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The Golden Ratio

Remark

The golden ratio is the algebraic number

φ :=
1 +
√

5

2
∼ 1.618033989 . . . .

It is an algebraic integral unit. It is a root of

x2 − x − 1 = 0.

We have that

φ = 1 +
1

1 + 1
1+ 1

1+···
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A deeper generalization?

Question

Define the q-continued fraction

R(q) :=
1

1 + q

1+ q2

1+
q3

1+···

.

Is the evaluation R(1) = 1/φ a special case of a theory of units?



Framework of Rogers-Ramanujan identities: Lecture 2

History

A deeper generalization?

Question

Define the q-continued fraction

R(q) :=
1

1 + q

1+ q2

1+
q3

1+···

.

Is the evaluation R(1) = 1/φ a special case of a theory of units?



Framework of Rogers-Ramanujan identities: Lecture 2

History

A deeper generalization?

Question

Define the q-continued fraction

R(q) :=
1

1 + q

1+ q2

1+
q3

1+···

.

Is the evaluation R(1) = 1/φ a special case of a theory of units?



Framework of Rogers-Ramanujan identities: Lecture 2

History

Ramanujan’s first letter to Hardy



Framework of Rogers-Ramanujan identities: Lecture 2

History

Ramanujan’s first letter to Hardy



Framework of Rogers-Ramanujan identities: Lecture 2

History

Rogers and Ramanujan

Theorem (Rogers-Ramanujan)

We have that

R(q) =
1

1 + q

1+ q2

1+
q3

1+···

=
∞∏
n=0

(1− q5n+1)(1− q5n+4)

(1− q5n+2)(1− q5n+3)
.

Theorem (Berndt-Chan-Zhang (1996), Cais-Conrad (2006))

If τ is a CM point, then

e2πiτ/5 · R(e2πiτ )

is an algebraic integral unit.
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Rogers-Ramanujan Identities

Theorem (Rogers, Ramanujan)

We have that

G (q) :=
∞∑
n=0

qn
2

(1− q) · · · (1− qn)
=
∞∏
n=0

1

(1− q5n+1)(1− q5n+4)
,

H(q) :=
∞∑
n=0

qn
2+n

(1− q) · · · (1− qn)
=
∞∏
n=0

1

(1− q5n+2)(1− q5n+3)
.

Remark

We have the ratio identity

R(q) = H(q)/G (q).



Framework of Rogers-Ramanujan identities: Lecture 2

History

Rogers-Ramanujan Identities

Theorem (Rogers, Ramanujan)

We have that

G (q) :=
∞∑
n=0

qn
2

(1− q) · · · (1− qn)
=
∞∏
n=0

1

(1− q5n+1)(1− q5n+4)
,

H(q) :=
∞∑
n=0

qn
2+n

(1− q) · · · (1− qn)
=
∞∏
n=0

1

(1− q5n+2)(1− q5n+3)
.

Remark

We have the ratio identity

R(q) = H(q)/G (q).



Framework of Rogers-Ramanujan identities: Lecture 2

History

Ubiquity of the RR identities

Number theory (modular forms and modular curves)

Conformal field theory

K -theory

Kac-Moody Lie algebras

Knot theory

Probability theory

Statistical mechanics

. . .

Remark (March 10, 2015)

There are 810 papers in MathSciNet about the RR identities!
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Extending RR: Andrews-Gordon Identities

Theorem (Andrews, 1974)

If 1 ≤ i ≤ m + 1, then

∑
r1≥···≥rm≥0

qr
2
1 +···+r2

m+ri+···+rm

(q)r1−r2 · · · (q)rm−1−rm(q)rm

=
(q2m+3; q2m+3)∞

(q)∞
· θ(qi ; q2m+3),

where
(a; q)k := (1− a)(1− aq) · · · (1− aqk−1),

and
θ(a; q) := (a; q)∞(q/a; q)∞.
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Important remarks

1 The AG and RR identities are of the form

“Summatory q-series” = “Infinite product modular function”.

2 Further isolated identities of Bailey, Dyson, Slater,....

3 RR and AG identities =⇒ Lepowsky-Wilson program.
...giving rise to vertex operator theory and more...

4 Other Lie theoretic work: Feigin-Frenkel, Milne,
Cherednik-Feigin, ...
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Fundamental Problems

Fundamental Problem 1

Are these hints of a larger framework of conceptual identities:

“Summatory q-series” = “Infinite product modular function”?

Fundamental Problem 2

If so, are there natural ratios which give algebraic integral units?



