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I. History of Moonshine

The Monster

Conjecture (Fischer and Griess (1973))

There is a huge simple group (containing a double cover of
Fischer’s B) with order

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71.

Theorem (Griess (1982))

The Monster group M exists.
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I. History of Moonshine

Ogg’s Theorem

Theorem (Ogg, 1974)

X0(N) est hyperelliptique pour exactement dix-neuf valuers de N.

Corollary (Ogg, 1974)

Toutes les valuers supersingulières de j sont Fp si, et seulement si,
g+ = 0,

i.e. p ∈ Oggss := {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}.
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Second hint of moonshine

John McKay observed that

196884 = 1 + 196883
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I. History of Moonshine

John Thompson’s generalizations

Thompson further observed:

196884 = 1 + 196883

21493760 = 1 + 196883 + 21296876

864299970 = 1 + 1 + 196883 + 196883 + 21296876 + 842609326
864299970︸ ︷︷ ︸

Coefficients of j(τ)

1 + 1 + 196883 + 196883 + 21296876 + 842609326︸ ︷︷ ︸
Dimensions of irreducible representations of the Monster M
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I. History of Moonshine

Klein’s j-function

Definition

Klein’s j-function

j(τ)− 744 =
∞∑

n=−1

c(n)qn

= q−1 + 196884q + 21493760q2 + 864299970q3 + . . .

satisfies

j

(
aτ + b

cτ + d

)
= j(τ) for every matrix

(
a b
c d

)
∈ SL2(Z).
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I. History of Moonshine

The Monster characters

The character table for M (ordered by size) gives dimensions:

χ1(e) = 1

χ2(e) = 196883

χ3(e) = 21296876

χ4(e) = 842609326

...

χ194(e) = 258823477531055064045234375.
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I. History of Moonshine

Monster module

Conjecture (Thompson)

There is an infinite-dimensional graded module

V \ =
∞⊕

n=−1

V \
n

with
dim(V \

n) = c(n).
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I. History of Moonshine

The McKay-Thompson Series

Definition (Thompson)

Assuming the conjecture, if g ∈M, then define the
McKay–Thompson series

Tg (τ) :=
∞∑

n=−1

tr(g |V \
n)qn.



Moonshine: Lecture 3

I. History of Moonshine

Conway and Norton

Conjecture (Monstrous Moonshine)

For each g ∈M there is an explicit genus 0 discrete subgroup
Γg ⊂ SL2(R)

for which Tg (τ) is the unique modular function with

Tg (τ) = q−1 + O(q).
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I. History of Moonshine

Borcherds’ work

Theorem (Frenkel–Lepowsky–Meurman)

The moonshine module V \ =
⊕∞

n=−1 V
\
n is a vertex operator

algebra whose graded dimension is given by j(τ)− 744, and whose
automorphism group is M.

Theorem (Borcherds)

The Monstrous Moonshine Conjecture is true.

Remark

Earlier work of Atkin, Fong and Smith numerically confirmed
Monstrous moonshine.
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Ogg’s Problem

Question A

Do order p elements in M know the Fp supersingular j-invariants?

Theorem (Dwork’s Generating Function)

If p ≥ 5 is prime, then

(j(τ)− 744) | U(p) ≡

−
∑
α∈SSp

Ap(α)

j(τ)− α
−

∑
g(x)∈SS∗

p

Bp(g)j(τ) + Cp(g)

g(j(τ))
(mod p).
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The Jack Daniels Problem

Answer to Question A

If g ∈M and p is prime, then Moonshine implies that

Tg + pTg | U(p) = Tgp .

And so if g has order p, then

Tg + pTg | U(p) = j − 744.

Which implies that

Tg ≡ j − 744 (mod p).

....giving us Dwork’s generating function

Tg | U(p) ≡ (j − 744) | U(p) (mod p).
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The Jack Daniels Problem

Ogg’s Problem

Question B

If p 6∈ Oggss , then why do we expect p - #M?

Answer

By Moonshine, if g ∈M has order p, then Γg ⊂ Γ+
0 (p) has

genus 0.

By Ogg, if p 6∈ Oggss , then X+
0 (p) has positive genus.
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The Jack Daniels Problem

Ogg’s Problem

Question C

If p ∈ Oggss , then why do we expect (a priori) that p | #M?

