Theorem 17. Given f € C> (Y'), the heat trace of the Bochner Laplacian satisfies the asymp-
totics

R N (M
TRtk (dj—2s)/7 ) .
(3.16) tr [fe 7 ] Z{Zk [/NYM ajs (f;t)

VM € N, t < 1. Moreover, the leading terms above are given by

+0 (k(dj—QM—l)/r> }

—tA py
ajo(fit) = fly, e “HTRE (v), v E NY,,
i terms of the pullback to normal bundle of f|y7.j.

Proof. By Theorem [16] it suffices to consider f supported in a sufficiently small neighborhood
of a given point y € Y, ;. We then choose a coordinate system

<y17"'7ydj;ydj+17"‘7yn—1>
NS A >y
Vo Vv

/

=y :y”

near y in which Y;; = {y” =0} is given by the vanishing of the last n — 1 — d; of these
coordinates. Further we may assume { } to be orthonormal at y. A trivialization for L is

chosen which is parallel with respect to coordlnate rays starting at the origin. The curvature
may then be written

Z Ryga ()" dypdy, +O <(y//)r71> '

|a|=r—2
N 7

-

:Rg
The non-degeneracy condition (1.6]) is now equivalent to
(3.17) (O°Ri) (y) =0, V|B]| <r—2 <= y" =0,

i.e. the (r — 2)-order vanishing locus is locally the same for RY and its leading part RY. The
model operator (A.4)) on the tangent space

n . 2
2 o
AggY,jr—235 = - E (ayp + ;yq (v") qu,a) ’

q=1

is given in terms of this leading part of the curvature. We may also similarly define

u ik o ?
(3.18) Aggyvjr’QRﬁ%k = Z (ayp + ?yq (y") qu@) :
q=1

to be the model k-Bochner Laplacian for each k > 0.
Now firstly, from (3.10) one has

e R (B.y, by) = K/ [Zazj (ek'ry;t) k™" + O (K~ 2N+1>/’”)],

(3‘19) ao (Ek‘l/ry;t) _ —tA gFY jr—2RL (Ekl/ry,ikl/r )
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uniformly for k=" > ¢ and y € By (0). Furthermore, substituting ¢ = ﬁ in (3.9) we obtain

al /. 1 27
Za2j y,e,m €

J=0

6_1€2%Ak (55y755y) = 5_( -b /dele—ikaTH’

€2N+1

1
/.
+_<€k1/r)”71+r R2N+1 (ya 0 ) Esz/T)] )
/ 1 —712/ ATy r2pL /
(320) ap | Y, 0 ; —62]{;2/7' = e e2K2/T 797" (y7 O, Y, 0 )

uniformly for ¥ € N, k=" < ¢ and y € B; (0). The leading term above is identified with the
heat kernel

ATy ro2pL, _ ' —ike"0! o1
e KT gy Ryk(y’y)—/dee a0<y,9,m),
of the model k-Bochner Laplacian (3.18]) for k := ke”. One next chooses

y = (07"'7O;ydj+17"'7yn—1)a ‘y”| - 17
—_—— ——

1

_y’ =y

of the given form so that ord, (ROL) <r—2by 1) Then

3.21 _@%AQTYjT_QRL:k — o BTV r2RE (1 KTy — e
(3.21) e R (g y) = e ST (K, K ) = 0 (k7).

follows by a stationary phase type argument as in Theorem [I6] A similar argument applied
to the subsequent terms in (3.20[), which are given by convolution integrals with the leading
part, shows that [ d6'e=*<"" ay; (y,¢'; EQIC%/T) = O (k=*), Vj. In particular the terms of @
are integrable in ¢ for fixed k. Finally (3.19)), (3.20)), (3.21) and a Taylor expansion for f near
y = 0 combine to give (|3.16]). O

3.3. Expansion for the ground state. Next we show the expansion for the first eigenvalue
under the non-degeneracy assumption and when Y, is a union of points. The technique
below borrows from [10] Ch. 9. Firstly we now choose the trivialization for L to be parallel
with respect to geodesics starting at the origin in some geodesic ball By, (y) centered at any
y € Y,. The curvature may then be written

(3.22) R'= > Rpgay“dypdy, +0 (v ).
|oe|=r—2
—RL

in these coordinates/trivialization with R,,., being identified with the components of the non-
vanishing jet j7"2RE. The non-degeneracy condition (1.6)) is now equivalent to

(0°R{) (y) =0, V|B|<r—2 = y=0.

Having EssSpec (AggYVj'er R5> = () under the non-degeneracy assumption (see Proposition
we may set Agy < A1y to be the two smallest eigenvalues of Ayry jr—2pr and Ao = mingey. Aoy
Further set Y, = {y €Y | hoy = /_\0} C Y, and \; := min {)\Ly|y € Yr} U {)\07y|y €Y.\ YT} >
Ao
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We shall begin by constructing quasimodes localized at any y € Y,.. The Bochner Laplacian

Ay, = (VF ®Lk> VFOL" can be written in this local frame/coordinates where
VF@Lk —d+ af + ka"
1
a, = / dp (py"Ryy (pz)) |

0

as in (3.8) and with a” being the Christoffel symbol for F in some orthonormal trivialization.
Further, the adjoint is taken with respect to the metric g;]y = 0, + O (y*) when expressed

in geodesic coordinates. With x € C°([—1,1];[0,1]) with x = 1 on [—1, 1], we define the
modified connections on R"™! via

A d+x(‘2yg|>a

1
Vi =d+ / dp py* <RL>A (py) | dyj,  where

w8

Further we choose a modified metric g"* which is Euclidean outside By, (y) and agrees with
g™ on B, (y). This defines the modified Bochner Laplacian

(3.24) Ay = <@F®L’V>* TFeLt

agreeing with A, = A on the geodesic ball B, (y).
A rescaling/dilation is now again defined via -1,y = (k:_l/’"yl, . .,l{;_l/’"yn_l) and we
consider the rescaled Bochner Laplacian

(325) A = k_2/r <5k—1/r)* Ak
Using a Taylor expansion and | m m the rescaled Bochner Laplacian has an expansion

(3.26) (Zk YN ) 2ANHD/TE 1, YN,

Here each

(3.27) Aj = ajpq (y) 0y, 0y, + bjip (y) Oy, + ¢; (y)

is a (k-independent) self-adjoint, second-order differential operator while each
(3.28) E;, = Z y* [a;‘f“;pq (y; k) 0,,0,, + b3, (y: k) 0y, + c (y; k)]

|a|=N+1

is a k-dependent self-adjoint, second-order differential operator on R"™! . Furthermore the
functions appearing in (3.27) are polynomials with degrees satisfying

deg a; = j, deg b; < j+r —1ldegc; <j+2r—2
deg b; — (j — 1) =deg ¢; — j = 0 (mod 2)
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and whose coefficients involve
a; : < j — 2 derivatives of R™Y
b; : < j — 2 derivatives of RY RTY
< j +r — 2 derivatives of R
¢j: < j — 2 derivatives of R", RTY
< j +r — 2 derivatives of R
while the coefficients af,,, (y; k), b5, (y; k), ¢ (y; k) of (3.28) are uniformly (in k) C'*° bounded.

7 795p

The leading term of 1} is computed
(3.29) Ny = AggYJT—QR??
in terms of the the model Bochner Laplacian on the tangent space TY (|A.3). We note that

these operators (3.27)) are the same as those appearing in ((3.11)).
We choose 0 < p < 1 such that the B, (y)’s, y € Y,, are disjoint. Next with Ey, =

ker [Agy:ry J7-2RL — >\07y] the smallest eigenspace of A, any normalized ) € Ey, defines a quasi-

mode
Ui (y) =x <%) 5 (n=1)/2r4) (Kry ) eC®(Y;F®LY), satisfying
:k(n—l)/;“az_l/rg}
[ =1+00)
(3.30) Agty :kQ/T)\o,MZk + Ope2 (kl/r) :

We then define Eoyy to be the span of the quasimodes corresponding to an orthonormal basis
of Ey, . Set Ey == ®yey, Eoy C C* (Y; F @ L*¥) with Ej being its L? orthogonal complement.
We now have the following proposition.

Proposition 18. There exists ¢ > 0, kg € N such that
(3.31) ]<Akz;, ¢3> WEL

(3.32) (Aptp,ap) > % (Xo + A1) k2"

S ckl/T‘

Vk > ko and ¢ € Ey, ¢ € C™ (Y; F® Lk) N EOL of unit norm.

