Modular-invariance in rational conformal field theory: past, present and future: Lecture 1

Geoffrey Mason

March 2015

Overview

Lecture 1.

- vertex algebras - definition
- locality, quantum fields
- existence theorem
- vertex operator algebras - definition
- partition functions
- example: Virasoro VOAs
- example: Heisenberg VOA
- example: Moonshine module VOA
- example: lattice VOAs
- representations of VOAs
- rational VOAs
- examples of rational VOAs
- the modular-invariance conjecture
- C_{2}-cofinite and regular VOAs
- the associated vector-valued modular form
- holomorphic VOAs
- approach using MTCs
- approach using vector-valued modular forms
- unbounded denominators and ASD conjecture

Vertex algebras

Definition A vertex algebra V is a \mathbb{C}-linear space equipped with a countable infinity of \mathbb{C}-bilinear products

$$
V \otimes V \rightarrow V,(u, v) \mapsto u(n) v \quad(n \in \mathbb{Z})
$$

and a distinguished vacuum element 1 satisfying some axioms as follows:
$\forall u, v, w \in V, \forall r, s, t \in \mathbb{Z}:$

- $u(n) v=0$ for $n \geq n_{0}(u, v)$
- $u(-1) \mathbf{1}=u, u(n) \mathbf{1}=0$ for $n \geq 0$

$$
\begin{aligned}
& \bullet \sum_{i \geq 0}\binom{r}{i}(u(t+i) v)(r+s-i) w= \\
& \sum_{i \geq 0}(-1)^{i}\binom{t}{i}\{u(r+t-i) v(s+i) w- \\
& \left.\quad(-1)^{t} v(s+t-i) u(r+i) w\right\}
\end{aligned}
$$

The first identity ensures that these sums are finite.
These products are generally neither commutative or associative.

Commutative rings are VAs

Let A be a commutative, associative \mathbb{C}-algebra with identity 1 . For $a, b \in A$, let

$$
a(-1) b:=a b, \quad a(n) b:=0 \quad(n \neq-1)
$$

Then A is a vertex algebra with vacuum element 1 .
Vertex algebras are the objects of a category Valg in which a morphism $U \rightarrow V$ is a \mathbb{C}-linear map preserving vacuum vectors and all products. The last example gives us an inclusion of categories

$$
\text { Alg } \hookrightarrow \text { Valg }
$$

Valg is in some ways a natural extension of the category $\mathbf{A l g}$ of \mathbb{C}-algebras.

Locality and quantum fields

We will recouch the basic identity (the Jacobi identity, or JI) in terms of vertex operators, or quantum fields.

For fixed $u \in V$ and $n \in \mathbb{Z}$ we consider

$$
u(n): V \rightarrow V, \quad v \mapsto u(n) v \quad(v \in V)
$$

as a \mathbb{C}-linear operator acting on the left of V.
The vertex operator defined by u is the formal generating function

$$
Y(u, z):=\sum_{n \in \mathbb{Z}} u(n) z^{-n-1} \in \operatorname{End}(V)\left[\left[z, z^{-1}\right]\right]
$$

We write

$$
Y(u, z) v:=\sum_{n \in \mathbb{Z}} u(n) v z^{-n-1} \in V[[z]]\left[z, z^{-1}\right]
$$

State-field correspondence

The space of fields on V is

$$
\mathfrak{F}(V):=
$$

$$
\left\{\sum_{n} a_{n} z^{-n-1} \in \operatorname{End}(V)\left[\left[z, z^{-1}\right]\right] \mid a_{n}(v)=0 \forall n \geq n_{0}(v)\right\}
$$

Y becomes the state-field correspondence

$$
\begin{aligned}
Y: V & \longrightarrow \mathfrak{F}(V) \\
u & \longmapsto Y(u, z)
\end{aligned}
$$

Creative fields

Y is an injection because

$$
\begin{aligned}
Y(u, z) \mathbf{1} & =u(-1) \mathbf{1}+u(-2) \mathbf{1} z+\ldots \\
& =u+(\text { higher powers of } z)
\end{aligned}
$$

We say that $Y(u, z)$ is creative and creates the state u from the vacuum.

