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ABSTRACT. We prove that the Euler form of a metric connection on a real oriented vector bundle E
over a compact oriented manifold M can be identified, as a current, with the expectation of the random
current defined by the zero-locus of a certain random section of the bundle. We also explain how to
reconstruct probabilistically the metric and the connection on E from the statistics of random sections
of E.
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1. INTRODUCTION

1.1. The Gauss-Bonnet-Chern theorem. We begin by recalling the classical Gauss-Bonnet-Chern
theorem [7, 24, 32]. Suppose that E → M is a real oriented vector bundle of even rank r = 2h
over the smooth, compact oriented manifold M of dimension m. Fix a metric (−,−)E on E and a
connection∇E compatible with the metric. We denote by FE the curvature of the connection∇E on
E. The Euler form of (E,∇E) is the closed form

e(E,∇E) :=
1

(2π)h
Pf
(
−FE

)
∈ Ωr(M), r = 2h, (1.1)
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where Pf denotes the Pfaffian construction, [3, 22, 24]. For the applications we have in mind it is
important to have an explicit local description Pf

(
−FE

)
.

If we fix a local, positively oriented orthonormal frame e1, . . . , er of E defined on some open set
O ⊂M , then the curvature FE is represented by a skew-symmetric r × r matrix

FE = (FEαβ)1≤α,β≤r, Fαβ ∈ Ω2(O).

If we denote by Sr the group of permutations of {1, . . . , r = 2h}, then (see [24, §8.1.4])

Pf
(
−FE

)
=

1

2hh!

∑
σ∈Sr

ε(σ)FEσ1σ2 ∧ · · · ∧ F
E
σ2h−1σ2h

∈ Ω2h(O), (1.2)

where ε(σ) denotes the signature of the permutation σ ∈ Sr.
Suppose additionally that we have local coordinates (x1, . . . , xm) on O. For 1 ≤ α1, α2 ≤ r and

1 ≤ j1, j2 ≤ m we set
FEα1α2|j1j2 := FEi1i2(∂xj1 , ∂xj2 ). (1.3)

Denote by S′r the subset of Sr consisting of permutations (σ1, . . . , σ2h) such that

σ1 < σ2, σ3 < σ4, . . . , σ2h−1 < σ2h.

We deduce from (1.2) that

Pf
(
−FE

)(
∂x1 , · · · , ∂xr

)
=

1

h!

∑
ϕ,σ∈S′r

ε(σϕ)FEσ1σ2|ϕ1ϕ2
· · ·FEσ2h−1σ2h|ϕ2h−1ϕ2h

. (1.4)

We denote by Ωk(M) the space of k-dimensional currents on M , i.e., the topological dual of the
space Ωk(M) of smooth k-forms on M . By definition, we have a pairing

〈−,−〉 : Ωk(M)× Ωk(M)→ R, (η, C) 7→ 〈η, C〉.

The orientation of M defines a natural Poincaré duality map

Ωm−k(M) 3 ω 7→ ω† ∈ Ωk(M), 〈η, ω†〉 :=

∫
M
η ∧ ω, ∀η ∈ Ωk(M).

Given ω ∈ Ωm−k(M) we will refer to ω† ∈ Ωk(M) as the current determined by the form ω. By
duality we obtain a boundary map

∂ : Ωk(M)→ Ωk−1(M), 〈η, ∂C〉 := 〈dη,C〉, ∀C ∈ Ωk(M), η ∈ Ωk−1(M).

A current C is called closed if ∂C = 0.
A generic section u of E is transversal to the zero section, u t 0, and its zero locus is a smooth

submanifold Zu ⊂M of dimension m− r equipped with a natural orientation. The integration along
this oriented submanifold defines a closed current [Zu] ∈ Ωm−r(M).

The Gauss-Bonnet-Chern theorem states that, for a generic section u, the (m − r)-dimensional
closed currents [Zu] and the Poincaré dual e(E,∇E)† are homologous, i.e.,

∀u ∈ C∞(E) : u t 0⇒ [Zu]− e(E,∇E) ∈ ∂Ωm−r−1(M). (1.5)

In view of DeRham’s theorem [11, §22, Thm. 17′], this is equivalent with the statement

∀u ∈ C∞(E), u t 0⇒ 〈η, [Zu]〉 =

∫
M
η ∧ e(E,∇E), ∀η ∈ Ωr(M), dη = 0. (1.6)



GAUSS-BONNET-CHERN THEOREM 3

Remark 1.1. There exist more refined versions of (1.5) which explicitly describe locally integrable
forms T = T (u,∇E) such that we have the equality of currents

[Zu]− e(E,∇E) = dT (u,∇E).

For details we refer to [3, 18, 22]. ut

1.2. Overview of the paper. The first goal of this paper is to provide a probabilistic proof and a
refinement of (1.6). Let us first observe that if u,v are two generic smooth sections of E, then the
corresponding currents are homologous, i.e.,

[Zu]− [Zv] ∈ ∂Ωm−r−1(M) ⇐⇒ 〈η, [Zu]〉 = 〈η, [Zv]〉, ∀η ∈ Ωm−r(M), dη = 0.

This shows that if u1, . . . ,un are generic sections of E and p1, . . . , pn are positive weights such that
p1 + · · ·+ pn = 1, then the average

p1[Zu1 ] + · · ·+ pn[Zun ]

is a closed current homologous to each of the currents [Zuk ].
More generally, if P is a probability measure on C∞(E) such that P -almost surely a section u

intersects the zero section transversally, then the expected current

EP ([Zu]) :=

∫
[Zu]P (du)

is a current homologous to the current defined by the zero locus of any generic section u0, i.e.,∫
〈η, [Zu]〉P (du) = 〈η, [Zu0 ]〉, ∀η ∈ Ωm−r(M), dη = 0. (1.7)

An ensemble of sections of E is a pair (U ,P ), where U ⊂ C∞(E) is a finite dimensional space and
P is a probability measure on U . The first main result of this paper shows that there exists a large
supply of ensembles (U ,P ) such that

• a section u ∈ U is P -almost surely transversal to the zero section, and
• there exist a metric (−,−)E and a connection ∇E , compatible with (−,−)E such that the

expected current EP ([Zu]) is equal to the current determined by the Euler form e(E,∇E),
i.e.,〈
η , EP ([Zu])

〉
=

∫
U
〈η, [Zu]〉P (du) =

∫
M
η ∧ e(E,∇E), ∀η ∈ Ωm−r(M).

We will refer to an ensemble (U ,P ) with the above properties as adapted to the metric (−,−)E
and the connection∇E . In the sequel, we will refer to a pair consisting of a metric on a vector bundle
and a connection compatible with it as a (metric,connection)-pair. The first step in our program is to
produce a large supply of examples of (metric,connection)-pairs for which we can explicitly construct
adapted ensembles (U ,P ).

Fix a finite dimensional real vector space U equipped with a Euclidean inner product (−,−)U .
We form the trivial real vector bundle

UM := U ×M →M.

Assume that E → M is an oriented subbundle of rank r of UM . The metric (−,−)U on U induces
a metric (−,−)E on E. For each x ∈ M we denote by Px the orthogonal projection U → Ex. The
trivial connection d on UM induces a connection ∇E = Pd on E. We will call special a (metric,
connection)-pair

(
(−,−)E ,∇E

)
constructed as above, via an embedding of E in a trivial vector

bundle equipped with a trivial metric and the trivial connection.
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Any u ∈ U defines a section SEu of E given by

SEu (x) = Pxu, ∀x ∈M.

We thus get a linear map SE : U → C∞(E), u 7→ SEu , whose range is the finite dimensional space

Û :=
{
SEu ; u ∈ U

}
⊂ C∞(E).

The metric on U induces a Gaussian probability measure on U ; see (3.1). Its pushforward by SE is
a Gaussian probability measure γU on Û ⊂ C∞(E).

Theorem 2.1(i) shows that, γU -almost surely, a section û ∈ Û intersects transversally the zero
section of E. We denote by [Zû] the current of integration defined by zero locus of û.

The key integral formula (2.1) in Theorem 2.1 shows that the expectation of the random current
[Zû] is equal to the current determined by e(E,∇E), i.e.,〈

η , EγU ([Zû])
〉

=

∫
Û
〈η, [Zû]〉γU (dû) =

∫
M
η ∧ e(E,∇E), ∀η ∈ Ωm−r(M). (1.8)

In other words, the ensemble (Û ,γU ) is adapted to the special pair ( (−,−)E ,∇E).

Remark 1.2. In [18, Thm. IV.1.22] Harvey and Lawson have explained how to associate to each
section u ∈ C∞(E), and any connection∇ on E compatible with (−,−)E , a locally integrable form
T (u,∇) of degree (2h− 1) on M such that we have the equality of currents

[Zu]− e(E,∇) = dT (u,∇). (1.9)

The above equality is a generalization of the Poincaré-Lelong formula in complex analysis and it
clearly implies (1.5).

Let Û , γU , (−,−)E and ∇E be as in (1.8). Averaging (1.9) over u ∈ Û with respect to the
measure γU we deduce from (1.8) that∫

Û
dT (u,∇)γU (du) =

∫
Û

(
[Zu]− e(E,∇)

)
γU (du) = e(E,∇E)− e(E,∇).

In particular, when∇ = ∇E we have∫
Û
dT (u,∇E)γU (du) = 0. (1.10)

Conversely, the equality (1.10) implies (1.8). One could then be tempted to prove (1.8) by proving a
stronger version of (1.10), namely ∫

Û
T (u,∇E)γU (du) = 0. (1.11)

The transgression form T (u,∇E) is described explicitly in [18, Eq. (IV.1.27)], but the complexity of
this description has discouraged us from attempting to verify the validity of (1.11). We have instead
opted on a different approach based on the double-fibration trick frequently used in integral geometry.

ut

Obviously, the equality (1.8) implies (1.6) for special (metric, connection)-pairs on E. Since the
Euler form is gauge invariant, we see that (1.8) is valid if we replace the special connection∇E with a
connection that is gauge equivalent to it. Here the gauge group is the group of orientation preserving,
metric preserving automorphisms of E. On the other hand, we have the following result.

Proposition 1.3. Any (metric, connection)-pair (σ,∇) on an oriented vector bundle E → M is
gauge equivalent to a special pair.
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Proof. The proof is carried out in two steps.

1. The pullback of a special (metric, connection)-pair is a special (metric connection)-pair. Suppose
that (σ,∇) is a special (metric, connection)-pair on the subbundle E →M of the trivial bundleUM .

If X is a smooth manifold and Φ : X → M is a smooth map, then we get a vector bundle Φ∗E
over X equipped with the metric Φ∗σ and the compatible connection Φ∗∇. The bundle Φ∗E is a
subbundle of the trivial vector bundle

Φ∗UM = UX

equipped with the trivial metric. Then Φ∗σ is the induced metric on Φ∗E as a subbundle of the metric
bundle UX and Φ∗∇ is the connection induced via orthogonal projection from the trivial connection
on UX .
2. Consider the Grassmannian Gr+

r (U) of r-dimensional oriented subspaces of U . Denote by
Tr(U) → Gr+

r (U) the associated tautologial oriented vector bundle. A metric h on U induces
a metric σh, and a compatible connection∇h on Tr(U). The pair (σh,∇h) is special.