Proof. The first equation - ) follows easily from construction (3.30)).
For (3.32)), we first set x,¢ = x ( ) 1 for each y € Y, and split

o= (e (-3 0)

—¢1 —1112

Now since the 15 is compactly supported away from Y,, an argument similar to Proposition
gives

(3.33) (Awta, o) > [k 7D — ] [[n?
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for some constants ci,c; > 0 depending only on p. Next each x,v, y € Y,, having compact
support in B, (y), we may decompose

J—(n=1)/2r (67 1) et = vy o+ S
~
eker[Ao—/\o] eker[Ao—S\o]L

Clearly 1y is orthogonal to 1, Aty while <A0¢J, ¢;> >\ Hq/g”z by definition. Further-
more, since x,1 L EO,y by hypothesis, we may compute
(ot K026 ) = O, (1= X) RO/,
= (K02 (5.0,,) x [L=x (F79)] ) = 0 (1) [l

for any normalized QZ € Ey,. This in turn gives H@DBH =0 (1) |Ixy¥|l, Hw;” =[1—-o(1)]|Ix,¥l
and hence

(Dok™ 20 (80, ) " xth K27 (80,) ) = (Dot ¥) + (Dot 0y
=N
> [ —o@)] Iyl
On account of the rescaling (3.25), (3.26)), (3.29) we then have

(3.34) (Arxyts xy) = K M=o (D] Iyl
Finally, with x1 = >~ <y, Xy and p € (0,1) we estimate

(A, ) = ||V 2 p T |+ (1= p) [ (1= xa) 9FOE

= p||~daw + v vy

+ (1= p)||dxa + 7 (1= xa) o
= p|| Ve Xﬂ/)H+ —p) HVF@L —xle
-0 )|l

> ok [ = o (] v
(1= p) [erk® D = ] (1 = ) wll = O (1) 1]
> 2 (ot 2) K ]
from (3.33)) and on choosing 0 < p < 1 and k > 0 respectively. 0
Following the above proposition, the min-max principle for eigenvalues immediately gives
(3.35) Spec (Ag) C [j\ok%" — kYT N KT + Ckl/q U B (5\0 + 5\1) K2 oo) )

LetI' = {\z| = %5\0 + %5\1} denote the circular contour in the complex plane and ¢ € C2° (O, %5\0 + %5\1)
A — ) ~" then exists for z € I', £ > 0 and one may

with ¢ = 1 near A\g. The resolvent (
define via

k2/m

1 1 -1
P g [ (=) =e ()
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the spectral projection onto the span of the Ag-eigenspaces with eigenvalue in the first interval
[Nk — k" Nk + k']

of (3.35)). Finally, (3.31)) and (3.32)) imply that

(3.36) Po: By = By = @D {ker (A = X) : A € Dok — ck/" Mok®" + ck*/7] }

is an isomorphism for k& > 0.
We now have the following.

Theorem 19. Given {Eka@ € Ey two quasimodes (3.30)), the inner product
N

(3.37) @k AkPozZ;> — BTNk 4 0 (K1)
=0

has an asymptotic expansion for some ¢; € R, j =0,1,....

Proof. For two quasimodes @Zk, @Z;c localized at different points of Y, one has <@Zk, AkPO@Z;> =
O (k=) following a similar off-diagonal decay for the kernel of ¢ (kz—l/TAk) as 1} We now

consider Jk, J}C € Eo,y of the form 1) localized at some y € Y,. To this end (and as in the
proof of Theorem E[) note first that by a finite propagation argument we have

L <\~ .
<1/Jk7 AkP0¢k> <¢ka Ak’@ (WA/C> ¢2> ) while
I I n—1)/r r r
(3.38) WAMO (WAIC) (v, y) = K"V Ap (D) (kl/ y, kY ?/) .
Next, the expansion (3.26]) along with local elliptic estimates gives
(A =2 = (Do=2)"" = Oy _yore (K717 Imz[7)

for each s € R. More generally, we let I; == {p = (po, p1,--.) [Pa € N, D> po = j} denote the set
of partitions of the integer j and define

=) (Lo—2)7" [HAM (N —2)7"

pEIJ

Then by repeated applications of the local elliptic estimate we have
N
YR =0y g (O e ).

for each N € N, s € R. A similar expansion as (3.26) for the operator (A + 1)M (A = 2),
M € N, also gives

(3.39) (A + 1)7 Zk ]/TCZ _ HS e </€ (N+1)/r Imz| 2rN—2>

for operators C7 ,, = OHISOC_>H13£2+2M (k; (NHD/T  Tmz |~ 27"N_2), j=0,...,N, with

-1
z A (O 0
= (A%, +1) (32, )
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For M > 0 sufficiently large, Sobolev’s inequality gives an expansion for the corresponding
Schwartz kernels in (3.39) in C° (R""! x R"™!). Plugging the resulting expansion into the
Helffer-Sjostrand formula then gives

N
_ —j/rpe
‘Agp (&) =) ke

j=0

-0 (k—(N-i-l)/T)
CO(R—1xRn—1)

VN € N and for some (k-independent) €7 € C°(R"™! x R*™"), j = 0,1,.... Finally, the last

equation with (3.30), (3-38) gives
N
<Jk, AkPOJ;c> — kT (Z Cjk:_j/r) =0 (k:_(N_l)/T) where

=0
= ($.c50'),

as required. N

Following this we note from that the low lying eigenvalues of Ay are given by Spec ( Ag| Eo) =
Spec (Ak| P Eo) for k> 0. However, since the matrix coefficients of A|p 5 were just shown to
have an expansion, the expansion for the smallest eigenvalue now follows from an application
of standard perturbation theory for self-adjoint matrices (see [39] Ch. 2).

4. KODAIRA LAPLACIAN ON TENSOR POWERS

We now specialize to the case when Y is a complex Hermitian manifold with integrable
complex structure J. For the arguments of this section, we shall further need to restrict to the
two dimensional case, i.e. Y is a Riemann surface (see Remark . The metric g?¥ is induced
from the Hermitian metric on the complex tangent space TcY = T1OY. Further (L, ht), (F, ht)
are chosen to be a Hermitian, holomorphic bundles where L is of rank one. We denote by V%,
VI the corresponding Chern connections. The curvature RY of V¥ is a (1,1) form which is
further assumed to be semi-positive

iR" (v,Jv) >0, Yv€TY or equivalently
(4.1) RY (w,w) >0, YweTHY.

We also assume as before that the curvature R* vanishes at finite order at any point of Y. We
note that semipositivity implies that the order of vanishing r, — 2 € 2Ny of the curvature R*
at any point y is even. Semipositivity and finite order of vanishing imply that there are points
where the curvature is positive (the set where the curvature is positive is in fact an open dense
set). Hence
degL:/cl(L)— RL>O
v 2m

so that L is ample.

Denote by (QO’* (X T F® Lk) ; 51:) the Dolbeault complex and define the Kodaira Laplace and
Dirac operators acting on Q%* (X; F ® LF)

1

(4.2) Ok =5 (Dy,)? = 8,0} + 00

(4.3) Dy =2 (0, + ;).

Clearly, Dy, interchanges while O, preserves Q%/1. We denote Dj = Dk|Q0 on and O,
Ok|go.01- The Clifford multiplication endomorphism ¢ : TY — End (A%*) is defined via ¢ ( ) =

0/1 _
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V2 (Y A —iwa), v € TY, and extended to the entire exterior algebra A*TY via c(1) =
1, c(v1 Avg) == c(v1)c(vg), v1,v9 € TY.

Denote by VIV, V7" the Levi-Civita and Chern connections on the real and holomorphic
tangent spaces as well as by VT the induced connection on the anti-holomorphic tangent
space. Denote by © the real (1,1) form defined by contraction of the complex structure with
the metric © (.,.) = ¢g7¥ (J.,.). This is clearly closed d© = 0 (or Y is Kihler) and the complex
structure is parallel VZYJ = 0 or VIV = VT ¢ vT°Y,

With the induced tensor product connection on A% @ F'® L* being denoted via VA" ®F&L"
the Kodaira Dirac operator (4.3)) is now given by the formula

0,* k
D), = co VA T@FOLY,

Next we denote by R the curvature of V¥ and by & the scalar curvature of g”¥. Define the
following endomorphisms of A%*

w (RF) = RF , W) Wi
w (RY) == R (w, @) Wig
w (K) == KWig
o = RF (w,0)
(4.4) F = R (w,w)

in terms of an orthonormal section w of T*°Y . The Lichnerowicz formula for the above Dirac
operator ([44] Thm 1.4.7) simplifies for a Riemann surface and is given by

(4.5)
20 = Df = (VAW SFOL ) gAVEFet L o (RE) — 2] + [2w (RF) — 7] + %w ().
We now have the following.

Proposition 20. Let Y be a compact Riemann surface, (L, h*) — Y a semi-positive line bundle
whose curvature R vanishes to finite order at any point. Let (F,h") — Y be a Hermitian
holomorphic vector bundle. Then there exist constants ci,co > 0, such that

1Dks|* = (k™ — ) [|s]|”
for all s € Q%1 (Y;F ® Lk).
Proof. Writing s = |s|w € Q%! (Y; F® Lk) in terms of a local orthonormal section w gives
(4.6) ([2w (R") — 7] 5,5) = R" (w, w) s]*> >0

from (4.1)), (4.4]). This gives

| Dis|l* = (Dits. s)
= ([(wArerest) At erst g [ou (RY) - ]

+ [2w (RT) = 77] + %w (H)] s,s>
> ((ATeret) T gatereity o) — o 5|

> (clk2/T — CQ) ||$H2

from Proposition [15] (4.5) and (4.6)). O
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We now derive as a corollary a spectral gap property for Kodaira Dirac/Laplace operators
Dy, O, corresponding to Proposition

Corollary 21. Under the hypotheses of Proposition[2( there exist constants ¢y, c2 > 0, such that
Spec (Og) C {0} U [cle/T — ¢y, oo) for each k. Moreover, ker D,, =0 and H' (Y; F® Lk) =0
for k sufficiently large.

