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Abstract

Suppose we observe a time series that alternates between different nonlinear autore-
gressive processes. We give conditions under which the model is locally asymptotically
normal, derive a characterization of efficient estimators for differentiable functionals of
the model, and use it to construct efficient estimators for the autoregression parameters
and the innovation distributions. Surprisingly, the estimators for the autoregression
parameters can be improved if we know that the innovation densities are equal.
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1 Introduction

The behavior of a time series may be influenced by periodic (daily, weekly, yearly) changes.
If we have observations on a smaller (hourly, daily, monthly) scale, then such changes can
be modeled by an alternating nonlinear autoregressive process of order p and period m.
By this we mean a time series Xi, i ∈ Z, that alternates periodically between m possibly
different nonlinear AR(p) processes,

(1.1) Xjm+k = rkϑ(Xjm+k−1) + εjm+k, j ∈ Z, k = 1, . . . ,m,

where Xi = (Xi−p+1, . . . , Xi), the autoregression function is known up to a parameter ϑ

that varies in an open set Θ ⊂ Rd, the innovations εi, i ∈ Z, are independent with mean
zero, and εjm+k has positive density fk and finite variance σ2

k. We assume that we have
initial observations X−p+1, . . . , X0 and then observe n periods X1, . . . , Xnm.

Our model includes alternating linear autoregression as a special case, with rkϑ(Xk−1) =
%>kϑXk−1 for a vector %kϑ = (%kϑ1, . . . , %kϑp)>. The case of first-order alternating linear
autoregression is studied in Müller et al. (2007). It is shown in Müller et al. (2008) that this
case appears in particular when a (non-alternating) first-order linear autoregressive process
is observed at certain periodically repeated time points only.
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In Section 2 we give conditions under which an alternating nonlinear autoregressive pro-
cess is locally asymptotically normal. We describe a characterization of efficient estimators
for differentiable functionals of (ϑ, f1, . . . , fm). In Section 3 we study estimation of ϑ. Let
ṙkϑ(Xk−1) denote the gradient of rkϑ(Xk−1) as a function of ϑ, and write µk = E[ṙkϑ(Xk−1)]
and Rk = E[ṙkϑ(Xk−1)ṙ>kϑ(Xk−1)]. The least squares estimator is a solution in ϑ of the
martingale estimating equation

n∑
j=1

m∑
k=1

ṙkϑ(Xjm+k−1)(Xjm+k − rkϑ(Xjm+k−1)) = 0.

By Taylor expansion, its asymptotic covariance matrix is seen to be the covariance matrix
of (

∑m
k=1 Rk)−1

∑m
k=1 ṙkϑ(Xk−1)εk,

MLS =
( m∑

k=1

Rk

)−1( m∑
k=1

σ2
kRk

)( m∑
k=1

Rk

)−1
.

We show that an optimally weighted least squares estimator is a solution in ϑ of the esti-
mating equation

n∑
j=1

m∑
k=1

σ̃−2
k ṙkϑ(Xjm+k−1)(Xjm+k − rkϑ(Xjm+k−1)) = 0

with σ̃2
k = (1/n)

∑n
j=1 ε̃2

jm+k and ε̃jm+k = Xjm+k − rkϑ̃(Xjm+k−1) for some consistent
estimator ϑ̃ of ϑ. By Taylor expansion, its asymptotic covariance matrix is seen to be the
covariance matrix of (

∑m
k=1 σ−2

k Rk)−1
∑m

k=1 σ−2
k ṙkϑ(Xk−1)εk,

MLS∗ =
( m∑

k=1

σ−2
k Rk

)−1
.