Heuristic Argument?

Let hp(τ) be the hauptmodul for Γ+
0 (p).

Hecke implies that hp | U(p) ≡ (j − 744) | U(p) (mod p).

Deligne for Ep−1 gives hp | U(p) ∈ Sp−1(1) (mod p).

Implies j ′(hp | U(p)) ∈ Sp+1(1) (mod p).

Moonshine implies j ′(hp | U(p)) comes from Θ’s.

But Serre implies j ′(hp | U(p)) ∈ S2(p) (mod p).

We expect S2(p) (mod p) to be spanned by Θ′s.

Pizer proved Θ′s from quaternion alg’s suffice iff p ∈ Oggss .
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The Jack Daniels Problem

Witten’s Conjecture (2007)

Conjecture (Witten, Li-Song-Strominger)

The vertex operator algebra V \ is dual to a 3d quantum gravity
theory. Thus, there are 194 “black hole states”.

Question (Witten)

How are these different kinds of black hole states distributed?
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II. Distribution of Monstrous Moonshine

Open Problem

Question

Consider the moonshine expressions

196884 = 1 + 196883

21493760 = 1 + 196883 + 21296876

864299970 = 1 + 1 + 196883 + 196883 + 21296876 + 842609326
...

c(n) =
194∑
i=1

mi (n)χi (e)

How many ‘1’s, ‘196883’s, etc. show up in these equations?
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II. Distribution of Monstrous Moonshine

Some Proportions

n δ (m1(n)) δ (m2(n)) · · · δ (m194(n))

-1 1 0 · · · 0
1 1/2 1/2 · · · 0
...

...
...

...
...

40 4.011 . . .× 10−4 2.514 . . .× 10−3 · · · 0.00891. . .

60 2.699 . . .× 10−9 2.732 . . .× 10−8 · · · 0.04419. . .
80 4.809 . . .× 10−14 7.537 . . .× 10−13 · · · 0.04428. . .

100 4.427 . . .× 10−18 1.077 . . .× 10−16 · · · 0.04428. . .
120 1.377 . . .× 10−21 5.501 . . .× 10−20 · · · 0.04428. . .
140 1.156 . . .× 10−24 1.260 . . .× 10−22 · · · 0.04428. . .
160 2.621 . . .× 10−27 3.443 . . .× 10−23 · · · 0.04428. . .
180 1.877 . . .× 10−28 3.371 . . .× 10−23 · · · 0.04428. . .
200 1.715 . . .× 10−28 3.369 . . .× 10−23 · · · 0.04428. . .
220 1.711 . . .× 10−28 3.368 . . .× 10−23 · · · 0.04428. . .
240 1.711 . . .× 10−28 3.368 . . .× 10−23 · · · 0.04428. . .
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240 1.711 . . .× 10−28 3.368 . . .× 10−23 · · · 0.04428. . .



Moonshine: Lecture 3

II. Distribution of Monstrous Moonshine

Some Proportions

n δ (m1(n)) δ (m2(n)) · · · δ (m194(n))

-1 1 0 · · · 0
1 1/2 1/2 · · · 0
...

...
...

...
...

40 4.011 . . .× 10−4 2.514 . . .× 10−3 · · · 0.00891. . .
60 2.699 . . .× 10−9 2.732 . . .× 10−8 · · · 0.04419. . .
80 4.809 . . .× 10−14 7.537 . . .× 10−13 · · · 0.04428. . .

100 4.427 . . .× 10−18 1.077 . . .× 10−16 · · · 0.04428. . .
120 1.377 . . .× 10−21 5.501 . . .× 10−20 · · · 0.04428. . .
140 1.156 . . .× 10−24 1.260 . . .× 10−22 · · · 0.04428. . .
160 2.621 . . .× 10−27 3.443 . . .× 10−23 · · · 0.04428. . .
180 1.877 . . .× 10−28 3.371 . . .× 10−23 · · · 0.04428. . .
200 1.715 . . .× 10−28 3.369 . . .× 10−23 · · · 0.04428. . .

220 1.711 . . .× 10−28 3.368 . . .× 10−23 · · · 0.04428. . .
240 1.711 . . .× 10−28 3.368 . . .× 10−23 · · · 0.04428. . .