Proof. From Proposition [20] it is clear that

(4.7) Spec (0,,) C [clk%" — 2,00)
for some ¢y, ¢ > 0 giving the second part of the corollary. Moreover, the eigenspaces of D7|0.01
with non-zero eigenvalue being isomorphic by Mckean-Singer, the first part also follows. U

Since L is ample, we know also by the Kodaira-Serre vanishing theorem that H* (Y; F® Lk)
vanishes for k sufficiently large. If I is also a line bundle this follows from the well known fact
that for a line bundle E on Y we have H' (Y; E) = 0 whenever deg £ > 2g — 2. Tt is however
interesting to have a direct analytic proof. Of course, the vanishing theorem for a semi-positive
line bundle works only in dimension one, see Remark [22 below.

The vanishing H* (Y; F @ L¥) = 0 for k sufficiently large gives

dim HY (Y;F@Lk) :X(Y;F®Lk)

= / ch (F® LF) Td(Y)

(4.8) _ [rk(F) /Y o (L)] + /Y ((F)+1—g,

by Riemann-Roch, with x (Y; F® L’“), ch (F ® Lk), Td (Y), g denoting the holomorphic Euler
characteristic, Chern character, Todd genus and genus of Y respectively.

Remark 22. The Corollary also gives a corresponding spectral gap for the 'renormalized
Laplacian’ (|28, 43]),

AF = Ay =kt = Dy + 7",
acting on functions : there exist ¢, ¢y, co > 0 such that for any k,

Spec (Af) C [—¢o, o] U [clk%" — ¢, oo) ,

with the number of eigenvalues in the interval [—c, o] again being the holomorphic Euler
characteristic (4.8)). The argument for Proposition 20| breaks down in higher dimensions since
there are more components to [2w (R") — 7%] in the Lichnerowicz formula which semi-
positivity is insufficient to control. Indeed, there is a known counterexample to the existence
of a spectral gap for semi-positive line bundles in higher dimensions [24].

4.1. Bergman kernel expansion. We now investigate the asymptotics of the Bergman kernel
on the Riemann surface Y. This is the Schwartz kernel Iy (y1,y2) of the projector onto the
nullspace of [y

(49) Hk : COO (Y, F X Lk) — ker (Dk|C°°(Y;F®Lk>> P

with respect to the L? inner product given by the metrics ¢g7¥, h* and h". Alternately, if
S1, 82, .., SN, denotes an orthonormal basis of eigensections of H° (X; F® Lk) then

(4.10) Ik (y1,92) = Z sj (Y1) @ 5 (y2)"
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We wish to describe the asymptotics of I, along the diagonal in Y x Y.

Consider y € Y, and fix orthonormal bases {e1, e (= Jeq)}, {l}, {fj};k:(f) for ,Y, L, , F
respectively and let {w = \/LE (e1 — ieg) } be the corresponding orthonormal frame for Tyl’OY.
Using the exponential map from this basis obtain a geodesic coordinate system on a geodesic
ball By, (y). Further parallel transport these bases along geodesic rays using the connections

VT VE, VT to obtain orthonormal frames for T7'°Y, L, F on By, (y). In this frame and
coordinate system, the connection on the tensor product again has the expression

yASersLt _ g + "+ af + ka®
1
0,* 0,*
ay’" = / dp (py"”R?k (px)>
0

1
aj = /0 dp (py" R, (px))

(411) ok = [ o (oo Rl (o)

in terms of the curvatures of the respective connections similar to . We now define a
modified frame {€;,é;} on R? which agrees with {e;,es} on B, (y) and with {9,,, 0,,} outside
By, (y). Also define the modified metric g™ and almost complex structure J on R? to be
standard in this frame and hence agreeing with g™, J on B, (y). The Christoffel symbol of
the corresponding modified induced connection on A%*now satisfies

a”" =0 outside Bsy, (y) .

With r, —2 € 2N; being the order of vanishing of the curvature R* as before, we may Taylor
expand the curvature as in (3.22) with

(4.12) iRY (e1,e9) > 0.

Further we may as before define the modified connections V¥, V¥ 1) as well as the cor-
responding tensor product connection VA" ®FOLY which agrees with VA" ®F®L" op B, (y).
Clearly the curvature of the modified connection V* is given by RF and is semi-positive
by . Equation also gives R = RE40 (o™ ') and that the (r, — 2)-th derivative/jet

of R’ is non-vanishing at all points on R? for

(4.13) 0<o<c

§ R (y)] .

Here c is a uniform constant depending on the "2 norm of R*. We now define the modified
Kodaira Dirac operator on R? by the similar formula

(4.14) Dy = co VAEreLt

agreeing with Dy on B, (y). This has a similar Lichnerowicz formula
(4.15) D? =20, = (@AO’*®F®L’“> TARFRLE | [Qw (RL) _ 7~_L]

(4.16) + 2w (BF) - 7] + %w (%)

the adjoint being taken with respect to the metric §7¥ and corresponding volume form. Also

the endomorphisms R, 7, 7% and w (k) are the obvious modifications of (4.4) defined using

the curvatures of V¥, V% and g7 respectively. The above (4.15) again agrees with [, on
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B, (y) while the endomorphisms R, 7w (%) all vanish outside B, (y). Being semi-bounded
below (4.15) is essentially self-adjoint. A similar argument as Corollary gives a spectral gap

(4.17) Spec (ﬂk) c {0} u [clkZ/ry — €,00) .

Thus for k£ > 0, the resolvent (Ijk — z)_l is well-defined in a neighborhood of the origin in
the complex plane. On account on the sub-elliptic estimate , the projector IIj, from
L? (R A)y* @ F,® L®k) onto ker (@k) then has a smooth Schwartz kernel with respect to the
R1emann1an volume of §7Y¥.

We are now ready to prove the Bergman kernel expansion Theorem [3]

Proof of Theorem[3. First choose ¢ € S(R,) even satisfying ¢ € C.(—£,¢) and ¢ (0) = 1.
For ¢ > 0, set 1 (5) = 1je00) (5) ¢ (s). On account of the spectral gap Corollary 21} and as ¢,

decays at infinity, we have

(4.18) IDge1 (Di)ll g2 = O (K7)

for a € N. Combining the above with semiclassical Sobolev and elliptic estimates gives

(4.19) ¢ (Di) — Hk‘cl (YxY) = 0 (kioo) )

Vil € Ny. Next we may write ¢ (D) = fR “Drp (€) d¢ via Fourier inversion. Since Dy, = Dy

on B, (y) and ¢ € C. ( 55 2) we may use a finite propagation argument to conclude

@ (Dk) (,9) = ¢ (D) (,0).
By similar estimates as for Dj, we now have a localization of the Bergman kernel
I (,y) =0 (k=°), on B,(y)*
(4.20) M (., y) — 1 (,,0) = O (=), on B,(y).

It thus suffices to consider the Bergman kernel of the model Kodaira Laplacian (4.15)) on R2.
Next with the rescaling/dilation §-1/ry = (k‘l/ryl, cee k_l/Tyn,l) as in , the rescaled
Kodaira Laplacian

(421) L] := k_Q/Ty (5k—1/r)* |jk
satisfies
O
(4.22) © <k2_/’;> (y,y) = k2/7‘y<'0 () (ykil/w,y/kl/w)

for ¢ € S (R). Using a Taylor expansion via - the rescaled Dirac operator has an
expansion

N
(4.23) 0 = (Z k—y‘ﬁ;,gj) 4 E2NED/ME YN,
§=0
Here each
(4.24) ;= ajipg () Oy, 0y, + bjip () Oy, + ¢ (y)
is a (k-independent) self-adjoint, second-order differential operator while each
(4.25) Ej= Yy [af,, (i k) 0y,0,, + %, (yi k) 0y, + ¢ (3 k)]

|a|l=N+1
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is a k-dependent self-adjoint, second-order differential operator on R? . Furthermore the func-
tions appearing in (4.24)) are polynomials with degrees satisfying

deg a; = j, deg b; < j+r, —1l,degc; < j+2r, —2
deg bj — (j — 1) =deg ¢; — 7 = 0 (mod 2)
and whose coefficients involve
a; : < j — 2 derivatives of RTY
b; : < j — 2 derivatives of RF, RA™
< j +r — 2 derivatives of R*
¢; + < j — 2 derivatives of RF , RA
< j 4 r — 2 derivatives of R”

while the coefficients a2 ba ( i k), ¢ (y; k) of (4.25)) are uniformly (in k) C* bounded.
Using (4.11)), (A.4), (A.8) and the leading term of (4.23) is computed

(4.26) Lo = E’gTY’j;y*QRL’JTY

in terms of the the model Kodaira Laplacian on the tangent space TY (A.8)).
It is now clear from (4.21]) that for ¢ supported and equal to one near 0. In light of the
spectral gap (4.17)), the equation (4.22) specializes to

(4.27) I, (v, y) = kY™ (y kY™, ykt)

as a relation between the Bergman kernels of O;, [J. Next, the expansion 1} along with
local elliptic estimates gives

(B—2)" = (@ —2)" = O oz (K77 |Imz|?)

for each s € R. More generally, we let I; .= {p = (po,p1,-..) [Pa € N,Y_ po = j}denote the set
of partitions of the integer j and define

(4.28) C:=> (=) " [ [y, (z — o) '] -

pEIj

Then by repeated applications of the local elliptic estimate using (4.23|) we have

N
(429) (Z . D)fl . (Z k,—]/'f‘ycj> — loc HfotQ <k»_(N+1)/Ty |Imz|*2N7'y*2> ’
7=0

for each N € N, s € R. A similar expansion as (4.23) for the operator (I + 1) (& — 2),
M € N, also gives

N

(43()) (EI + 1)_M (D - z)_l - Z kij/ryCiM = OHIS _>H15+2+2M (kf(NJrl)/Ty ’Im2|_2NTy_2)
=0

for operators C% ,, = OHIS LHETR M (k_(N“)/Ty |Inr1z|_2NTy_2>7 j=0,...,N, with

-1
z A (0 0
= (A%, +1) (32, )
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For M > 0 sufficiently large, Sobolev’s inequality gives an expansion for the corresponding
Schwartz kernels in (4.30) in C* (R? x R?), VI € Ny. Next, plugging the above resolvent expan-
sion into the Helffer-Sjostrand formula as before gives

N

p(E) =) ket

=0

— O (k= (VI

Cl(R2xR?)

