1. Representation theory of finite groups

Notation: Let G be a finite group, $\mathfrak C$ the set of conjugacy classes of G, and $\{\pi_i\}_{i\in I}$ a full set of non-isomorphic irreducible representations of G. For $i\in I$ and $g\in C\in \mathfrak C$ we write $\chi_i(g)$ or $\chi_i(C)$ for the trace of g on π_i and set $n_i=\chi_i(1)=\dim \pi_i$.

- **1 (Schur's lemma).** For any $i, j \in I$, $\operatorname{Hom}_G(\pi_j, \pi_i)$ is $\mathbb{C} \cdot \operatorname{Id}_{\pi_i}$ if i = j and $\{0\}$ if $i \neq j$. This is obvious since any non-zero G-map $\pi_j \to \pi_i$ is an isomorphism and any linear map $\pi_i \to \pi_i$ has an eigenvalue.
- **2 (First orthogonality relation).** Applying the general identity $|G|^{-1} \sum_{g \in G} \operatorname{Tr}(g, V) = \dim(V^G)$ to $V = \pi_i \otimes \pi_j^*$ $(i, j \in I)$ and using **1.** gives $\sum_{C \in \mathfrak{C}} |C| \chi_i(C) \overline{\chi}_j(C) = |G| \delta_{ij}$.
- **3 (Complete reducibility).** Any finite-dimensional representation V of G is a direct sum of irreducible representations. This follows by induction on the dimension, since if π is any subrepresentation of V then V splits as the direct sum of π and the orthogonal complement to π with respect to a non-degenerate G-invariant scalar product (which we can obtain by starting with any positive-definite Hermitian form on V and summing its translates under G).
- **4.** For V as in **3.** we have canonically $V \cong \bigoplus_{i \in I} \operatorname{Hom}_{\mathbb{C}}(\operatorname{Hom}_{G}(V, \pi_{i}), \pi_{i})$ (as G-modules), the map $V \to \operatorname{Hom}_{\mathbb{C}}(\operatorname{Hom}_{G}(V, \pi_{i}), \pi_{i})$ being given by $v \mapsto (\phi \mapsto \phi(v))$. Indeed, this holds for $V = \pi_{j}$ by **1.** and in general by **3.**
- **5.** For any representation V of G, $\operatorname{Hom}_G(\mathbb{C}[G],V)\cong V$ as G-representations, since $\phi\in\operatorname{Hom}_G(\mathbb{C}[G],V)$ is uniquely determined by $\phi(1)\in V$, which is arbitrary.
 - **6.** Applying **4.** to $\mathbb{C}[G]$ and using **5.** gives a canonical G-module isomorphism

$$\mathbb{C}[G] \cong \bigoplus_{i \in I} \operatorname{Hom}_{\mathbb{C}}(\pi_i, \pi_i) = \bigoplus_{i \in I} \operatorname{End}_{\mathbb{C}}(\pi_i)$$
(1)

which sends [g] to $(\pi_i(g))_{i\in I}$. This equation is the central statement of the theory.

- **7.** Comparing dimensions in (1), we find that $|G| = \sum_{i \in I} n_i^2$.
- **8.** Since (1) is also an algebra homomorphism, $\mathbb{C}[G] \cong \prod_i M_{n_i}(\mathbb{C})$ as an algebra. Comparing the dimensions of the centers, we find that $|I| = \dim Z(\mathbb{C}[G]) = |\mathfrak{C}|$, since clearly a basis for $Z(\mathbb{C}[G])$ is given by the elements $e_C = \sum_{g \in C} [g] \ (C \in \mathfrak{C})$.
- 9 (Second orthogonality relation). Since a left inverse of a square matrix is also a right one, **2.** and **8.** imply $\sum_{i \in I} \chi_i(C_1) \overline{\chi}_i(C_2) = |G||C_1|^{-1} \delta_{C_1,C_2}$ $(C_1, C_2 \in \mathfrak{C})$.
- 10. The isomorphism (1) is right G-equivariant, so $\mathbb{C}[G] = \sum_i \pi_i^* \otimes \pi_i$ as a $G \times G$ -representation. Computing the trace of $(g_1, g_2) \in C_1 \times C_2$ on both sides of (1) gives another proof of 9. (and hence also of 2.), since (g_1, g_2) acts on $\mathbb{C}[G]$ by $[g] \mapsto [g_1 g g_2^{-1}]$.
- 11. Comparing traces on each π_i , we find that the image of e_C under the isomorphism $Z(\mathbb{C}[G]) \cong \mathbb{C}^I$ of 8. is $\{n_i^{-1}|C|\chi_i(C)\}_{i\in I}$. On the other hand, if A and B are two conjugacy classes then clearly $e_Ae_B = \sum_{C\in\mathfrak{C}} |C|^{-1}N(A,B,C^{-1})e_C$, where N(A,B,C) denotes the number of triples $(a,b,c) \in A \times B \times C$ with abc = 1. Multiplying this out and using 9. we find **Frobenius's formula**

