Prof. Dr. W. Wefelmeyer M. Sc. Christoph Heuser

Übungen zur Mathematischen Statistik Serie 6

Abgabe: Dienstag, 26. November 2013, vor der Vorlesung

- **26.** Sei (X,Y) ein zweidimensionaler Zufallsvektor mit $E(Y|X) = \vartheta X$ für ein (unbekanntes) $\vartheta \in \mathbb{R}$. Seien (X_i,Y_i) , $i=1,\ldots,n$, unabhängige Beobachtungen aus diesem Modell. Bestimmen Sie einen Schätzer für die Varianz von $\varepsilon = Y \vartheta X$. Geben Sie Bedingungen an, unter denen er asymptotisch normal ist, und bestimmen Sie seine asymptotische Varianz.
- 27. (Lineare Regression mit Interzept) Seien X und Y eindimensionale Zufallsvariablen mit $EX^4 < \infty$ und $EY^4 < \infty$. Zwischen diesen bestehe der Zusammenhang

$$Y = \tau + \vartheta X + \varepsilon$$

mit unbekannten Konstanten τ und ϑ und $E(\varepsilon|X) = 0$. Bestimmen Sie erwartungstreue Schätzer $\hat{\tau}$ und $\hat{\vartheta}$, die $\mathbb{P}_n((Y - \tau - \vartheta X)^2)$ minimieren.

28. (Nichtlineare Regression) Seien X und Y eindimensionale Zufallsvariablen mit $EY^2 < \infty$. Sei ferner $r_{\vartheta}(x)$ eine Funktion, die auf $\Theta \subset \mathbb{R}$ zweimal partiell nach ϑ differenzierbar ist mit $E[\dot{r}^4_{\vartheta}(X)] < \infty$, $E[\ddot{r}^4_{\vartheta}(X)] < \infty$ und

$$|\ddot{r}_{\tau}(x) - \ddot{r}_{\vartheta}(x)| \leq L|\tau - \vartheta| \quad \forall \tau, \vartheta \in \Theta$$

für eine positive Konstante L. Es bestehe der Zusammenhang

$$Y = r_{\vartheta}(X) + \varepsilon,$$

wobei ε eine weitere Zufallsvariable mit $E\varepsilon^4 < \infty$ und $E(\varepsilon|X) = 0$ sei. Angenommen, wir wissen bereits, dass für den Kleinste-Quadrate-Schätzer $\hat{\vartheta}$ gilt $\hat{\vartheta} = \vartheta + o_p(n^{-1/4})$. Bestimmen Sie die asymptotische Verteilung von $n^{1/2}(\hat{\vartheta} - \vartheta)$.

29. Sind X_1, \ldots, X_n unabhängig mit Verteilungsfunktion F, so ist die Verteilungsfunktion F_r der r-ten Ordnungsstatistik $X_{r:n}$ gegeben durch

$$F_r(x) = \sum_{i=r}^n \binom{n}{i} (F(x))^i (1 - F(x))^{n-i}.$$

Ist zusätzlich F differenzierbar mit Ableitung f, so besitzt $X_{r:n}$ die Dichte

$$f_r(x) = r \binom{n}{r} (F(x))^{r-1} (1 - F(x))^{n-r} f(x).$$

30. Seien X_1, \ldots, X_n unabhängig mit positiver Dichte f. Sei 0 und <math>f stetig und positiv in den Quantilen ξ_p und ξ_q . Sei $k = np + o(n^{1/2})$ und $m = nq + o(n^{1/2})$. Dann gilt

$$n^{1/2} \begin{pmatrix} X_{k:n} - \xi_p \\ X_{m:n} - \xi_q \end{pmatrix} \Rightarrow N(0, \Sigma)$$

 $_{\mathrm{mit}}$

$$\Sigma = \begin{pmatrix} p(1-p)/f^2(\xi_p) & p(1-q)/f(\xi_p)f(\xi_q) \\ p(1-q)/f(\xi_p)f(\xi_q) & q(1-q)/f^2(\xi_q) \end{pmatrix}.$$