Framework of Rogers-Ramanujan identities: Lecture 2

History

Fundamental Problems

Fundamental Problem 1

Are these hints of a larger framework of conceptual identities:

“Summatory q-series” = “Infinite product modular function”?

Fundamental Problem 2

If so, are there natural ratios which give algebraic integral units?



Framework of Rogers-Ramanujan identities: Lecture 2

History

Fundamental Problems

Fundamental Problem 1

Are these hints of a larger framework of conceptual identities:

“Summatory q-series” = “Infinite product modular function”?

Fundamental Problem 2

If so, are there natural ratios which give algebraic integral units?



Framework of Rogers-Ramanujan identities: Lecture 2

Some Preliminaries

Integer Partitions

Definition

A partition is a nonincreasing sequence of positive integers

λ := (λ1, λ2, . . . )

with finitely many non-zero terms.

Notation.

|λ| := λ1 + λ2 + . . . (Size of λ).

l(λ) := “number of parts”.

For positive i we let mi := “multiplicity” of size i parts.

For n ≥ l(λ) we let m0 := n − l(λ).
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Hall-Littlewood symmetric polynomials

Definition

If λ is a partition with l(λ) ≤ n, then let

xλ := xλ1
1 xλ2

2 · · · x
λn
n ,

and let

vλ(q) :=
n∏

i=0

(q)mi

(1− q)mi
.

The Hall-Littlewood polynomial is

Pλ(x ; q) =
1

vλ(q)

∑
w∈Sn

w

(
xλ
∏
i<j

xi − qxj
xi − xj

)
.
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Example 1

For n ≥ 1 we have

P(2)(x1, x2, . . . , xn; q) =
(1− q)n−1

(q)n−1
·
∑
w∈Sn

w

(
x2

1

∏
i<j

xi − qxj
xi − xj

)
.

We find that

P(2)(x1; q) = x2
1

P(2)(x1, x2; q) = x2
1 + x2

2 + (1− q)x1x2

P(2)(x1, x2, x3; q) = x2
1 + x2

2 + x2
3 + (1− q)(x1x2 + x1x3 + x2x3)

... =
...
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Example 1 (Continued)

Letting x1 = 1, x2 = q, x3 = q2, . . . , we obtain

P(2)(1; q) = 1

P(2)(1, q; q) = 1 + q

P(2)(1, q, q2; q) = 1 + q + q2

...
...

More generally, for every n ≥ 1 we have

P(2)(1, q, q2, . . . , qn; q) = 1 + q + q2 + · · ·+ qn.
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Example 1 (Continued)

For each n ≥ 1 we have

P(2)(x1, . . . , xn; q)

=
1 + q

2

(
x2

1 + · · ·+ x2
n

)
+

1− q

2
(x1 + · · ·+ xn)2 .

Make the identifications

(x1, x2, . . . ) ←→ (1, q, q2, . . . )

x r1 + x r2 + · · ·+ x rn ←→ 1

1− qr

This gives us

P(2)(1, q, q2, . . . ; q) =
(1 + q)

2(1− q2)
+

1− q

2(1− q)2
=

1

1− q
.
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Example 2

For n ≥ 2 we have

P(2,2)(x1, x2, . . . , xn; q)

=
(1− q)n−1

(q)n−2 · (1− q2)
·
∑
w∈Sn

w

(
x2

1x
2
2

∏
i<j

xi − qxj
xi − xj

)
.

We find that

P(2,2)(x1, x2; q) = x2
1x

2
2

P(2,2)(x1, x2, x3; q) = x2
1x

2
2 + x2

2x
2
3 + x2

1x
2
3 + . . .

... =
...
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Letting x1 = 1, x2 = q, x3 = q2, . . . , we obtain

P(2,2)(1, q; q) = q2

P(2,2)(1, q, q2; q) = q2 + q3 + q4

P(2,2)(1, q, q2, q3; q) = q2 + q3 + 2q4 + q5 + q6

...
...
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Example 2 (Continued)

We find that

P(2,2)(x1 . . . , xn; q) = −q3 − q

4
(x1 + · · ·+ xn)2(x2

1 + · · ·+ x2
n )

+
q3 − 3q + 2

24
(x1 + · · ·+ xn)4 +

q3 + q + 2

8
(x2

1 + · · ·+ x2
n )2

+
q3 − 1

3
(x1 + · · ·+ xn)(x3

1 + · · ·+ x3
n )− q3 + q

4
(x4

1 + · · ·+ x4
n ).