Locality

Let $t \geq 0$ be large enough so that $u(t+i) v=0$ for all $i \geq 0$. J says

$$
\begin{aligned}
& \sum_{i \geq 0}(-1)^{i}\binom{t}{i}\{u(r+t-i) v(s+i) w- \\
& \left.(-1)^{t} v(s+t-i) u(r+i) w\right\}=0
\end{aligned}
$$

Now notice that

$$
\begin{aligned}
& \left(z_{1}-z_{2}\right)^{t} Y\left(u, z_{1}\right) Y\left(v, z_{2}\right) \\
= & \sum_{i \geq 0}(-1)^{i}\binom{t}{i} z_{1}^{t-i} z_{2}^{i} \sum_{m, n} u(m) v(n) z_{1}^{-m-1} z_{2}^{-n-1} \\
= & \sum_{r, s}\left\{\sum_{i \geq 0}(-1)^{i}\binom{t}{i} u(r+t-i) v(s+i)\right\} z_{1}^{-r-1} z_{2}^{-s-1}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \left(z_{1}-z_{2}\right)^{t} Y\left(v, z_{2}\right) Y\left(u, z_{1}\right) \\
= & (-1)^{t} \sum_{r, s}\left\{\sum_{i \geq 0}(-1)^{i}\binom{t}{i} v(s+t-i) u(r+i)\right\} z_{2}^{-s-1} z_{1}^{-r-1}
\end{aligned}
$$

We obtain

$$
\left(z_{1}-z_{2}\right)^{t}\left[Y\left(u, z_{1}\right), Y\left(v, z_{2}\right)\right]=0
$$

This remarkable identity is called locality.

We write this property as

$$
Y(u, z) \sim Y(v, z) \quad \text { or } \quad Y(u, z) \sim_{t} Y(v, z)
$$

and say that $Y(u, z), Y(v, z)$ are mutually local of order t.
Examples.
$Y(u, z) \sim_{0} Y(v, z) \Leftrightarrow[u(r), v(s)]=0$
$Y(u, z) \sim_{1} Y(v, z) \Leftrightarrow[u(r+1), v(s)]-[u(r), v(s+1)]=0$
$Y(u, z) \sim_{2} Y(v, z) \Leftrightarrow$
$[u(r+2), v(s)]-2[u(r+1), v(s+1)]+[u(r), v(s+2)]=0$

Translation-covariance

One more easy consequence of JI . Define a special endomorphism

$$
D: V \rightarrow V, \quad u \mapsto u(-2) \mathbf{1}
$$

Then

$$
\begin{aligned}
{[D, Y(u, z)] } & =\partial_{z} Y(u, z) \\
\text { i.e., } \quad[D, u(n)] & =-n u(n-1)
\end{aligned}
$$

This is called translation-covariance.

Existence Theorem

We have proved half of
Theorem A vertex algebra gives us a quadruple ($V, Y, \mathbf{1}, D$): a linear space V, a vacuum vector $\mathbf{1}$, a special endomorphism D, and a state-field correspondence $Y: V \rightarrow \mathfrak{F}(V)$ whose image consists of creative, translation-covariant, mutually local fields.
Conversely, given such a quadruple, the products $u(n) v$ defined by

$$
Y(u, z) v=\sum_{n} u(n) v z^{-n-1}
$$

satisfy the Jl hence define a vertex algebra structure on V.

Theorem. Let $(V, \mathbf{1}, D)$ consist of a \mathbb{C}-linear space, $\mathbf{1} \in V$, and $D \in \operatorname{End}(V)$. Suppose given a subset $U \subseteq V$ and a map

$$
U \longrightarrow \mathfrak{F}(V), u \longmapsto Y(u, z)=\sum_{n} u(n) z^{-n-1}
$$

such that the set $\{Y(u, z) \mid u \in U\}$ consists of mutually local, translation-covariant, creative fields. Assume

$$
V=\operatorname{span}\left\langle u_{1}\left(n_{1}\right) \ldots u_{n}\left(n_{k}\right) \mathbf{1} \mid u_{i} \in U, n_{i} \in \mathbb{Z}\right\rangle
$$

Then there is a unique extension of Y to a state-field correspondence $Y: V \rightarrow \mathfrak{F}(V)$ such that $(V, Y, \mathbf{1}, D)$ is a vertex algebra.
We say that U generates V.

Vertex operator algebras

A VOA is a vertex algebra V with a second distinguished element ω satisfying several special properties.

The vertex operator for $\omega \in V$ is

$$
\begin{aligned}
& Y(\omega, z):=\sum_{n \in \mathbb{Z}} L(n) z^{-n-2} \\
& L(n)=\omega(n+1)
\end{aligned}
$$

Virasoro algebra

The $L(n)$ close on the Virasoro algebra of central charge c :

$$
[L(m), L(n)]=(m-n) L(m+n)+\frac{m^{3}-m}{12} \delta_{m,-n} \text { cld }_{v}
$$

a central extension of the Witt-Zassenhaus Lie algebra in which the central element acts as on V as multiplication by c.

