Moonshine: Lecture 3

Ken Ono (Emory University)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

I. History of Moonshine

<ロ> (四) (四) (三) (三) (三)

I. History of Moonshine

II. Distribution of Monstrous Moonshine

I. History of Moonshine

II. Distribution of Monstrous Moonshine

III. Umbral Moonshine

The Monster

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conjecture (Fischer and Griess (1973))

There is a huge simple group (containing a double cover of Fischer's B) with order

 $2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Monster

Conjecture (Fischer and Griess (1973))

There is a huge simple group (containing a double cover of Fischer's B) with order

 $2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71.$

Theorem (Griess (1982)) The Monster group \mathbb{M} exists.

Classification of Finite Simple Groups

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Classification of Finite Simple Groups

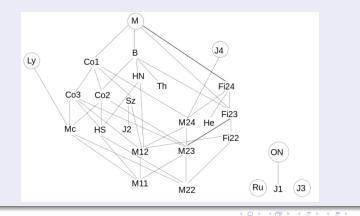
Theorem (Classification of Finite Simple Groups)

Finite simple groups live in natural infinite families, apart from the **sporadic groups**.

Classification of Finite Simple Groups

Theorem (Classification of Finite Simple Groups)

Finite simple groups live in natural infinite families, apart from the **sporadic groups**.



(ロ)、(型)、(E)、(E)、 E) の(の)

Theorem (Ogg, 1974)

 $X_0(N)$ est hyperelliptique pour exactement dix-neuf valuers de N.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Ogg, 1974)

 $X_0(N)$ est hyperelliptique pour exactement dix-neuf valuers de N.

Corollary (Ogg, 1974)

Toutes les valuers supersingulières de j sont \mathbb{F}_p si, et seulement si, $g^+ = 0$,

Theorem (Ogg, 1974)

 $X_0(N)$ est hyperelliptique pour exactement dix-neuf valuers de N.

Corollary (Ogg, 1974)

Toutes les valuers supersingulières de j sont \mathbb{F}_p si, et seulement si, $g^+ = 0$,

i.e. $p \in Ogg_{ss} := \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71\}.$

Ogg's Jack Daniels Problem

Remarque 1. - Dans sa leçon d'ouverture au Collège de France, le 14 janvier 1975, J. TITS mentionna le groupe de Fischer, "le monstre", qui, s'il existe, est un groupe simple "sporadique" d'ordre

2⁴⁶.3²⁰.5⁹.7⁶.11².13³.17.19.23.29.31.41.47.59.71 ,

i. e. divisible exactement par les quinze nombres premiers de la liste du corollaire. Une bouteille de Jack Daniels est offerte à celui qui expliquera cette coIncidence.

Ogg's Jack Daniels Problem

Remarque 1. - Dans sa leçon d'ouverture au Collège de France, le 14 janvier 1975, J. TITS mentionna le groupe de Fischer, "le monstre", qui, s'il existe, est un groupe simple "sporadique" d'ordre

2⁴⁶.3²⁰.5⁹.7⁶.11².13³.17.19.23.29.31.41.47.59.71 ,

i. e. divisible exactement par les quinze nombres premiers de la liste du corollaire. Une bouteille de Jack Daniels est offerte à celui qui expliquera cette coIncidence.

Remark

This is the first hint of Moonshine.

Second hint of moonshine

John McKay observed that

196884 = 1 + 196883

C

John Thompson's generalizations

Thompson further observed:

Coefficients of $j(\tau$	-)	Dimensions of irreducible representations of the Monster $\mathbb M$
864299970	=	1 + 1 + 196883 + 196883 + 21296876 + 842609326
21493760	=	1 + 196883 + 21296876
196884	=	1 + 196883

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Klein's *j*-function

Definition

Klein's *j*-function

$$j(\tau) - 744 = \sum_{n=-1}^{\infty} c(n)q^n$$

= $q^{-1} + 196884q + 21493760q^2 + 864299970q^3 + \dots$

satisfies

$$j\left(rac{a au+b}{c au+d}
ight)=j(au)$$
 for every matrix $egin{pmatrix} a&b\\ c&d \end{pmatrix}\in\mathrm{SL}_2(\mathbb{Z}).$

The Monster characters

The character table for \mathbb{M} (ordered by size) gives dimensions:

 $\chi_{194}(e) = 258823477531055064045234375.$

Monster module

Conjecture (Thompson)

There is an infinite-dimensional graded module

$$V^{
atural}=igoplus_{n=-1}^{\infty}V_n^{
atural}$$

with

 $\dim(V_n^{\natural})=c(n).$

The McKay-Thompson Series

Definition (Thompson)

Assuming the conjecture, if $g \in \mathbb{M}$, then define the McKay–Thompson series

$$T_g(au) := \sum_{n=-1}^\infty \operatorname{tr}(g|V_n^{\natural})q^n.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conjecture (Monstrous Moonshine)

For each $g\in\mathbb{M}$ there is an explicit genus 0 discrete subgroup $\Gamma_g\subset\mathrm{SL}_2(\mathbb{R})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 - のへで



Conjecture (Monstrous Moonshine)

For each $g \in \mathbb{M}$ there is an explicit genus 0 discrete subgroup $\Gamma_g \subset \mathrm{SL}_2(\mathbb{R})$ for which $\mathcal{T}_g(\tau)$ is the unique modular function with

$$T_g(\tau) = q^{-1} + O(q).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Borcherds' work

Theorem (Frenkel-Lepowsky-Meurman)

The moonshine module $V^{\natural} = \bigoplus_{n=-1}^{\infty} V_n^{\natural}$ is a vertex operator algebra whose graded dimension is given by $j(\tau) - 744$, and whose automorphism group is \mathbb{M} .

Borcherds' work

Theorem (Frenkel-Lepowsky-Meurman)

The moonshine module $V^{\natural} = \bigoplus_{n=-1}^{\infty} V_n^{\natural}$ is a vertex operator algebra whose graded dimension is given by $j(\tau) - 744$, and whose automorphism group is \mathbb{M} .

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Theorem (Borcherds)

The Monstrous Moonshine Conjecture is true.

Borcherds' work

Theorem (Frenkel-Lepowsky-Meurman)

The moonshine module $V^{\natural} = \bigoplus_{n=-1}^{\infty} V_n^{\natural}$ is a vertex operator algebra whose graded dimension is given by $j(\tau) - 744$, and whose automorphism group is \mathbb{M} .