It is straightforward to check that

γ =
( m∑

k=1

Rk

)−1
m∑

k=1

ṙkϑ(Xk−1)εk −
( m∑

k=1

σ−2
k Rk

)−1
m∑

k=1

σ−2
k ṙkϑ(Xk−1)εk

is uncorrelated with
∑m

k=1 σ−2
k ṙkϑ(Xk−1)εk. Hence we can write

MLS = MLS∗ + Γ,

where Γ is the covariance matrix of γ. In particular, the optimally weighted least squares
estimator is strictly better than the ordinary least squares estimator unless γ = 0, which
holds only if σ1 = · · · = σm. In Section 3 we also construct an efficient estimator for ϑ as
one-step improvement of some initial estimator, for example the least squares estimator.
The asymptotic covariance matrix of any efficient estimator is shown to equal M with

M−1 =
m∑

k=1

(
Jk(Rk − µkµ

>
k ) + σ−2

k µkµ
>
k

)
,
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where Jk = E[`2
k(εk)] with `k = −f ′k/fk. We note that Jk is the Fisher information of the

location family generated by fk, and Rk −µkµ
>
k is the covariance matrix of ṙkϑ(Xk−1). We

obtain

M−1 = M−1
LS∗ +

m∑
k=1

(Jk − σ−2
k )(Rk − µkµ

>
k ).

It is known that Jk ≥ σ−2
k . Hence, in general, the optimally weighted least squares estimator

is not efficient, except when Jk = σ−2
k for all k, which holds if all the fk are normal densities.

In Section 4 we fix ν ∈ {1, . . . ,m} and use the efficient estimator for ϑ to construct efficient
estimators for expectations of functions of εν . They lead to efficient estimators for the
innovation distribution functions and quantile functions. We know that E[εν ] = 0 and
obtain an efficient estimator by correcting the residual-based empirical estimator, and by
basing the residuals on an efficient estimator for ϑ. The correction can be obtained by
adding an “estimator of zero”, or by introducing random weights, following the empirical
likelihood approach of Owen (1988).

In Section 5 we consider the submodel in which the innovation densities are equal. It
turns out that this contains information about ϑ. We construct an efficient estimator for ϑ

in this submodel. Its asymptotic covariance matrix is M∗ with

M−1
∗ =

m∑
k=1

(
J(Rk − µkµ

>
k ) + 2σ−2µkµ

>
k − σ−2µ∗µ

>
∗
)
,

where J and σ2 are the Fisher information and variance of the common innovation density
f and µ∗ = (1/m)

∑m
k=1 µk. We have

M−1
∗ = M−1 + σ−2

m∑
k=1

(µk − µ∗)(µk − µ∗)>.

Hence the efficient estimator for ϑ in the submodel is, in general, strictly better than
the efficient estimator in the full model considered in Section 3. The two estimators are
asymptotically equivalent, i.e. M∗ = M , only if µ1 = · · · = µm. We also construct efficient
estimators for expectations of functions of ε in this submodel.

2 Local asymptotic normality

The alternating nonlinear autoregressive process (1.1) is parametrized by ϑ and the vec-
tor of innovation densities f = (f1, . . . , fm). In order to apply results on non-alternating
processes, we view it as an m-dimensional process Yj = (X(j−1)m+1, . . . , Xjm)>, j ∈ Z.
This is a homogeneous Markov chain of order q = dp/me. Its transition density from
Yj−q, . . . ,Yj−1 to Yj = (x1, . . . , xm)> depends only on the values of the last p components
of Yj−q, . . . ,Yj−1, say x0 = (x1−p, . . . , x0), and is given by

q(x0;x1, . . . , xm) =
m∏

k=1

fk(xk − rkϑ(xk−1)).
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Note that this is not a multivariate nonlinear autoregressive process of order q, which would
require a representation Yj = Rϑ(Yj−1, . . . ,Yj−q) + εj for an m-dimensional function Rϑ

and i.i.d. m-dimensional innovation vectors εj .
To prove local asymptotic normality, fix ϑ and f such that Yj , j ∈ Z, is strictly

stationary and positive Harris recurrent under (ϑ, f). Write g for the stationary den-
sity of Xj under (ϑ, f). Introduce perturbations ϑnu = ϑ + n−1/2u with u ∈ Rd and
fknvk

(x) = fk(x)(1 + n−1/2vk(x)) with vk in the space Vk of bounded measurable functions
such that E[vk(εk)] = 0 and E[εkvk(εk)] = 0. These two conditions imply that fknvk

is a
positive mean zero probability density for n sufficiently large. Note that if v is a bounded
measurable function, then vk defined by

vk = v − E[v(εk)]−
E[εkv(εk)]
E[εkw(εk)]

