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The Golden Ratio

Remark
@ The golden ratio is the algebraic number

1++/5
2

¢ = ~ 1.618033989. ...

@ [t is an algebraic integral unit. /t is a root of

x2—x—-1=0.

o We have that




Framework of Rogers-Ramanujan identities: Lecture 2
History

A deeper generalization?



Framework of Rogers-Ramanujan identities: Lecture 2
History

A deeper generalization?

Question
Define the g-continued fraction

R(q) := T —




Framework of Rogers-Ramanujan identities: Lecture 2
History

A deeper generalization?

Question
Define the g-continued fraction

1
R ——
14+ —9_
+ ” q23

Lo

Is the evaluation R(1) = 1/¢ a special case of a theory of units?

v
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Ramanujan’s first letter to Hardy
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Rogers and Ramanujan

Theorem (Rogers-Ramanujan)
We have that

R(q) _ 1 _ ee (1 _ q5n+1)(1 _ q5n+4)
14+ #2 i (1 _ q5n+2)(1 _ q5n+3)'
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Rogers and Ramanujan

Theorem (Rogers-Ramanujan)
We have that

1 co (1 _ q5n+1)(1 _ q5n+4)
P Y G (Ceri)
. =

Theorem (Berndt-Chan-Zhang (1996), Cais-Conrad (2006))
If 7 is a CM point, then

eZTriT/S . R(e27ri7')

is an algebraic integral unit.
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Rogers-Ramanujan ldentities

Theorem (Rogers, Ramanujan)
We have that

2 o

1
G(q) : Z (1—q") H (1 — g5nt1)(1 — gdnt4)’

n=0

2+n ) 1

Alll) Z < (1- q) (1—q") H (1 — 5" 2)(1 — o 3)"

n=0
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Rogers-Ramanujan ldentities

Theorem (Rogers, Ramanujan)
We have that

_ o0 qn2 3 o0 1
@ =2 Gg-a - L a—@ -

00 q"2+” 00 1
D=2 g e~ L a—@a—em)

Remark
We have the ratio identity

R(q) = H(q)/G(q).
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Ubiquity of the RR identities

Number theory (modular forms and modular curves)
Conformal field theory

K-theory

Kac-Moody Lie algebras

Knot theory

Probability theory

Statistical mechanics

Remark (March 10, 2015)
There are 810 papers in MathSciNet about the RR identities! J




Framework of Rogers-Ramanujan identities: Lecture 2
History

Extending RR: Andrews-Gordon ldentities




Framework of Rogers-Ramanujan identities: Lecture 2
History

Extending RR: Andrews-Gordon ldentities

Theorem (Andrews, 1974)
If1<i<m+1, then

2

n>>rm>0 (q)l’lfrZ T (q)rmflfrm(q)rm
_ (q2m+3; q2m+3)oo '

qr12+~~~+r,2,,+r,-+-~+rm

(9)

where
(3 q)k = (1—a)(1—aq)---(1—aq“™1),

and

0(a; q) := (2 q)oo(9/2; 9)oo-
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Important remarks

@ The AG and RR identities are of the form
“Summatory g-series” = “Infinite product modular function”.

@ Further isolated identities of Bailey, Dyson, Slater,....

© RR and AG identities = Lepowsky-Wilson program.
...giving rise to vertex operator theory and more...

@ Other Lie theoretic work: Feigin-Frenkel, Milne,
Cherednik-Feigin, ...
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Fundamental Problems

Fundamental Problem 1
Are these hints of a larger framework of conceptual identities:

“Summatory g-series” = “Infinite product modular function”?

Fundamental Problem 2
If so, are there natural ratios which give algebraic integral units ?J
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A= ()\1,)\2,...)
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Notation.
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Some Preliminaries

Integer Partitions

Definition
A partition is a nonincreasing sequence of positive integers

A= ()\1,)\2,...)

with finitely many non-zero terms.

Notation.
Al == A1+ X2+... (Size of \).