Theorem (Borcherds)

The Monstrous Moonshine Conjecture is true.

Remark

Earlier work of Atkin, Fong and Smith numerically confirmed Monstrous moonshine.

(ロ)、(型)、(E)、(E)、 E) の(の)

Question A

Do order p elements in \mathbb{M} know the $\overline{\mathbb{F}}_p$ supersingular j-invariants?

Question A

Do order p elements in \mathbb{M} know the $\overline{\mathbb{F}}_p$ supersingular j-invariants?

Theorem (Dwork's Generating Function)
If
$$p \ge 5$$
 is prime, then
 $(j(\tau) - 744) \mid U(p) \equiv$
 $-\sum_{\alpha \in SS_p} \frac{A_p(\alpha)}{j(\tau) - \alpha} - \sum_{g(x) \in SS_p^*} \frac{B_p(g)j(\tau) + C_p(g)}{g(j(\tau))} \pmod{p}.$

Answer to Question A

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Answer to Question A

• If $g \in \mathbb{M}$ and p is prime, then **Moonshine implies** that

$$T_g + pT_g \mid U(p) = T_{g^p}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Answer to Question A

• If $g \in \mathbb{M}$ and p is prime, then Moonshine implies that

$$T_g + pT_g \mid U(p) = T_{g^p}.$$

• And so if g has order p, then

$$T_g + \rho T_g \mid U(\rho) = j - 744.$$

Answer to Question A

• If $g \in \mathbb{M}$ and p is prime, then **Moonshine implies** that

$$T_g + pT_g \mid U(p) = T_{g^p}.$$

• And so if g has order p, then

$$T_g + pT_g \mid U(p) = j - 744.$$

Which implies that

$$T_g \equiv j - 744 \pmod{p}.$$

Answer to Question A

• If $g \in \mathbb{M}$ and p is prime, then Moonshine implies that

$$T_g + pT_g \mid U(p) = T_{g^p}.$$

• And so if g has order p, then

$$T_g + pT_g \mid U(p) = j - 744.$$

Which implies that

$$T_g \equiv j - 744 \pmod{p}.$$

•giving us Dwork's generating function

$$T_g \mid U(p) \equiv (j-744) \mid U(p) \pmod{p}.$$

Question B

If $p \notin Ogg_{ss}$, then why do we expect $p \nmid \#\mathbb{M}$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question B If $p \notin Ogg_{ss}$, then why do we expect $p \nmid \#M$?

Answer

 By Moonshine, if g ∈ M has order p, then Γ_g ⊂ Γ⁺₀(p) has genus 0.

Question B If $p \notin Ogg_{ss}$, then why do we expect $p \nmid \#\mathbb{M}$?

Answer

 By Moonshine, if g ∈ M has order p, then Γ_g ⊂ Γ⁺₀(p) has genus 0.

• By Ogg, if $p \notin Ogg_{ss}$, then $X_0^+(p)$ has positive genus.

Question C

If $p \in Ogg_{ss}$, then why do we expect (a priori) that $p \mid \#\mathbb{M}$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Question C

If $p \in Ogg_{ss}$, then why do we expect (a priori) that $p \mid \#\mathbb{M}$?

- Let $h_p(\tau)$ be the hauptmodul for $\Gamma_0^+(p)$.
- Hecke implies that $h_p \mid U(p) \equiv (j 744) \mid U(p) \pmod{p}$.
- Deligne for E_{p-1} gives $h_p \mid U(p) \in S_{p-1}(1) \pmod{p}$.
- Implies $j'(h_p \mid U(p)) \in S_{p+1}(1) \pmod{p}$.
- Moonshine implies $j'(h_p \mid U(p))$ comes from Θ 's.
- But Serre implies $j'(h_p \mid U(p)) \in S_2(p) \pmod{p}$.
- We expect $S_2(p) \pmod{p}$ to be spanned by $\Theta's$.
- Pizer proved Θ 's from quaternion alg's suffice iff $p \in Ogg_{ss}$.

Question C

If $p \in Ogg_{ss}$, then why do we expect (a priori) that $p \mid \#\mathbb{M}$?

- Let $h_p(\tau)$ be the hauptmodul for $\Gamma_0^+(p)$.
- Hecke implies that $h_p \mid U(p) \equiv (j 744) \mid U(p) \pmod{p}$.
- Deligne for E_{p-1} gives $h_p \mid U(p) \in S_{p-1}(1) \pmod{p}$.
- Implies $j'(h_p \mid U(p)) \in S_{p+1}(1) \pmod{p}$.
- Moonshine implies $j'(h_p \mid U(p))$ comes from Θ 's.
- But Serre implies $j'(h_p \mid U(p)) \in S_2(p) \pmod{p}$.
- We expect $S_2(p) \pmod{p}$ to be spanned by $\Theta's$.
- Pizer proved Θ 's from quaternion alg's suffice iff $p \in Ogg_{ss}$.

Question C

If $p \in Ogg_{ss}$, then why do we expect (a priori) that $p \mid \#\mathbb{M}$?

- Let $h_p(\tau)$ be the hauptmodul for $\Gamma_0^+(p)$.
- Hecke implies that $h_p \mid U(p) \equiv (j 744) \mid U(p) \pmod{p}$.
- Deligne for E_{p-1} gives $h_p \mid U(p) \in S_{p-1}(1) \pmod{p}$.
- Implies $j'(h_p \mid U(p)) \in S_{p+1}(1) \pmod{p}$.
- Moonshine implies $j'(h_p \mid U(p))$ comes from Θ 's.
- But Serre implies $j'(h_p \mid U(p)) \in S_2(p) \pmod{p}$.
- We expect $S_2(p) \pmod{p}$ to be spanned by $\Theta's$.
- Pizer proved Θ 's from quaternion lag's suffice iff $p \in Ogg_{ss}$.

Question C

If $p \in Ogg_{ss}$, then why do we expect (a priori) that $p \mid \#\mathbb{M}$?