VI, N € Ny and for some (k-independent) C¥ € C* (R? x R?), j = 0,1,..., with leading term

C = (o) = ¢ By 2o JTY> . As ¢ was chosen supported near 0, the spectral gap
Jy )

properties (4.17)), 38| give

(4.31) = O (k~WNH+D/rv)

CL(R2xR2)

N
— Z k—J/Tij
=0

for some C; € C*(R?* xR?), j = 0,1,..., with leading term Cy = HD-"TY’J'ZVQRL’JTY. The
expansion is now a consequence of , and . Finally, in order to show that
there are no odd powers of k=/™ one again notes that the operators [; change sign by
(—1)j under §_jx = —x. Thus the integral expression corresponding to C3 (0, 0) changes
sign by (—1)j under this change of variables and must vanish for 5 odd. U

Next we show that a pointwise expansion on the diagonal also exists for derivatives of the
Bergman kernel. In what follows we denote by jls/j""!s € S'T*Y @ E the component of the
[-th jet of a section s € C* (E) of a Hermitian vector bundle E that lies in the kernel of the
natural surjection J' (E) — J=1(E).

Theorem 23. For each | € Ny, the l-th jet of the on-diagonal Bergman kernel has a pointwise
expansion

(432) 7 [ (. 0)] /3 [T (g, )] = KCHO/ lzq k2l

J=0

+0 (k—(QN—l—l)/ry> ’

VN €N, in j'End(F) /5" End (F) = S'T*Y @ End(F), with the leading term

Y

Ty —2 Ty —2
coly) =3t [0 H R (0,0)] /510 [T AR (0,0)]

being given in terms of the l-th jet of the Bergman kernel of the Kodaira Laplacian (A.8]) on
the tangent space at y.

Proof. The proof is a modification of the previous. First note that a similar localization
(4.33) i (y,y) = i (y,y) = O (k™)

to (4.20) is valid in C!, VI € Ny, and for y in a uniform neighborhood of y. Next differentiating
(4.27) with y = ¢ gives

(4.34) 6;’11 (y,y) = k(2+\a|)/rya§xnm (yk1/ry’yk1/ry) ’

Va € N2. Finally, the expansion (4.31]) being valid in C!, VI € Ny, maybe differentiated and
plugged into the above with y = 0 to give the theorem. U
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Remark 24. The expansion ((1.7)) is the same as the positive case on Y5 (points where r, = 2)
and furthermore uniform in any C’-topology on compact subsets of Ys cf. [44) Theorem 4.1.1].
In particular the first two coefficients for y € Y5 are given by

co(y) =157 5 (0,0) = -t
27
1
c1 (y) = 16_7rTL [k — Aln7" +47"]
The derivative expansion on Y5 is also known to satisfy ¢co =c; = ... = Clst] = 0 (i.e. begins

2

at the same leading order k) with the leading term given by
cru) (v) = %JITL/%JHTL-
As before with Theorem [9] and Theorem [16] the expansions of Theorem [3] and Theorem
are not uniform in the point on the diagonal. We next give uniform estimates on the
Bergman kernel useful in Section H Below we set C;, = inf|pv—; NCART (0,0) for each
0+ RV € S"2V*®@A2V*, r; > 2. Furthermore, the Bergman kernel I1% " #vR"7y" (0,0) of the
model operator is extended (continuously) by zero from Y, to Y.

Lemma 25. The Bergman kernel satisfies

(4.35)
inf 1 AR (1) 0)} [1+0(1)] K" < (y,y) < [supTI% SR (0,0) | [1+ 0 (1)] k,
with the o (1) terms being uniform iny € Y.
Proof. Note that theorem Theorem [3] already shows
(4.36) I (y,) > Gy, (|77 2R B)" — ¢

Yy € Y, with ¢, = ¢ <‘jry*2RL (y)rl) = O|jry—QRL(y)|’1 (1) being a (y-dependent) constant

given in terms of the norm of the first non-vanishing jet. The norm of this jet affects the
choice of ¢ needed for (4.13]); which in turn affects the C"*°-norms of the coefficients of
via . We first show that this estimate extends to a small (|”"*R* (y)|- dependent) size
neighborhood of y. To this end, for any € > 0 there exists a uniform constant c. depending
only on ¢ andHRL ‘ o such that

(4.37) JUPRM(y)| = (1—¢) [j7 R ()]
Yy € B |j-2pe| (¥) -

We begin by rewriting the model Kodaira Laplacian [, 1’ near y in terms of geodesic
coordinates centered at y. In the region

Y € B, o) (9) 0 { Co (|PRE ()| ) > Kmomist™ 845 (0,0))

a rescaling of [y, by 0-1/2, now centered at y, shows
i (y, y) = B FEESE0,0) 4 0oy (1)

0L
Jy It TY

=k ‘jORL (y)‘ HgyTy’IJ'ORL(y)I’Jy (0,0) + O (1)
’ |3y 2 RE (y)]

2/ry 1ol IR ITY L
(4.38) > |2/ (0,0) + Opyry 2 (1)
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as in . Now, in the region
Y € B, |jr-2ps) (9) 1 {C1 (7 RE () /1°R" (y)| B)
> E2/ru e’ *RLJTY (0,0) > Cy (UORL (y)‘ k)}
a rescaling of O, by 0,-1/3 centered at y similarly shows

Hk <y’y) _ k2/3 [1 +0 (kZ/r—2/3)] HgyTY,jleL/jﬁ’RLJyTY (0’0)
+O| iy — 2RL( )‘—1 (1)

Jy RL/Jy
_ L2/3 [1 +0 (kQ/r—2/3)] ‘ijL/]SRLlw?, 9y W JTY (070)
(4.39) + O (D)
(4.40) > (1= ) R 5T (0,0) 4 Oy g+ (1

Next, in the region
V€ B jyusne) () 0 {Co (IR (0) /5 R ()] B)
> e R (0,0) > max [Co (R ()| k) Cr (17 RE () /5°RE () 1)*°] }

a rescaling of OJ;, by 0-1/4 centered at y shows
My (y,y) = kY2 [L+ 0 (B/712) ] 1SRRI (0, 0) + O jru-2p(yy (1)
iRy RE oy

. L L2 % [GZRE /5 RE] Y
= K2 [14 0 (WY2)] g RE [y RE[ I BRI (0,0) 4 O oy (1)

YTy
7

(A1) = (L= 2 Y (0,004 0y e (1

Continuing in this fashion, we are finally left with the region
y € Bcs|jrr2RL\ (y) N {k2/ryng§Y,j§y—23L,J3y (0,0)
> max [C'o (UORL (y)\ k) o Chs (‘j?“y—?»RL (y) /3R (y |k 2/ ry— 1)] } ‘
In this region we have
7 TERE (y) /5T RE ()| = (1= ) [T RE (y)] + O (koY)

following (4.37) with the remainder being uniform. A rescaling by d,-1/», then giving a similar
estimate in this region, we have finally arrived at

r L jTY
I (y,y) = (1 —¢) A AR TR (0,0) + O‘ ry—2RL( y)’ (1)

VyEB ’jry QRL|( )
Finally a compactness argument finds a finite set of points {yj} such that the correspond-

ing BCE i ‘ (y;)’s cover Y. This gives a uniform constant ¢; . > 0 such that

Wy (y.y) > (1= e) | inf 7950057 (0,0) | B — e

yeYr
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Yy € Y , € > 0 proving the lower bound (4.35). The argument for the upper bound is
similar. U

We now prove a second lemma giving a uniform estimate on the derivatives of the Bergman
kernel. Again below, the model Bergman kernel I1% " #R"/iR* 7" (0, 0) and its relevant ratio

‘ [ smerta ] o, 0)’

TY ;1pL/;0RL JTY
[19 " »dy RE /39 RE,J] (070)

are extended (continuously) by zero from {y|jlR"/j9R* # 0} to Y.

Lemma 26. The I-th jet of the Bergman kernel satisfies

LTI < K371 1 HjZHQJYJ;RL/jSRLJﬂ (0’0)’
‘J [ k <y7y)” = [ +O( )] 381161112 Hg;“Y7j?}RL/j8RL7Jg"Y (070)

with the o (1) term being uniform iny €Y.