(w − E[w(εk)])

belongs to Vk for every bounded measurable function w for which E[εkw(εk)] is not zero.
A possible choice of w is given by w(x) = x1[|x| ≤ a] with a sufficiently large. Write
v = (v1, . . . , vm), V = V1 × · · · × Vm and fnv = (f1nv1 , . . . , fmnvm). Suppose that we have
observations X0,Y1, . . . ,Yn, and write Pn and Pnuv for their joint law under (ϑ, f) and
(ϑnu, fnv), respectively. Let gnuv denote the stationary density of Xj under (ϑnu, fnv). We
make the following assumptions.

Assumption 1. For k = 1, . . . ,m, the innovation density fk is absolutely continuous with
a.e. derivative f ′k and finite Fisher information Jk = E[`2

k(εk)], where `k = −f ′k/fk.

Assumption 2. For k = 1, . . . ,m, there is ṙkϑ ∈ Ld
2(g) such that, for each constant C,

sup
|τ−ϑ|≤Cn−1/2

n∑
j=1

(
rkτ (Xjm+k−1)− rkϑ(Xjm+k−1)− (τ − ϑ)>ṙkϑ(Xjm+k−1)

)2
= oPn(1).

Then we have local asymptotic normality as follows. The proof is obtained as in Koul
and Schick (1997), who treat the non-alternating case.

Theorem 1. Let (u, v) ∈ Rd × V . Suppose Assumptions 1 and 2 hold and the stationary
density g depends smoothly on the parameters in the sense that

∫
|gnuv(x)− g(x)| dx → 0.

Then

log
dPnuv

dPn
= n−1/2

n∑
j=1

m∑
k=1

skuvk
(Xjm+k−1, εjm+k)−

1
2
‖(u, v)‖2 + oPn(1),(2.1)

n−1/2
n∑

j=1

m∑
k=1

skuvk
(Xjm+k−1, εjm+k) ⇒ ‖(u, v)‖N under Pn,(2.2)

where N is a standard normal random variable and

skuvk
(Xk−1, εk) = u>ṙkϑ(Xk−1)`k(εk) + vk(εk),

‖(u, v)‖2 =
m∑

k=1

E[s2
kuvk

(Xk−1, εk)].
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Here we have used that s1uv1(X0, ε1), . . . , smuvm(Xm−1, εm) are uncorrelated.
A sufficient condition for positive Harris recurrence and geometric ergodicity in L1 of

the m-dimensional Markov chain Yj , j ∈ Z, is

|rkϑ(x)| ≤ ck + αk|x|, x ∈ Rp, k = 1, . . . ,m,

with
∏m

k=1 αk < 1. This follows as in the non-alternating case; see e.g. Bhattacharya and Lee
(1995) or An and Huang (1996). Geometric ergodicity implies that at (ϑ, f) the stationary
density of Yj , j ∈ Z, depends continuously in L1 on the transition density. This implies
the continuity condition on g in Theorem 1 above and in Theorem 4 below.

Let V̄k denote the closure of Vk in L2(fk) and set V̄ = V̄1× · · · × V̄m. The tangent space
of our model is

S =
{ m∑

k=1

skuvk
(Xk−1, εk) : (u, v) ∈ Rd × V̄

}
.

Let T denote the space of random variables t(Y1−q, . . . ,Y1) such that

E[t2(Y1−q, . . . ,Y1)] < ∞ and E(t(Y1−q, . . . ,Y1)|Y1−q, . . . ,Y0) = 0.