Moonshine: Lecture 3

II. Distribution of Monstrous Moonshine

Some Proportions

n δ (m1(n)) δ (m2(n)) · · · δ (m194(n))

-1 1 0 · · · 0
1 1/2 1/2 · · · 0
...

...
...

...
...

40 4.011 . . .× 10−4 2.514 . . .× 10−3 · · · 0.00891. . .
60 2.699 . . .× 10−9 2.732 . . .× 10−8 · · · 0.04419. . .
80 4.809 . . .× 10−14 7.537 . . .× 10−13 · · · 0.04428. . .

100 4.427 . . .× 10−18 1.077 . . .× 10−16 · · · 0.04428. . .
120 1.377 . . .× 10−21 5.501 . . .× 10−20 · · · 0.04428. . .
140 1.156 . . .× 10−24 1.260 . . .× 10−22 · · · 0.04428. . .
160 2.621 . . .× 10−27 3.443 . . .× 10−23 · · · 0.04428. . .
180 1.877 . . .× 10−28 3.371 . . .× 10−23 · · · 0.04428. . .
200 1.715 . . .× 10−28 3.369 . . .× 10−23 · · · 0.04428. . .
220 1.711 . . .× 10−28 3.368 . . .× 10−23 · · · 0.04428. . .
240 1.711 . . .× 10−28 3.368 . . .× 10−23 · · · 0.04428. . .



Moonshine: Lecture 3

II. Distribution of Monstrous Moonshine

Distribution of Moonshine

Theorem 1 (Duncan, Griffin, O)

We have Rademacher style exact formulas for mi (n) of the form

mi (n) =
∑
χi

∑
c

Kloosterman sums× I -Bessel fcns

Remark

The dominant term gives

mi (n) ∼ dim(χi )√
2|n|3/4|M|

· e4π
√
|n|
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Distribution

Remark

We have that

δ (mi ) := lim
n→+∞

mi (n)∑194
i=1 mi (n)

is well defined

, and

δ (mi ) =
dim(χi )∑194
j=1 dim(χj)

=
dim(χi )

5844076785304502808013602136
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Proof

Orthogonality

Fact

If G is a group and g , h ∈ G , then

∑
χi

χi (g)χi (h) =

{
|CG (g)| If g and h are conjugate

0 otherwise,

where CG (g) is the centralizer of g in G .
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Proof

Tχ(τ)

Define

Tχi (τ) =
1

|M|
∑
g∈M

χi (g)Tg (τ).

The orthogonality of characters gives the inverse relation

Tg (τ) =
194∑
i=1

χi (g)Tχi (τ).

From this we can work out that

Tχi (τ) =
∞∑

n=−1

mi (n)qn.
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Proof

Outline of the proof

Theorem 2 (Duncan, Griffin,O)

We have exact formulas for the coeffs of the Tg (τ) and Tχi (τ).

Sketch of Proof

1 Each Γg contains some congruence subgroup Γ0(Ng ).

2 We first find the poles of Tg (τ).

3 We can then build a form with matching poles via Poincaré
series.

4 The Poincaré series give exact formulas for coefficients.
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Umbral (shadow) Moonshine
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III. Umbral Moonshine

Present day moonshine

Observation (Eguchi, Ooguri, Tachikawa (2010))

There is a mock modular form

H(τ) = q−
1
8
(
−2 + 45q + 231q2 + 770q3 + 2277q4 + 5796q5 + ...

)
.

The degrees of the irreducible repn’s of the Mathieu group M24 are:

1, 23,45, 231, 252, 253, 483, 770, 990, 1035,

1265, 1771, 2024, 2277, 3312, 3520, 5313, 5544, 5796, 10395.
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Mathieu Moonshine

Theorem (Gannon (2013))

There is an infinite dimensional graded M24-module whose
McKay-Thompson series are specific mock modular forms.

Remark

Alleged multiplicities must be integral and non-negative.

Computed using wgt 1/2 weakly holomorphic modular forms.

Integrality follows from “theory of modular forms mod p”.

Non-negativity follows from “effectivizing” argument of
Bringmann-O on Ramanujan’s f (q) mock theta function.
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Mock modular forms

What are mock modular forms?

Notation. Throughout, let

τ = x + iy ∈ H with x , y ∈ R.

Hyperbolic Laplacian.

∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.
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Mock modular forms

Harmonic Maass forms

Definition

A harmonic Maass form of weight k on a subgroup Γ ⊂ SL2(Z) is
any smooth function M : H→ C satisfying:

1 For all A =
(
a b
c d

)
∈ Γ and z ∈ H, we have

M

(
aτ + b

cτ + d

)
= (cz + d)k M(τ).

2 We have that ∆kM = 0.
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Mock modular forms

Fourier expansions

Fundamental Lemma

If M ∈ H2−k and Γ(a, x) is the incomplete Γ-function, then

M(τ) =
∑

n�−∞
c+(n)qn +

∑
n<0

c−(n)Γ(k − 1, 4π|n|y)qn.

l l
Holomorphic part M+ Nonholomorphic part M−

Remark

We call M+ a mock modular form.

If ξ2−k := 2iy2−k ∂
∂τ , then the shadow of M is ξ2−k(M−).
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Mock modular forms

Shadows are modular forms

Fundamental Lemma

The operator ξ2−k := 2iy2−k ∂
∂τ defines a surjective map

ξ2−k : H2−k −→ Sk .

Remark

In M24 Moonshine, the McKay-Thompson series are mock modular
forms with classical Jacobi theta series shadows!
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Mock modular forms

Larger Framework of Moonshine?

Remark

There are well known connections with even unimodular positive
definite rank 24 lattices:

M ←→ Leech lattice

M24 ←→ A24
1 lattice.
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Mock modular forms

Umbral Moonshine Conjecture

Conjecture (Cheng, Duncan, Harvey (2013))

Let LX (up to isomorphism) be an even unimodular
positive-definite rank 24 lattice, and let :

X be the corresponding ADE-type root system.

W X the Weyl group of X .

The umbral group GX := Aut(LX )/W X .

For each g ∈ GX let HX
g (τ) be a specific automorphic form

with minimal principal parts.

Then there is an infinite dimensional graded GX module KX for
which HX

g (τ) is the McKay-Thompson series for g .
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Remarks

Cheng, Duncan and Harvey constructed their mock modular
forms using “Rademacher sums”.

For X = A12
2 we have GX = M24 and Gannon’s Theorem.

There are 22 other isomorphism classes of X , the HX
g (τ)

constructed from X and its Coxeter number m(X ).

Remark

Apart from the Leech case, the HX
g (τ) are always weight 1/2 mock

modular forms whose shadows are weight 3/2 cuspidal theta series
with level m(X ).
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Mock modular forms

Our results....

Theorem 3 (Duncan, Griffin, Ono)

The Umbral Moonshine Conjecture is true.

Remark

This result is a “numerical proof” of Umbral moonshine. It is
analogous to the work of Atkin, Fong and Smith in the case of
monstrous moonshine.
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Mock modular forms

Beautiful examples

Example

For M12 the MT series include Ramanujan’s mock thetas:

f (q) = 1 +
∞∑
n=1

qn
2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
,

φ(q) = 1 +
∞∑
n=1

qn
2

(1 + q2)(1 + q4) · · · (1 + q2n)
,

χ(q) = 1 +
∞∑
n=1

qn
2

(1− q + q2)(1− q2 + q4) · · · (1− qn + q2n)
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∑
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mX
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Orthogonality

Fact

If G is a group and g , h ∈ G , then

∑
χi

χi (g)χi (h) =

{
|CG (g)| If g and h are conjugate

0 otherwise,

where CG (g) is the centralizer of g in G .
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TX
χ (τ)

Define the weight 1/2 harmonic Maass form

TX
χi

(τ) :=
1

|M|
∑
g∈GX

χi (g)HX
g (τ).

The orthogonality of characters gives the inverse relation

HX
g (τ) =

∑
χi (g)TX

χi
(τ).

It would be great if

TX
χi

(τ) =
∞∑

n=−1

mX
i (n)qn.

We only need to establish integrality and non-negativity!
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Difficulties

We have that

TX
χi

(τ) = “period integral of a Θ-function” +
∞∑

n=−1

mX
i (n)qn.

Method of holomorphic projection gives:

πhol : H 1
2
−→ M̃2 = {wgt 2 quasimodular forms}.



Moonshine: Lecture 3

III. Umbral Moonshine

Sketch of the proof

Difficulties

We have that

TX
χi

(τ) = “period integral of a Θ-function” +
∞∑

n=−1

mX
i (n)qn.

