Prof. Dr. W. Wefelmeyer Dipl.-Math. K. Tang

Übungen zur Stochastik 2 Serie 7

Abgabe: Dienstag, 06.12.05, 12:30 im Seminarraum 2 des Mathematischen Instituts

- **31.** Ist B eine eindimensionale Brownsche Bewegung, so heißt $B_t tB_1$, $0 \le t \le 1$, eine Brownsche Brücke. Zeigen Sie: Die Brownsche Brücke ist verteilt wie B_t , $0 \le t \le 1$ bedingt nach $B_1 = 0$. (*Hinweis:* Es genügt, die endlich-dimensionalen Randverteilungen zu betrachten.)
- **32.** Eine Funktion $A:[0,\infty)\to\mathbb{R}$ heißt Hölder der Ordnung a auf dem Intervall I, wenn

$$\sup_{s,t\in I, s\neq t} \frac{|A(s) - A(t)|}{|s - t|^a} < \infty.$$

Zeigen Sie: Die Brownschen Pfade sind f.s. auf allen Intervallen nicht Hölder der Ordnung $a>\frac{1}{2}.$

- **33.** Ist B eine eindimensionale Brownsche Bewegung, so sind folgende Prozesse Martingale:
 - a) $B_t^2 t$,
 - b) $\exp(aB_t \frac{1}{2}a^2t)$, $a \in \mathbb{R}$.
- **34.** Ist X ein Submartingal mit $EX_t = EX_0$ für $t \geq 0$, dann ist X ein Martingal.
- **35.** Ist B eine Brownsche Bewegung, so ist $tB_{\frac{1}{t}}$ auch eine Brownsche Bewegung und $(1-t)B_{\frac{t}{1-t}}$ $tB_{\frac{1-t}{t}}$ sind Brownsche Brücken. Ist dagegen B eine Brownsche Brücke, so sind $(1+t)B_{\frac{t}{1+t}}$ und $(1+t)B_{\frac{1}{1+t}}$ Brownsche Bewegungen.