Proof. The proof follows a similar argument as the previous lemma. Given ¢ > 0 we find a
uniform ¢, such that (4.37)) holds for each ¥y € Y and y € Bce‘jry,g RE| (y). Then rewrite the

model Kodaira Laplacian [, (4.15)) near y in terms of geodesic coordinates centered at y. In
the region

€ ry—2pr] (Y) N o (17 y > ” ZY7<;y72 L Iy ’
Y € B |yr-se| (1) N {Co (|7°RY ()] k) 2 KI5 5" 05T (0,0
a rescaling of [, by d;-1/2, now centered at y, shows
o k o, L
0 Hk (y7y) - % (a T (y)) + O|jry*ZRL(y)|_1 (1)

following 24] as , = 2. Diving the above by (4.38) gives

0°TL, (y,y)| _ |0°7" (y)] .
< O oo o1 (K
O (y,y) =  7E(y) T rr)| (&)

(pwmwxmwmwjmmﬁ

< klel/3
B ’ 21615 HgyTY’jéRL/ngL,JEY <07 O) Hk (y7 Y)
-1
+ O‘jry72RL(y)’_1 (k )
Next, in the region
2/3

Y € B yr-2pe) (1) 1 {C1 (7 RE () /5°R" ()] )
> R (0,0) > Co (|0 (v)| B) }
a rescaling of Oy, by 0,-1/s centered at y similarly shows

aaHk <y7y> _ k(2+|a|)/3 [1 + O (k2/r—2/3)] [aaHQYTYJ)}RL/ngL,J)TY} (07())

(1+]al)/3
+ O!jw—QRL(y)\’l (k )
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as in Theorem [23] Dividing this by (4.40]) gives
a Y ;1pL/; L Y
0P TL (y.y) [orme™ 45 (0,0)
i (y.y) (1™ 0 REREAET (0, 0)
1 (kel=073)

< KRB (1 4e)

+ O|jry—2RL(y)|
\ [j'O"Hg?YJéRL/J‘SRLszTY] (0, 0)\
Hggy,jiRL/ngL,JgY (O, O)

(k(lal=0/3)

< KB (14 ¢) |sup
yey

+0

|72 RE@y)|

Continuing in this fashion as before eventually gives

0TI, (. )| ‘[ﬂalngy”J;RL/ngL,JJY] (0, 0)‘
k—w < k|a|/3 (1 +€) sup TY 1RL/;0RpL JTY
I (y, y) ey  T195 I RELGREITY (0, 0)

+0, L (klel=73)

"vERE(y)]

VyeY,ye Bca|jry_zRL| (y), Va € N3, By compactness one again finds a uniform ¢; . such that

foltgsl™ a3 AR (0,0
- Ik 0.0
[0°Tk (3, )| < KB (14 ¢) [sup

- - +
I, (4. 1) bev  II0 R RERITY (0, 0) e

Vy € Y, proving the lemma. O

Example 27. (Branched coverings) We end this section by giving an example where semi-
positive bundles arise and where the first term of the Bergman kernel expansion can
be made explicit. Here f : Y — Y is a branched covering of a Riemann surface Y, with
branch points {yi,...,yn} C Y. The Hermitian holomorphic line bundle on Y is pulled back
(L,h*) = (f*Lo, f*h*) from one on Y. If (Lo, h™) is assumed positive, then (L,h") is
semi-positive with curvature vanishing at the branch points. In particular, near a branch point
y € Y of local degree £ one may find holomorphic geodesic coordinate such that the curvature

2
is given by RL = % (z2)"/*7 Rf?y) + O (y"1). The leading term of is given by the model
Bergman kernel TT1%0 (0, 0) of the operator [y = bbf, bT = 20; + a, a = 1z (22) /21 R?E’y). An
orthonormal basis for ker ([y) is then given by

s\ V2
o [RLO ]T 2%~ % with
21 (M) f(y)

r

Sq =

f(y)

This gives the first term of the expansion

1
O = 1 (22)"/* RLo

2

1
co (y) =™ (0,0) = — R%0

27?% [ f(y)];

at the vanishing/branch point y in this example.
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4.2. Induced Fubini-Study metrics. A theorem of Tian [60], with improvements in [17, 61|
(see also [44, S 5.1.2, S 5.1.4]), asserts that the induced Fubini-Study metrics by Kodaira
embeddings given by kth tensor powers of a positive line bundle converge to the curvature of
the bundle as k£ goes to infinity. In this Section we will give a generalization for semi-positive
line bundles on compact Riemann surfaces.

Let us review first Tian’s theorem. Let (Y, J,¢"") be a compact Hermitian manifold,
(L, hY), (F, h'") be holomorphic Hermitian line bundles such that (L, h%) is positive. We endow
H°(Y; F @ L*) with the L? product induced by ¢?¥, hl and h¥. This induces a Fubini-
Study metric wpg on the projective space P [HO (Y; F® Lk)*] and a Fubini-Study metric hpg
on O(1) = P[H® (Y;F® LF)'] (see [44, S 5.1]). Since (L,h") is positive the Kodaira em-
bedding theorem shows that the Kodaira maps &5 : ¥ — P [HO (Y;F® Lk)*} (see (|4.48)))
are embeddings for £ > 0. Moreover, the Kodaira map induces a canonical isomorphism
O : F® L¥ — ®:O(1) and we have (see e.g. [44, (5.1.15)])

(4.42) (Ofhrs)(y) = Hi(y.y) " h™ (), y €Y.
This implies immediately (see e.g. [44, (5.1.50)])

1 1
kCPZwFs - %RL ﬂRF - ﬂé)@ln i (?J y)

Applying now the Bergman kernel expansion in the positive case one obtains Tian’s theorem,
which asserts that we have
1

(4.44) ECI)};MFS - 2LRL =0 (k™"), k— oo, in any C*-topology.
m

Let us also consider the convergence of the induced Fubini-Study metric ©}hrg to the initial
metric h”. For this purpose we fix a metric hf on L with positive curvature. We can then
express hl' = e ?hl, Othps = e=?x(hk)k @ b where p, @), € C°°(Y) are the global potentials
of the metrics h and ©}hps with respect to hf and (h§)* @ h''. Note that

RWAY) _ (LK) + 55% RILFOihrs) _ . R(LAE) + RERT) + 35%7

and %R(L’@Zh”) = ®;wps. Then 1) can be written as

(4.43)

1 1
(4.45) coey) —ely) = o Inlh(y,y), y €Y.
We obtain by ([1.7) that

1 _
(4.46) ‘Egok — o O(k™'Ink), k— oo,

that is, the normalized potentials of the Fubini-Study metric converge uniformly on Y to the
potential of the initial metric A* with speed k! In k. Moreover,

(4.47) — O(k

‘k oY) )k CO(Y)
and we get the same bound O( - ) for higher derivatives, obtaining again (4.44|). Note that if

v 15 and (119,

Dy, — Op 0y, — 00 =0(k™), k— oo,

g™ is the metric associated to w = 5= RY, then we have a bound O(k~?) in

We return now to our situation and consmler that Y is a compact Rlemann surface and
(L,hY), (F, h) be holomorphic Hermitian line bundles on Y such that (L, hl) is semi-positive
and its curvature vanishes at finite order. An immediate consequence of Lemma [25|is that the
base locus

BI(F® L") ={yeYls(y) =0,s€ H* (YiFo L")} =0
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is empty for £ > 0. This shows that the subspace
., = {s e H° (Y;F@Lk) ls(y) = O} c HY (Y;F®Lk) ,

is a hyperplane for each y € Y. One may identify the Grassmanian G (dk —1; H° (Y; F® Lk)),
dy, == dimH° (Y; F ® L*), with the projective space P [H° (Y; F' ® L*)"] by sending a non-zero
dual element in H° (Y; F® Lk)* to its kernel. This now gives a well-defined Kodaira map

Y P |H(ViF e LY,
(4.48) Py (y) ={s e H* (V;F®LF)|s(y) =0}.
It is well known that the map is holomorphic.

Theorem 28. Let Y be a compact Riemann surface and (L, hY), (F, ht) be holomorphic Her-
mitian line bundles on'Y such that (L, h*) is semi-positive and its curvature vanishes at most

at finite order. Then the normalized potentials of the Fubini-Study metric converge uniformly
on'Y to the potential of the initial metric h™ with speed k= Ink as in (4.46). Moreover,

1 1 Y _ —2/3

(4.49) ‘Efm ~0p| . |§Pee =T, = O), koo,
and

1, _ )
(4.50) 001 — 99 gy = O, = o,
especially

X .
(4.51) i — %RL =0 (k%) k— oo,

uniformly on'Y. On compact sets of Y the estimates (4.44)) and (4.47)) hold.

Proof. The proof follows from (4.43), (4.45) and the uniform estimate of Lemma [26| on the
derivatives of the Bergman kernel. O

As we noted before, the bundle L satisfying the hypotheses of Theorem is ample, so
for £k > 0 the Kodaira map is an embedding and the induced Fubini-Study forms %@prs
are indeed metrics on Y. Due to the possible degeneration of the curvature R” the rate of
convergence in is slower than in the positive case .