@ /(A) := "number of parts".
@ For positive i we let m; := "multiplicity” of size / parts.
@ For n > I(\) we let mg := n— I(}\).
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Hall-Littlewood symmetric polynomials

Definition
If X is a partition with /(\) < n, then let

A A1 N A
X7 I=Xy X X"

n o
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Some Preliminaries

Hall-Littlewood symmetric polynomials

Definition
If X is a partition with /(\) < n, then let

A A1 N A
X7 I=Xy X X"

n o

and let
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Hall-Littlewood symmetric polynomials

Definition
If X is a partition with /(\) < n, then let

S o X1>\1X2>\2 . Xr>’\n7
and let .
(9)m,
va(q) == H T
i € S eD i

The Hall-Littlewood polynomial is

oo LATE)

V/\(q) weS,
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Example 1
For n > 1 we have

l_qn—l Xj — gX;
Poy(x1, %2, ..., Xni q) = Q Z W<X12HX:—XJJ>
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Example 1
For n > 1 we have

1-—g)" " Xi = qxj
P(2)(X17X27---7Xn;Q):(n)- Z W<X12 J)

We find that

Poy(x1: q) = 57
Py (x1,x2; q) = x12 + X22 + (1 - g)xax

Py (x1,%2, 31 q) = X§ + X5 + 5 + (1 — q)(xax2 + x1x3 + x2x3)
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Example 1 (Continued)

Letting x1 = 1,x = q,x3 = q°, ..., we obtain
P(Q)(l; q) =1

Pey(1,9:9) =1+q
Po)(1,q,¢%9)=1+q+q

More generally, for every n > 1 we have

Po)(1,q,¢%...,q%q)=1+qg+q¢* +---+q".




Framework of Rogers-Ramanujan identities: Lecture 2
Some Preliminaries

Example 1 (Continued)

@ For each n > 1 we have

Py(x1;- -, Xni q)

:1+q(2 oy, 1—q

5 (x1 4+ xn)?.

)+
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Example 1 (Continued)

@ For each n > 1 we have

Py(x1;- -, Xni q)

71+q 2

1_
T(X1+...+X§)_|_ 2q(X1+"'+Xn)2_

@ Make the identifications

(x1,x2,...) <— (1,q,q2,...)
1
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Example 1 (Continued)

@ For each n > 1 we have

Py(x1;- -, Xni q)

14 1-—

@ Make the identifications

(x1,x2,...) <— (1,q,q2,...)
1

o This gives us

1 1— 1
(1+q) N q

2 . —
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Example 2
For n > 2 we have

P(2,2)(X1)X27 <oy Xy q)

B (q)(nlz_-c(qn—lq% g2 <X1X22H . —?)

weS, i<j
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Example 2
For n > 2 we have
P2y (X1, X2, -+, Xn3 q)
(1-g! < T X — 9%
(@Dn2-(1-3%) V% E - Xj
We find that
P22y (x1, X2; q) = X7 %5

P2y (x1, X2, x3; q)

x12x22 + x22x32 + xfx% Fooc

)
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Letting x, = 1,x = q,x3 = q°, ..., we obtain
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Example 2 (Continued)

Letting x, = 1,x = q,x3 = q°, ..., we obtain

P22y (1,q:9) = ¢
P22 (19,6 9)=¢" + 4>+ ¢
Pox(1,9,4% 6% q) =+ ¢ +2¢" +¢° +¢°
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Example 2 (Continued)
We find that

3
9 —q
Poy(x1 .-, xniq) = — 2 (a4 4 x)20F + -+ x2)
-3g+42 +q+2
-1 >+
+ T a A x)0E ) - T )

3
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Example 2 (Continued)
We find that
9 —q 20,2 2
Poy(x1 .-, xniq) = — 7 (x1+- +x0)°04 + - +x7)
3-3g+2 +q+2
-l—%(xl—i-'--—kxn)“%—%(xf—k-"—kxﬁ)z
-1 >+
+ 9 g (it x) S+ +x3) = T 7 Tt 4+ x%).
Arguing as before gives:
2
q
Pon(1,g.¢%...;q) = 5.
e =90
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Some Preliminaries

Hall-Littlewood g-series

Hall-Littlewood g-series
The g-series Px(1,q,q%,...;q") is defined by:
© Express in Py(x1,...,xn;q") using

@ Obtain Py(1,q,¢%,...;q") by replacing
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Some Preliminaries

RR “sum sides” revisited

Remark (Stembridge (1990))
For the partitions A = (2"), this procedure gives:

B qn(n+a)
L (i B (0}

q(0+1)|(1n)|P(2")(17 a, q27 cee

and so...
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revisited

RR “sum sides”

Remark (Stembridge (1990))
For the partitions \ =
gletia”

and so...