Arguing as before gives:

P(2,2)(1, q, q2, . . . ; q) =
q2

(1− q)(1− q2)
.
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Hall-Littlewood q-series

Hall-Littlewood q-series

The q-series Pλ(1, q, q2, . . .; qT ) is defined by:

1 Express in Pλ(x1, . . . , xn; qT ) using

x r1 + · · ·+ x rn.

2 Obtain Pλ(1, q, q2, . . . ; qT ) by replacing

x r1 + · · ·+ x rn 7−→ 1 + qr + q2r + · · · =
1

1− qr
.
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x r1 + · · ·+ x rn 7−→ 1 + qr + q2r + · · · =
1

1− qr
.
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Some Preliminaries

RR “sum sides” revisited

Remark (Stembridge (1990))

For the partitions λ = (2n), this procedure gives:

q(σ+1)|(1n)|P(2n)(1, q, q2, . . . ; q) =
qn(n+σ)

(1− q) · · · (1− qn)
,

and so...

∞∑
n=0

q(σ+1)|(1n)|P(2n)(1, q, q2, . . . ; q) =
∞∑
n=0

qn(n+σ)

(1− q) · · · (1− qn)
.



Framework of Rogers-Ramanujan identities: Lecture 2

Some Preliminaries

RR “sum sides” revisited

Remark (Stembridge (1990))

For the partitions λ = (2n), this procedure gives:

q(σ+1)|(1n)|P(2n)(1, q, q2, . . . ; q) =
qn(n+σ)

(1− q) · · · (1− qn)
,

and so...

∞∑
n=0

q(σ+1)|(1n)|P(2n)(1, q, q2, . . . ; q) =
∞∑
n=0

qn(n+σ)

(1− q) · · · (1− qn)
.



Framework of Rogers-Ramanujan identities: Lecture 2

Some Preliminaries

RR “sum sides” revisited

Remark (Stembridge (1990))

For the partitions λ = (2n), this procedure gives:

q(σ+1)|(1n)|P(2n)(1, q, q2, . . . ; q) =
qn(n+σ)

(1− q) · · · (1− qn)
,

and so...

∞∑
n=0

q(σ+1)|(1n)|P(2n)(1, q, q2, . . . ; q) =
∞∑
n=0

qn(n+σ)

(1− q) · · · (1− qn)
.



Framework of Rogers-Ramanujan identities: Lecture 2

Some Preliminaries

RR “sum sides” revisited

Remark (Stembridge (1990))

For the partitions λ = (2n), this procedure gives:

q(σ+1)|(1n)|P(2n)(1, q, q2, . . . ; q) =
qn(n+σ)

(1− q) · · · (1− qn)
,

and so...

∞∑
n=0

q(σ+1)|(1n)|P(2n)(1, q, q2, . . . ; q) =
∞∑
n=0

qn(n+σ)

(1− q) · · · (1− qn)
.



Framework of Rogers-Ramanujan identities: Lecture 2

Preview of our results

Fundamental Problem 1

“Theorem” (Griffin-O-Warnaar)

There are four triples (a, b, c) such that for all m, n ≥ 1 we have∑
λ

λ1≤m

qa|λ|P2λ(1, q, q2, . . . ; qbn+c)

= “Infinite product modular function”.

The Pλ(x1, . . . ; q) are (extended) Hall-Littlewood polynomials.

Remark

RR identities when m = n = 1 and (a, b, c) = (1, 2,−1), (2, 2,−1).
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Preview of our results

q-series representations

If m and n are positive integers, then∑
λ

λ1≤m

q(σ+1)|λ|P2λ(1, q, q2, . . . ; qn)

=
∑ 2m∏

i=1

{
q

1
2

(σ+1)µ
(0)
i

(qn; qn)
µ

(0)
i −µ

(0)
i+1

n∏
a=1

qµ
(a)
i +n(µ

(a−1)
i

−µ
(a)
i

2
)
[
µ

(a−1)
i − µ(a)

i+1

µ
(a−1)
i − µ(a)

i

]
qn

}
,

where the summation is not worth explaining.



Framework of Rogers-Ramanujan identities: Lecture 2

Preview of our results

q-series representations

If m and n are positive integers, then∑
λ

λ1≤m

q(σ+1)|λ|P2λ(1, q, q2, . . . ; qn)

=
∑ 2m∏

i=1

{
q

1
2

(σ+1)µ
(0)
i

(qn; qn)
µ

(0)
i −µ

(0)
i+1

n∏
a=1

qµ
(a)
i +n(µ

(a−1)
i

−µ
(a)
i

2
)
[
µ

(a−1)
i − µ(a)

i+1

µ
(a−1)
i − µ(a)

i

]
qn

}
,

where the summation is not worth explaining.