One can easily prove a generalization of Theorem [28| for vector bundles (F, h") of arbitrary
rank (see |44, S 5.1.4] for the case of a positive bundle (L, h%)). We have then Kodaira maps
®p:Y = G (tk(F); H® (Y; F ® L*)) into the Grassmanian of rk (F')-dimensional linear spaces
of H° (Y; F® Lk)>k and we introduce the Fubini-Study metric on the Grassmannian as the
curvature of the determinant bundle of the dual of the tautological bundle (cf. [44, (5.1.6)]).
Then by following the proof of [44, Theorem 5.1.17] and using Lemma [26| we obtain

1 i
(4.52) - Piwrs — 1k (F) %RL =0 (k%) , k — o0,

uniformly on Y.
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4.3. Toeplitz operators. A generalization of the projector (4.9) and Bergman kernel (4.10)) is
given by the notion of a Toeplitz operator. The Toeplitz operator T} operator corresponding
to a section f € C*° (Y;End (F)) is defined via

Tyi: C*(Y;F®LY) — C®(Y; F® LF)
(453) Tf7k = H/CfHk,

where f denotes the operator of pointwise composition by f. Each Toeplitz operator above
further maps H° (Y; F® Lk) to itself.

We now prove the expansion for the kernel of a Toeplitz operator generalizing Theorem [3]
For positive line bundles the analogous result was proved in [18, Theorem 2| for compact Kéhler
manifolds and F' = C and in [44, Lemma 7.2.4 and (7.4.6)|, [46, Lemma 4.6|, in the symplectic
case.

Theorem 29. Let Y be a compact Riemann surface, (L,h%) — Y a semi-positive line bundle
whose curvature R vanishes to finite order at any point. Let (F,h") — Y be a Hermitian
holomorphic vector bundle. Then the kernel of the Toeplitz operator has an on diagonal
asymptotic expansion

N
Tri (y,y) = K [Z ¢ (f,y) k2| + 0 (k™) VYN eN

J=0

where the coefficients c;(f,-) are sections of End(F) with leading term
o (f,y) =TI 7507(0,0) £ (y).

Proof. Firstly from the definition (4.53)) and the localization /rescaling properties (4.20)), (4.27))
one has

Trw (Y, y) = / dy' Iy (v, ') £ () T (3, y)
Y
- / dy' T (0,9) £ () T (4, 0) + O (k™)
Bs(y)
_ / dy/ k,4/ryHB (0, y/kl/ry) f (y/) HD (Z/lkl/ry7 O) +0 (kfoo)
Be(y)

(4.54) = / dy' K117 (0,y)) f (y'k~Y™) 17 (v, 0) + O (k=) .
k'/™v Be (y)

Next as in Section [A] ¢ (&) (.,0) € S(V) for ¢ € S(R) in the Schwartz class. Thus plugging
(4.31) and a Taylor expansion

—1/r 1 @ g —al/r [e% — T
fyEYm) = Z a(y/) o/ (9 (0) + O (kWD)
|a|<N+1
into (4.54)) above gives the result with the leading term again coming from (4.26)). Finally and
as in the proof of Theorem , there are no odd powers of k=—7/"v as the corresponding coefficients
are given by odd integrals (the integrands change sign by (—1)” under §_;z := —z) which are
Z€ro. [l

We now show that the Toeplitz operators (4.53) can be composed up to highest order gen-
eralizing the results of [14] in the Ké&hler case and F' = C and [44], Theorems 7.4.1-2|, [46],
Theorems 1.1 and 4.19| in the symplectic case.
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Theorem 30. Given f,g € C*(Y; End(F)), the Toeplitz operators (4.53|) satisfy

) fy)ulyr
(4.55) lim [Tyl = Il = sup WU
k—o0 yey |u|hF
u€F,\0
(4.56) TyxTyr = Trop + Opaspe (K717).

Proof. The first part of is similar to the positive case. Firstly, |7} < ||f|l. is clear
from the definition . For the lower bound, let us consider y € Y5 where the curvature is
non-vanishing and v € Fy, |ul,r = 1. It follows from the proof of [44, Theorem 7.4.2] (see also
[4, Proposition 5.2, (5.40), Remark 5.7|) that

(4.57) f () (@)l + Oy (K7172) < || Ty -
If || flloo = |f (wo) (uo)|nr is attained at a point yy € Y3, it follows immediately from (4.57)) that
1flloc + O (K72) < [ Tyall,

so one obtains the lower bound. Next let || f]|. = |f (yo) (uo)|nr be attained at yo € Y \ Y2, a
vanishing point of the curvature. As Y \ Y2 C Y is open and dense one may find for any ¢ > 0
apoint y. € Y\ Yy and u. € F,_, |uc|pr = 1, with || f]|, — € < |f (c) (ue)|pr. Combined with

(4.57) this gives
11l =+ O (k72) < [|Tysll,  and
[flloe — & < Tim inf [T
k—o00

Since € > 0 is arbitrary, this implies || f||,, < liminfy . || 77| proving the lower bound.
Next, to prove the composition expansion (4.56) it suffices to prove a uniform kernel estimate

1T Tyr — Tror) (w9l 2 = O (K7V7), VyeY.

To this end we again compute in geodesic chart centered at y

Ty Ty (.,0) :/ dyrdyz Iy, (., y1) f (y1) Ui (1, y2) g (y2) i (y2, 0)

Y XY

= Op (k7) +/ dyl/ dyz i (1) f (1) T (y1,92) 9 (92) T (2, 0)
Be(y2) Be(y)

=02 (k) + / dy, / dys kv {117 (K, K yy)
BS(yZ) Bs(y)

£ () T (KM vy kY vys) g (yo) TV (K 7y, 0) )

= Op2 (k_oo) +/ dy1/ dya k™ {HD ()
k™ Be (y2) k" Be (y)

f (ylkfl/ry) IT° (y1,90) g (yzkf*l/ry) 117 (o, 0)}

= O (k_l/ry) +/ dyl/ dyak*/m {HE (. y1)
kY7 Be (y2) k'™ B.(y)

1" (yh ?/2) I (yzk_l/"’) I <y27 0)}

= Opa (k7)) +/ dy1/ dya Ty, (-, 1) Ty (1, 92) fg (y2) Tk (372, 0)
Be(y2) Be(y)

= Oz (K7V7) + Tpg
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with all remainders being uniform in y € Y. Above we have again used the localization /rescaling

properties , as well as the first order Taylor expansion f (ylk’_l/ ’”y) =f (ygk_l/ Ty) +
Ojfier (K717). O

Remark 31. Similar to the previous remark [24] we can recover the usual algebra properties
of Toeplitz operators when f, g are compactly supported on the set Y; where the curvature
R is positive. In particular we define a generalized Toeplitz operator to be a sequence of
operators T}, : L*(Y,F ® L*) — L*(Y,F ® L¥), k € N, such that there exist K € Y5,
h; € C* (K;End (F)), C; >0,j=0,1,2,... satisfying

N
(4.58) HTk -3 k-ﬂ'Thj,kH <COykN-1 YN eN.
=0

Then this class is closed under composition and one may define a formal star product on
Cee (Y2) [[h]] via

Frng=> Ci(f,g)h’ € C(Ya)[[h]] where

J=0

TrroTyn~ Y Toypak™,
j=0

(cf. |14} 18] [46]). Furthermore
Tf,k o Tg,k = ngvk; + OL2—>L2 (k’_l)

7 _
[Ikk77hk]:'%wahk+‘OL1#m(k ?)

Vf,g € C® (Yy; End (F)), with {-, -} being the Poisson bracket on the Kihler manifold (Ys,iR%).

Finally we address the asymptotics of the spectral measure of the Toeplitz operator (4.53)),
called Szegs-type limit formulas [15], 27]. The spectral measure of T}, is defined via

(4.59) upe(s) = Y d(s—X) eS(R,).

)\ESpec(Tf,k)
We now have the following asymptotic formula.

Theorem 32. The spectral measure (4.59)) satisfies

k
4.60 ~ —f.R"
(4.60) upe ~ 5 f

in the distributional sense as k — oo.

Proof. Since Spec (Trx) C [ = |||l [Ifllo ] by (4.55), the equation (4.60) is equivalent to
k L
wo@ = Y ¢~y [ leernrn

AGSPGC(Tf’k)

for all ¢ € C=°(— ||f|lo = 1,1 fll +1). We first prove that the trace of a Toeplitz operator
(4.53) satisfies the asymptotics

k
4.61 Tip ~ — L
( 6) tr Ik 27T/YfR
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To this end first note that the expansion of Theorem [29|is uniform on compact subsets K C Y5
while |Ty, (y,y)| = O (k) uniformly in y € Y as in Lemma [25] Further as with Proposition
Y>3 is a closed subset of a hypersurface and has measure zero. Then with K; C Y5, j =1,2,.. .,
being a sequence of compact subsets satisfying we have K; C K1, Nj2, K; = Y>3. One may
then breakup the trace integral

1 1 1
—tI‘Tf,k = — / tr Tﬁk (y, y) + - / tr Tf,k (y, y)
k kJx, kg,

=5 [ rreos (1) 0w Ky

from which (4.61)) follows on knowing 5- [, fR* — 5= [, fRY, p (Y \ K;) = 0 as j — oo.
Following this one has

tr T}k =tr T+ Of (kl—l/r)
Vi € N from 4.56]). A polynomial approximation of the compactly supported function
v e COO(_ Hf” 17 Hf“oo ) then gives

tr o (Trr) =tr Tpor s + 0 (k)

T o
by (4.61]) as required. O

The analogous result for projective manifolds endowed with the restriction of the hyperplane
bundle was originally proved in [I5, Theorem 13.13], [27] and for arbitrary positive line bundles
in [9], see also [42]. In |36, Theorem 1.6] the asymptotics are proved for a semi-classical
spectral function of the Kodaira Laplacian on an arbitrary manifold.