Zqurl

)|P(2n)(1, q, q2, 600

|P2n)(1 q,q°, ...

(2"), this procedure gives:

qn(n+a)

DT

(e.o]

(1—q")’

n(n+a)

,Q):Z(l_ q)---

n=0

(1-

qn)
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Fundamental Problem 1

“Theorem” (Griffin-O-Warnaar)

There are four triples (a, b, ¢) such that for all m,n > 1 we have

> MPo(1,9,¢%, ... ¢7F)
A
A1<m

= “Infinite product modular function”.
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A
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Fundamental Problem 1

“Theorem” (Griffin-O-Warnaar)

There are four triples (a, b, ¢) such that for all m,n > 1 we have

> @MPa(1,9,6%, .67
A

A<m
= “Infinite product modular function”.

The P\(x1,...;q) are (extended) Hall-Littlewood polynomials.

Remark
RR identities when m = n=1 and (a, b, c) = (1,2,-1),(2,2,-1).

v
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Preview of our results

g-series representations

If m and n are positive integers, then

> gt Py (19,675 q")

A
)\1<m

M(a—l) (a)

L(o+1 )u, . (a D_ @
Sl e
i /"Li _/'Li n

q
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Preview of our results

g-series representations

If m and n are positive integers, then

> gt Py (19,675 q")

A
)\1<m

M(a—l) (a)

L(o+1 )u, . (a D_ @
Sl e
i /"Li _/'Li n

q

where the summation is not worth explaining.
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Preview of our results

Representation theoretic interpretation

@ Given an affine Kac-Moody algebra, one has the “principal
specialization homomorphism”

Fp: Clle™@,...,e ] — Cl[q]], Fi(e ) =q Viel.

@ Weyl-Kac formula for highest weight modules A:

1_q</\+p’a> mult(ca)
()

Fi(e"chV(N) = ]

a€cAY
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Preview of our results

Representation theoretic interpretation

@ Given an affine Kac-Moody algebra, one has the “principal
specialization homomorphism”

Fp: Clle™@,...,e ] — Cl[q]], Fi(e ) =q Viel.

@ Weyl-Kac formula for highest weight modules A:

<1 . q(/\+p’a> ) mult(ca)

Fi ( e MNch V(/\)) = H 1= gira)

a€cAY

@ The “product sides” arise from such formulas.
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Preview of our results

Fundamental Problem 2

“Theorem” (Griffin-O-Warnaar)

Generalizing the “Folklore Conjecture”, in the Agi) cases we obtain

ratios of CM values that are algebraic integral units.
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Ifm,n>1 and k :=2m+ 2n+ 1, then
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Theorem 1 (Agzn) identities)
Ifm,n>1 and k :=2m+ 2n+ 1, then

> qMPoa(la,6% . 7Y
/\l)g\m

_ (q qn )oo .Hg(qi-km;qn) H G(qj_i,qi+j_1; qn)
i=1

> @MPo(lq,6% . 7Y

A
A1<m

_ (q"“;q:)go T0a%) [ 0@ a":q).
i=1
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Remarks on Theorem 1

@ The RR identities are the m = n =1 cases.

@ If n=1, then we obtain the AG / = 1, m + 1 identities.
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Easy to use Theorem 1

Example
If m= n =2, then we obtain Dyson’s favorite

(oo}
| (1-q¢°)
Z qlMpzA(l,q, q2,...,q3) - H W’
A "~
A2
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Easy to use Theorem 1

Example
If m= n =2, then we obtain Dyson’s favorite

€ 9n
A =)
Z ql ‘P2>\(17q’q27"'vq3) —Hma
A n=1
A1<2
and

> NP (l,9.¢% ... ¢

A
A1L2

e n 1 9n 1)( 9n 8)
1;[ (]__q 1_q9n 4)(1_q9n 5)
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Theorem 2 (C,Sl) identities)
Ifm,n>1 and k :=2m + 2n + 2, then

> dMPo(19,4% ... ")
A
A1<m
B I G i S C e
(q)a?