In [23, Thm. 1, 2] Narasimhan and Ramanan have shown that for any smooth, real oriented vector
bundle E → M and any (metric, connection)-pair (σ,∇) on M there exists a finite dimensional
Euclidean space (U , h) and a smooth map Φ : M → Gr+

r (U) such that

E = Φ∗Tt(U), σ = Φ∗σh (1.12)

and the connection ∇ is gauge equivalent to Φ∗∇h. We will refer to such maps as Narasimhan-
Ramanan maps. ut

Putting together all of the above we obtain the first main result of this paper.

Theorem 1.4. Suppose that E → M is a smooth real oriented vector bundle of rank r = 2h over a
smooth compact oriented manifold M of dimension m. For any metric σ on E and any connection
∇ on E compatible with σ there exists a finite dimensional subspace Û ⊂ C∞(E) and a Gaussian
measure γ on Û such that, γ-almost surely, a section û ∈ Û is transversal to the zero section and
the expectation of the random zero-locus-cycle

Û 3 û 7→ [Zû] ∈ Ωm−r(M)

is equal to the current determined by the Euler form of∇. ut

Clearly the above result implies the classical Gauss-Bonnet-Chern theorem, but it has a glaring
æsthetic flaw since it gives no idea on the nature of the ensemble (Û ,γU ). Its relationship to the
geometry of (E, σ,∇) is hidden in the details of the proofs of [23, Thm. 1,2]. Those proofs show
that to produce such an ensemble we need to make several noncanonical choices: a choice of a gluing
cocycle for E and a choice of a collection of locally defined so(n)-valued 1-forms describing∇. The
dependence of (Û ,γU ) on these choices is nebulous.

The second goal of the paper is to address this issue. To formulate our second main result we need
to describe an alternate way of producing special (metric, connection)-pairs.

Suppose that U → C∞(E) is a finite dimensional space of sections of E large enough so that it
satisfies the ampleness condition

span
{
u(x); u ∈ U

}
= Ex, ∀x ∈M. (1.13)

In particular, for every x ∈M , the evaluation map

evx : U → Ex, u 7→ evx u := u(x)
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is onto, so that its dual ev∗x : E∗x → U∗ is one-to-one. Thus, the dual bundle E∗ is naturally a
subbundle of U∗M .

If we fix an inner product (−,−)U on U , then we can identify U with U∗ and we can view E
as a subbundle of the trivial bundle UM . Fixing a Euclidean metric on U is equivalent with fixing
a nondegenerate Gaussian probability measure γU on U ; see Subsection 3.1. This discussion shows
that to any nondegenerate Gaussian probability measure on an ample subspace U ⊂ C∞(E) we can
cannonically associate a special (metric, connection)-pair on E.

Definition 1.5. A sample subspace of C∞(E) is a pair (U , γ), whereU ⊂ C∞(E) is an ample finite
dimensional subspace and γ is a nondegenerate Gaussian measure on U . The space U is called the
support of the sample space. ut

Thus, to any sample subspace (U , γ) of C∞(E) we can associate a special (metric, connection)-
pair on E. Theorem 2.1 shows that the expectation of the random current defined by the zero-locus
of a random u ∈ U is equal to the current determined by the Euler form of the associated special
(metric, connection)-pair.

In Theorem 3.1 we show that any (metric, connection)-pair (σ0,∇0) on E can be approximated in
a rather explicit fashion by special (metric,connection)-pairs associated to sample subspaces canoni-
cally and explicitly determined by (σ0,∇0).

More precisely, in Theorem 3.1 we produce explicitly a family of sample spaces (U ε, γε)ε>0 with
associated special (metric,connection)-pairs (σε,∇ε) satisfying the following properties.

ε1 < ε2 ⇒ U ε1 ⊃ U ε2 , (1.14a)⋃
ε>0

U ε is dense in C∞(E), (1.14b)

‖|σε − σ0‖C0 = o(1), as ε→ 0 (1.14c)

‖∇ε −∇0‖L1,p + ‖F ε − F 0‖C0 = o(1) as ε→ 0, ∀p ∈ (1,∞) (1.14d)

where L1,p denotes the Sobolev space of distributions with first order derivatives in Lp while F ε

denotes the curvature of∇ε.
For each ε, the sample space U ε produces a smooth map Ψε : M → Gr+

r (U ε). If ∇̂ε denotes the
canonical connection of the tautological vector bundle over Gr+

r (U ε), then

Ψ∗ε∇̂ε = ∇ε.

Theorem 3.1 shows that Ψ∗ε∇̂ε is very close to ∇0 for ε small. From this perspective we can view
Theorem 3.1 as providing a probabilitic construction of approximate Narasimhan-Ramanan maps;
see (1.12).

Let us observe that Theorem 3.1 also implies the Gauss-Bonnet-Chern theorem for the pair (σ0,∇0),
but without appealing to the results of Narasimhan and Ramanan [23]. Indeed, (1.8) implies that for
any ε > 0 and any η ∈ Ωn−r(M) we have∫

Uε

〈η, [Zu]〉γε(du) =

∫
M
η ∧ e(E,∇ε) ⇐⇒ E

(
[Zu]|u ∈ U ε

)
= e(E,∇ε)†.

We let ε→ 0 and we conclude from (1.14d) that,

lim
ε→0

∫
Uε

〈η, [Zu]〉γε(du) =

∫
M
η ∧ e(E,∇0), ∀η ∈ Ωm−r(M). (1.15)
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On the other hand, (1.7) shows that for any generic section u0 of E, any closed form η ∈ Ωm−r(M)
and any ε > 0 we have

〈η, [Zu0 ]〉 =

∫
Uε

〈η, [Zu]〉γε(du).

As we have mentioned earlier, the spaces U ε can be constructed explicitly. We were led to these
spaces guided by probabilistic ideas, but they can be given a purely analytic description. In either
interpretation, these spaces depend on two additional choices.

The first choice is a Riemann metric g on M . Form the covariant Laplacian ∆0 = (∇0)∗∇0 :
C∞(E)→ C∞(E). It has a discrete spectrum

spec(∆0) = λ1 ≤ λ2 ≤ · · · .
Let (Ψn)n≥1 be a complete orthonormal family of L2(E) consisting of eigensections of ∆0,

∆0Ψn = λnΨn.

Our first candidate for the approximating family U ε is defined by

U ε := span
{

Ψn; λn ≤ ε−2
}
.

As metric σε on U ε we use the L2(E)-inner product rescaled by the factor εm. The family (U ε)ε>0

satisfied (1.14a) and (1.14b) and with a little work it can be shown that is also satisfies (1.14c). How-
ever, proving that this family of sample spaces also satisfies (1.14d) is fraught with many technical
difficulties. To avoid them we need to tweak this approach.

Let χ : R → [0,∞) be the characteristic function of the interval [−1, 1]. Observe that U ε can
alternatively be defined as the range of the smoothing operator χ(ε

√
∆0). We now make our second

choice and we fix a compactly supported, smooth, even function w : R→ [0,∞) such that w(0) > 0.
Intuitively, we think of w as a smooth approximation for χ. For any ε > 0 we have a smoothing
operator

Wε := w
(
ε
√

∆0

)
: L2(E)→ L2(E).

The operatorWε is symmetric, nonnegative definite and has finite dimensional rangeU ε := RangeWε.
Clearly the family (U ε)ε>0 satisfies (1.14a) and (1.14b). In particular, this shows that U ε is ample if
ε is sufficiently small.

The spaceU ε is also aWε-invariant subspace ofL2(E) and the restriction ofWε toU ε is invertible
because w(0) 6= 0. The Gaussian measure γε is then defined by

γε(du) =
1√

det 2πWε
e−

1
2

(W−1
ε u,u)0 |du|0,

where (−,−)0 denotes the L2-inner product on U ε and |du|0 denotes the associated Lebesgue mea-
sure. In Theorem 3.1 we prove that the family of sample spaces (U ε, γε) defined in this fashion
satisfy all the properties (1.14a)-(1.14d).

The sample space (U ε, γε) as defined above has a simple probabilistic interpretation. A random
section uε ∈ U ε is a random linear superposition

uε =
∑
n

Xε
nΨn, (1.16)

where the coefficients Xε
n are independent normal random variables with mean 0 and variances

var(Xε
n) = w(ε

√
λn).

The correlation kernel of the random section uε coincides with the Schwartz kernel of Wε, and
the connection of E determined by the Gaussian ensemble (U ε,γε) is a special case of the L-W
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connection in [13, Prop. 1.1.1]. We provide probabilistic descriptions of this connection and its
curvature in Subsection 3.2. These descriptions play a key role in the proof of Theorem 3.1.

Note that for any given ε we have w(ε
√
λn) = 0 if n is sufficiently large so that the sum (1.16)

consists of finitely many terms. If w = 1 in a neighborhood of 0, then as ε → 0 the above random
linear superposition formally converges to a random series∑

n

X0
nΨn,

where the coefficients X0
n are independent standard normal random variables. This is very similar to

the classical scalar white noise. In fact, as explained in [16], the above series converges in the sense
of distributions to a generalized Gaussian random process called white noise. For this reason we will
refer to the ε → 0 limit as the white-noise limit. Thus, the differential geometry of (E,σ0,∇0) is
determined by the white-noise approximation regime defined by the family of random sections uε,
ε > 0. Observe also that the equality (1.15) has the following nice consequence.

Corollary 1.6.

lim
ε↘0

E
(

[Zuε ]
)

= e
(
E,∇E

)†
. ut

1.3. Related work. The results in this paper take place on real manifolds and real vector bundles
and deal with two themes: the distribution of zeros of random sections and the connections between
the statistics of such suctions and the geometry of the bundle.

These problems have been investigated for some time in the holomorphic context where the inher-
ent rigidity allows for more precise conclusions. Chapter 5 of the monograph [21] by X. Ma and G.
Marinescu contains a very nice exposition of these developments. We mention below a few of them.

In [31], Schiffman and Zelditch have investigated random holomorphic sections of Ln, n � 1,
where L is an ample hermitian holomorphic line bundle L over a compact Kähler manifold M . Our
Corollary 1.6 has the same flavor as [31, Thm. 1.1] ; see also [21, Thm.5.3.3.].

The large n limit is conceptually similar to the white noise limit we employ in this paper although
the technical details are quite different. G. Tian [35] and W.-D. Ruan [30] have shown how to use the
ensemble of holomorphic sections of Ln, n� 1, to produce C∞-approximations of the curvature of
L. D. Catlin [6] and S. Zelditch [39] gave alternate proofs of this fact where the probabilistic features
are easier to glean. Our proof of Theorem 3.1 is similar in spirit to theirs.