Y[SOOf]RLJrO(k)

4.4. Random sections. In this section we generalize the results of [57] to the semi-positive
case considered here. Let us consider Hermitian holomorphic line bundles (L, h%) and (F, ht")
on a compact Riemann surface Y. To state the result first note that the natural metric on
H° (Y; F ® L¥) arising from g™, h*and h* gives rise to a probability density 1, on the sphere

SHY(Y;Fe L) = {se H (V;F® L) ||| =1},

of finite dimension x (Y;F ® Lk) -1 1) We now define the product probability space
(Q,p) = (I, SH® (Y; F @ L*) 112, ). To a random sequence of sections s = (s3),cy € €
given by this probability density, we then associate the random sequence of zero divisors Z;, =
{sx = 0} and view it as a random sequence of currents of integration in 2y (Y'). We now have
the following.

Theorem 33. Let (L,hY) and (F,hY) be Hermitian holomorphic line bundles on a compact
Riemann surface Y and assume that (L, hY) is semi-positive line bundle and its curvature R*
vanishes to finite order at any point. Then for p-almost all s = (si),cy € €2, the sequence of
currents

7
_Zs N _RL
R
converges weakly to the semi-positive curvature form.

Proof. The proof follows [44] Thm 5.3.3 with some modifications which we point out below.
With &, denoting the Kodaira map (4.48)), we first have

(4-62) E [Zsk] = <I>Z (UJFS)



SEMI-POSITIVE BERGMAN KERNEL 41

as in [44] Thm 5.3.1. For a given ¢ € Qg (Y'), one has

1 i 1 1. B
<EZsk o %RL7(‘0> - <EZS’9 - %(I)k (WFS) 7('0> +0 (k e ||90HCO)
following (4.51)) and it thus suffices to show Y¥ (s) — 0, p-almost surely with
1 1,
Y (sk) = <EZSk — 3k (wrs) 90>
being the given random variable. But (4.62)) gives

1 1
E[[Y* (s0)"] = 5E [(Z, 9)"] = 5E (9 (wrs) . ¢)’]
=0 (k7?)
as in [44] Thm 5.3.3. Thus [, du [> 5, [Y¥ (s)]°] < oo proving the theorem. O

The above result may be alternatively obtained using L? estimates for the d-equation of a
modified positive metric as in [22], S 4].

Example 34. (Random polynomials) The last theorem has an interesting specialization to
random polynomials. To this end, let Y = CP' = C2 \ {0} /C* with homogeneous coordinates
[wo : wy]. A semi-positive curvature form for each even r > 2, is given by

W, ::%881}@ (Jwo|” + Jur ")
(463) .9 r—2 r—2
i wol T |wy | J

= o 2 wo A\ dwl,

21 4 (Jwol” + |wi]")
which has two vanishing points at the north /south poles of order 7—2. This is the curvature form
on the hyperplane line bundle L = O (1) for the metric with potential ¢ = In (Jwg|" + |w:|").
An orthogonal basis for H° (X, Lk) is given by s, = 2% 0 < a < k, in terms of the affine
coordinate z = wy/wy on the chart {w; # 0} and a C* invariant trivialization of L. The
normalization is now given by

|| ||2 1 r2 ’Z’2a+7"72
SO( = —— RS
27 4 C (1 + |Z|T)k‘+2
B 1
N k
teen ()
. . ) . EY\ T(k+1) . . .
with the binomial coefficient ( 204) = T(Zar1)r(i—Za) given in terms of the Gamma function.

We have now arrived at the follgwing.

Corollary 35. For each even r > 2, let

e (2) = zk:ca (i)za

a=0 r
be a random polynomial of degree k with the coefficients ¢, being standard i.i.d. Gaussian
variables. The distribution of its roots converges in probability

1 172 |2
T T o A e
T e (1 )
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The above theorem interpolates between the case of SU (2)/elliptic polynomials (r = 2) [13]
and the case of Kac polynomials (r = co) [29] 38, [56]. For recent results on the distribution of
zeroes of more general classes of random polynomials we refer to [5, [12], 37).

4.5. Holomorphic torsion. In this section we give an asymptotic result for the holomorphic
torsion of the semi-positive line bundle L generalizing that of [I1] (see also [44], S 5.5]). First
recall that the holomorphic torsion of L is defined in terms of the zeta function

— dt t*~tr [e_tmilc] , Re(s)>1.

I'(s) /0

The above converges absolutely and defines a holomorphic function of s € C in this region. It
possesses a meromorphic extension to C with no pole at zero and the holomorphic torsion is

defined to be Ty == exp { -3¢}, (0)}.
Next, with 7%, w (RL) as in D and t > 0, set

(465) R, (y) o 217rTL (1 — e_tTL> e—tw(RL); +L (y) >0
g3 " (y) = 0.

2wt

(4.64) e (5) =

Note that the above defines a smooth endomorphism R; (y) € C* (Y; End (A%*)). Further, let
A; € C* (Y;End (A”*)) be such that

(4.66) = R (y Z Aj( o (t"*1).

j=—1
We now prove the following uniform small time asymptotic expansion for the heat kernel.

Proposition 36. There exist Ay, ; € O (Y; End(A%*)), j = —1,0,1,..., satisfying Ay j—A; =
O (k1Y) such that for each t >0

(4.67) Ee = Pk (y, y) ZAM )t —p

j=—1

— O (tN+1]€_1)

uniformly iny € Y, k€ N.

Proof. We again work in the geodesic coordinates and local orthonormal frames centered at
y € Y introduced in Section . With Dy, as in (4.14), similar localization estimates as in
Section [4.1] (cf. also Lemma 1.6.5 in [44]) give

t

e~ w Dk (y,y) — e~ D (0 0)=0 (eii‘%k>

uniformly in £ > 0, ¥ € Y and k. It then suffices to consider the small time asymptotics of
D} (0,0). We again introduce the rescaling 8,12y = k~'/2y, under which

N2 _ -1
(6, 1/2), D? = k(Do +k E1>,
=[]

with [y = bbY + 7y Wig; b = —20, + 37,z and where Ey = apq (y; k) 8,0y, +by, (y; k) 0y, + ¢ (y; k)
is a second order operator whose coefficient functions are uniformly (in k) C* bounded (cf.
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[44] Thms. 4.1.7 and 4.1.25). Again e~ 2% (0,0) = ke (0,0) and following a standard small
time heat kernel expansion of an elliptic operator [26, [55] one has

+ Pﬁt

N
1 1 .
(4.68) ot (y1,ys) = ﬁe*ﬂd (y1,y2) [Z A jt?
i—1

with d (y1, ) denoting the distance function for the metric g7¥ on R2. Moreover

(4.69) Ay (y1,92) = A (y1,92) + O (k1)

where A; denotes an analogous term in the small time expansion of e~ satisfying A; (0,0) =

A;(4.66) (][44, (1.6.68)]). Finally, the remainders in (4.66]), (4.68) being given by
. t
pi\/ _ _/ ds e~ (=)o gN (DOAN)7 pi\,{t — _/ ds e~ (=) N (DAI@,N),
0 0

the proposition now follows from (4.69)) along with e = =0+ O (k=) uniformly int > 0. [

We now prove the the asymptotic result for holomorphic torsion. Below we denote by z Inx
the continuous extension of this function from Ry to R (i.e. taking the value zero at the
origin).

Theorem 37. The holomorphic torsion satisfies the asymptotics

1 Tt Tt Tt

1 = —=(, =—klnk|—|—k|=—In|— k

n Tk 29C (0) " [8%] |:87T " (2#):| +olk)
as k — oo.
Proof. First define the rescaled zeta function ( (s) = ’13(;;) JoS dter [e’im}c} = kT3¢, ()
satisfying
(4.70) Gt (0) = kG, (0) — (kIn k) G (0)
With a; = fY tr [Ax ] dy, 7 = —1,0,..., and the analytic continuation of the zeta function
being given in terms of the heat trace, one has
(471) gk (O) = ago — / dy tr [AO] ,

1%

T
. (0) = / dtt* {k’ltr [e’imi] — a1t — Clk,o}
0

N J/

-

=Jo dtt=1p0+0(F)
+ / dtt 'k Mr [e_%m}e}
T
(472) — ak7_1T_1 + F/ (1) 07X}

following (4.67)).
Choosing T' = k'~2/", gives

1k My [e—%ﬂi} < T e —e] g [e—%ﬂi]

<Ot le Tk ey s

Y
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on account of (4.7, (4.67). The last expression having a uniformly in & bounded integral on

[T, 00), dominated convergence gives

C~l/€ (0) —>/Ydya(y), where

a(y) ::/ dtt™1 {tr [R; ()] —tr[A_1]t ' —tr [AO]}

0

+ / h dtttr [Ry (y)]

T
(4.73) —tr[A_ )t 4+ TV (1) tr [Ay] .
Finally, using (4.65) one has
P
tr[Ao] = —7—
-L AL
4.74 =—In|—
(4.74) ot =1 ()

with again the extension of the function zInz to the origin being given by continuity to be
zero as before. The proposition now follows from putting together (4.70)), (4.71)), (4.72)), (4.73)

and (4.74)). O

APPENDIX A. MODEL OPERATORS

Here we define certain model Bochner /Kodaira Laplacians and Dirac operators acting on a
vector space V. First the Bochner Laplacian is intrinsically associated to a triple (V, q", RV)
with metric ¢" and tensor 0 # RY € S"2V* @ A2V*, r > 2. We say that tensor RV is
nondegenerate if

(A1) STV @ ANV 3 (RY) =0,Vs<r—2 = T,Y 20=0.