<[To(d a7 T 0(¢ " a":q")
i=1

1<i<j<n
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Theorem 3 (Dr(,%r)1 identities)

Ifm>1,n>2, and kK :=2m + 2n, then

> PMPo(l,g.4%, ... 7" ?)

A
A1<m

_ (¢"; q )Oon—l' H G(qu",q"ﬂfl;q”).

(0% @®)o(@) ™ 1 iljas
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Turning to Algebraicity

We require the following renormalizations (note: q := e2™'7):

4m2n274m2n+2mn273mn _
Sra(m,m7)i=q T2r Z NP1, q, 4% .. i *" Y
A1<m
4m2n2+2m2n+2n2m+3mn 21\ 9 on—1
&1p(m,yn;7):=q Tor ZCIHPz,\(l,q,q,...;q” )
A1<m
4m2n2+2mn27mn7m27m
So(m, n;7) :=q on Z M Por(1, g, G2, ... ¢*")
A1<m

4m2n272m2n+2mn2+mn7m 2(\ 2 2n—2
®3(m, n;7) =g 12 > PPu(1,q,6,. . g7,
A1<m
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CM values

Theorem 4

If kT is a CM point with discriminant —D < 0, then the CM value
&, (m, n; T) is algebraic.
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Algebraic integral units

Theorem (Berndt-Chan-Zhang, Cais-Conrad)

If 7 is a CM point, then q*/°R(q) = ®1,(1,1;7)/®15(1,1;7) is an
algebraic integral unit.
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Algebraic integral units

Theorem (Berndt-Chan-Zhang, Cais-Conrad)

If 7 is a CM point, then q*/°R(q) = ®1,(1,1;7)/®15(1,1;7) is an
algebraic integral unit.

Question

Do other ratios of ®,. have CM values with unit ratios?
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Integrality properties

Theorem 5
If T is a CM point, then the following are true:

© The singular value 1/®.(m, n; ) is an algebraic integer.
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Integrality properties

Theorem 5
If T is a CM point, then the following are true:

© The singular value 1/®.(m, n; ) is an algebraic integer.

@ The singular value ®.(m, n; T) is a unit over Z[1/K].

@ The ratio ®1,(m, n; 7)/P1p(m, n; T) is an integral unit.
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Integrality properties

Theorem 5
If T is a CM point, then the following are true:

© The singular value 1/®.(m, n; ) is an algebraic integer.
@ The singular value ®.(m, n; T) is a unit over Z[1/K].

@ The ratio ®1,(m, n; 7)/P1p(m, n; T) is an integral unit.

Remarks
Q Theorem 5 (3) is the q*/°R(q) result when m = n = 1.
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Integrality properties

Theorem 5
If T is a CM point, then the following are true:

© The singular value 1/®.(m, n; ) is an algebraic integer.
@ The singular value ®.(m, n; T) is a unit over Z[1/K].

@ The ratio ®1,(m, n; 7)/P1p(m, n; T) is an integral unit.

Remarks
Q Theorem 5 (3) is the q*/°R(q) result when m = n = 1.

@ No other ratios generically give units.
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Example when m=n =2

e For 7 =i/3 the first 100 terms give:

®1,(2,2;i/3) = 0.577350 - - - =

®15(2,2;i/3) = 0.217095 . . .
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Example when m=n =2

e For 7 =i/3 the first 100 terms give:

2 1

®1,(2,2;i/3) = 0577350 = —

13( / ) \/g
®1(2,2;i/3) = 0.217095.. . .

@ They are not algebraic integers, but are roots of:

3x2 -1
39x18 _37.37x12 —2.39%9 1+ 23.3% . 17x% —2.353 — 1.
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Example when m=n =2

e For 7 =i/3 the first 100 terms give:

2 1

®1,(2,2;i/3) = 0577350 = —

13( / ) \/g
®1(2,2;i/3) = 0.217095.. . .

@ They are not algebraic integers, but are roots of:
3x2 -1

39x18 _37.37x12 —2.39%9 1+ 23.3% . 17x% —2.353 — 1.

o By Theorem 5 (2), both v/3®1,(2,2;i/3) are integral units.
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@ Which gives Theorem 5 (3) that
®14(2,2;1/3)/P1p(2,2;i/3) = 4.60627 . ..

is an algebraic integral unit.
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Example when m = n = 2 continued.