- Let $h_p(\tau)$ be the hauptmodul for $\Gamma_0^+(p)$.
- Hecke implies that $h_p \mid U(p) \equiv (j 744) \mid U(p) \pmod{p}$.
- Deligne for E_{p-1} gives $h_p \mid U(p) \in S_{p-1}(1) \pmod{p}$.
- Implies $j'(h_p \mid U(p)) \in S_{p+1}(1) \pmod{p}$.
- Moonshine implies $j'(h_p \mid U(p))$ comes from Θ 's.
- But Serre implies $j'(h_p \mid U(p)) \in S_2(p) \pmod{p}$.
- We expect $S_2(p) \pmod{p}$ to be spanned by $\Theta's$.
- Pizer proved Θ 's from quaternion alg's suffice iff $p \in Ogg_{ss}$.

Question C

If $p \in Ogg_{ss}$, then why do we expect (a priori) that $p \mid \#\mathbb{M}$?

- Let $h_p(\tau)$ be the hauptmodul for $\Gamma_0^+(p)$.
- Hecke implies that $h_p \mid U(p) \equiv (j 744) \mid U(p) \pmod{p}$.
- Deligne for E_{p-1} gives $h_p \mid U(p) \in S_{p-1}(1) \pmod{p}$.
- Implies $j'(h_p \mid U(p)) \in S_{p+1}(1) \pmod{p}$.
- Moonshine "expects" $j'(h_p \mid U(p))$ to come from Θ 's.
- But Serre implies $j'(h_p \mid U(p)) \in S_2(p) \pmod{p}$.
- We expect $S_2(p) \pmod{p}$ to be spanned by $\Theta's$.
- Pizer proved Θ 's from quaternion alg's suffice iff $p \in Ogg_{ss}$.

Question C

If $p \in Ogg_{ss}$, then why do we expect (a priori) that $p \mid \#\mathbb{M}$?

- Let $h_p(\tau)$ be the hauptmodul for $\Gamma_0^+(p)$.
- Hecke implies that $h_p \mid U(p) \equiv (j 744) \mid U(p) \pmod{p}$.
- Deligne for E_{p-1} gives $h_p \mid U(p) \in S_{p-1}(1) \pmod{p}$.
- Implies $j'(h_p \mid U(p)) \in S_{p+1}(1) \pmod{p}$.
- Moonshine "expects" $j'(h_p \mid U(p))$ to come from Θ 's.
- But Serre implies $j'(h_p \mid U(p)) \in S_2(p) \pmod{p}$.
- We expect $S_2(p) \pmod{p}$ to be spanned by $\Theta's$.
- Pizer proved Θ 's from quaternion alg's suffice iff $p \in Ogg_{ss}$.

Question C

If $p \in Ogg_{ss}$, then why do we expect (a priori) that $p \mid \#\mathbb{M}$?

- Let $h_p(\tau)$ be the hauptmodul for $\Gamma_0^+(p)$.
- Hecke implies that $h_p \mid U(p) \equiv (j 744) \mid U(p) \pmod{p}$.
- Deligne for E_{p-1} gives $h_p \mid U(p) \in S_{p-1}(1) \pmod{p}$.
- Implies $j'(h_p \mid U(p)) \in S_{p+1}(1) \pmod{p}$.
- Moonshine "expects" $j'(h_p \mid U(p))$ to come from Θ 's.
- But Serre implies $j'(h_p \mid U(p)) \in S_2(p) \pmod{p}$.
- We expect $S_2(p) \pmod{p}$ to be spanned by $\Theta's$.
- Pizer proved Θ 's from quaternion alg's suffice iff $p \in Ogg_{ss}$.

Question C

If $p \in Ogg_{ss}$, then why do we expect (a priori) that $p \mid \#\mathbb{M}$?

- Let $h_p(\tau)$ be the hauptmodul for $\Gamma_0^+(p)$.
- Hecke implies that $h_p \mid U(p) \equiv (j 744) \mid U(p) \pmod{p}$.
- Deligne for E_{p-1} gives $h_p \mid U(p) \in S_{p-1}(1) \pmod{p}$.
- Implies $j'(h_p \mid U(p)) \in S_{p+1}(1) \pmod{p}$.
- Moonshine "expects" $j'(h_p \mid U(p))$ to come from Θ 's.
- But Serre implies $j'(h_p \mid U(p)) \in S_2(p) \pmod{p}$.
- We expect $S_2(p) \pmod{p}$ to be spanned by $\Theta's$.
- Pizer proved Θ 's from quaternion alg's suffice iff $p \in Ogg_{ss}$.

Witten's Conjecture (2007)

Conjecture (Witten, Li-Song-Strominger)

The vertex operator algebra V^{\natural} is dual to a 3d quantum gravity theory. Thus, there are 194 "black hole states".

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Witten's Conjecture (2007)

Conjecture (Witten, Li-Song-Strominger)

The vertex operator algebra V^{\natural} is dual to a 3d quantum gravity theory. Thus, there are 194 "black hole states".

Question (Witten)

How are these different kinds of black hole states distributed?

Distribution of Monstrous Moonshine

Open Problem

Question

Consider the moonshine expressions

196884 = 1 + 196883

21493760 = 1 + 196883 + 21296876

 $864299970 \hspace{0.1 in} = \hspace{0.1 in} 1 + 1 + 196883 + 196883 + 21296876 + 842609326$

$$c(n) = \sum_{i=1}^{194} \mathbf{m}_i(n) \chi_i(e)$$

How many '1's, '196883's, etc. show up in these equations?

Some Proportions

n	$\delta(\mathbf{m}_1(n))$	$\delta(\mathbf{m}_2(n))$		$\delta\left(\mathbf{m}_{194}(n)\right)$
-1	1	0		0
1	1/2	1/2		0
:	:	:	÷	÷
40	$4.011\ldots imes10^{-4}$	$2.514\ldots imes10^{-3}$		0.00891

Some Proportions

n	$\delta(\mathbf{m}_1(n))$	$\delta(\mathbf{m}_2(n))$		$\delta\left(\mathbf{m}_{194}(n)\right)$
-1	1	0		0
1	1/2	1/2		0
÷	:		÷	÷
40	$4.011\ldots imes10^{-4}$	$2.514\ldots imes10^{-3}$		0.00891
60	$2.699\ldots imes 10^{-9}$	$2.732\ldots imes 10^{-8}$		0.04419