Then T is a Hilbert space, and S is a closed linear subspace of T .
We can think of T as the tangent space of the larger, nonparametric, model of all

homogeneous Markov chains of order q on Rm. In this model, a perturbation of a transition
distribution Q is of the form

Qnt(y1−q, . . . ,y0, dy1) = Q(y1−q, . . . ,y0, dy1)(1 + n−1/2t(y1−q, . . . ,y1))

with bounded t(Y1−q, . . . ,Y1) ∈ T , and we have local asymptotic normality

log
dPnt

dPn
= n−1/2

n∑
j=1

t(Yj−q, . . . ,Yj)−
1
2
E[t2(Y1−q, . . . ,Y1)] + oPn(1),

so the tangent space is T . We note that t(Yj−q, . . . ,Yj) are martingale increments on
the natural filtration. For local asymptotic normality of general Markov chain models and
Markov step processes (of order one) see Roussas (1965), Höpfner, Jacod and Ladelli (1990),
Penev (1991) and Höpfner (1993).

The norm ‖(u, v)‖ is the norm induced on Rd × V̄ by the L2-norm on S ⊂ T . It
determines how difficult it is, asymptotically, to distinguish between (ϑ, f) and (ϑnu, fnv)
on the basis of the observations. It induces an inner product on Rd × V̄ ,

((u′, v′), (u, v)) =
m∑

k=1

E[sku′v′k
(Xk−1, εk)skuvk

(Xk−1, εk)].

We can now characterize efficient estimators of real-valued functionals of (ϑ, f) as follows,
using results originally due to Hájek and LeCam, for which we refer to Section 3.3 of Bickel
et al. (1998).
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Definition 1. A real-valued functional ϕ of (ϑ, f) is called differentiable at (ϑ, f) with
gradient tϕ if tϕ(Y1−q, . . . ,Y1) ∈ T and

n1/2(ϕ(ϑnu, fnv)− ϕ(ϑ, f)) →
m∑

k=1

E[tϕ(Y1−q, . . . ,Y1)skuvk
(Xk−1, εk)], (u, v) ∈ Rd × V.

The canonical gradient is the projection of any gradient tϕ(Y1−q, . . . ,Y1) onto S.

The canonical gradient is of the form
∑m

k=1 skuϕvϕk
(Xk−1, εk). Since the random vari-

ables s1uv1(X0, ε1), . . . , smuvm(Xm−1, εm) are uncorrelated, it is determined by

(2.3) n1/2(ϕ(ϑnu, fnv)− ϕ(ϑ, f)) →
m∑

k=1

E[skuϕvϕk
(Xk−1, εk)skuvk

(Xk−1, εk)]

for (u, v) ∈ Rd × V .

Definition 2. An estimator ϕ̂ of ϕ is called regular at (ϑ, f) with limit L if L is a random
variable such that

n1/2(ϕ̂− ϕ(ϑnu, fnv)) ⇒ L under Pnuv, (u, v) ∈ Rd × V.

Definition 3. An estimator ϕ̂ of ϕ is called asymptotically linear at (ϑ, f) with influence
function χ if χ(Y1−q, . . . ,Y1) ∈ T and

n1/2(ϕ̂− ϕ(ϑ, f)) = n−1/2
n∑

j=1

χ(Yj−q, . . . ,Yj) + oPn(1).

Theorem 2. Suppose we have local asymptotic normality (2.1) and (2.2) at (ϑ, f). Let ϕ

be differentiable at (ϑ, f) with canonical gradient
∑m

k=1 skuϕvϕk
(Xk−1, εk). Let ϕ̂ be regular

at (ϑ, f) with limit L. Then there is a random variable M independent of N such that
L = ‖(uϕ, vϕ)‖N + M in distribution. We have M = 0 if and only if ϕ̂ is asymptotically
linear at (ϑ, f) with influence function equal to the canonical gradient.

An estimator ϕ̂ with limit L = ‖(uϕ, vϕ)‖N at (ϑ, f) is least dispersed in intervals
symmetric about zero among all regular estimators of ϕ. We call such an estimator efficient
at (ϑ, f).

Theorem 3. Suppose we have local asymptotic normality (2.1) and (2.2) at (ϑ, f). Let
ϕ be differentiable at (ϑ, f), and let ϕ̂ be asymptotically linear for ϕ at (ϑ, f). Then ϕ̂ is
regular at (ϑ, f) if and only if its influence function is a gradient of ϕ at (ϑ, f).