In the last few years there has been a flurry of work, e.g., [8, 9, 10, 12], concerning the statistics of
the zero sets of random holomorphic sections of Ln in the case when M is noncompact/singular.

In Theorem 3.1 we produce only C0-approximations of the curvature of the vector bundle. How-
ever, in the special case when E = TM , σ0 is a Riemannian metric on M and ∇0 is the associ-
ated Levi-Civita connection, then the results in [2, 28] imply that (1.14c) can be refined to a C∞-
convergence of σε to the Riemann metric σ0.

In [26] the first author has investigated critical sets of random functions on a compact Riemann
manifold. The critical points of a functions are zeros of rather special sections of the cotangent bun-
dles, namely zeros of exact 1-forms. In [26, Thm.1.7] it was shown that the geometry of a Riemann
manifold is determined by the statistics of the differentials of random functions on it. This is similar
in flavor with Theorem 3.1 in the present paper. However [26, Thm. 1.7] does not follow from the
apparently more general Theorem 3.1 in this paper.

Finally, we want to mention that in [27] the first author generalized Theorem 2.1 to arbitrary Gauss-
ian ensembles of random sections, that is, arbitrary Gaussian measures on C∞(E), not necessarily
supported on finite dimensional sample spaces.
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1.4. Organization of the paper. The main body of the paper consists of two sections. In Section
2 we prove our main integral formula Theorem 2.1 which states that if (U , γ) is a sample space of
C∞(E), then the expectation of the zero-locus-current of a random section u ∈ U is equal to the
current determined by the Euler form of the special connection on E induced by this sample space.
The proof relies on the ubiquitous double-fibration trick. We evaluate the various intervening integrals
using the theory of orthogonal invariants like in Weyl’s proof of his tube formula [38].

Section 3 contains the proof of our reconstruction result, Theorem 3.1. It boils down to a detailed
understanding of the Schwartz kernel of the smoothing operator w(ε

√
∆0).

We approach this problem using the wave kernel technique pioneered by L. Hörmander [19]. The
fact that our operators are not scalar makes the identification of various terms in the asymptotic
expansion of this kernel more challenging. We achieve this by gradually reducing the computation of
these terms to the special case involving the heat kernel. The estimate (1.14d) is trickier and follows
using a method reminiscent to the one employed by K. Uhlenbeck in [36].

Acknowledgments. We want to thank the anonymous referee for the helpful comments and critique.

2. A FINITE DIMENSIONAL INTEGRAL FORMULA

2.1. The setup. Suppose thatM is a compact oriented smooth manifold of dimensionm andE → R
is a real, oriented vector bundle of even rank r = 2h. We fix a finite dimensional spaceU ⊂ C∞(E),

dimU = N.

Any x ∈M defines a linear evaluation map

evx : U → Ex, U 3 u 7→ u(x).

We assume that U satisfies the ampleness condition (1.13). The dual map ev∗x : E∗x → U∗ is an
injection and the family (ev∗x)x∈M describes an inclusion of E∗ as a subbundle of the trivial vector
bundle U∗M .

We fix an Euclidean metric (−,−)U on U . It induces a metric (−,−)U∗ on U∗. The inclusion

ev∗ : E∗ → U∗M

induces a metric (−,−)E∗ on the bundle E∗ and, by duality, a metric (−,−)E on E.
The evaluation map evx : U → Ex can be identified with the orthogonal projection. To emphasize

this aspect, we will use the alternate notation P = Px := evx. We also set Q = Qx = 1− Px.
If we choose an orthonormal basis (Ψk)1≤k≤N of U , then we can describe the projection Px in

the concrete form

Pxu =
N∑
k=1

(u,Ψk)UΨk(x).

Let us point a confusing fact. A fixed vector u ∈ U can be viewed as a constant section of the trivial
bundle UM and also, by definition, as a section of E. As such it is given by the smooth map

SEu : M → U , SEu (x) = evx u = Pxu.

We denote by K the subbundle of UM defined by the kernels of the above projections, K := kerP .
Note that

E = K⊥, E ⊕K ∼= UM = U ×M.

If we denote by d the trivial connection onUM , then we obtain a connection on∇E on E compatible
with the metric (−,−)E ,

∇E := PdP.
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We denote by FE the curvature of the connection ∇E on E and by e(E,∇E) the associated Euler
form defined as in (1.1)

e(E,∇E) =
1

(2π)h
Pf(−FE) ∈ Ωr(M), r = 2h.

If a section u ∈ U is transversal to the zero section, u t 0, then its zero set

Zu :=
{
x ∈M ; u(x) = 0

}
is a compact submanifold of M of codimension r. We denote by TZuM its normal bundle in M ,

TZuM := TM |Zu/TZu.
Given any connection∇ on E we obtain a linear map

∇• u : (TM)|Zu → E|Zu
which vanishes along TZu and thus induces a bundle morphism

au : TZuM → E|Zu
that is independent of the choice of∇. We will refer to au as the ajunction morphism.

The transversality u t 0 is equivalent to the fact that au is a bundle isomorphism. The orientation
on E induces via the adjunction morphism an orientation in the normal bundle (TM)|Zu and thus an
orientation on Zu uniquely determined by the requirement

orientationTM |Zu = orientation (Zu) ∧ orientation (TZuM).

Let us point out that since Zu has even codimension we have

orientation (Zu) ∧ orientation (TZuM) = orientation (TZuM) ∧ orientation (Zu).

We denote by [Zu] ∈ Ωm−r(M) the integration current defind by the submanifold Zu equipped with
the above orientation.

Theorem 2.1. Let E → M be a real oriented, smooth vector bundle of rank r = 2h over the
compact oriented smooth manifold M . Fix a subspaceU ⊂ C∞(E) of dimension dimU = N <∞
satisfying the ampleness condition (1.13). Fix an Euclidean inner product (−,−)U on U and denote
by γU the Gaussian measure on U determined by this inner product,

γU (du) :=
1

(2π)
N
2

e−
|u|2
2 du.

Then the following hold.
(i) A section u ∈ U almost surely intersects transversally the zero section of E and thus we

obtain a random current

U 3 u 7→ [Zu] ∈ Ωm−r(M).

(ii) The expectation of this random current is the current determined by the Euler form e(E,∇E)

EγU ([Zu]) = e(E,∇E)†.

More precisely,∫
U
〈η, [Zu]〉dγU (du) =

1

(2π)
r
2

∫
M
η ∧Pf(−FE), ∀η ∈ Ωm−r(M). (2.1)

The proof of the the integral formula (2.1) is based on Gelfand’s double fibration trick, [1, 15]. Its
formulation relies on two versions of the coarea formula. We describe these versions below.
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2.2. The coarea formula. Suppose that X,Y are oriented smooth manifolds of dimensions

dimX = N ≥ n = dimY.

Asume further that that we are given a smooth map π : X → Y . For any regular value y ∈ Y of π the
fiber Xy := π−1(y) is a smooth submanifold of X of codimension n and its conormal bundle T ∗XyX
is naturally isomorphic with π∗T ∗Y |Xy and thus it has a natural orientation. We orient Xy using the
fiber-first convention, i.e.,

orientation (X) = orientation (Xy) ∧ orientationT ∗XyX.

Suppose that ωY ∈ Ωn(Y ) is a volume form on Y , i.e., a nowhere vanishing top-degree form on Y .
Fix a smooth function ρY : Y → R and a form η ∈ ΩN−n(X) such that

−∞ <

∫
Xy

η <∞

for any regular value y of π. Sard’s theorem implies that y is a regular value of π for almost all y ∈ Y .
The first version of the coarea formula states that the function

Y 3 y 7→
∫
Xy

η ∈ R

is Lebesgue measurable and∫
Y

(∫
Xy

η

)
ρY (y)ωY =

∫
X
η ∧ π∗(ρY ωY ), η ∈ Ωc(X). (2.2)

For the second version of the coarea formula we choose a top degree form α ∈ ΩN (X). If y0 ∈ Y
is a regular value of π, then there is an induced Gelfand-Leray residue form

α

π∗ωY
∈ ΩN−n(Xy0).

It is locally constructed as follows. Fix a point p0 ∈ Xy and local coordinates (x1, . . . , xN ) on X in
a neighborhood U of p0 and coordinates (y1, . . . , yn) on Y in a neighborhood V of y0 = π(p0) such
that, in these coordinates, the smooth map π is linear and described by the functions

yi(x) = xN−n+i, ∀i = 1, . . . , n.

In the coordinates (yi) the volume form ωY has the form

ωY = a(y)dy1 ∧ · · · ∧ dyn,

where a ∈ C∞(V ) is a nowhere vanishing function. Now choose a form β ∈ ΩN−n(U) such that

β ∧ a
(
xN−n+1, . . . , xN

)
dxN−n+1 ∧ · · · ∧ dxN = α.

Ther restriction of β to Xy0 ∩Y is an (N −n)-form on Xy0 ∩U that is independent of all the choices
and it is the Gelfand-Leray residue α

π∗ωY
.

The second version of the coarea formula that we will need takes the form∫
X
α =

∫
Y

(∫
Xy

α

π∗ωY

)
ωY . (2.3)

For an explanation of why the more traditional coarea formula, [14, Thm. 3.2.11] or [20, Thm.
5.3.9], implies (2.2) and (2.3) we refer to [25, Cor. 2.11].
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2.3. The double fibration trick. Consider the incidence set

X :=
{

(u,x) ∈ U ×M ; u(x) = 0
}
.

It comes equipped with two natural projections

U
π−←− X

π+−→M,

π+(u,x) = x, π−(u,x) = u, ∀(x,u) ∈ X.

For any subset A ⊂M and B ⊂ U we set

X+
A := π−1

+ (A), X−B := π−1
− (B).

Lemma 2.2. (a) The incidence set X has a natural structure of smooth manifold diffeomorphic to the
total space of the vector bundle K →M .
(b) If u 6= 0 is a regular value of π−, then u t 0.

Proof. (a) Note that
(x,u) ∈ X⇐⇒Pxu = evx u = 0⇐⇒u = Kx.

This proves the first claim.
(b) Suppose that u0 ∈ U \ 0 is a regular value of β. We will show that for any x0 ∈ M such that

u0(x0) = 0, the adjunction map au0 defines an isomorphisn

(TZu0
M)x0 → Ex0 .

Fix a small open coordinate neighborhood O ⊂M of x0 in M with locall coordinates (x1, . . . , xm).
We assume that via these coordinates O is identified with a ball B ⊂ Rm centered at 0 and x0 is
identified with the center of the ball, xi(x0), ∀i = 1, . . . ,m.

Both bundles E and K are trivializable over B. We can therefore find smooth maps

e1, . . . , eN : O→ U

such that the following hold.