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Some Proportions

n	$\delta\left(\mathbf{m}_{1}(n)\right)$	$\delta(\mathbf{m}_2(n))$	•••	$\delta\left(\mathbf{m}_{194}(n)\right)$
-1	1	0		0
1	1/2	1/2		0
:	:	:	:	:
40	$4.011\ldots imes10^{-4}$	$2.514\ldots imes10^{-3}$		0.00891
60	$2.699\ldots imes 10^{-9}$	$2.732\ldots imes10^{-8}$		0.04419
80	$4.809\ldots imes10^{-14}$	$7.537\ldots imes10^{-13}$		0.04428
100	$4.427\ldots imes10^{-18}$	$1.077\ldots imes10^{-16}$		0.04428
120	$1.377\ldots imes 10^{-21}$	$5.501\ldots imes10^{-20}$		0.04428
140	$1.156\ldots imes 10^{-24}$	$1.260\ldots imes 10^{-22}$		0.04428

Some Proportions

n	$\delta(\mathbf{m}_1(n))$	$\delta\left(\mathbf{m}_{2}(n)\right)$		$\delta\left(\mathbf{m}_{194}(n)\right)$
-1	1	0		0
1	1/2	1/2		0
÷	:	÷	÷	÷
40	$4.011\ldots imes 10^{-4}$	$2.514\ldots imes10^{-3}$		0.00891
60	$2.699\ldots imes 10^{-9}$	$2.732\ldots imes10^{-8}$		0.04419
80	$4.809\ldots imes 10^{-14}$	$7.537\ldots imes10^{-13}$		0.04428
100	$4.427\ldots imes 10^{-18}$	$1.077\ldots imes10^{-16}$		0.04428
120	$1.377\ldots imes 10^{-21}$	$5.501\ldots imes10^{-20}$		0.04428
140	$1.156\ldots imes 10^{-24}$	$1.260\ldots imes 10^{-22}$		0.04428
160	$2.621\ldots imes 10^{-27}$	$3.443\ldots imes10^{-23}$		0.04428
180	$1.877\ldots imes 10^{-28}$	$3.371\ldots imes 10^{-23}$		0.04428
200	$1.715\ldots\times 10^{-28}$	$3.369\ldots imes 10^{-23}$		0.04428

Some Proportions

n	$\delta(\mathbf{m}_1(n))$	$\delta(\mathbf{m}_2(n))$		$\delta\left(\mathbf{m}_{194}(n)\right)$
-1	1	0	• • •	0
1	1/2	1/2		0
÷	:	:	÷	÷
40	$4.011\ldots imes10^{-4}$	$2.514\ldots imes10^{-3}$		0.00891
60	$2.699\ldots imes10^{-9}$	$2.732\ldots imes10^{-8}$		0.04419
80	$4.809\ldots imes10^{-14}$	$7.537\ldots imes10^{-13}$		0.04428
100	$4.427\ldots imes10^{-18}$	$1.077\ldots imes10^{-16}$		0.04428
120	$1.377\ldots imes10^{-21}$	$5.501\ldots imes10^{-20}$		0.04428
140	$1.156\ldots imes10^{-24}$	$1.260\ldots imes 10^{-22}$		0.04428
160	$2.621\ldots imes10^{-27}$	$3.443\ldots imes10^{-23}$		0.04428
180	$1.877\ldots imes10^{-28}$	$3.371\ldots imes 10^{-23}$		0.04428
200	$1.715\ldots imes10^{-28}$	$3.369\ldots imes 10^{-23}$		0.04428
220	$1.711\ldots imes10^{-28}$	$3.368\ldots imes 10^{-23}$		0.04428
240	$1.711\ldots imes 10^{-28}$	$3.368\ldots imes 10^{-23}$	 □ ▶ ∢ ि	0.04428

Distribution of Moonshine

Theorem 1 (Duncan, Griffin, O)

We have Rademacher style exact formulas for $\mathbf{m}_i(n)$ of the form

$$\mathbf{m}_i(n) = \sum_{\chi_i} \sum_{c} \text{Kloosterman sums} \times I\text{-Bessel fcns}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Distribution of Moonshine

Theorem 1 (Duncan, Griffin, O)

We have Rademacher style exact formulas for $\mathbf{m}_i(n)$ of the form

$$\mathbf{m}_i(n) = \sum_{\chi_i} \sum_{c} \text{Kloosterman sums} \times I\text{-Bessel fcns}$$

Remark

The dominant term gives

$$\mathbf{m}_i(n) \sim rac{\dim(\chi_i)}{\sqrt{2}|n|^{3/4}|\mathbb{M}|} \cdot e^{4\pi\sqrt{|n|}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Distribution

Remark

We have that

$$\delta(\mathbf{m}_i) := \lim_{n \to +\infty} \frac{\mathbf{m}_i(n)}{\sum_{i=1}^{194} \mathbf{m}_i(n)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is well defined

Distribution

Remark

We have that

$$\delta(\mathbf{m}_i) := \lim_{n \to +\infty} \frac{\mathbf{m}_i(n)}{\sum_{i=1}^{194} \mathbf{m}_i(n)}$$

is well defined, and

$$\delta(\mathbf{m}_i) = \frac{\dim(\chi_i)}{\sum_{j=1}^{194} \dim(\chi_j)} = \frac{\dim(\chi_i)}{5844076785304502808013602136}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Orthogonality

Fact

If G is a group and $g, h \in G$, then

$$\sum_{\chi_i} \chi_i(g) \overline{\chi_i(h)} = \begin{cases} |C_G(g)| & \text{If } g \text{ and } h \text{ are conjugate} \\ 0 & \text{otherwise,} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $C_G(g)$ is the centralizer of g in G.

Moonshine: Lecture 3

II. Distribution of Monstrous Moonshine

Proof

 $T_{\chi}(\tau)$

Define

$$T_{\chi_i}(au) = rac{1}{|\mathbb{M}|} \sum_{oldsymbol{g} \in \mathbb{M}} \overline{\chi_i(oldsymbol{g})} T_{oldsymbol{g}}(au).$$

 $T_{\chi}(\tau)$

Define

$$T_{\chi_i}(\tau) = rac{1}{|\mathbb{M}|} \sum_{g \in \mathbb{M}} \overline{\chi_i(g)} T_g(\tau).$$

• The orthogonality of characters gives the inverse relation

$$T_g(\tau) = \sum_{i=1}^{194} \chi_i(g) T_{\chi_i}(\tau).$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

 $T_{\chi}(\tau)$

Define

$$T_{\chi_i}(\tau) = rac{1}{|\mathbb{M}|} \sum_{g \in \mathbb{M}} \overline{\chi_i(g)} T_g(\tau).$$

• The orthogonality of characters gives the inverse relation

$$T_g(\tau) = \sum_{i=1}^{194} \chi_i(g) T_{\chi_i}(\tau).$$

• From this we can work out that

$$T_{\chi_i}(\tau) = \sum_{n=-1}^{\infty} \mathbf{m}_i(n) q^n.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Moonshine: Lecture 3

II. Distribution of Monstrous Moonshine

Proof

Outline of the proof

Outline of the proof

Theorem 2 (Duncan, Griffin,O)

We have exact formulas for the coeffs of the $T_g(\tau)$ and $T_{\chi_i}(\tau)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline of the proof

Theorem 2 (Duncan, Griffin,O)

We have exact formulas for the coeffs of the $T_g(\tau)$ and $T_{\chi_i}(\tau)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sketch of Proof

• Each Γ_g contains some congruence subgroup $\Gamma_0(N_g)$.

