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Vertex algebras

Definition A vertex algebra V is a C-linear space equipped
with a countable infinity of C-bilinear products

V ⊗ V → V , (u, v) 7→ u(n)v (n ∈ Z)

and a distinguished vacuum element 1 satisfying some axioms
as follows:



∀ u, v ,w ∈ V , ∀r , s, t ∈ Z:

• u(n)v = 0 for n ≥ n0(u, v)

• u(−1)1 = u, u(n)1 = 0 for n ≥ 0

•
∑
i≥0

(
r

i

)
(u(t + i)v)(r + s − i)w =

∑
i≥0

(−1)i
(

t

i

)
{u(r + t − i)v(s + i)w−

(−1)tv(s + t − i)u(r + i)w}

The first identity ensures that these sums are finite.

These products are generally neither commutative or
associative.



Commutative rings are VAs

Let A be a commutative, associative C-algebra with identity 1.
For a, b ∈ A, let

a(−1)b := ab, a(n)b := 0 (n 6= −1).

Then A is a vertex algebra with vacuum element 1.

Vertex algebras are the objects of a category Valg in which a
morphism U → V is a C-linear map preserving vacuum vectors
and all products. The last example gives us an inclusion of
categories

Alg ↪→ Valg

Valg is in some ways a natural extension of the category Alg
of C-algebras.



Locality and quantum fields
We will recouch the basic identity (the Jacobi identity, or JI)
in terms of vertex operators, or quantum fields.

For fixed u ∈ V and n ∈ Z we consider

u(n) : V → V , v 7→ u(n)v (v ∈ V )

as a C-linear operator acting on the left of V .

The vertex operator defined by u is the formal generating
function

Y (u, z) :=
∑
n∈Z

u(n)z−n−1 ∈ End(V )[[z , z−1]]

We write

Y (u, z)v :=
∑
n∈Z

u(n)vz−n−1 ∈ V [[z ]][z , z−1]



State-field correspondence

The space of fields on V is

F(V ) :={∑
n

anz−n−1 ∈ End(V )[[z , z−1]] | an(v) = 0 ∀n ≥ n0(v)

}

Y becomes the state-field correspondence

Y : V −→ F(V )

u 7−→ Y (u, z)



Creative fields

Y is an injection because

Y (u, z)1 = u(−1)1 + u(−2)1z + ...

= u + (higher powers of z)

We say that Y (u, z) is creative and creates the state u from
the vacuum.



Locality
Let t ≥ 0 be large enough so that u(t + i)v = 0 for all i ≥ 0.
JI says ∑

i≥0

(−1)i
(

t

i

)
{u(r + t − i)v(s + i)w−

(−1)tv(s + t − i)u(r + i)w} = 0

Now notice that

(z1 − z2)tY (u, z1)Y (v , z2)

=
∑
i≥0

(−1)i
(

t

i

)
z t−i
1 z i

2

∑
m,n

u(m)v(n)z−m−11 z−n−12

=
∑
r ,s

{∑
i≥0

(−1)i
(

t

i

)
u(r + t − i)v(s + i)

}
z−r−11 z−s−12



Similarly,

(z1 − z2)tY (v , z2)Y (u, z1)

= (−1)t
∑
r ,s

{∑
i≥0

(−1)i
(

t

i

)
v(s + t − i)u(r + i)

}
z−s−12 z−r−11

We obtain

(z1 − z2)t [Y (u, z1),Y (v , z2)] = 0

This remarkable identity is called locality.



We write this property as

Y (u, z) ∼ Y (v , z) or Y (u, z) ∼t Y (v , z)

and say that Y (u, z),Y (v , z) are mutually local of order t.

Examples.

Y (u, z) ∼0 Y (v , z)⇔ [u(r), v(s)] = 0

Y (u, z) ∼1 Y (v , z)⇔ [u(r + 1), v(s)]− [u(r), v(s + 1)] = 0

Y (u, z) ∼2 Y (v , z)⇔
[u(r + 2), v(s)]− 2[u(r + 1), v(s + 1)] + [u(r), v(s + 2)] = 0



Translation-covariance

One more easy consequence of JI. Define a special
endomorphism

D : V → V , u 7→ u(−2)1

Then

[D,Y (u, z)] = ∂zY (u, z)

i.e., [D, u(n)] = −nu(n − 1)

This is called translation-covariance.