$$\frac{N(A,B,C)}{|A\times B\times C|} = \frac{1}{|G|} \sum_{i\in I} \frac{\chi_i(A)\chi_i(B)\chi_i(C)}{\chi_i(1)} \qquad (A,B,C\in\mathfrak{C}).$$
 (2)

2. Explicit construction of the irreducible representations of \mathfrak{S}_n

A Young diagram is a finite union of sets of the form $\{0, 1, ..., a\} \times \{0, -1, ..., -b\} \subset \mathbb{Z}^2$. We systematically identify the set \mathcal{Y}_n of Young diagrams of cardinality n with the set \mathcal{P}_n of partitions $\lambda = (\lambda_1 \geq \lambda_2 \geq ...)$ of n by $\lambda \mapsto Y_{\lambda} = \text{Young diagram with row-lengths } \lambda_i$. We will construct pairwise distinct isomorphism classes of representations V_{λ} of \mathfrak{S}_n indexed by $\lambda \in \mathcal{P}_n$; since $|\mathcal{P}_n|$ is equal to the number of conjugacy classes of \mathfrak{S}_n , this solves the problem. (Actually, the space V_{λ} will be a specific representation of the group $\mathfrak{S}_{Y_{\lambda}}$ of permutations of the elements of Y_{λ} . Since Y_{λ} has cardinality n, this group is isomorphic to \mathfrak{S}_n , but the isomorphism, and hence the representation of the fixed group \mathfrak{S}_n on $V_{Y_{\lambda}}$, is unique only up to conjugacy.) The idea of the construction we describe goes back to van der Waerden and von Neumann. Our presentation is a slight simplification of the one in the very nice book Invariant Theory, Old and New by J. Dieudonné and J. Carrell.

Denote by \mathcal{A}_{λ} (resp. \mathcal{B}_{λ}) the subgroup of $\mathfrak{S}_{Y_{\lambda}}$ leaving invariant the rows (resp. columns) of Y_{λ} . Clearly $\mathcal{A}_{\lambda} \cap \mathcal{B}_{\lambda} = \{e\}$. Define three elements A_{λ} , B_{λ} , X_{λ} of the group algebra $\mathcal{R}_{\lambda} = \mathbb{C}[\mathfrak{S}_{Y_{\lambda}}]$ by

$$A_{\lambda} = \sum_{a \in \mathcal{A}_{\lambda}} [a], \quad B_{\lambda} = \sum_{b \in \mathcal{B}_{\lambda}} \varepsilon(b)[b], \quad X_{\lambda} = A_{\lambda}B_{\lambda} = \sum_{(a,b)\in\mathcal{A}_{\lambda}\times\mathcal{B}_{\lambda}} \varepsilon(b)[ab]$$
 (1)

 $(\varepsilon(b)) = \text{sign of the permutation } b$, and set $V_Y = \mathcal{R}_{\lambda} X_{\lambda} \subseteq \mathcal{R}_{\lambda}$, a representation of $\mathfrak{S}_{Y_{\lambda}}$.

Theorem. The representations V_{λ} ($\lambda \in \mathcal{P}_n$) are irreducible and pairwise non-isomorphic.

The key to the proof is the following lemma, in which the elements of \mathcal{P}_n have been ordered lexicographically (i.e. $\lambda > \mu$ if $\lambda_1 = \mu_1, \ldots, \lambda_{i-1} = \mu_{i-1}$ and $\lambda_i > \mu_i$ for some i).

Lemma (J. von Neumann). Let λ , $\mu \in \mathcal{P}_n$ with $\lambda \geq \mu$, and let ϕ be any bijection from Y_{λ} to Y_{μ} . Then either (i) $\mathcal{A}_{\lambda} \cap \phi^{-1}\mathcal{B}_{\mu}\phi$ contains a transposition, or else (ii) $\lambda = \mu$ and $\phi^{-1} \in \mathcal{A}_{\lambda}\mathcal{B}_{\lambda}$.