For any x ∈ O the collection {ea(x)}1≤a≤N is an orthonormal basis of U . (2.4)

span
{
ei(x), 1 ≤ i ≤ r

}
= Ex, ∀x ∈ O. (2.5)

span
{
eα(x), r < α ≤ N

}
= Kx, ∀x ∈ O. (2.6)

∇Eei(x0) = 0, ∀i = 1, . . . , r, (2.7)

We will use the following conventions frequently encountered in integral geometry.
• We will use the Latin letters a, b, c to denote indices in the range 1, . . . , N .
• We will use the Latin letters i, j, k, ` to denote indices in the range 1, . . . , r = rank (E).
• We will use the Greek letters α, β, γ to denote indices in the range r + 1, . . . , N .

The map

RN ×B 3 (t, x) 7→

(∑
a

taea(x), x

)
∈ U × O

is a diffeomorphism. The set X+
O ⊂ UO can be identified with the set{

(t1, . . . , tN , x1, . . . , xm︸ ︷︷ ︸
x

) ∈ RN × Rm; x ∈ B, tj = 0, ∀j ≤ r
}
. (2.8)

We write
t := (ti)1≤i≤r, τ := (tα)r<α≤N , t̃ := (t, τ). (2.9)
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Thus the pair (τ, x) defines local coordinates on X+
O . In these coordinates the pair (u0,x0) is identi-

fied with a pair (τ0, 0) ∈ RN−r × Rm,

τ0 = (τ r+1
0 , . . . , τN0 ).

Moreover, the map π− is given by

(τ, x) 7→ π−(τ, x) =
∑
α

tαeα(x) ∈ U . (2.10)

We set
ua(x) :=

(
u0, ea(x)

)
U
, ∀a = 1, . . . , N,

so that
u0 =

∑
a

ua(x)ea(x), ∀x ∈ B. (2.11)

Above, we think of u0 as a constant section of the trivial bundle UM . The functions ua(x) are the
coordinates of this section in the moving frame (ea(x)). Note that

SEu0
(x) = Pxu0 =

∑
i

ui(x)ei(x). (2.12)

The fiber X−u0
= π−1

− (u0) is described in the coordinates (τ, x) by the equalities

ui(x) = 0, tα = uα(x), ∀1 ≤ i ≤ r, ∀α > r.

Remark 2.3. Denote by Q the natural orthogonal projection Q : UM → K = kerP . From the
above equalities and (2.6) we deduce that the section

Qu0 : M → K, x 7→ Qxu0, (2.13)

induces a homeomorphism from Zu0 to the fiber X−u0
. This homeomorphism would be a diffeomor-

phism if Zu0 were cut out transversally by the the equations ui(x) = 0, 1 ≤ i ≤ r. ut

The differential of π− at (τ0, 0) ∈ X−u0
is

dπ−|τ0,0 =
∑
α

dtαeα|τ=τ0 +
∑
α

τα0 deα|x=0.

Since u0 is a regular value of π−, the differential dπ− at any point in X−u0
is surjective. In particular,

the induced linear map

Pdπ−|τ0,0 =
∑
α

τα0 Pdeα(x)|x=0 : Tx0M → Ex0

must be surjective. From (2.12) we deduce that

∇ESEu0
= Pd

(∑
i

ui(x)ei(x)

)
=
∑
i

duiei +
∑
i

uiPdei

At x0 we have ui(x0) = 0 and we conclude that(
∇ESEu0

)
|x0 =

∑
i

duiei.

On the other hand, we deduce from (2.11) that

0 = d

(∑
a

ua(x)ea(x)

)
⇒ Pd

(∑
a

ua(x)ea(x)

)
= 0
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⇒
∑
i

duiei +
∑
i

uiPdei = −
∑
α

uαPdeα.

At x0 we have ui(x0) = 0, uα(x0) = τα0 and we deduce(
∇ESEu0

)
|x0 =

∑
i

duiei = −
∑
α

τα0 Pdeα(x)|x=0 = −Pdπ−|τ0,0.

This proves that the adjunction map

au0 |x0 =
(
∇ESEu0

)
|x0 = −Pdπ−|τ0,0 : Tx0M → Ex0 (2.14)

is surjective. Since ∑
i

duiei = −Pdπ−|τ0,0

we deduce that near x0 the zero set Zu0 is cut out transversally by the equations ui(x) = 0, i =
1, . . . , r. ut

Observe that it suffices to prove (2.1) only for forms η supported in some coordinate neighborhood
O of some point x0 ∈ M . We continue to use the notations and the conventions introduced in the
proof of Lemma 2.2. We have a double fibration

U
π−←− X|O

π+−→ O.

Assume that the volume form

ωO = dx1 ∧ · · · ∧ dxm ∈ Ωm(O)

defines the given orientation of M . Clearly, the equality (2.1) is linear in η so it suffices to prove it in
the special case when

η = fMdx
r+1 ∧ · · · ∧ dxm, fM ∈ C∞0 (O).

We fix an orientation on U and consider the volume form

ωU = ρUdVU , ρU =
1

(2π)
N
2

e−
|u|2
2 ,

where dVU denotes the Euclidean volume form on U determined by the given orientation.
The orientation onU defines an orientation on the trivial bundleUM . Coupled with the orientation

on E it induces an orientation on the vector bundle K uniquely determined by the requirements

orientation (UM ) = orientation (E) ∧ orientation (K) = orientation (K) ∧ orientation (E).

Finally, the orientation on K induces an orientation on the total space X via the fiber-first convention.
We will refer to this orientation as the natural orientation on X.

For any regular value u0 of π−, the fiber X−u0
caries an orientation given by the fiber-first conven-

tion applied to the fibration π− : X→ U .

Lemma 2.4. The natural orientation of X|O has the property that for any regular value u0 of π−, the
natural diffeomorphism

Qu0 : Zu0 → X−u0

defined in Remark 2.3 has degree (−1)Nm and thus changes the orientation by the factor (−1)Nm.
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Proof. The fiber X−u0
is the image of Zu0 via the section Ψ = Qu0 of X→M . The map Ψ identifies

the normal bundle TZu0
M of Zu0 in M with the normal bundle TX−u0

Ψ(M) of X−u0
in Ψ(M).

The equality (2.14) shows that the restriction of dπ− to TX−u0
Ψ(O) can be identified up to a sign

with the opposite of the adjunction map. This sign is not important for orientations purposes since
the bundles involved have even rank. Now observe that at (u0,x0) ∈ X we have

orientation (X) = orientation (Kx0) ∧ orientation Ψ(M)

= orientation (Kx0) ∧ orientation (Zu0) ∧ orientation (Ex0)

= (−1)Nmorientation (Zu0) ∧ orientation (Ex0) ∧ orientation (Kx0).

On the other hand

orientation (X) = orientation (X−u0
) ∧ orientationU

= orientation (X−u0
) ∧ orientation (Ex0) ∧ orientation (Kx0).

ut

The first coarea formula (2.2) coupled with Lemma 2.4 imply that

∫
U

(∫
Zu

η

)
ρUdVU = (−1)Nm

∫
U

(∫
X−u

η

)
ρUdVU = (−1)Nm

∫
X+
O

π∗+η ∧ π∗−ωU .

Hence ∫
U

(∫
Zu

η

)
ρUdVU =

∫
X+
O

π∗−ωU ∧ π∗+η. (2.15)

Recalling that π−1
+ (x) = Kx, ∀x ∈ O, we deduce from (2.15) and the second coarea formula (2.3)

that ∫
U

(∫
Zu

η

)
ρUdVU =

∫
O

(∫
Kx

π∗−ωU ∧ π∗+η
π∗+ωO

)
ωO. (2.16)

This is Gelfand’s double fibration trick. To prove (2.1) we need to show that(∫
Kx

π∗−ωU ∧ π∗+η
π∗+ωO

)
ωO =

1

(2π)h
η ∧Pf

(
−FE

)
=

1

(2π)h
Pf
(
−FE

)
∧ η on O. (2.17)

2.4. Proof of (2.17). Suppose that
(
ea(0)

)
1≤a≤N is a positively oriented basis ofU and ( ei(0) )1≤i≤r

is a positively oriented basis of Ex0 . We set

yab(x) :=
(
ea(0), eb(x)

)
U
, ∀1 ≤ a, b ≤ N.

The N ×N matrix Y (x) = (yab(x)) is orthogonal and Y (0) = 1. Moreover

ea(x) =
∑
b

yba(x)eb(0), ea(0) =
∑
b

yab(x)eb(x), ∀a. (2.18)

We deduce
Pxea(0) =

∑
i

yai(x)ei(x) =
∑
i,b

yai(x)ybi(x)eb(0).

Hence

∇Eej(x) = Pxd
∑
b

ybj(x)eb(0) =
∑
b

dybj(x)Peb(0) =
∑
i,b

ybi(x)dybj(x)ei(x).
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Thus, in the local orthonormal frame ( ei(x) ) the connection ∇E is described by the matrix-valued
1-form

Γ = (Γij(x))1≤i,j≤p, Γij(x) =
∑
b

ybi(x) ∧ dybj(x).

The curvature of∇E is FE = dΓ + Γ ∧ Γ. Note that

dΓij(x) =
∑
b

dybi(x) ∧ dybj(x).

At x0, the constraint (2.7) on the frame ei(x) implies that∇Eej |x0 = 0, ∀j. Thus

0 = Γij(x0) =
∑
b

ybi(0)dybj(0) =
∑
b

δbidybj(0) = dyij(0), ∀i, j. (2.19)

Hence
FE |x0 = dΓ = (Fij)1≤i,j≤p,

Fij =
∑
b

dybi(0) ∧ dybj(0) =
∑
β

dyβi(0) ∧ dyβj(0) ∈ Λ2T ∗x0
M.

On the other hand, the N ×N Maurer-Cartan matrix Y −1(x)dY (x) is skew-symmetric for any x. At
x = 0 we have Y (0) = 1 and we deduce

dyβi(0) = −dyiβ(0), ∀i, β.
We conclude that

FE |x0 = dΓ = (Fij)1≤i,j≤r, Fij =
∑
β

dyiβ(0) ∧ dyjβ(0). (2.20)

Define
ya : U → R , ya(u) =

(
u, ea(0)

)
U
, 1 ≤ a ≤ N.

The Euclidean volume form on U is then

dVU = dy1 ∧ · · · ∧ dyN .
Recall that (τ, x1, . . . , xm) are coordinates on X+

O ; see (2.8) and (2.9). Using (2.10) we deduce that

ya
(
π−(τ, x1, . . . , xm)

)
= ya

(∑
α

tαeα(x)

)
=
∑
α

tα
(
ea(0), eα(x)

)
U

=
∑
α

tαyaα(x).

We set
ξa(x) = ξa(τ, x) :=

∑
α

tαyaα(x),

so that
π−(τ, x) =

∑
a

ξa(x)eA(0),

and
π∗−dVU = dξ1 ∧ · · · ∧ dξN .

We view this as a form on the space RN−r × O with coordinates (τ, x). We have

dξa =
∑
α

dtαyaα +
∑
α

tαdyaα(x).