Existence Theorem

We have proved half of

Theorem A vertex algebra gives us a quadruple (V ,Y , 1,D):
a linear space V , a vacuum vector 1, a special endomorphism
D, and a state-field correspondence Y : V → F(V ) whose
image consists of creative, translation-covariant, mutually local
fields.

Conversely, given such a quadruple, the products u(n)v
defined by

Y (u, z)v =
∑
n

u(n)vz−n−1

satisfy the JI hence define a vertex algebra structure on V .



Theorem. Let (V , 1,D) consist of a C-linear space, 1 ∈ V ,
and D ∈ End(V ). Suppose given a subset U ⊆ V and a map

U −→ F(V ), u 7−→ Y (u, z) =
∑
n

u(n)z−n−1

such that the set {Y (u, z) | u ∈ U} consists of mutually local,
translation-covariant, creative fields. Assume

V = span〈u1(n1)...un(nk)1 | ui ∈ U , ni ∈ Z〉

Then there is a unique extension of Y to a state-field
correspondence Y : V → F(V ) such that (V ,Y , 1,D) is a
vertex algebra.

We say that U generates V .



Vertex operator algebras

A VOA is a vertex algebra V with a second distinguished
element ω satisfying several special properties.

The vertex operator for ω ∈ V is

Y (ω, z) :=
∑
n∈Z

L(n)z−n−2

L(n) = ω(n + 1)



Virasoro algebra

The L(n) close on the Virasoro algebra of central charge c :

[L(m), L(n)] = (m − n)L(m + n) +
m3 −m

12
δm,−ncIdV ,

a central extension of the Witt-Zassenhaus Lie algebra in
which the central element acts as on V as multiplication by c .



Translation-covariance

Note that

[L(−1),Y (ω, z)] =
∑
n

[L(−1), L(n)]z−n−2

= (−1− n)L(−1 + n)z−n−2

= ∂zY (ω, z)

We require this for all fields: L(−1) is the endomorphism D.



Spectral decomposition
L(0) ∈ End(V ) satisfies

− semisimple

− eigenvalues in Z
− finite-dimensional eigenspaces

− eigenvalues bounded below

This can be summarized in the decomposition of V into
L(0)-eigenspaces

V =
⊕

n≥n0 Vn

Vn := {v ∈ V |L(0)v = nv}, dim Vn <∞



These conditions arise from the exigencies of CFT:

ω is the stress-energy tensor, L(0) the Hamiltonian, and we
create bosonic particles of integral energy(*) n from the
vacuum, a finite number for each n.

The VA axioms capture the idea of locality, but one gets a rich
theory only for VOAs.

(Added (*): In the original lecture I used the term ‘spin n’ -
which is not unknown in this context - but some in the MPI
audience were not happy with this.)



VOA - summary

• (V ,Y , 1, ω)

• Y : V −→ F(V )

− Y (u, z) ∼ Y (v , z)

− Y (u, z)1 = u + ...

− [L(−1),Y (u, z)] = ∂zY (u, z)

• Y (ω, z) =
∑
n

L(n)z−n−2

• [L(m), L(n)] = (m − n)L(m + n) +
m3 −m

12
δm,−ncIdV

• V = ⊕n≥n0Vn



Partition function

There are a number of formal trace functions associated to a
VOA. These hold the keys to the connections with elliptic
modular and other kinds of automorphic forms. Recall that we
have

V = ⊕n≥n0Vn

The partition function of V is

ZV (q) := q−c/24
∑
n≥n0

dim Vnqn



Zero modes

If u ∈ Vk then u(m) permutes the Vn:

u(m) : Vn −→ Vn+m−k−1

The zero mode of v is

o(u) := u(k − 1) : Vn −→ Vn

We set

ZV (u, q) := q−c/24
∑
n

Tr(o(u)|Vn)qn

If u = 1 this reduces to the partition function ZV .