Proof. Alternative (i) says that there are two distinct elements (the ones interchanged by the transposition) belonging to the same row of Y_{λ} with images belonging to the same column of Y_{μ} . Assume this is not the case. Then in particular the images under ϕ of the elements of the first row of Y_{λ} belong to different columns of Y_{μ} . Since Y_{μ} has μ_1 columns and $\lambda_1 \geq \mu_1$, this implies that $\lambda_1 = \mu_1$ and that we can compose ϕ with an element $b_1 \in \mathcal{B}_{\mu}$ (bringing these images up to the first row of Y_{μ}) and then $a_1 \in \mathcal{A}_{\mu}$ (permuting the elements of the first row of Y_{μ}) so that the composite $a_1b_1\phi: Y_{\lambda} \to Y_{\mu}$ is the identity on the first row. Now the same argument applied to the remaining part of the diagrams shows that $\lambda_2 = \mu_2$ and that there exist $a_2 \in \mathcal{A}_{\mu}$ and $b_2 \in \mathcal{B}_{\mu}$ such that $a_2b_2\phi$ is the identity on the first two rows of Y_{λ} . Continuing in the same way we finally obtain (ii). \square

Corollary. The elements A_{λ} , B_{λ} , X_{λ} defined in (1) satisfy $A_{\lambda} \mathcal{R}_{\lambda} B_{\lambda} = \mathbb{C} \cdot X_{\lambda} \subseteq \mathcal{R}_{\lambda}$.

Proof. If $x = \sum x_{\sigma}[\sigma] \in A_{\lambda}\mathcal{R}_{\lambda}B_{\lambda}$, then $axb = \varepsilon(b)x$ for all $a \in \mathcal{A}_{\lambda}$, $b \in \mathcal{B}_{\lambda}$, so $x_{a\sigma b} = \varepsilon(b)x_{\sigma}$ for all σ . Thus $x_{\sigma} = \varepsilon(b)x_{e}$ for $\sigma = ab \in \mathcal{A}_{\lambda}\mathcal{B}_{\lambda}$. But $x_{\sigma} = 0$ for $\sigma \notin \mathcal{A}_{\lambda}\mathcal{B}_{\lambda}$, because the lemma (with $\lambda = \mu$, $\phi = \sigma^{-1}$) gives us transpositions $a \in \mathcal{A}_{\lambda}$ and $b \in \mathcal{B}_{\lambda}$ with $a\sigma b = \sigma$, so that $x_{\sigma} = -x_{\sigma}$. \square

Proof of the theorem. If $V \subseteq V_{\lambda}$ is an irreducible subrepresentation, then $X_{\lambda}V \subseteq X_{\lambda}R_{\lambda}X_{\lambda} \subseteq \mathbb{C}X_{\lambda}$. Also $X_{\lambda}V \neq \{0\}$ since $R_{\lambda}X_{\lambda}V = V_{\lambda}V \supseteq V^2 = V$. Hence $\mathbb{C}X_{\lambda} = X_{\lambda}V \subseteq V$, so $V_{\lambda} \subseteq V$.

Now suppose that $\lambda > \mu$ and that there is a bijection $\psi : Y_{\mu} \to Y_{\lambda}$ such that V_{λ} and $V'_{\mu} = \psi V_{\mu} \psi^{-1}$ are isomorphic subrepresentations of \mathcal{R}_{λ} . The lemma applied to $\phi = \sigma \psi^{-1} \tau$ with $\sigma \in \mathfrak{S}_{Y_{\lambda}}$, $\tau \in \mathfrak{S}_{Y_{\mu}}$ gives transpositions $s \in \mathcal{A}_{\lambda}$ and $s' \in \mathcal{B}_{\mu}$ with $s' = \phi s \phi^{-1}$. Then $A_{\lambda} s = A_{\lambda}$ and $s' B_{\mu} = -B_{\mu}$, so $A_{\lambda} \phi^{-1} B_{\mu} = 0$. Hence $A_{\lambda} \mathcal{R}_{\lambda} \psi \mathcal{R}_{\mu} B_{\mu} = 0$, so $V_{\lambda} V'_{\mu} = 0$ and Schur's lemma implies $V_{\lambda} \not\simeq V'_{\mu}$. \square

Remark. Note that V_{λ} has a natural integral structure: $V_{\lambda} = L_{\lambda} \otimes_{\mathbb{Z}} \mathbb{C}$, where $L_{\lambda} = \mathbb{Z}[\mathfrak{S}_{Y_{\lambda}}] X_{\lambda}$. This gives another proof of the fact—otherwise proved by noting that any two elements of \mathfrak{S}_n generating the same subgroup are conjugate—that the irreducible characters of \mathfrak{S}_n are \mathbb{Z} -valued.