Translation-covariance

Note that

$$
\begin{aligned}
{[L(-1), Y(\omega, z)] } & =\sum_{n}[L(-1), L(n)] z^{-n-2} \\
& =(-1-n) L(-1+n) z^{-n-2} \\
& =\partial_{z} Y(\omega, z)
\end{aligned}
$$

We require this for all fields: $L(-1)$ is the endomorphism D.

Spectral decomposition

$L(0) \in E n d(V)$ satisfies

- semisimple
- eigenvalues in \mathbb{Z}
- finite-dimensional eigenspaces
- eigenvalues bounded below

This can be summarized in the decomposition of V into $L(0)$-eigenspaces

$$
V=\bigoplus_{n \geq n_{0}} V_{n}
$$

$$
V_{n}:=\{v \in V \mid L(0) v=n v\}, \quad \operatorname{dim} V_{n}<\infty
$$

These conditions arise from the exigencies of CFT:
ω is the stress-energy tensor, $L(0)$ the Hamiltonian, and we create bosonic particles of integral energy $\left({ }^{*}\right) n$ from the vacuum, a finite number for each n.
The VA axioms capture the idea of locality, but one gets a rich theory only for VOAs.
(Added $\left(^{*}\right)$: In the original lecture I used the term 'spin n' which is not unknown in this context - but some in the MPI audience were not happy with this.)

VOA - summary

- $(V, Y, \mathbf{1}, \omega)$
- $Y: V \longrightarrow \mathfrak{F}(V)$
$-Y(u, z) \sim Y(v, z)$
$-Y(u, z) \mathbf{1}=u+\ldots$
$-[L(-1), Y(u, z)]=\partial_{z} Y(u, z)$
- $Y(\omega, z)=\sum_{n} L(n) z^{-n-2}$
- $[L(m), L(n)]=(m-n) L(m+n)+\frac{m^{3}-m}{12} \delta_{m,-n}$ cld $_{V}$
- $V=\oplus_{n \geq n_{0}} V_{n}$

Partition function

There are a number of formal trace functions associated to a VOA. These hold the keys to the connections with elliptic modular and other kinds of automorphic forms. Recall that we have

$$
V=\oplus_{n \geq n_{0}} V_{n}
$$

The partition function of V is

$$
Z_{V}(q):=q^{-c / 24} \sum_{n \geq n_{0}} \operatorname{dim} V_{n} q^{n}
$$

Zero modes

If $u \in V_{k}$ then $u(m)$ permutes the V_{n} :

$$
u(m): V_{n} \longrightarrow V_{n+m-k-1}
$$

The zero mode of v is

$$
o(u):=u(k-1): V_{n} \longrightarrow V_{n}
$$

We set

$$
Z_{V}(u, q):=q^{-c / 24} \sum_{n} \operatorname{Tr}\left(o(u) \mid V_{n}\right) q^{n}
$$

If $u=\mathbf{1}$ this reduces to the partition function Z_{V}.

Zero mode trace map

Z_{V} defines a linear map

$$
\begin{aligned}
Z_{V}: V & \longrightarrow q^{-c / 24} \mathbb{C}[[q]] \\
u & \mapsto Z_{V}(u, q)=q^{-c / 24} \sum_{n} \operatorname{Tr}\left(o(u) \mid V_{n}\right) q^{n}
\end{aligned}
$$

A basic problem is to describe the image of this map for a given VOA V. Only partial results are known.

For 'good' VOAs, the image should consist of elliptic modular and other kinds of automorphic objects. We discuss this later.

Example 1. Virasoro VOAs

Vir is the abstract Virasoro Lie algebra

$$
[L(m), L(n)]=(m-n) L(m+n)+\frac{m^{3}-m}{12} \delta_{m,-n} K
$$

By definition, a VOA V necessarily has a field $Y(\omega, z)=\sum_{n} L(n) z^{-n-2}$ whose modes close on Vir. So V is, in particular, a Vir-module for which K acts as a scalar c, and we may look for VOAs in the category of such Vir-modules.
Verma modules will furnish us with some examples.
$\mathbb{C} 1$ is a 1 -dimensional linear space, $c \in \mathbb{C}$.