Observe that at (τ0, 0) we have
yab(0) = δab, tα = τα0 ,
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so
dξa(0) := dξa|x=0 =

∑
α

δaαdt
α +

∑
α

τα0 dy
a
α(0).

Hence
dξi(0) =

∑
α

τα0 dyiα(0), dξβ = dtβ +
∑
α

τα0 dyβα(0),

so that

π∗−ωU =
1

(2π)
N
2

e−
|τ |2
2 dξ1 ∧ · · · dξN .

Now observe that

dξ1 ∧ · · · dξN = (dtr+1 ∧ · · · ∧ dtN )︸ ︷︷ ︸
=:dτ

∧
i

∑
αi

ταi0 dyiαi(0)︸ ︷︷ ︸
=:Ω(τ0)

+L,

where L incorporates all the other terms that have degrees < N − r in the dtα variables, and

Ω(τ0) ∈ ΛrT ∗x0
M.

Since the terms collected in L have degrees > r in the variables (x1, . . . , xm) we deduce

dξ1 ∧ · · · dξN ∧ π∗+η = fMdτ ∧ Ω(τ0) ∧ dxr+1 ∧ · · · ∧ dxm.

Denote by Ω(τ0)1,...,r the coefficient of dx1 ∧ · · · ∧ dxr in the decomposition of Ω(τ0) with respect
to the basis { dxj1 ∧ · · · ∧ dxjr }1≤j1<··· ,jr≤m of ΛrT ∗x0

M . If we set

γK(dτ) :=
1

(2π)
N−r

2

e−
|τ |2
2 dτ ∈ ΩN−r(Kx0),

then we deduce that
π∗−ωU ∧ π∗+η
dx1 ∧ · · · ∧ dxm

=
1

(2π)
p
2

γK ∧ fM (x0)Ω(τ0)1,...,r. (2.21)

Hence ∫
Kx0

π∗−ωU ∧ π∗+η
dx1 ∧ · · · ∧ dxm

=
fM (x0)

(2π)
r
2

∫
Kx0

Ω(τ)1,...,rγK(dτ). (2.22)

In the sequel we will denote by • the inner product in the space Kx0 Our choice of local frames
amounts to a metric isomorphism Kx0

∼= RN−r.
For every i = 1, . . . , r and τ ∈ Kx0 we set

Φi :=

 dyir+1(0)
...

dyiN (0)

 ∈ T ∗x0
M ⊗Kx0 , ωi(τ) = Φi • τ :=

∑
α

tαdyiα(0) ∈ T ∗x0
M.

Let us point out that the (N − r)× r matrix with columns Φ1, . . . ,Φr describes the differential at x0

of the Gauss map

M 3 x 7→ Ex ∈ Grr(U) = the Grassmannian of r-planes in U .

We have
Ω(τ) = ω1(τ) ∧ · · · ∧ ωr(τ).
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For every j = 1, . . . ,m and τ ∈ Kx0 we set

Φij := ∂xj Φi =


∂yir+1

∂xj
(0)

...
∂yiN
∂xj

(0)

 ∈ Kx0 , ωij(τ) = (Φij , τ)U = Φij • τ ∈ R.

We denote by A(τ) the r × r matrix with entries

A(τ)ij = ωij(τ), 1 ≤ i, j ≤ r.
Then

ωi(τ) =
m∑
j=1

ωij(τ)dxj , ∀i = 1, . . . , r, Ω(τ)1,...,r = detA(τ).

We set
Ω1,...,r :=

∫
Kx0

detA(τ)γK(dτ). (2.23)

Using (2.22) we deduce ∫
Kx0

π∗−ωU ∧ π∗+η
dx1 ∧ · · · ∧ dxm

=
fM (x0)

(2π)
p
2

Ω1,...,r. (2.24)

To compute the Gaussian average (2.23) we use the theory of orthogonal invariants [37] as in Weyl’s
proof of his tube formula [17, §4.4], [24, §9.3.3], [38].

Let us first observe that for 1 ≤ i1 6= i2 ≤ r and 1 ≤ j1 < j2 ≤ m we have

Φi1j1 • Φi2j2 − Φi1j2 • Φi2j1 =
∑
α

(
∂yi1α
∂xj1

∂yi2α
∂xj2

− ∂yi1α
∂xj2

∂yi2α
∂xj1

)

=

(∑
α

dyi1α ∧ dyi2α

)
(∂xj1 , ∂xj2 ).

Using (2.20) and the notation (1.3) we deduce

FEi1i2|j1j2 = Φi1j1 • Φi2j2 − Φi1j2 • Φi2j1 , ∀1 ≤ i1, i2 ≤ r, 1 ≤ j1, j2 ≤ m. (2.25)

For any collection of vectors uij ∈ Kx0 , 1 ≤ i, j ≤ r and any τ ∈ Kx0 we define the r × r matrix

A(τ,uij) :=
(
uij • τ

)
1≤i,j≤r,

and we consider the average

µ(uij) :=

∫
Kx0

detA(τ,uij)γK(dτ).

The average µ(uij) is a polynomial in the variables uij ∈ Kx0 , 1 ≤ i, j,≤ r, and it is invariant with
respect to the action of the group O(N − r) of orthogonal transformations of Kx0 . Note that when
uij = Φij we have

µ(Φij) = Ω1,...,r.

We recall that r = 2h and we denote by Sr = S2h the group of permutations of {1, 2, . . . , 2h}. As
in [24, §9.3.3] we define

Qσ,ϕ(uij) :=

h∏
j=1

(
uϕ2j−1σ2j−1 • uϕ2jσ2j

)
, Q = Q(uij) :=

∑
σ,ϕ∈Sr

ε(σϕ)Qσ,ϕ(uij).

Lemma 9.3.9 in [24] shows that there exists a constant Z such that

µ(uij) = ZQ(uij), ∀uij .
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To find the constant Z we choose the variables uij ∈ Kx0 judiciously. More precisely, we set

u∗ij :=

{
eN (0), i = j,

0, i 6= 0.

In this case

A(τ,u∗ij) = Diag(tN , . . . , tN︸ ︷︷ ︸
2h

), detA(τ,uij) = |tN |2h,

µ
(
u∗ij
)

=

∫
Kx0

∣∣ tN ∣∣2hγK(dτ) =
1√
2π

∫
R
s2he−

s2

2 ds =
h∏
j=1

(2j − 1) = (2h− 1)!!.

On the other hand,

Qσ,ϕ
(
u∗ij
)

=

{
1, σ = ϕ,

0, σ 6= ϕ,

and we deduce that Q
(
u∗ij
)

= (2h)!. Thus

Z =
(2h− 1)!!

(2h)!
=

1

2hh!
, µ(Φij) =

1

2hh!
Q(Φij).

Denote by S′r the set of permutations ϕ of {1, 2, . . . , 2h} such that

ϕ1 < ϕ2, ϕ3 < ϕ4, . . . , ϕ2h−1 < ϕ2h.

Using (2.25) we deduce as in the proof of [24, Eq. (9.3.11)] that

Q(Φij) = 2h
∑
σ,ϕ∈S′r

h∏
j=1

ε(σϕ)FEϕ2j−1ϕ2j |σ2j−1σ2j
. (2.26)

Thus

µ(Φij) =
1

h!

∑
σ,ϕ∈S′r

h∏
j=1

ε(σϕ)FEϕ2j−1ϕ2j |σ2j−1σ2j

(1.4)
= Pf

(
−FE

)
(∂x1 , · · · , ∂xr).

Ω1,...,r = µ(Φij) = Pf
(
−FE

)
(∂x1 , . . . , ∂xr). (2.27)

Using (2.24) and (2.27) we conclude that(∫
Kx0

π∗−ωU ∧ π∗+η
dx1 ∧ · · · ∧ dxm

)
dx1 ∧ · · · ∧ dxm =

fM (x0)

(2π)
r
2

Ω1,...,pdx
1 ∧ · · · ∧ dxm

=
1

(2π)h
Pf
(
−FE

)
∧ η.

This proves (2.17). ut
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3. THE WHITE NOISE LIMIT

3.1. Gaussian measures. Recall [5] that a centered Gaussian measure on a finite dimensional real
vector space U is a probability measure γ on U such that for any linear functional ξ ∈ U∗ =
Hom(U ,R) the pushforward ξ#γ is Gaussian measure on R

ξ#γ = γv :=
1√
2πv

e−
ξ2

2v dξ, v ≥ 0.

Above, when v = 0, we define γv to the Dirac delta-measure concentrated at 0.
A centered Gaussian measure γ on U is completely determined by its covariance form C = Cγ

which is the symmetric, nonnegative definite bilinear form

C : U∗ ×U∗ → R, C(ξ1, ξ2) = Eγ(ξ1 · ξ2),

where ξ1, ξ2 ∈ U∗ are viewed as random variables on (U , γ). The Gaussian measure γ is called
nondegenerate if its covariance form is nondegenerate. If this is the case, the bilinear form defines an
Euclidean inner product on U∗ and, by duality, an inner product on U .

Conversely, given an inner product σ on U with norm | − |σ, we have a Gaussian measure

γσ = (2π)−
dimU

2 e−
|u|2σ
2 |du|σ, (3.1)

and σ coincides with the inner product determined by γσ.
The inner product σ identifies U with U∗ and the covariance form of an arbitrary Gaussian mea-

sure γ on U can be identified with a symmetric nonnegative operator Tγ : U → U . The measure γ
is nondegenerate iff Tγ is invertible. In this case

γ =
1√

det 2πTγ
e−

1
2
σ(T−1

γ u,u)|du|σ =
(
T

1
2
γ

)
#
γσ. (3.2)

Note that if γ is a centered Gaussian measure on U with covariance form Cγ and L : U → V is
a linear map to another finite dimensional vector space V then the pushforward L#γ is a Gaussian
measure on V with covariance form CL#γ = L∗Cγ . In particular, if γ is as in (3.2), then

γ =
(
T

1
2
γ

)
#
γσ.

3.2. Probabilistic descriptions of special metrics and connection. Suppose that we are given a
smooth real vector bundle E → M of rank r, and a sample space (U ,γU ) of C∞(E). The nonde-
generate Gaussian measure γU on U determines a metric (−,−)U .

As we have seen, the metric (−,−)U on U induces a metric (−,−)E on the bundle E and by
duality, a metric on E∗. We want to give a probabilistic description of the induced metric (−,−)E∗
in a fiber E∗x of E∗.

To simplify the presentation we introduce some notations and conventions.
(i) We will use the •-notation to denote the inner product in U or U∗.

(ii) We will use the Latin letters i, j, k, ` to denote indices in the range 1, . . . ,m = dimM .
(iii) We will use the Greek letters α, β, γ to denote indices in the range 1, . . . , r = rank (E).