Framework of Rogers-Ramanujan identities: Lecture 2

Preview of our results

Representation theoretic interpretation

Given an affine Kac-Moody algebra, one has the “principal
specialization homomorphism”

F1 : C[[e−α0 , . . . , e−αn ]]→ C[[q]], F1(e−αi ) = q ∀i ∈ I .

Weyl-Kac formula for highest weight modules Λ:

F1
(

e−Λ chV (Λ)
)

=
∏
α∈∆∨+

(
1− q〈Λ+ρ,α〉

1− q〈ρ,α〉

)mult(α)

.

The “product sides” arise from such formulas.
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Preview of our results

Fundamental Problem 2

“Theorem” (Griffin-O-Warnaar)

Generalizing the “Folklore Conjecture”, in the A
(2)
2n cases we obtain

ratios of CM values that are algebraic integral units.
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Our Theorems

Theorem 1 (A
(2)
2n identities)

If m, n ≥ 1 and κ := 2m + 2n + 1, then

∑
λ

λ1≤m

q|λ|P2λ

(
1, q, q2, . . . ; q2n−1

)

=
(qκ; qκ)n∞

(q)n∞
·

n∏
i=1

θ
(
qi+m; qκ

) ∏
1≤i<j≤n

θ
(
qj−i , qi+j−1; qκ

)
∑
λ

λ1≤m

q2|λ|P2λ

(
1, q, q2, . . . ; q2n−1

)

=
(qκ; qκ)n∞

(q)n∞
·

n∏
i=1

θ
(
qi ; qκ

) ∏
1≤i<j≤n

θ
(
qj−i , qi+j ; qκ

)
.



Framework of Rogers-Ramanujan identities: Lecture 2

Our Theorems

Theorem 1 (A
(2)
2n identities)

If m, n ≥ 1 and κ := 2m + 2n + 1, then∑
λ

λ1≤m

q|λ|P2λ

(
1, q, q2, . . . ; q2n−1

)

=
(qκ; qκ)n∞

(q)n∞
·

n∏
i=1

θ
(
qi+m; qκ

) ∏
1≤i<j≤n

θ
(
qj−i , qi+j−1; qκ

)
∑
λ

λ1≤m

q2|λ|P2λ

(
1, q, q2, . . . ; q2n−1

)

=
(qκ; qκ)n∞

(q)n∞
·

n∏
i=1

θ
(
qi ; qκ

) ∏
1≤i<j≤n

θ
(
qj−i , qi+j ; qκ

)
.



Framework of Rogers-Ramanujan identities: Lecture 2

Our Theorems

Remarks on Theorem 1

1 The RR identities are the m = n = 1 cases.

2 If n = 1, then we obtain the AG i = 1,m + 1 identities.
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Our Theorems

Easy to use Theorem 1

Example

If m = n = 2, then we obtain Dyson’s favorite

∑
λ

λ1≤2

q|λ|P2λ

(
1, q, q2, . . . ; q3

)
=
∞∏
n=1

(1− q9n)

(1− qn)
,

and ∑
λ

λ1≤2

q2|λ|P2λ

(
1, q, q2, . . . ; q3

)

=
∞∏
n=1

(1− q9n)(1− q9n−1)(1− q9n−8)

(1− qn)(1− q9n−4)(1− q9n−5)
.
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Our Theorems

Theorem 2 (C
(1)
n identities)

If m, n ≥ 1 and κ := 2m + 2n + 2, then∑
λ

λ1≤m

q|λ|P2λ

(
1, q, q2, . . . ; q2n

)

=
(q2; q2)∞(qκ/2; qκ/2)∞(qκ; qκ)n−1

∞
(q)n+1
∞

×
n∏

i=1

θ
(
qi ; qκ/2

) ∏
1≤i<j≤n

θ
(
qj−i , qi+j ; qκ

)
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Our Theorems

Theorem 3 (D
(2)
n+1 identities)

If m ≥ 1, n ≥ 2, and κ := 2m + 2n, then∑
λ

λ1≤m

q2|λ|P2λ

(
1,q, q2, . . . ; q2n−2

)