Outline of the proof

Theorem 2 (Duncan, Griffin,O)

We have exact formulas for the coeffs of the $T_g(\tau)$ and $T_{\chi_i}(\tau)$.

Sketch of Proof

- Each Γ_g contains some congruence subgroup $\Gamma_0(N_g)$.
- **2** We first find the poles of $T_g(\tau)$.

Outline of the proof

Theorem 2 (Duncan, Griffin,O)

We have exact formulas for the coeffs of the $T_g(\tau)$ and $T_{\chi_i}(\tau)$.

Sketch of Proof

- Each Γ_g contains some congruence subgroup $\Gamma_0(N_g)$.
- **2** We first find the poles of $T_g(\tau)$.
- We can then build a form with matching poles via Poincaré series.

Outline of the proof

Theorem 2 (Duncan, Griffin,O)

We have exact formulas for the coeffs of the $T_g(\tau)$ and $T_{\chi_i}(\tau)$.

Sketch of Proof

- Each Γ_g contains some congruence subgroup $\Gamma_0(N_g)$.
- **2** We first find the poles of $T_g(\tau)$.
- We can then build a form with matching poles via Poincaré series.
- Interpretended of the series of the serie

Moonshine: Lecture 3 III. Umbral Moonshine

Umbral (shadow) Moonshine

(日)、(四)、(E)、(E)、(E)

Moonshine: Lecture 3 III. Umbral Moonshine

Present day moonshine

Observation (Eguchi, Ooguri, Tachikawa (2010)) There is a mock modular form $H(\tau) = q^{-\frac{1}{8}} \left(-2 + 45q + 231q^2 + 770q^3 + 2277q^4 + 5796q^5 + ...\right).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Present day moonshine

Observation (Eguchi, Ooguri, Tachikawa (2010)) There is a mock modular form $H(\tau) = q^{-\frac{1}{8}} (-2 + 45q + 231q^2 + 770q^3 + 2277q^4 + 5796q^5 + ...)$ The degrees of the irreducible repn's of the Mathieu group M_{24} are: 1,23,45,231,252,253,483,770,990,1035, 1265,1771,2024,2277,3312,3520,5313,5544,5796,10395.

Moonshine: Lecture 3 III. Umbral Moonshine

Mathieu Moonshine

Theorem (Gannon (2013))

There is an infinite dimensional graded M_{24} -module whose McKay-Thompson series are specific mock modular forms.

Theorem (Gannon (2013))

There is an infinite dimensional graded M_{24} -module whose McKay-Thompson series are specific mock modular forms.

Remark

• Alleged multiplicities must be integral and non-negative.

Theorem (Gannon (2013))

There is an infinite dimensional graded M_{24} -module whose McKay-Thompson series are specific mock modular forms.

Remark

- Alleged multiplicities must be integral and non-negative.
- Computed using wgt 1/2 weakly holomorphic modular forms.

Theorem (Gannon (2013))

There is an infinite dimensional graded M_{24} -module whose McKay-Thompson series are specific mock modular forms.

Remark

- Alleged multiplicities must be integral and non-negative.
- Computed using wgt 1/2 weakly holomorphic modular forms.
- Integrality follows from "theory of modular forms mod p".

Theorem (Gannon (2013))

There is an infinite dimensional graded M_{24} -module whose McKay-Thompson series are specific mock modular forms.

Remark

- Alleged multiplicities must be integral and non-negative.
- Computed using wgt 1/2 weakly holomorphic modular forms.
- Integrality follows from "theory of modular forms mod p".
- Non-negativity follows from "effectivizing" argument of Bringmann-O on Ramanujan's f(q) mock theta function.

What are mock modular forms?

Notation. Throughout, let

$$\tau = x + iy \in \mathbb{H}$$
 with $x, y \in \mathbb{R}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What are mock modular forms?

Notation. Throughout, let

$$au = \mathbf{x} + i\mathbf{y} \in \mathbb{H} \text{ with } \mathbf{x}, \mathbf{y} \in \mathbb{R}.$$

Hyperbolic Laplacian.

$$\Delta_k := -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + iky \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Harmonic Maass forms

Definition

A harmonic Maass form of weight k on a subgroup $\Gamma \subset SL_2(\mathbb{Z})$ is any smooth function $M : \mathbb{H} \to \mathbb{C}$ satisfying:

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Harmonic Maass forms

Definition

A harmonic Maass form of weight k on a subgroup $\Gamma \subset SL_2(\mathbb{Z})$ is any smooth function $M : \mathbb{H} \to \mathbb{C}$ satisfying:

• For all $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ and $z \in \mathbb{H}$, we have

$$M\left(rac{a au+b}{c au+d}
ight)=(cz+d)^k\ M(au).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Harmonic Maass forms

Definition

A harmonic Maass form of weight k on a subgroup $\Gamma \subset SL_2(\mathbb{Z})$ is any smooth function $M : \mathbb{H} \to \mathbb{C}$ satisfying:

 $\bullet \quad \text{For all } A = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in \Gamma \text{ and } z \in \mathbb{H}, \text{ we have}$

$$M\left(rac{a au+b}{c au+d}
ight)=(cz+d)^k\ M(au).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

2 We have that $\Delta_k M = 0$.

Fourier expansions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fourier expansions

Fundamental Lemma

If $M \in H_{2-k}$ and $\Gamma(a, x)$ is the incomplete Γ -function, then

$$egin{aligned} &M(au) = \sum_{n \gg -\infty} c^+(n) q^n + \sum_{n < 0} c^-(n) \Gamma(k-1, 4\pi |n| y) q^n. \ & \uparrow & \uparrow \ & \text{Holomorphic part } M^+ & \text{Nonholomorphic part } M^- \end{aligned}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Fourier expansions

Fundamental Lemma If $M \in H_{2-k}$ and $\Gamma(a, x)$ is the incomplete Γ -function, then $M(\tau) = \sum_{n \gg -\infty} c^+(n)q^n + \sum_{n < 0} c^-(n)\Gamma(k-1, 4\pi |n|y)q^n.$ \uparrow Holomorphic part M^+ Nonholomorphic part M^-

Remark

• We call M^+ a mock modular form.