Let
〈−,−〉 : E∗x × Ex → R

denote the natural pairing. Fix an orthonormal basis Ψ1, . . . ,ΨN of U and denote by (Ψ∗n) the dual
orthonormal basis of U∗. Then ev∗x : E∗x → U∗ is given by

evx(u∗) =
N∑
n=1

〈
u∗,Ψn(x)

〉
Ψ∗n,
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and

(u∗1,u
∗
2)E∗ = (ev∗x u

∗
1) • (ev∗x u

∗
2) =

N∑
n=1

〈
u∗1,Ψn(x)

〉〈
u∗2,Ψn(x)

〉
.

Thus the metric (−,−)E∗ is described by the bilinear form C(x) on E∗x given by

Cx =

N∑
n=1

Ψn(x)⊗Ψn(x) ∈ Ex ⊗ Ex ∼= Hom(E∗x ⊗ E∗x,R).

The bilinear form Cx has a probabilistic interpretation: it is the covariance form of the Gaussian
measure (evx)#γU on Ex.

We have a metric duality isomorphism

D = Dx : Ex → E∗x, (v∗,Du)E∗ := 〈v∗,u〉.
Fix a point x0 and a small coordinate neighborhood O of x0 with coordinates (xi) such that xi(x0) =
0. Suppose that (eα(x)) is a local frame of E∗ defined on O. Denote by (eα(x)) the dual moving
frame. We set

Cαβ(x) := Cx

(
eα(x), eβ(x)

)
.

The matrix C(x) = (Cαβ(x)) is symmetric and positive definite. We denote by (Cαβ(x)) the inverse
matrix. If we write

Deα =:
∑
β

Dβαe
β,

then we deduce
δγα = 〈eγ , eα〉 =

(
eγ ,
∑
β

Dβαe
β
)
E∗

=
∑
β

CγβDβα

which shows that the duality isomorphismD is represented in these bases by the inverse of the matrix
C, Dβα(x) = Cβα(x).

We want to compute the covariant derivatives

∇E∗i eα(0) := ∇E∗∂xie
α(0).

We set
Ψα
n(x) :=

〈
eα(x),Ψn(x)

〉
∈ R, ∀n = 1, . . . , N,

and we deduce

ev∗x e
α(x) =

N∑
n=1

Ψα
n(x)Ψ∗n, ∂xi

(
ev∗x e

α(x)
)

=

N∑
n=1

∂xiΨ
α
n(x)Ψ∗n.

We denote by Px the orthogonal projection U∗ → E∗x. Then

∇E∗i eα(x) = Px∂i

(
ev∗x e

α(x)
)

= Dx

(∑
n

∂iΨ
α
n(x)Ψn(x)

)

= Dx

∑
n,β

∂iΨ
α
n(x)Ψβ

n(x)eβ(x)

 =
∑
n,β,γ

∂iΨ
α
n(x)Ψβ

n(x)Cγβ(x)eγ(x)

=
∑
γ

∑
n

∑
β

∂iΨ
α
n(x)Ψβ

n(x)Cγβ(x)


︸ ︷︷ ︸

=:Γα
γ|i(x)

eγ(x).
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For every x,y ∈ O, we denote by (xi) the coordinates of x, by (yi) the coordinates of y, and we set

Cx,y :=
N∑
n=1

Ψn(x)⊗Ψn(y) ∈ Ex ⊗ Ey,

Cαβ(x, y) :=
N∑
n=1

〈
eα(x),Ψn(x)

〉〈
eβ(y),Ψn(y)

〉
.

(3.3)

One should think of Cx,y as a covariance kernel defined by the random section u ∈ U because it
captures the correlations between the values of u at x and y. We deduce that∑

n

∂iΨ
α
n(x)Ψβ

n(x) = ∂xiC
αβ(x, y)|x=y.

Hence
∇E∗i eα(x) =

∑
γ

Γαγ|i(x)eγ(x), Γαγ|i(x) =
∑
β

∂xiC
αβ(x, y)|x=yCγβ(x). (3.4)

By duality we deduce
∇Ei eα(x) = −

∑
β

Γβα|i(x)eβ(x). (3.5)

We denote by Γi(x) the endomorphism of Ex given by

eα(x) 7→
∑
β

Γβα|i(x)eβ(x).

From (3.4) and the symmetry of the bilinear form C(x) we deduce that

Γi(x) = ∂xiC(x, y)|x=y · (C(x)T )−1 = ∂xiC(x, y)|x=y · C(x)−1. (3.6)

We set
Γ =

∑
i

dxiΓi = dxC(x, y)|x=yC(x)−1

The operator valued 1-form −Γ describes the connection∇E in the local frame (eα(x)),

∇E = d− Γ.

The curvature is then

FE = −dΓ + Γ ∧ Γ = −
∑
i,j

(∂xiΓj − ∂xjΓi)dxi ∧ dxj +
∑
i<j

[Γi,Γj ]dx
i ∧ dxi. (3.7)

Concretely
∂xiΓ

α
γ|j = ∂xi

∑
n

∑
β

∂xjΨ
α
n(x)Ψβ

n(x)Cγβ(x)

=
∑
n

∑
β

∂2
xixjΨ

α
n(x)Ψβ

n(x)Cγβ(x) +
∑
n

+
∑
β

∂xjΨ
α
n(x)∂xiΨ

β
n(x)Cγβ(x)

∑
n

∑
β

∂xjΨ
α
n(x)Ψβ

n(x)∂xiCγβ(x).

We deduce
∂xiΓj = ∂2

xixjC(x, y)|x=yC(x)−1 + ∂2
xjyiC(x, y)|x=yC(x)−1

+
(
∂xjC(x, y)|x=y

)
· ∂xi

(
C(x)−1

)
.

(3.8)
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Suppose that E came equipped with another metric σ0(−,−) and connection∇0 compatible with
this metric. Then

∇E = ∇0 +A = ∇0 +
∑

dxi ∧Ai,

where A is a globally defined operator valued 1-form, A ∈ Ω1
(

End(E) ).
If we choose the local frame frame (eα(x)) on O to be orthonormal with respect to the metric σ0,

and ∇0eα|x=0 = 0, then

∂i ev
∗
x e

α(x)|x=0 =
N∑
n=1

∂iσ0

(
Ψn(0), eα(0)

)
Ψn =

N∑
n=1

σ0

(
∇0
iΨn(0), eα(0)

)
Ψn.

It follows that

∇iE∗eα(0) =
∑
γ

∑
n

∑
β

(∇0
iΨn)α(0)Ψβ

n(0)Cγβ(0, 0)


︸ ︷︷ ︸

=:Aα
γ|i(0)

eγ(0), (3.9)

where
(∇0Ψn)α(x) := 〈eα(x),∇0

iΨn(x)〉.
We deduce

∇Ei eγ(0) = −
∑
α

Aαγ|i(0)dx. (3.10)

We denote by (Ai(x)) the endomorphism of Ex given by the matrix (−Aαγ|i)1≤α,γ≤r.
We can rewrite this in an invariant way as follows. Consider the natural projections

M
p+←M ×M p−→M, p±(x+,x−) = x±,

and the bundle
E � E := p∗+E ⊗ p∗−E.

Then C(x+,x−) is a global section of E � E. Its restriction to the diagonal can be identified with
the section C(x) of the bundle E ⊗ E over M . We deduce

A(x) =
∑
i

Ai(x)dxi = −
∑
i

∇0
xiC(x, y)x=y · C(x)−1. (3.11)

Indeed, both sides of the above equality are globally defined End(E)-valued 1-forms on M . It
therefore suffices to verify (3.11) at an arbitrary point x0 in some local coordinates near x0 and some
local trivialization of E. We have done this already in (3.10).

We denote by F 0 the curvature of∇0 and by FE the curvature of∇E . Then

F 0 =
∑
i<j

F 0
ijdx

i ∧ dxj , FE =
∑
i<j

FEij dx
i ∧ dxj ,

and
FEij = F 0

ij +∇0
xiAj −∇

0
xjAi + [Ai, Aj ]. (3.12)

Observe that

∇0
xiAj = −

(
∇0
xi∇

0
xjC(x, y)|x=y +∇0

yi∇
0
xjC(x, y)|x=y

)
︸ ︷︷ ︸

=:Tij(x)

·C(x)−1

−∇0
xjC(x, y)|x=y · ∇0

xi

(
C(x)−1

)
,

(3.13a)

∇0
xi

(
C(x)−1

)
= −C−1

x

(
∇0
xiC(x)

)
C−1
x , (3.13b)
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∇0
xiC(x) = ∇0

xiC(x, y)|x=y +∇0
yiC(x, y)|x=y. (3.13c)

3.3. Probabilistic reconstruction of the geometry of a vector bundle. Suppose that we are given
a smooth rank r real vector bundle E → M over the smooth compact manifold M . We fix a metric
σ0 on E and a connection ∇0 on E compatible with σ0. We want to construct a family of sample
spaces (U ε,γε) ⊂ C∞(E) with associated special (metric, connection)-pair (σε,∇ε) satisfying the
conditions (1.14a,1.14b,1.14d). We use a spectral geometry approach.

We fix a Riemann metric g on M with volume density |dVg|. We can form the covariant Laplacian

∆0 =
(
∇0
)∗∇0 : C∞(E)→ C∞(E).

This is a symmetric, nonnegative definite second order elliptic operator whose principal symbol is
scalar

σ(∆0)(x, ξ) = |ξ|2g1Ex , ∀x ∈M, ξ ∈ T ∗xM.

Let
spec(∆0) = λ1 ≤ λ2 ≤ · · · ,

where in the above sequence each eigenvalue appears as many times as its multiplicity. We fix an
orthonormal eigenbasis (Ψn)n≥1 of L2(E)

∆0Ψn = λnΨn, ∀n.
Now fix an even, smooth, compactly supported function w : R→ [0,∞). Assume that w(0) 6= 0.

For each ε > 0 we have a smoothing selfadjoint operator

Wε = w
(
ε
√

∆0

)
: L2(E)→ L2(E).

Define
U ε := Range (Wε) = span

{
Ψn; w(ε

√
λn) 6= 0

}
⊂ C∞(E).

Note thatU ε is a finite dimensional invariant subspace ofWε. The restriction ofWε toU ε is invertible
and selfadjoint with respect to the L2-inner product on U ε. As such, it defines a nondegenerate
Gaussian measure γε on U ε following the prescription (3.2)

γε(du) =
1√

det 2πWε
e−

1
2

(W−1
ε u,u)L2 |du|L2 ,

where (−,−)L2 denotes the L2-inner product on U ε and |du|L2 denotes the associated Lebesgue
measure on U ε. We set

κ(w) :=

(∫ ∞
0

w(t)tm−1dt

)
vol (Sm−1) (3.14)

We denote generically by L1,p the Sobolev spaces norms of Lp-functions with first order derivatives
in Lp.