=
(qκ; qκ)n∞

(q2; q2)∞(q)n−1
∞
·
∏

1≤i<j≤n
θ
(
qj−i , qi+j−1; qκ

)
.
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Our Theorems

Turning to Algebraicity

We require the following renormalizations (note: q := e2πiτ ):

Φ1a(m, n; τ) := q
4m2n2−4m2n+2mn2−3mn

12κ

∑
λ1≤m

q|λ|P2λ(1, q, q2, . . . ; q2n−1)

Φ1b(m, n; τ) := q
4m2n2+2m2n+2n2m+3mn

12κ

∑
λ1≤m

q2|λ|P2λ(1, q, q2, . . . ; q2n−1)

Φ2(m, n; τ) := q
4m2n2+2mn2−mn−m2−m

12κ

∑
λ1≤m

q|λ|P2λ(1, q, q2, . . . ; q2n)

Φ3(m, n; τ) := q
4m2n2−2m2n+2mn2+mn−m

12κ

∑
λ1≤m

q2|λ|P2λ(1, q, q2, . . . ; q2n−2).
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Our Theorems

CM values

Theorem 4

If κτ is a CM point with discriminant −D < 0, then the CM value
Φ∗(m, n; τ) is algebraic.
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Our Theorems

Algebraic integral units

Theorem (Berndt-Chan-Zhang, Cais-Conrad)

If τ is a CM point, then q1/5R(q) = Φ1a(1, 1; τ)/Φ1b(1, 1; τ) is an
algebraic integral unit.

Question

Do other ratios of Φ∗ have CM values with unit ratios?
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Our Theorems

Integrality properties

Theorem 5

If τ is a CM point, then the following are true:

1 The singular value 1/Φ∗(m, n; τ) is an algebraic integer.

2 The singular value Φ∗(m, n; τ) is a unit over Z [1/κ].

3 The ratio Φ1a(m, n; τ)/Φ1b(m, n; τ) is an integral unit.

Remarks

1 Theorem 5 (3) is the q1/5R(q) result when m = n = 1.

2 No other ratios generically give units.
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Our Theorems

Example when m = n = 2

For τ = i/3 the first 100 terms give:

Φ1a(2, 2; i/3) = 0.577350 · · · ?
=

1√
3

Φ1b(2, 2; i/3) = 0.217095 . . .

They are not algebraic integers, but are roots of:

3x2 − 1

39x18 − 37 · 37x12 − 2 · 39x9 + 23 · 34 · 17x6 − 2 · 35x3 − 1.

By Theorem 5 (2), both
√

3Φ1∗(2, 2; i/3) are integral units.
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Our Theorems

Example when m = n = 2 continued.

Which gives Theorem 5 (3) that

Φ1a(2, 2; i/3)/Φ1b(2, 2; i/3) = 4.60627 . . .

is an algebraic integral unit.

Indeed, Φ1a(2, 2; i/3)/Φ1b(2, 2; i/3) is a root of

x18 − 102x15 + 420x12 − 304x9 − 93x6 + 6x3 + 1.
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Proving the identities

Classical proof of RR

A basic hypergeometic series transformation between a terminating
balanced 4φ3 and a very-well poised 8φ7 series:

Theorem (G. N. Watson (1929))

(aq, aq/bc)N
(aq/b, aq/c)N

N∑
r=0

(b, c , aq/de, q−N)r
(q, aq/d , aq/e, bcq−N/a)r

qr

=
N∑
r=0

1− aq2r

1− a
· (a, b, c , d , e, q−N)r

(q, aq/b, aq/c, aq/d , aq/e)r
·
(
a2qN+2

bcde

)r

.
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Proof of the RR identities

• Letting b, c , d , e,N →∞ suitably gives...

Corollary (Rogers-Selberg Identity)

∞∑
r=0

arqr
2

(q)r
=

1

(aq)∞

∞∑
r=0

1− aq2r

1− a
· (a)r

(q)r
· (−1)ra2rq5(r

2)+2r .

• Letting a = 1, q on the LHS gives RR.

• What is the RHS when a = 1, q?
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Proving the identities

Proof of the RR identities continued

Lemma (Jacobi Triple Product)

∞∑
r=−∞

(−1)rx rq(r
2) = (q)∞ · θ(x ; q),

• Rogers-Selberg + JTP =⇒ RR.
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Proving the identities

How did Andrews obtain his AG identities?