@ Which gives Theorem 5 (3) that
D1,(2,2;i/3)/P16(2,2; i/3) = 4.60627 . ..
is an algebraic integral unit.
o Indeed, ®1,(2,2;i/3)/P15(2,2;i/3) is a root of

x18 — 102x15 + 420x12 — 304x° — 93x°% + 6x3 + 1.
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Classical proof of RR

A basic hypergeometic series transformation between a terminating
balanced 4¢3 and a very-well poised g¢7 series:

Theorem (G. N. Watson (1929))

N
(ag,aq/bc)n Z (b,c,aq/de,q~"), ;

(aq/b,aq/c)n = (g, aq/d aq/e,bcqg/a),

r=

_ Z 1-— aq (aa ba c, d7 €, q_N)r 2qN+2
1—a (q,aq/b,aq/c,aq/d,aq/e), bcde |

—N)
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Proof of the RR identities

e Letting b, c,d, e, N — oo suitably gives...

Corollary (Rogers-Selberg Identity)

i a( q _ 1 i 1- aq2r . (a)r ( 1)r 2rq5( )+2r.

a)r (@)= 1-a (q)r

e Letting a =1, g on the LHS gives RR.

e What is the RHS when a=1,q7?
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Proof of the RR identities continued

Lemma (Jacobi Triple Product)

o0

3 (-1)x"ql) = (g)ws - 6(x; q),

r=—o00
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Proof of the RR identities continued

Lemma (Jacobi Triple Product)

o0

3 (-1)x7qD) = ()s - 8(x: q),

r=—oo

e Rogers-Selberg + JTP = RR. [
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How did Andrews obtain his AG identities?

© Extended Watson's g¢7 t0 2m16¢P2m+5 Which depend on N, a
parameter a, and 2m + 2 further parameters.

@ These 2m + 2 parameters play the role of b, ¢, d, e.
© Let all these parameters — oo and take nonterminating limit.
@ Resulting in a higher “Rogers-Selberg” identity.

Q If a=1,q, then JTP essentially gives AG. [
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Proving Theorem 1-3

“Theorem” (Bartlett-Warnaar (2013))

There is an Andrews-style “crazier” transformation, arising from
the C, root system, where

a < (x1,x2,...,Xn)

Remark
Their transformation laws make use of

n

Ac(x):=[Ja=x) ] Ca—x)x—1).

i=1 1<i<j<n
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Bartlett-Warnaar Transformation Law

Theorem 4.2 (C, Andrews transformation). For m a nonnegative integer and

N e Zn,
Ac(wg") L S (biwi, cemi)r, g \"
4. A bkt VAT B S
(4.3) OCTZ,_M Aclz) 11 H (gzi/be, qmifer)r, (bg(:,g)
*x 1 i

(g™ :c‘/.'l_!j, TiTi)r, e
=1 (qai/a;, g™ ziz;)y,

n
1
= (gwizs ),
H ™ H,n (g@:zs) N,

ij=1 1<
(qz:/z;)w,
x Z 11 %Hf‘w » (239)
_____ mlegn ij—=1 QJHJ‘C‘? N, _r. ua
m+41 [T {bf{ﬂ'.(:{_.’&") @)
q [ iy i rl
x byc (—) —_—
H { 9‘/ I w |rlE= 1| —|rif) bece 11 (der, qw;/ce)rgﬂ .

where r'% .= N and r™* =0,
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What next?

@ Make use of the added flexibility.
@ Let parameters — oo and take a nonterminating limit.