Fourier expansions

Fundamental Lemma

If $M \in H_{2-k}$ and $\Gamma(a, x)$ is the incomplete Γ -function, then

$$egin{aligned} & M(au) = \sum_{n \gg -\infty} c^+(n) q^n + \sum_{n < 0} c^-(n) \Gamma(k-1, 4\pi |n| y) q^n. \ & \uparrow & \uparrow \ & \text{Holomorphic part } M^+ & \text{Nonholomorphic part } M^- \end{aligned}$$

Remark

• We call M^+ a mock modular form.

• If
$$\xi_{2-k} := 2iy^{2-k}\overline{\frac{\partial}{\partial \overline{\tau}}}$$
, then the shadow of M is $\xi_{2-k}(M^-)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Shadows are modular forms

Fundamental Lemma

The operator $\xi_{2-k} := 2iy^{2-k}\overline{\frac{\partial}{\partial \overline{\tau}}}$ defines a surjective map $\xi_{2-k} : H_{2-k} \longrightarrow S_k.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Shadows are modular forms

Fundamental Lemma

The operator $\xi_{2-k} := 2iy^{2-k}\overline{\frac{\partial}{\partial \overline{\tau}}}$ defines a surjective map

$$\xi_{2-k}: H_{2-k} \longrightarrow S_k.$$

Remark

In M₂₄ Moonshine, the McKay-Thompson series are mock modular forms with classical Jacobi theta series shadows!

Larger Framework of Moonshine?

Remark

There are well known connections with even unimodular positive definite rank 24 lattices:

 $\mathbb{M} \hspace{.1in} \longleftrightarrow \hspace{.1in} \text{Leech lattice}$

$$M_{24} \iff A_1^{24}$$
 lattice.

Umbral Moonshine Conjecture

Conjecture (Cheng, Duncan, Harvey (2013))

Let L^X (up to isomorphism) be an even unimodular positive-definite rank 24 lattice, and let :

• X be the corresponding ADE-type root system.

Umbral Moonshine Conjecture

Conjecture (Cheng, Duncan, Harvey (2013))

Let L^X (up to isomorphism) be an even unimodular positive-definite rank 24 lattice, and let :

• X be the corresponding ADE-type root system.

• W^X the Weyl group of X.

Umbral Moonshine Conjecture

Conjecture (Cheng, Duncan, Harvey (2013))

Let L^X (up to isomorphism) be an even unimodular positive-definite rank 24 lattice, and let :

• X be the corresponding ADE-type root system.

- W^X the Weyl group of X.
- The umbral group $G^X := \operatorname{Aut}(L^X)/W^X$.

Umbral Moonshine Conjecture

Conjecture (Cheng, Duncan, Harvey (2013))

Let L^X (up to isomorphism) be an even unimodular positive-definite rank 24 lattice, and let :

- X be the corresponding ADE-type root system.
- W^X the Weyl group of X.
- The umbral group $G^X := \operatorname{Aut}(L^X)/W^X$.
- For each g ∈ G^X let H^X_g(τ) be a specific automorphic form with minimal principal parts.

Umbral Moonshine Conjecture

Conjecture (Cheng, Duncan, Harvey (2013))

Let L^X (up to isomorphism) be an even unimodular positive-definite rank 24 lattice, and let :

- X be the corresponding ADE-type root system.
- W^X the Weyl group of X.
- The umbral group $G^X := \operatorname{Aut}(L^X)/W^X$.
- For each g ∈ G^X let H^X_g(τ) be a specific automorphic form with minimal principal parts.

Then there is an infinite dimensional graded G^X module K^X for which $H_g^X(\tau)$ is the McKay-Thompson series for g.

• Cheng, Duncan and Harvey constructed their mock modular forms using "Rademacher sums".

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Remarks

• Cheng, Duncan and Harvey constructed their mock modular forms using "Rademacher sums".

• For $X = A_2^{12}$ we have $G^X = M_{24}$ and Gannon's Theorem.

Remarks

- Cheng, Duncan and Harvey constructed their mock modular forms using "Rademacher sums".
- For $X = A_2^{12}$ we have $G^X = M_{24}$ and Gannon's Theorem.
- There are 22 other isomorphism classes of X, the $H_g^X(\tau)$ constructed from X and its Coxeter number m(X).

Remarks

- Cheng, Duncan and Harvey constructed their mock modular forms using "Rademacher sums".
- For $X = A_2^{12}$ we have $G^X = M_{24}$ and Gannon's Theorem.
- There are 22 other isomorphism classes of X, the H^X_g(τ) constructed from X and its Coxeter number m(X).

Remark

Apart from the Leech case, the $H_g^X(\tau)$ are always weight 1/2 mock modular forms whose shadows are weight 3/2 cuspidal theta series with level m(X).

Theorem 3 (Duncan, Griffin, Ono)

The Umbral Moonshine Conjecture is true.

Theorem 3 (Duncan, Griffin, Ono)

The Umbral Moonshine Conjecture is true.

Remark

This result is a "numerical proof" of Umbral moonshine. It is analogous to the work of Atkin, Fong and Smith in the case of monstrous moonshine.