Method of holomorphic projection gives:

πhol : H 1
2
−→ M̃2 = {wgt 2 quasimodular forms}.



Moonshine: Lecture 3

III. Umbral Moonshine

Sketch of the proof

Difficulties

We have that

TX
χi

(τ) = “period integral of a Θ-function” +
∞∑

n=−1

mX
i (n)qn.

Method of holomorphic projection gives:

πhol : H 1
2
−→ M̃2 = {wgt 2 quasimodular forms}.



Moonshine: Lecture 3

III. Umbral Moonshine

Sketch of the proof

Holomorphic projection

Definition

Let f be a wgt k ≥ 2 (not necessarily holomorphic) modular form

f (τ) =
∑
n∈Z

af (n, y)qn.

We say that f is admissible if the following hold:

1 At cusps we have f (γ−1w)
(

d
dw τ

) k
2 = c0 + O(Im(w)−ε),

where w = γτ ,

2 af (n, y) = O(y2−k) as y → 0 for all n > 0.
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Holomorphic projection continued

Definition

If f is an admissible wgt k ≥ 2 nonholomorphic modular form,
then its holomorphic projection is

(πhol f )(τ) := (πkhol f )(τ) := c0 +
∞∑
n=1

c(n)qn,

where for n > 0 we have

c(n) =
(4πn)k−1

(k − 2)!

∫ ∞
0

af (n, y)e−4πnyyk−2dy .



Moonshine: Lecture 3

III. Umbral Moonshine

Sketch of the proof

Holomorphic projection continued

Definition

If f is an admissible wgt k ≥ 2 nonholomorphic modular form,
then its holomorphic projection is

(πhol f )(τ) := (πkhol f )(τ) := c0 +
∞∑
n=1

c(n)qn,

where for n > 0 we have

c(n) =
(4πn)k−1

(k − 2)!

∫ ∞
0

af (n, y)e−4πnyyk−2dy .



Moonshine: Lecture 3

III. Umbral Moonshine

Sketch of the proof

Holomorphic projection continued

Definition

If f is an admissible wgt k ≥ 2 nonholomorphic modular form,
then its holomorphic projection is

(πhol f )(τ) := (πkhol f )(τ) := c0 +
∞∑
n=1

c(n)qn,

where for n > 0 we have

c(n) =
(4πn)k−1

(k − 2)!

∫ ∞
0

af (n, y)e−4πnyyk−2dy .



Moonshine: Lecture 3

III. Umbral Moonshine

Sketch of the proof

Holomorphic projection continued

Fundamental Lemma

If f is an admissible wgt k ≥ 2 nonholomorphic modular form on
Γ0(N), then the following are true.

1 If f is holomorphic, then πhol(f ) = f (τ).

2 The function πhol(f ) lies in the space M̃k(Γ0(N)).

Remark

Holomorphic projections appeared earlier in works of Sturm, and
Gross-Zagier, and work of Imamoglu, Raum, and Richter, Mertens,
and Zwegers in connection with mock modular forms.
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Sketch of the proof of umbral moonshine

Compute each wgt 1/2 harmonic Maass form TX
χi

(τ).

Up to the nonholomorphic part, they are the multiplicity gen
fcns for V X

χi
of the alleged moonshine modules KX .

Compute holomorphic projections of products with shadows.

The mX
χi

(n) are integers iff these holomorphic projections
satisfy certain congruences.

The mX
χi

(n) can be estimated using “infinite sums” of
Kloosterman sums weighted by I -Bessel functions. For
sufficiently large n this establishes non-negativity.

Check the finitely many (less than 400) cases directly.
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Distribution of Monstrous Moonshine

Theorem 1 (Duncan, Griffin, O)

If 1 ≤ i ≤ 194, then we have Rademacher style exact formulas for
mi (n).

Remark

We have that

δ (mi ) =
dim(χi )∑194
j=1 dim(χj)

=
dim(χi )

5844076785304502808013602136
.
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Umbral Moonshine

Theorem 3 (Duncan, Griffin, Ono)

The Umbral Moonshine Conjecture is true.

Question

Do the infinite dimensional graded GX modules KX exhibit deep
structure?
Probably....and some work of Duncan and Harvey makes use of
indefinite theta series to obtain a VOA structure in the M24 case.
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