- \quad Vir $^{+}:=\oplus_{n \geq 0} \mathbb{C} L(n)+\mathbb{C} K$
- $\quad L(n) .1:=0 \quad(n \geq 0)$
- $K .1:=c 1$

This makes $\mathbb{C} 1$ into a Vir^{+}-module

- $\operatorname{Ver}_{c}:=\operatorname{Ind}_{V i r^{+}}^{V i r} \mathbb{C}$

Ver ${ }_{c}$ is a Verma module of central charge c

We define $Y(\omega, z):=\sum_{n} L(n) z^{-n-2}$, where now $L(n)$ means the action of the $L(n)$ generator of Vir on Ver $_{c}$. Then

$$
\begin{aligned}
& Y(\omega, z) \in \mathfrak{F}\left(\text { Ver }_{c}\right) \\
& Y(\omega, z) \sim_{4} Y(\omega, z) \\
& Z_{V e r_{c}}=q^{-c / 24} \prod_{n \geq 1}\left(1-q^{n}\right)^{-1}
\end{aligned}
$$

and we know translation covariance holds automatically because it is satisfied by Vir.

The only thing that fails is creativity, because

$$
Y(\omega, z) \mathbf{1}=\sum_{n} L(n) \mathbf{1} z^{-n-2}=L(-1) \mathbf{1} z^{-1}+\ldots
$$

This is resolved by modding out the Vir ideal generated by $L(-1) \mathbf{1}$. Using the Existence Theorems we obtain

Theorem. There is a Virasoro VOA V_{c} of central charge c generated by a single Virasoro field $Y(\omega, z)$. We have $V_{c}=\operatorname{Ver}_{c} / \operatorname{VirL}(-1) \mathbf{1}$ and

$$
Z_{V_{c}}(q)=\frac{1}{q^{c / 24} \prod_{n \geq 2}\left(1-q^{n}\right)}
$$

Example 2. Heisenberg VOA

The Heisenberg Lie algebra has basis $h(n)(n \in \mathbb{Z}), K$ with

$$
[h(m), h(n)]=m \delta_{m,-n} K
$$

It is easier to deal with than Vir. Proceed just as in the last case. The corresponding Verma module itself - rather than a quotient - is a VOA. One difference is that we must take central charge $c=1$, i.e., K acts on the Verma module as $I d_{V}$.

Theorem There is a Heisenberg VOA $M(1)$ of central charge 1 generated by a single field $Y(h, z)=\sum_{n} h(n) z^{-n-1}$.

$$
Z_{M(1)}(q)=\frac{1}{q^{1 / 24} \prod_{n \geq 1}\left(1-q^{n}\right)}=\eta(q)^{-1}
$$

The Virasoro vector is $\omega:=\frac{1}{2} h(-1)^{2} \mathbf{1}$.

Theorem The image of the map

$$
Z_{M(1)}: M(1) \longrightarrow q^{-1 / 24} \mathbb{C}[[q]]
$$

consists of all functions $\frac{f(q)}{\eta(q)}$ where $f(q)$ is a quasimodular form, i.e.,

$$
f \in \mathbb{C}\left[E_{2}, E_{4}, E_{6}\right]
$$

Example 3. Moonshine module

Theorem There is a VOA V^{\natural} of central charge $c=24$ whose automorphism group is the Monster sporadic simple group M, and which has partition function

$$
Z_{V^{\natural}}(q)=J(q)=q^{-1}+196884 q+\ldots
$$

equal to the absolute modular invariant (constant term 0). The image of the map

$$
Z_{V^{\natural}}: V^{\natural} \longrightarrow q^{-1} \mathbb{C}[[q]]
$$

consists of all modular forms $f(q)$ of level 1 (i.e., on $P S L_{2}(\mathbb{Z})$) that satisfy
$f(q)$ is holomorphic in the upper half-plane \mathcal{H}

$$
f(q)=a q^{-1}+b q+\ldots \quad(a, b \in \mathbb{C})
$$

Example 4. Lattice theories

Let L be an even lattice, i.e., a free abelian group of finite rank ℓ equipped with a positive-definite symmetric bilinear form $($,$) such that (\alpha, \alpha) \in 2 \mathbb{Z} \quad(\alpha \in L)$.

Theorem There is a VOA V_{L} of central charge $c=\ell$ which has partition function

$$
Z_{V_{L}}=\frac{\theta_{L}(q)}{\eta(q)^{\ell}}
$$

This is a modular function of weight 0 on a congruence subgroup of $P S L_{2}(\mathbb{Z})$.