Beautiful examples

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Beautiful examples

Example

For M_{12} the MT series include Ramanujan's mock thetas:

$$f(q) = 1 + \sum_{n=1}^{\infty} \frac{q^{n^2}}{(1+q)^2(1+q^2)^2 \cdots (1+q^n)^2},$$

$$\phi(q) = 1 + \sum_{n=1}^{\infty} \frac{q^{n^2}}{(1+q^2)(1+q^4) \cdots (1+q^{2n})},$$

$$\chi(q) = 1 + \sum_{n=1}^{\infty} \frac{q^{n^2}}{(1-q+q^2)(1-q^2+q^4) \cdots (1-q^n+q^{2n})}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Moonshine: Lecture 3 III. Umbral Moonshine Sketch of the proof

Strategy of Proof

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Moonshine: Lecture 3 III. Umbral Moonshine Sketch of the proof

Strategy of Proof

For each X we compute non-negative integers $\mathbf{m}_i^X(n)$ for which

$$\mathcal{K}^{X} = \sum_{n=-1}^{\infty} \sum_{\chi_{i}} \mathbf{m}_{i}^{X}(n) V_{\chi_{i}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Orthogonality

Fact

If G is a group and $g, h \in G$, then

$$\sum_{\chi_i} \chi_i(g) \overline{\chi_i(h)} = \begin{cases} |C_G(g)| & \text{If } g \text{ and } h \text{ are conjugate} \\ 0 & \text{otherwise,} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $C_G(g)$ is the centralizer of g in G.

Moonshine: Lecture 3 III. Umbral Moonshine Sketch of the proof

 $T_{\chi}^{X}(\tau)$

• Define the weight 1/2 harmonic Maass form

$$T^{X}_{\chi_{i}}(au) := rac{1}{|\mathbb{M}|} \sum_{g \in \mathcal{G}^{X}} \overline{\chi_{i}(g)} H^{X}_{g}(au).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Moonshine: Lecture 3 III. Umbral Moonshine Sketch of the proof

$$T_{\chi}^{X}(\tau)$$

• Define the weight 1/2 harmonic Maass form

$$T_{\chi_i}^{\mathcal{X}}(\tau) := rac{1}{|\mathbb{M}|} \sum_{g \in \mathcal{G}^{\mathcal{X}}} \overline{\chi_i(g)} \mathcal{H}_g^{\mathcal{X}}(\tau).$$

• The orthogonality of characters gives the inverse relation

$$H_g^X(\tau) = \sum \chi_i(g) T_{\chi_i}^X(\tau).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Moonshine: Lecture 3 III. Umbral Moonshine Sketch of the proof

$$T_{\chi}^{X}(\tau)$$

• Define the weight 1/2 harmonic Maass form

$$T_{\chi_i}^{\mathsf{X}}(\tau) := rac{1}{|\mathbb{M}|} \sum_{g \in G^{\mathsf{X}}} \overline{\chi_i(g)} H_g^{\mathsf{X}}(\tau).$$

• The orthogonality of characters gives the inverse relation

$$H_g^X(\tau) = \sum \chi_i(g) T_{\chi_i}^X(\tau).$$

• It would be great if

$$T^X_{\chi_i}(\tau) = \sum_{n=-1}^{\infty} \mathbf{m}^X_i(n) q^n.$$

Moonshine: Lecture 3 III. Umbral Moonshine Sketch of the proof

$$T_{\chi}^{X}(\tau)$$

• Define the weight 1/2 harmonic Maass form

$$T_{\chi_i}^{\mathsf{X}}(\tau) := rac{1}{|\mathbb{M}|} \sum_{g \in \mathcal{G}^{\mathsf{X}}} \overline{\chi_i(g)} H_g^{\mathsf{X}}(\tau).$$

• The orthogonality of characters gives the inverse relation

$$H_g^X(\tau) = \sum \chi_i(g) T_{\chi_i}^X(\tau).$$

• It would be great if

$$T^X_{\chi_i}(\tau) = \sum_{n=-1}^{\infty} \mathbf{m}^X_i(n) q^n.$$

We only need to establish integrality and non-negativity!

Difficulties

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Difficulties

• We have that

$$T^X_{\chi_i}(\tau) =$$
 "period integral of a Θ -function" + $\sum_{n=-1}^{\infty} \mathbf{m}_i^X(n) q^n$.

~

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Difficulties

• We have that

$$T_{\chi_i}^X(\tau) =$$
 "period integral of a Θ -function" + $\sum_{n=-1}^{\infty} \mathbf{m}_i^X(n) q^n$.

• Method of holomorphic projection gives:

$$\pi_{hol}: H_{\frac{1}{2}} \longrightarrow \widetilde{M}_{2} = \{ \text{wgt } 2 \text{ quasimodular forms} \}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Holomorphic projection

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Holomorphic projection

Definition

Let f be a wgt $k \ge 2$ (not necessarily holomorphic) modular form

$$f(\tau) = \sum_{n \in \mathbb{Z}} a_f(n, y) q^n.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Holomorphic projection

Definition

Let f be a wgt $k \ge 2$ (not necessarily holomorphic) modular form

$$f(\tau) = \sum_{n \in \mathbb{Z}} a_f(n, y) q^n.$$

We say that f is **admissible** if the following hold:

Holomorphic projection

Definition

Let f be a wgt $k \ge 2$ (not necessarily holomorphic) modular form

$$f(\tau) = \sum_{n \in \mathbb{Z}} a_f(n, y) q^n.$$

We say that *f* is **admissible** if the following hold:

• At cusps we have $f(\gamma^{-1}w) \left(\frac{d}{dw}\tau\right)^{\frac{k}{2}} = c_0 + O(\operatorname{Im}(w)^{-\epsilon})$, where $w = \gamma \tau$,

Holomorphic projection

Definition

Let f be a wgt $k \ge 2$ (not necessarily holomorphic) modular form

$$f(\tau) = \sum_{n \in \mathbb{Z}} a_f(n, y) q^n.$$

We say that *f* is **admissible** if the following hold:

• At cusps we have $f(\gamma^{-1}w) \left(\frac{d}{dw}\tau\right)^{\frac{k}{2}} = c_0 + O(\operatorname{Im}(w)^{-\epsilon})$, where $w = \gamma \tau$,

2)
$$a_f(n,y) = O(y^{2-k})$$
 as $y \to 0$ for all $n > 0$.