Theorem 3.1. Denote by (σε,∇ε) the special (metric, connection)-pair determined on E by the
sample space (U ε, γε) constructed as above. For each ε ≥ 0 we denote by F ε the curvature of ∇ε.
Then for each p ∈ (1,∞) there exists a positive constant K = K(p) such that the following hold

‖εmσε − κ(w)σ0‖C0 + ‖∇ε −∇0‖L1,p + ‖F ε − F 0‖C0 ≤ K(p)ε as ε↘ 0.

Proof. Consider the covariance form Cε(x,y) ∈ C∞(E�E) determined as in Subsection 3.2 by the
inner product on U ε defined by the Gaussian measure γε. If we identify E with E∗ using the metric
σ0 we can view Cε as a section of E � E∗. As such, it coincides with the Schwartz kernel of Wε.

The next result contains the key estimates responsible for the conclusions in Theorem 3.1. We
defer its very technical proof to the next subsection.
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Lemma 3.2. Let ρ denote the injectivity radius of (M, g). Fix a point x0 ∈ M and normal coordi-
nates (xi) on the open geodesic ball Bρ(x0) centered at x0. Fix a trivialization of E over Bρ(x0)
obtained by∇0-parallel transport along the geodesic rays starting at x0. Then the following hold.
(a) There exist constants K, ε0 > 0 such that

|Cε(x, x)− κ(w)ε−m1Ex | ≤ Kε2−m, ∀ε < ε0, ∀x ∈ Bρ/2(x0). (3.15)

(b) For 1 ≤ i ≤ m the limits

lim
ε→0

εm∇0
xiCε(x, y)x=y, lim

ε→0
εm∇0

yiCε(x, y)x=y (3.16)

exist uniformly in x ∈ Bρ/2(x0) and the rate of convergence in C0
(
Bρ/2(x0)

)
is O(ε). Moreover

lim
ε→0

εm∇0
xiCε(x, y)x=y=x0 = 0. (3.17)

(c) For 1 ≤ i 6= j ≤ m the limits

lim
ε→0

εm∇0
xixjCε(x, y)x=y, lim

ε→0
εm∇0

yi∇
0
yjCε(x, y)x=y lim

ε→0
εm∇0

xi∇
0
yjCε(x, y)x=y (3.18)

exist uniformly in x ∈ Bρ/2(x0) and the rate of convergence in C0
(
Bρ/2(x0)

)
is O(ε).

(d) For 1 ≤ i ≤ m the limit

lim
ε→0

εm
(
∇0
xi∇

0
xiCε(x, y)x=y +∇0

yi∇
0
xiCε(x, y)x=y

)
(3.19)

exists uniformly in x ∈ Bρ/2(x0) and the rate of convergence in C0
(
Bρ/2(x0)

)
is O(ε). ut

Assuming the validity of Lemma 3.2 we proceed as follows. Fix x0 ∈ M and normal coordinates
in Bρ(x0) centered at x0. For simplicity we write κ instead of κ(w). We deduce from (3.15) that

‖εmσε − κσ0‖C0 = O(ε2) as ε→ 0.

In the sequel the Landau symbol O refers to the C0-norm on Bρ/2(x0). Note also that (3.15) implies
that

Cε(x)−1 = εm
(
κ−1

1Ex +O(ε2)
)
. (3.20)

If we write Aε := ∇ε −∇0, then we deduce from (3.11) and (3.16) that

Aεi (x) = −∇0
xiCε(x, y)x=y · Cε(x)−1 = −εm∇0

xiCε(x, y)x=y

(
κ−1

1Ex +O(ε2)
)

has a limit as ε→ 0 uniform in x ∈ Bρ/2(x0). We set

Āi(x) := lim
ε→0

Aεi (x). (3.21)

Moreover (3.17) implies
Āi(x0) = 0. (3.22)

We have ∥∥Āi −Aεi∥∥C0(Bρ/2(x0))
= O(ε). (3.23)

Using (3.12) we deduce that along Bρ(x0) and for i 6= j we have

F εij − F 0
ij = ∇0

xiA
ε
j −∇0

xjA
ε
i + [Aεi , A

ε
j ].

From (3.23) we deduce ∥∥ [Aεi , A
ε
j ]− [Āi, Āj ]

∥∥
C0(Bρ/2(x0))

= O(ε). (3.24)
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To estimate∇0
xi
Aεj(x) we use (3.13a) and we have

∇0
xiA

ε
j(x) = −T εij(x)Cε(x)−1 −∇0

xjCε(x, y)x=y · ∇0
xi

(
Cε(x)−1

)
,

T εij(x) = ∇0
xi∇

0
xjCε(x, y)x=y +∇0

yi∇
0
xjCε(x, y)x=y.

The estimate (3.21) and Lemma 3.2(b) imply that

lim
ε→0

T εij(x)Cε(x)−1

exists uniformly in x ∈ Bρ/2(x0) and the rate of convergence in C0
(
Bρ/2(x0)

)
is O(ε). Using

(3.13b), (3.13c) and (3.21) we deduce that

lim
ε→0
∇0
xjCε(x, y)x=y · ∇0

xi

(
Cε(x)−1

)
exists uniformly in x ∈ Bρ/2(x0),

and the rate of convergence in C0
(
Bρ/2(x0)

)
is O(ε). We conclude that

F̄ij(x) := lim
ε→0

F εij(x) exists uniformly in x ∈ Bρ/2(x0), (3.25)

and ∥∥F̄ij − F εij∥∥C0(Bρ/2(x0))
= O(ε). (3.26)

Observe now that
∇0
xiA

ε
i (x) = −

(
∇0
xi∇

0
xiCε(x, y)x=y +∇0

xi∇
0
xiCε(x, y)x=y

)
· C(x)−1

−∇0
xiCε(x, y)x=y · ∇0

xi

(
C(x)−1

)
.

Lemma 3.2(c) together with (3.21) imply that the limit

lim
ε→0

(
∇0
xi∇

0
xiCε(x, y)x=y +∇0

xi∇
0
xiCε(x, y)x=y

)
· C(x)−1

exists uniformly for x ∈ Bρ/2(x0) and the rate of convergence in C0
(
Bρ/2(x0)

)
is O(ε). Finally

(3.16) and (3.23) imply that∥∥∇0
xiCε(x, y)x=y · ∇0

xi

(
C(x)−1

)∥∥
C0(Bρ/2(x0))

= O(ε).

Hence
lim
ε→0
∇0
xiA

ε
i (x) exists uniformly in x ∈ Bρ/2(x0), (3.27)

and the rate of convergence in C0
(
Bρ/2(x0)

)
is O(ε).

The connection∇0 defines a first order elliptic (Hodge) operator

H : Ω•
(

End(E)
)
→ Ω•

(
End(E)

)
, H = d∇

0
+
(
d∇

0
)∗
.

Since Aε(x) converges uniformly on Bρ/2(x) as ε → 0, we deduce from (3.25) and (3.27) that
HAε(x) converges uniformly on Bρ/2(x) as ε→ 0.

Invoking elliptic Lp-estimates we deduce that for any p ∈ (1,∞) there exists a constant C > 0
such that for any ε1, ε2 > 0 we have

‖Aε1 −Aε2‖L1,p(Bρ/4(x0) ) ≤ C
(
‖Aε1 −Aε2‖Lp(Bρ/2(x0) ) + ‖HAε1 −HAε2‖Lp(Bρ/2(x0) )

)
.

The right-hand side of the above inequality goes to 0 as ε1, ε2 → 0 so

lim
ε1,ε2→0

‖Aε1 −Aε2‖L1,p(Bρ/4(x0)) = 0.

This proves that as ε → 0 the 1-forms Aε(x) converge in the L1,p-norm on Bρ/4(x0). Since these
forms converge uniformly to Ā on this ball we deduce that

lim
ε→0
‖Aε − Ā‖L1,p(Bρ/4(x0) ) = 0.
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Since M is compact we conclude that exists a globally defined End(E)-valued 1-form

Ā ∈ L1,p
(
T ∗M ⊗ End(E)

)
such that

lim
ε→0
‖Aε − Ā‖L1,p(M) = 0, ∀p ∈ (1,∞).

Moreover the equality (3.17) shows that Ā(x0) = 0. Since the point x0 was arbitrary we deduce
Ā = 0. In turn, this implies that F ε = F 0 + d∇

0
Aε converges in Lp(M) to F 0. From (3.25) we

deduce that this convergence is in fact uniform. This proves Theorem 3.1 assuming the validity of
Lemma 3.2. ut

3.4. Proof of Lemma 3.2. We rely on the techniques pioneered by L. Hörmander [19] to describe
asymptotic estimates for the Schwartz kernel of Wε as ε → 0. We follow closely the presentation in
[33, XII.2]. We allow w to be an arbitrary even Schwartz function w ∈ S(R). We denote by Cwε the
Schwartz kernel of w(ε

√
∆0).

Fix a point x0 ∈ M and normal coordinates (xi) on Bρ(x0). We fix a local orthonormal frame
(eα) of E over this ball which is∇0-synchronous of x0, i.e.,

∇0eα(x0) = 0, ∀α. (3.28)

We will describe another integral kernel Kw
ε (x, y) ∈ Hom(Ey ⊗ C, Ex ⊗ C), defined for x, y ∈

Bρ(x0), |x− y| sufficiently small, such that

Cw(x, y) = Kw
ε (x, y) +O(ε∞),

i.e.,
‖Cwε (x, y)−Kw

ε (x, y)‖Ck = O(εN ) as ε→ 0, ∀k,N ∈ Z>0,

where the Ck-norm above refers to the Ck-norms of functions defined in a neighborhood of the
diagonal in M ×M .

Fix a smooth a : R→ R such that

a(t) =

{
0, |t| < 1,

1, |t| > 2.

For x ∈ Bρ(x0) and ξ ∈ Rm we denote by |ξ|x the length of ξ as an element of T ∗xM . The
approximate kernel Kw

ε (x, y) has the form [33, Chap. XII, (2.2)]

Kw
ε (x, y) =

∫
Rm

qε(x, ξ)e
i(x−y,ξ)dξ, (3.29)

where for any positive integer ν we have

qε(x, ξ) = a(|ξ|x)w(|ξ|x)c0(x, ξ) + a(|ξ|x)

2ν∑
j=1

εjw(j)
(
ε|ξ|x

)
cj(x, ξ) +Rεν(ε, x, ξ), (3.30)

and, for every ε > 0, the remainder Rεν(x, ξ) is a classical symbol of order ≤ −ν − 1 and the family
(Rεν(x, ξ))ε∈(0,1) is bounded in the space of such symbols.

Moreover, c0(x, ξ) = 1Ex , each of the terms cj(x, ξ) is independent of w, and it has an asymptotic
expansion as ξ →∞

cj(x, ξ) ∼
∑

k≤bj/2c

cjk(x, ξ),

where cjk(x, ξ) is homogeneous of order k in ξ.
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Sublemma 3.3. Suppose that φ ∈ S(R) and

c : Bρ(x0)× (Rm \ 0)→ End(E0 ⊗ C), (x, ξ) 7→ c(x, ξ),

is a smooth function homogeneous of order k ∈ Z . We set

Lε[φ, c(x)] :=

∫
Rm

a(|ξ|x)φ(ε|ξ|x)c(x, ξ)dξ, (3.31)

ĉ(x) =

∫
|ξ|x=1

c(x, ξ)dξ.