1 Extended Watson’s 8φ7 to 2m+6φ2m+5 which depend on N, a
parameter a, and 2m + 2 further parameters.

2 These 2m + 2 parameters play the role of b, c , d , e.

3 Let all these parameters →∞ and take nonterminating limit.

4 Resulting in a higher “Rogers-Selberg” identity.

5 If a = 1, q, then JTP essentially gives AG.
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Proving the identities

Proving Theorem 1-3

“Theorem” (Bartlett-Warnaar (2013))

There is an Andrews-style “crazier” transformation, arising from
the Cn root system, where

a ←→ (x1, x2, . . . , xn).

Remark

Their transformation laws make use of

∆C(x) :=
n∏

i=1

(1− x2
i )

∏
1≤i<j≤n

(xi − xj)(xixj − 1).
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Bartlett-Warnaar Transformation Law
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Proving the identities

What next?

Make use of the added flexibility.

Let parameters →∞ and take a nonterminating limit.

Analyze the RHS....using definition of Hall-Littlewood
polynomials.
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Proving the identities

Theorem (Higher Rogers-Selberg Identity)∑
λ

λ1≤m

q|λ|P ′2λ(x ; q) = L
(0)
m (x ; q),

where

L
(0)
m (x ; q) :=

∑
r∈Zn

+

∆C(xqr )

∆C(x)

×
n∏

i=1

x
2(m+1)ri
i q(m+1)r2

i +n(ri2) ·
n∏

i ,j=1

(
−xi
xj

)ri (xixj)ri
(qxi/xj)ri

.
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Proving the identities

Proving Theorems 1-3

• It is easy to modify LHS for each theorem.

• Manipulating L
(0)
m (x ; q) is difficult....requiring a complicated

recursive limiting argument.

• Many pages of reformulations involving Macdonald identities for

D
(2)
n+1, B

(1)
n , D

(1)
n ,

Weyl-Kac denominator formulas, and of course JTP.
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Proving algebraic properties

Turning to algebraic properties

Definition

If B2(x) is the 2nd Bernoulli polynomial, e(x) := e2πix and
a := (a1, a2) ∈ Q2, then the Siegel function ga is defined by

ga(τ) := −q
1
2

B2(a1)e(a2(a1 − 1)/2)

×
∞∏
n=1

(1− qn−1+a1e(a2))(1− qn−a1e(−a2)),

Theorem (Klein)

If a ∈ Z2/N and γ ∈ SL2(Z), then

g12
a (γτ) = g12

aγ (τ).
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Proving algebraic properties

Work of Kubert and Lang

Theorem (Kubert-Lang)

If τ is a CM point and N = Den(a), then the following are true:

1 We have that ga(τ) is an algebraic integer.

2 If N 6= pr , then ga(τ) is a unit over Z[j(τ)].

3 If N = pr , then ga(τ) is a unit over Z[ 1
p ][j(τ)].
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Proving algebraic properties

Proofs of Theorems 4 and 5

The Φ∗’s are Siegel products

Lemma

If m, n ≥ 1, then the following are true:

(1a) If κ = κ1(m, n) = 2m + 2n + 1, then we have

Φ1a(m, n; τ)

=
m∏
j=1

gj/κ,0(κτ)−1
m+n∏
j=1

gj/κ,0(κτ)−min(m,n−1,dj/2e−1)

(1b) ...and so on...
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Proving algebraic properties

Proofs of Theorems 4 and 5

Proofs now follow by...

The Φ∗’s are reciprocals of Siegel products.

Kubert-Lang extended to “products” of Siegel functions.

The classical theory of complex multiplication.

Analytic number theory to obtain single Galois orbits.
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Executive Summary

Our results...

“Theorem” (Griffin-O-Warnaar)

There are four triples (a, b, c) such that for all m, n ≥ 1 we have∑
λ

λ1≤m

qa|λ|P2λ(1, q, q2, . . . ; qbn+c)

= “Infinite product modular function”.

Remarks

1 RR identities when m = n = 1 in Theorem 1.

2 Arise as specialized characters of Kac-Moody Lie algebras.
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Executive Summary

Our results....

“Theorem” (Griffin-O-Warnaar)

1 The CM values Φ∗(m, n; τ) are algebraic.

2 The CM ratios
Φ1a(m, n; τ)

Φ1b(m, n; τ)
are algebraic integral units.

Remark

Letting m = n = 1 gives Berndt-Chan-Zhang and Cais-Conrad.
And τ = i gives Ramanujan’s evaluation:

e−2π/5 · R(e−2π) =
Φ1a(1, 1; i)

Φ1b(1, 1; i)
=

√
5 +
√

5

2
−
√

5 + 1

2
.
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