Holomorphic projection continued

Definition

If f is an admissible wgt $k \ge 2$ nonholomorphic modular form, then its **holomorphic projection** is

Holomorphic projection continued

Definition

If f is an admissible wgt $k \ge 2$ nonholomorphic modular form, then its **holomorphic projection** is

$$(\pi_{hol}f)(au) := (\pi_{hol}^k f)(au) := c_0 + \sum_{n=1}^{\infty} c(n)q^n,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Holomorphic projection continued

Definition

If f is an admissible wgt $k \ge 2$ nonholomorphic modular form, then its **holomorphic projection** is

$$(\pi_{hol}f)(\tau):=(\pi_{hol}^kf)(\tau):=c_0+\sum_{n=1}^\infty c(n)q^n,$$

where for n > 0 we have

$$c(n) = \frac{(4\pi n)^{k-1}}{(k-2)!} \int_0^\infty a_f(n,y) e^{-4\pi n y} y^{k-2} dy.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Holomorphic projection continued

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Holomorphic projection continued

Fundamental Lemma

If f is an admissible wgt $k \ge 2$ nonholomorphic modular form on $\Gamma_0(N)$, then the following are true.

Holomorphic projection continued

Fundamental Lemma

If f is an admissible wgt $k \ge 2$ nonholomorphic modular form on $\Gamma_0(N)$, then the following are true.

• If f is holomorphic, then $\pi_{hol}(f) = f(\tau)$.

Holomorphic projection continued

Fundamental Lemma

If f is an admissible wgt $k \ge 2$ nonholomorphic modular form on $\Gamma_0(N)$, then the following are true.

- If f is holomorphic, then $\pi_{hol}(f) = f(\tau)$.
- **2** The function $\pi_{hol}(f)$ lies in the space $\widetilde{M}_k(\Gamma_0(N))$.

Holomorphic projection continued

Fundamental Lemma

If f is an admissible wgt $k \ge 2$ nonholomorphic modular form on $\Gamma_0(N)$, then the following are true.

- If f is holomorphic, then $\pi_{hol}(f) = f(\tau)$.
- **2** The function $\pi_{hol}(f)$ lies in the space $\widetilde{M}_k(\Gamma_0(N))$.

Remark

Holomorphic projections appeared earlier in works of Sturm, and Gross-Zagier, and work of Imamoglu, Raum, and Richter, Mertens, and Zwegers in connection with mock modular forms.

Sketch of the proof of umbral moonshine

• Compute each wgt 1/2 harmonic Maass form $T_{\chi_i}^{\chi}(\tau)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sketch of the proof of umbral moonshine

- Compute each wgt 1/2 harmonic Maass form $T_{\chi_i}^X(\tau)$.
- Up to the nonholomorphic part, they are the multiplicity gen fcns for V^X_{χi} of the alleged moonshine modules K^X.

Sketch of the proof of umbral moonshine

- Compute each wgt 1/2 harmonic Maass form $T_{\chi_i}^X(\tau)$.
- Up to the nonholomorphic part, they are the multiplicity gen fcns for $V_{\chi_i}^X$ of the alleged moonshine modules K^X .
- Compute holomorphic projections of products with shadows.

Sketch of the proof of umbral moonshine

- Compute each wgt 1/2 harmonic Maass form $T_{\chi_i}^X(\tau)$.
- Up to the nonholomorphic part, they are the multiplicity gen fcns for $V_{\chi_i}^X$ of the alleged moonshine modules K^X .
- Compute holomorphic projections of products with shadows.

 The m^X_{\lambda_i}(n) are integers iff these holomorphic projections satisfy certain congruences.

Sketch of the proof of umbral moonshine

- Compute each wgt 1/2 harmonic Maass form $T_{\chi_i}^X(\tau)$.
- Up to the nonholomorphic part, they are the multiplicity gen fcns for V^X_{χi} of the alleged moonshine modules K^X.
- Compute holomorphic projections of products with shadows.

- The m^X_{\lambda_i}(n) are integers iff these holomorphic projections satisfy certain congruences.
- The m^X_{\lambda_i}(n) can be estimated using "infinite sums" of Kloosterman sums weighted by *I*-Bessel functions.

Sketch of the proof of umbral moonshine

- Compute each wgt 1/2 harmonic Maass form $T_{\chi_i}^{\chi}(\tau)$.
- Up to the nonholomorphic part, they are the multiplicity gen fcns for V^X_{χi} of the alleged moonshine modules K^X.
- Compute holomorphic projections of products with shadows.
- The m^X_{\lambda_i}(n) are integers iff these holomorphic projections satisfy certain congruences.
- The m^X_{Xi}(n) can be estimated using "infinite sums" of Kloosterman sums weighted by *I*-Bessel functions. For sufficiently large n this establishes non-negativity.

Sketch of the proof of umbral moonshine

- Compute each wgt 1/2 harmonic Maass form $T_{\chi_i}^X(\tau)$.
- Up to the nonholomorphic part, they are the multiplicity gen fcns for $V_{\chi_i}^X$ of the alleged moonshine modules K^X .
- Compute holomorphic projections of products with shadows.
- The m^X_{\lambda_i}(n) are integers iff these holomorphic projections satisfy certain congruences.
- The m^X_{Xi}(n) can be estimated using "infinite sums" of Kloosterman sums weighted by *I*-Bessel functions. For sufficiently large n this establishes non-negativity.
- Check the finitely many (less than 400) cases directly.

Distribution of Monstrous Moonshine

Theorem 1 (Duncan, Griffin, O)

If $1 \le i \le 194$, then we have Rademacher style exact formulas for $\mathbf{m}_i(n)$.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Distribution of Monstrous Moonshine

Theorem 1 (Duncan, Griffin, O)

If $1 \le i \le 194$, then we have Rademacher style exact formulas for $\mathbf{m}_i(n)$.

Remark

We have that

$$\delta(\mathbf{m}_i) = \frac{\dim(\chi_i)}{\sum_{j=1}^{194} \dim(\chi_j)} = \frac{\dim(\chi_i)}{5844076785304502808013602136}.$$

Moonshine: Lecture 3 Executive Summary

Umbral Moonshine

Theorem 3 (Duncan, Griffin, Ono)

The Umbral Moonshine Conjecture is true.

Moonshine: Lecture 3 Executive Summary

Umbral Moonshine

Theorem 3 (Duncan, Griffin, Ono)

The Umbral Moonshine Conjecture is true.

Question

Do the infinite dimensional graded G^{X} modules K^{X} exhibit deep structure?

Moonshine: Lecture 3 Executive Summary

Umbral Moonshine

Theorem 3 (Duncan, Griffin, Ono)

The Umbral Moonshine Conjecture is true.

Question

Do the infinite dimensional graded G^X modules K^X exhibit deep structure? Probably....and some work of Duncan and Harvey makes use of indefinite theta series to obtain a VOA structure in the M_{24} case.