Then the following hold.
(i) If k ≤ −m− 1, then ∣∣Lε[φ, c(x)]

∣∣ = O
(
‖φ‖C0

)
.

(ii) If k = −m, then there exist temperate distributions

Tj,m : S(R)→ R, j = −1, 0, 2, . . . ,

such that as ε→ 0 we have the asymptotic expansion

Lε[φ, c(x)] ∼ ĉ(x)

(log ε)T−1,m(φ) +
∞∑
j=0

εjTj,m(φ)

 .

Moreover,
T−1,m(φ) = φ(0).

(iii) If k > −m, then there exist temperate distributions

Tj,k : S(R)→ R, j = 0, 1, . . . ,

such that as ε→ 0 we have an asymptotic expansion

Lε[φ, c(x)] ∼ ε−m−k ĉ(x)

∞∑
j=0

εjTj,m(φ).

Moreover

T0,k(φ) =

(∫ ∞
0

φ(s)sk+m−1ds

)
.

Proof. Part (i) is obvious because a(|ξ|x)c(x, ξ) in integrable in ξ over Rm if the order k of c is
< −m. Assume that k ≥ −m. We set

ĉ(x) :=

∫
|ξ|x=1

c(x, ξ)dξ.

We have

Lε[φ, c(x)] =

∫ ∞
0

(∫
|ξx|=1

c(x, tξx)dξx

)
a0(t)φε(t)tm−1dt.

=

(∫ ∞
0

a0(t)φ(εt)tk+m−1dt

)
ĉ(x) = ε−k−m

(∫ ∞
0

a0(s/ε)φ(s)sk+m−1ds

)
ĉ(x).

The last 1-dimensional integral has a complete asymptotic expansion as ε → 0 described explicitly
in [4, Eq.(4.4.22)]. Sublemma 3.3 follows by unraveling the details of this asymptotic expansion. ut
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Fix two multi-indices α, β ∈ Zm≥0 such that |α|+ |β| ≤ 2. Using (3.29) we deduce that

∂αx ∂
β
yK

w
ε (x, y)|x=y = (−1)|β|i|α|+|β|ξαξβ

∫
Rm

q(x, ξ) +

∫
Rm

q1(x, ξ)dξ

where
q1(x, ξ) = ∂αx ∂

β
y

(
q(x, ξ)ei(x−y,ξ)

)
x=y
− q(x, ξ)

(
∂αx ∂

β
y e
i(x−y,ξ)

)
x=y

.

=
∑

0≤γ<α
Zα,β,γξ

γξβ∂α−γx qε(x, y, ξ)dξ,

and Zα,β,γ are certain universal complex constants. Using (3.30) with ν = m+ 2 and Sublemma 3.3
we deduce that there exist universal temperate distributions

Sjα,β : S(R)→ C, j = 0, 1, 2,

and endomorphisms
Kj

α,β(x) : Ex → Ex, j = 0, 1, 2,

depending smoothly on x but independent of w such that

εm∂αx ∂
β
yK

w
ε (x, y)|x=y = ε−|α|−|β|

 2∑
j=0

εjSjα,β(w)Kj
α,β(x) +O(ε3)

 . (3.32)

Moreover, since c0(x, ξ) = 1Ex we deduce

S0
α,β(w) =

∫ ∞
0

w(t)tm+|α|+|β|−1dt,

K0
α,β(x) = (−1)|β|i|α|+|β|

(∫
|ξ|=1

ξαξβ

)
1Ex .

(3.33)

For any Schwartz function w ∈ S(R) and any λ > 0 we set

wλ(x) = w(λx).

Observe that wλ(ε
√

∆0) = w(λε
√

∆0) so that, for fixed λ > 0, we have

Kwλ
ε = Kw

λε +O(ε∞).

Using this in (3.32) we deduce that for |α|+ |β| ≤ 2 and j = 0, 1, 2 we have

Sjα,β(wλ) = λ−m−|α|−|β|+jSjα,β(w). (3.34)

Sublemma 3.4. (a) Let |α|+ |β| ∈ {0, 2}. If φ ∈ S(R) is even, then

S1
α,β(φ)K1

α,β(x) = 0, ∀x ∈ Bρ/2(x0). (3.35)

(b) If φ ∈ S(R) is even, then
lim
ε→

εm∇0
xiK

φ
ε (x, y)|x=y=x0 = 0. (3.36)

Proof. Denote by S+(R) the space of even Schwartz functions on R and by Xα,β the subspace of
of S+(R) consisting of functions φ satisfying (3.35). Clearly Xα,β is a closed subspace of S+ so it
suffices to prove that Xα,β is dense in S+(R) with respect to the natural locally convex topology of
S(R). The family γλ(s) = e−λ

2s2 spans a vector space dense in S+(R); see [34, Chap. 8, Lemma
2.3]. Thus, it suffices to show that γλ ∈ Xα,β for any λ > 0. In view of the homogeneity condition
(3.34) we see that

γ1 ∈ Xα,β ⇐⇒ γλ ∈ Xα,β, ∀λ > 0.



30 LIVIU I. NICOLAESCU AND NIKHIL SAVALE

For t > 0 we denote by Ht the heat kernel, i.e., the Schwartz kernel of e−t∆0 . Note that Hε2 is the
the Schwartz kernel of γ1(ε

√
∆0).

The heat kernelHt(x, y) has a rather well understood structure. We denote by d(x, y) the geodesic
distance between x, y ∈ Bρ/2(x0) with respect to the metric g on M . For x, y in a neighborhood of
the diagonal we have an asymptotic expansion as t↘ 0 (see [29, Thm. 7.15])

Ht(x, y) = ht(x, y)

∞∑
ν=0

tνΘν(x, y)︸ ︷︷ ︸
=:Θt(x,y)

, ν ∈ Z≥0, (3.37)

where Θk(x, y) ∈ Hom(Ey, Ex) and

ht(x, y) = t−
m
2 e−

d(x,y)2

4t .

The asymptotic expansion (3.37) is differentiable with respect to all the variables t, x, y. Hence

εmHε2(x, y) ∼ e−uε
∞∑
ν=0

ε2νΘν(x, y), (3.38)

where uε := d(x,y)2

4ε2
. When x = y we have uε = 0 and thus

εmHε2(x, x) ∼
∞∑
ν=0

ε2νΘν(x, x).

This proves (3.35) in the case α = β = 0 for the test function γ1 since the expansion in the right-hand
side above involves only even powers of ε.

Differentiating (3.38) we deduce

εm∇0
xiHε2(x, y) ∼ −(∂xiuε)e

−uε
∞∑
ν=0

ε2νΘν(x, y) + e−uε
∞∑
ν=0

ε2ν∇0
xiΘν(x, y). (3.39)

To compute εm∇0
xj
∇0
xi
Hε2(x, y) when x = y we will take into account that ∂xiuε = 0 when x = y.

We deduce

εm∇0
xj∇

0
xiHε2(x, y)x=y ∼

1

4ε2
∂2
xjxid(x, y)2|x=y

∞∑
ν=0

ε2νΘν(x, x)

+

∞∑
ν=0

ε2ν∇0
xj∇

0
xiΘν(x, y)x=y.

(3.40)

This proves that εm+2∇0
xj
∇0
xi
Hε2(x, y)x=y has an asymptotic expansion in even, nonnegative powers

of ε. Arguing in a similar fashion we deduce that the kernels

εm+2∇0
yj∇

0
yiHε2(x, y)x=y, εm+2∇0

yj∇
0
xiHε2(x, y)x=y

also have asymptotic expansions in even, nonnegative powers of ε. We conclude that γ1 ∈ Xα,β if
|α|+ |β| = 2.

Let us observe that (3.39) implies

εm∇0
xiHε2(x, y)|x=y ∼

∞∑
ν=0

ε2ν∇0
xiΘν(x, y)x=y.

We deduce that
lim
ε→0

εm∇0
xiHε2(x, y)|x=y = ∇0

xiΘ0(x, y)|x=y.



GAUSS-BONNET-CHERN THEOREM 31

From the transport equations [29, Eq.(7.17)] we deduce that, in normal coordinates at x0, and under
the synchronicity condition (3.28), we have

∇0
xiΘ0(x, y)|x=y=x0 = 0.

This proves (3.36) for φ = γ1 and thus for any even Schwartz function φ. ut

We can now complete the proof of Lemma 3.2. Using (3.32) and (3.33) with α = β = 0 and
Sublemma 3.4(a) we deduce that

εmCε(x, x) = κ(w)1Ex +O(ε2),

where we recall that

κ(w) =

(∫ ∞
0

w(t)tm−1dt

)
vol (Sm−1).

For 1 ≤ i ≤ m we set
αi = (δi1, . . . , δim) ∈ Zm≥0,

where δij is Kronecker’s delta. From (3.33) we deduce that

K0
αj ,0 = −K0

0,αj = i

(∫
|ξ|=1

ξj

)
1Ex = 0.

Thus
εm∇0

xiCε(x, y)x=y = S1
αi,0(w)K1

αi,0 +O(ε),

εm∇0
yiCε(x, y)x=y = S1

αi,0(w)K1
0,αi +O(ε).

These estimates prove (3.16). The equality (3.17) follows from (3.36).
From (3.33) we deduce that for 1 ≤ i 6= j ≤ m

K0
αi+αj ,0(x) = −K0

αi,αj (x) = i

(∫
|ξ|=1

ξiξj

)
1Ex = 0,

and invoking (3.35) we conclude that

εm∇0
xi∇

0
xjCε(x, y)x=y = S2

αi+αj ,0(w)K2
αi+αj ,0(x) +O(ε),

εm∇0
xi∇

0
yjCε(x, y)x=y = S2

αi,αj (w)K2
αi,αj (x) +O(ε),

εm∇0
yi∇

0
yjCε(x, y)x=y = S2

0,αi+αj (w)K2
0,αi+αj (x) +O(ε).

These estimates prove (3.18). Note that Sublemma 3.4 implies that

εm
(
∇0
xi∇

0
xiCε(x, y)x=y +∇0

yi∇
0
xiCε(x, y)x=y

)
= ε−2

(
S0

2αi,0(w)K0
2αi,0(x) + S0

αi,αi(w)K0
0,2αi(x)

)
+
(
S2

2αi,0(w)K2
2αi,0(x) + S2

αi,αi(w)K2
αi,αi(x)

)
+O(ε).

The equalities (3.33) imply that

S0
2αi,0(w)K0

2αi,0(x) + S0
αi,αi(w)K0

αi,αi(x) = 0.

This proves (3.19) and completes the proof of Lemma 3.2. ut
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