@ Analyze the RHS....using definition of Hall-Littlewood
polynomials.
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Proving the identities

Theorem (Higher Rogers-Selberg Identity)

3" gMPs(xiq) = LR (x: q),

A
A1<m

where

Z A(C Xq

rezt
o Hxi2(m+1)r,-q(m+1)rl_2+n(f2i)‘ ﬁ (_ﬁ)n (Xin)ri )

i=1 i,j=l XJ (le'/XJ')"i
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Proving Theorems 1-3

e It is easy to modify LHS for each theorem.

e Manipulating LES)(X; q) is difficult....requiring a complicated

recursive limiting argument.
e Many pages of reformulations involving Macdonald identities for

p®,, B, DY,

n+1>

Weyl-Kac denominator formulas, and of course JTP. [
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Turning to algebraic properties

Definition
27 ix

If Ba(x) is the 2nd Bernoulli polynomial, e(x) := e“™™ and
a:= (a1, a2) € Q?, then the Siegel function g, is defined by

ga(r) == —q2B2(e(ar(a1 — 1)/2)

(e}

x [T = g e(a2))(1 — g™ *e(—a2)),
n=1
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Turning to algebraic properties

Definition
If Bo(x) is the 2nd Bernoulli polynomial, e(x) := e?™* and
a:= (a1, a2) € Q?, then the Siegel function g, is defined by

ga(r) == —q2B2(e(ar(a1 — 1)/2)

(e}

x [T = g e(a2))(1 — g™ *e(—a2)),
n=1

Theorem (Klein)
If a€ Z?/N and v € SLy(Z), then

g2 (vr) = g3 (7).
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Work of Kubert and Lang

Theorem (Kubert-Lang)

If T is a CM point and N = Den(a), then the following are true:
© We have that g,(7) is an algebraic integer.
@ If N # p", then ga(7) is a unit over Z[j(T)].
@ If N =p", then g,(7) is a unit over Z[%][/(T)]
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The ®,’s are Siegel products

Lemma
If m,n > 1, then the following are true:
(1a) If K = k1(m,n) =2m+2n+ 1, then we have

®1,(m, n; T)

m-+n

_ng/no /iT ng/no IQT) min(m,n—1,[j/2]—1)
Jj=1
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The ®,’s are Siegel products

Lemma
If m,n > 1, then the following are true:
(1a) If K = k1(m,n) =2m+2n+ 1, then we have

q)la(m n; T)
m—+n
_ng/no /iT H 8j/x.0 IQT) min(m,n—1,[j/2]—1)
Jj=1

(1b) ...and so on...
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Proofs now follow by...

@ The ®,'s are reciprocals of Siegel products.
o Kubert-Lang extended to “products” of Siegel functions.
@ The classical theory of complex multiplication.

@ Analytic number theory to obtain single Galois orbits. [



Framework of Rogers-Ramanujan identities: Lecture 2

Executive Summary

Our results...

“Theorem” (Griffin-O-Warnaar)

There are four triples (a, b, ¢) such that for all m,n > 1 we have

> MPo(1,9,¢%, ... g7
A
A1<m

= “Infinite product modular function”.




Framework of Rogers-Ramanujan identities: Lecture 2
Executive Summary

Our results...

“Theorem” (Griffin-O-Warnaar)

There are four triples (a, b, ¢) such that for all m,n > 1 we have

> MPo(1,9,¢%, ... g7
A
A1<m

= “Infinite product modular function”.

Remarks

@ RR identities when m = n =1 in Theorem 1.




Framework of Rogers-Ramanujan identities: Lecture 2
Executive Summary

Our results...

“Theorem” (Griffin-O-Warnaar)

There are four triples (a, b, ¢) such that for all m,n > 1 we have

> MPo(1,9,¢%, ... g7
A
A1<m

= “Infinite product modular function”.

Remarks

@ RR identities when m = n =1 in Theorem 1.

@ Arise as specialized characters of Kac-Moody Lie algebras.
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Executive Summary

Our results....

“Theorem” (Griffin-O-Warnaar)
©Q The CM values ®.(m, n; T) are algebraic.
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@ The CM ratios M are algebraic integral units.
16(m, n; 7)

Remark
Letting m = n = 1 gives Berndt-Chan-Zhang and Cais-Conrad.
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Executive Summary

Our results....

“Theorem” (Griffin-O-Warnaar)

©Q The CM values ®.(m, n; T) are algebraic.
@ The CM ratios j;la(m’ ni7)

are algebraic integral units.
16(m, n; 7)

Remark

Letting m = n = 1 gives Berndt-Chan-Zhang and Cais-Conrad.
And T = | gives Ramanujan’s evaluation:

_ _ ®14(1,1; 1) 5+v5 V5+1
2m/5 | 2ry _ rlalss — _
€ A O(L,17) | 2 >
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