Zero mode trace map

ZV defines a linear map

ZV : V −→ q−c/24C[[q]]

u 7→ ZV (u, q) = q−c/24
∑
n

Tr(o(u)|Vn)qn

A basic problem is to describe the image of this map for a
given VOA V . Only partial results are known.

For ‘good’ VOAs, the image should consist of elliptic modular
and other kinds of automorphic objects. We discuss this later.



Example 1. Virasoro VOAs

Vir is the abstract Virasoro Lie algebra

[L(m), L(n)] = (m − n)L(m + n) +
m3 −m

12
δm,−nK

By definition, a VOA V necessarily has a field
Y (ω, z) =

∑
n L(n)z−n−2 whose modes close on Vir . So V is,

in particular, a Vir -module for which K acts as a scalar c , and
we may look for VOAs in the category of such Vir -modules.
Verma modules will furnish us with some examples.



C1 is a 1-dimensional linear space, c ∈ C.

• Vir+ := ⊕n≥0CL(n) + CK

• L(n).1 := 0 (n ≥ 0)

• K .1 := c1

This makes C1 into a Vir+-module

• Verc := IndVir
Vir+C1

Verc is a Verma module of central charge c



We define Y (ω, z) :=
∑

n L(n)z−n−2, where now L(n) means
the action of the L(n) generator of Vir on Verc . Then

Y (ω, z) ∈ F(Verc)

Y (ω, z) ∼4 Y (ω, z)

ZVerc = q−c/24
∏
n≥1

(1− qn)−1

and we know translation covariance holds automatically
because it is satisfied by Vir .



The only thing that fails is creativity, because

Y (ω, z)1 =
∑
n

L(n)1z−n−2 = L(−1)1z−1 + ...

This is resolved by modding out the Vir ideal generated by
L(−1)1. Using the Existence Theorems we obtain

Theorem. There is a Virasoro VOA Vc of central charge c
generated by a single Virasoro field Y (ω, z). We have
Vc = Verc/VirL(−1)1 and

ZVc (q) =
1

qc/24
∏

n≥2(1− qn)



Example 2. Heisenberg VOA

The Heisenberg Lie algebra has basis h(n) (n ∈ Z),K with

[h(m), h(n)] = mδm,−nK

It is easier to deal with than Vir . Proceed just as in the last
case. The corresponding Verma module itself - rather than a
quotient - is a VOA. One difference is that we must take
central charge c = 1, i.e., K acts on the Verma module as IdV .



Theorem There is a Heisenberg VOA M(1) of central charge
1 generated by a single field Y (h, z) =

∑
n h(n)z−n−1.

ZM(1)(q) =
1

q1/24
∏

n≥1(1− qn)
= η(q)−1

The Virasoro vector is ω := 1
2
h(−1)21.



Theorem The image of the map

ZM(1) : M(1) −→ q−1/24C[[q]]

consists of all functions f (q)
η(q)

where f (q) is a quasimodular
form, i.e.,

f ∈ C[E2,E4,E6]



Example 3. Moonshine module
Theorem There is a VOA V \ of central charge c = 24 whose
automorphism group is the Monster sporadic simple group M ,
and which has partition function

ZV \(q) = J(q) = q−1 + 196884q + ...

equal to the absolute modular invariant (constant term 0).
The image of the map

ZV \ : V \ −→ q−1C[[q]]

consists of all modular forms f (q) of level 1 (i.e., on PSL2(Z))
that satisfy

f (q) is holomorphic in the upper half-plane H
f (q) = aq−1 + bq + ... (a, b ∈ C)



Example 4. Lattice theories

Let L be an even lattice, i.e., a free abelian group of finite
rank ` equipped with a positive-definite symmetric bilinear
form ( , ) such that (α, α) ∈ 2Z (α ∈ L).

Theorem There is a VOA VL of central charge c = ` which
has partition function

ZVL
=
θL(q)

η(q)`
,

This is a modular function of weight 0 on a congruence
subgroup of PSL2(Z).