Above i* denotes the s-fold contraction of the symmetric part of RY.

For vy € V, vy € T,,V = V, contraction of the antisymmetric part (denoted by ¢) of RV
gives 1, RV € S"72V* @ V*. The contraction may then be evaluated (LUQRV) (v1) at v, € V,
i.e. viewed as a homogeneous degree r — 1 polynomial function on V. The tensor R" now
determines a one form a®” € Q! (V) via

(A.2) aﬁv (vg) = /0 dp (1o, R”) (pv1) = % (L, RY) (v1),

which we may view as a unitary connection VA = d +ia® on a trivial Hermitian vector
bundle E of arbitrary rank over V. The curvature of this connection is clearly RY now viewed
as a homogeneous degree r — 2 polynomial function on V valued in A2V*. This now gives the
model Bochner Laplacian

(A.3) Ayv gy = <VRV) VE L 0% (Vi E) = C® (V; E).
An orthonormal basis {ej,es,...,€,}, determines components R,,, = RY (¢ e, e,) # 0,
a € NI™! |a| =r — 2, as well as linear coordinates (yi,...,%,) on V. The connection form in

these coordinates is given by aﬁv = %yqyaqu@. While the model Laplacian 1} is given

n

. 2
? (0%
(A.4> Agvﬁv = - Z <8yp + ;yqy qu,a) .

q=1
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As in (3.5)), the above may now be related to the (nilpotent) sR Laplacian on the the product
S} x V given by

n . 2
~ 2 o
(A5) Agvﬂv = — Z (8yp + ;yqy Rp%aag) ,

q=1

and corresponding to the sR structure (Sgl x V, ker (d@ + aRV> gV, dQvolgV> where the sR

metric corresponds to g" under the natural projection 7 : S} x V' — V. Note that the above
differs from the usual nilpotent approximation of the sR Laplacian since it acts on the product

with S*. As (3.6)), the heat kernels of (A.3)), (A.5)) are now related

(A.6) TRV (y,y) = /e_we_tAgV’RV (y,0;y',0) do.

Next, assume that the vector space V' of even dimension and additionally equipped with an
orthogonal endomorphism JV € O (V); (JV)2 = —1. This gives rise to a (linear) integrable
almost complex structure on V | a decomposition V ® C = V10 @ V%! into +i eigenspaces of
J and a Clifford multiplication endomorphism ¢ : V' — End (A*V%!). We further assume that
RY is a (1,1) form with respect to J (i.e. S*V* 3 RY (wy,ws) = 0, Ywy, wy € V). The (0,1)
part of the connection form then gives a holomorphic structure on the trivial Hermitian
line bundle C with holomorphic derivative dc = 9 + (av)o’l. One may now define the Kodaira
Dirac and Laplace operators, intrinsically associated to the tuple (V, g",RV,J V), via

(A.7) ngyRVJv 2:\/5 (5@ + 5&)
1
(A.S) ngvaJv ZIE (ngijJv)Q
acting on C* (V; A*V%1). The above (A.3)), (A.8) are related by the Lichnerowicz formula
(A9) DgV,RV,JV = AgVﬁV +c (Rv)

where ¢ (RY) = > peq B2y Y,y (ep) ¢ (e). We may choose complex orthonormal basis
{w; 7L, of V¥ that diagonalizes the tensor R": RY (w;,@;) = d;R;5; Ri; € S™?V*. This

jj
gives complex coordinates on V' in which (A.8) may be written as

dimV/2
(A.10) Ugv gv v = Z b; bT +2 8 ;a5 + 0= CLJ) Wiy,
b]' = —28 + GJ
b; = 285j + CLJ'

1
— - S
J r 3377

with each R;; (2), 1 < j < dimV/2, being a real homogeneous function of order r — 2.

Being symmetric with respect to the standard Euclidean density and semi-bounded below,
both Ayv pv and O are essentially self-adjoint on L?. The domains of their unique self-adjoint
extensions are

Dom (Ag\/’Rv) = {¢ S L2|A9V?RV¢ S L2} ,
Dom (Oyv gv yv) = {¢ € L*|Oyv gv pv1p € L},

respectively. We shall need the following information regarding their spectrum.
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Proposition 38. For some ¢ > 0, one has Spec (AgV,Rv) C [e,00). For RV satisfying the
non-degeneracy condition 1' one has FEssSpec (AgV’RV) = (. Finally, for dimV = 2 with
R (w, @) >0, Yw € V' semi-positive one has Spec (Q,v gv yv) C {0} U[c, 00).

Proof. The proof is similar to those of Proposition and Corollary 21} Introduce the de-
formed Laplacian Ay = A,v zv obtained by rescaling the tensor RY. From (A.4) A, =
K" RN ,v gy BT are conjugate under the rescaling Z : C® (V; E) — C*(V; E), (Zu) (z) =
u (yk'/") implying

Spec (Ay) = k*"Spec (Agvva)
(A.11) EssSpec (Ay) = k*"EssSpec (A gv)

By an argument similar to Proposition one has Spec (A;) C [cle/ T 02,00) for some
c1,ca > 0 for RV # 0. From here Spec Agvﬂv) C [c,00) follows. Next, under the non-
degeneracy condition, the order of vanishing of the curvature homogeneous curvature RY (of
the homogeneous connection aRv) is seen to be maximal at the origin: ord, (Rv) <r-—2
for y # 0. Following a similar sub-elliptic estimate on V x S} as in Proposition we
have

RO Jlul* < € [(Agu,u) + [lull72] , Vu e CZ(V\ B (0)),

holds on the complement of the unit ball centered at the origin. Combining the above with
Persson’s characterization of the essential spectrum (cf. [53], 1] Ch. 3)
EssSpec (Ag) = sup ”iﬂlf (Agu,u) ,
R ul|=1
u€C® (VABR(0))
we have EssSpec (A;) C [¢1k% "1 — ¢, 00). From here and using (A.11]), EssSpec (Ayv zv) =
() follows.
The proof of the final part is similar following k*"Spec (ng,RvJv) = Spec (ngkRv,Jv) =
Spec (O;) C {0} U [¢1k*" — ¢3,00) , Oy = Oyv ggv v, by an argument similar to Corollary
0

Next, the heat e "AV.rV ¢ ™oV.rV.0V and wave eit\/AngRV, VBV RV operators being
well-defined by functional calculus, a finite propagation type argument as in Lemma [§] gives
¢ (Ayv rv) (,0) € S(V), ¢ (Oyv v v) (-,0) € S(V) are in the Schwartz class for ¢ € S (R).
Further, when EssSpec (Agv’ Rv) = ) any eigenfunction of A v zv also lies in S (V). Finally,
on choosing ¢ supported close to the origin, the Schwartz kernel I1sV.#".7V (., 0) € S (V) of the
projector IIs".5".7" onto the kernel of U v gv ;v is also of Schwartz class.

We now state another proposition regarding the heat kernel of Ajv zrv. Below we denote
Ao (Ag\/’Rv) := inf Spec (Agvﬂv) )

Proposition 39. For each € > 0 there exist t, R > 0 such that the heat kernel
fBR(O) dx [A9V7Rve_tAgv’Rv] ($, ZL’)

fBR(O) dx e Bev RV (z,2)

< )\0 (Agvva> + €

Proof. Setting P = A,v gv — Ao (Agv’Rv) it suffices to show

fBR(O) dz [Pe ] (z, ) _

<e
fBR(o) dx e P (x, x)
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for some ¢, R > 0. With H[Pg 2] denoting the spectral projector onto [0, x], we split the numerator

/ dz [Pe "] (z,2) = / da (Mg 4 Pe""] (2, ) +/ da [(1 =g 4q) Pe™*] (z,2).
Br(0) Br(0) Br(0)

From P > 0, H[’B’%}Pe_tp < 4ee ™ and (1 — H[PB,4€}) Pe P < ce™3t V¥t > 1, we may bound

(o @ [Pe™"] (x, 2) <det ce ' RM1
S dre ™ (z,2)  — fBR(O) dx e tP (1, 7)

VR,t > 1. Next, as 0 € Spec (P) there exists ||t)||;» = 1, ||Pt:||;2 < e. It now follows that
‘ % - H{%}Qﬂ@%

11
_:__+/ dx|¢5(x)|2§/ da
24 Upr Bp, (0)

< / dx (/ dnyS,Zs} (]3, y) H[f),%] (y7 l’)) = / dIH[PE),ZE} (.T, I) )
Br.(0) Br.(0)

2
for some R. > 0, using (H[ngs]) = H[Pé),zs] and Cauchy-Schwartz. This gives

(A.12)

< % and hence

2

[t o) v

67251‘,

/ dre " (z,2) > , t>1
Br.(0) 2

Plugging this last inequality into (A.12]) gives
fBRS(O) dx [Pe_tp} (x,x)
fBRE(O) dx e tP (z, )

from which the theorem follows on choosing ¢ large. O

<de+ce 'RM!
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