It follows from Theorems 2 and 3 that an estimator ϕ̂ is regular and efficient if and only
if it is asymptotically linear with influence function equal to the canonical gradient,

(2.4) n1/2(ϕ̂− ϕ(ϑ, f)) = n−1/2
n∑

j=1

m∑
k=1

skuϕvϕk
(Xjm+k−1, εjm+k) + oPn(1).
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To calculate gradients, it is convenient to decompose skuvk
(Xk−1, εk) into orthogonal

components. Under Assumption 1 we have E[εk`k(εk)] = 1. Hence the projection of `k(εk)
onto V̄k is

`∗k(εk) = `k(εk)−
E[εk`k(εk)]

E[ε2
k]

εk = `k(εk)− σ−2
k εk.

Set µk = E[ṙkϑ(Xk−1)] and

sk(Xk−1, εk) = (ṙkϑ(Xk−1)− µk)`k(εk) + σ−2
k µkεk.

We can write

(2.5) skuvk
(Xk−1, εk) = u>sk(Xk−1, εk) + u>µk`

∗
k(εk) + vk(εk).

By construction, `∗k ∈ V̄k, and sk(Xk−1, εk) is orthogonal to V̄k in the sense that

(2.6) E[skuvk
(Xk−1, εk)vk(εk)] = 0, vk ∈ V̄k.

We arrive at an orthogonal decomposition S = S0 + SV of the tangent space, with

S0 =
{ m∑

k=1

u>sk(Xk−1, εk) : u ∈ Rp
}

, SV =
{ m∑

k=1

vk(εk) : v ∈ V̄
}

.

Set
Λk = E[sk(Xk−1, εk)s>k (Xk−1, εk)] = Jk(Rk − µkµ

>
k ) + σ−2

k µkµ
>
k

and Λ =
∑m

k=1 Λk. Relation (2.3) can be rewritten as follows.

Proposition 1. Let ϕ be differentiable at (ϑ, f). Then its canonical gradient is of the form

m∑
k=1

u>ϕ sk(Xk−1, εk) +
m∑

k=1

vϕk(εk)

with (uϕ, vϕ) ∈ Rd × V̄ determined by

n1/2(ϕ(ϑnu, fnv)− ϕ(ϑ, f)) → u>ϕΛu +
m∑

k=1

E[vϕk(εk)`∗k(εk)]µ>k u +
m∑

k=1

E[vϕk(εk)vk(εk)]

for (u, v) ∈ Rd × V .

Remark 1. Alternating linear autoregression is a degenerate case. Let rkϑ(Xk−1) =
%>kϑXk−1 for a vector %kϑ = (%kϑ1, . . . , %kϑp)> of functions of ϑ. Let %̇kϑ denote the d × p

matrix whose columns are the gradients of %kϑ1, . . . , %kϑp. Then ṙkϑ(Xk−1) = %̇kϑXk−1.
Since E[εk] = 0, we have µk = %̇kϑE[Xk−1] = 0 and hence

sk(Xk−1, εk) = %̇kϑXk−1`k(εk).
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We obtain
skuvk

(Xk−1, εk) = u>%̇kϑXk−1`k(εk) + vk(εk).

The canonical gradient of ϕ is therefore of the form

m∑
k=1

u>ϕ %̇kϑXk−1`k(εk) +
m∑

k=1

vϕk(εk)

with (uϕ, vϕ) ∈ Rd × V̄ determined by

n1/2(ϕ(ϑnu, fnv)− ϕ(ϑ, f)) →
m∑

k=1

u>ϕ %̇kϑΣk%̇
>
kϑu +

m∑
k=1

E[vϕk(εk)vk(εk)]

for (u, v) ∈ Rd×V , with Σk = E[Xk−1X>
k−1]. This implies that for a functional ϕ depending

on ϑ only we obtain vϕk = 0. Hence the canonical gradient of such a functional is the same
for each submodel in which some or all of the fk are known. Then we cannot estimate ϕ

better, asymptotically, in these submodels. In this sense, functionals depending on ϑ only
are adaptive with respect to the parameter f . Similarly, functionals of one or some of the
fk are adaptive with respect to the other parameters.

In the following sections we apply characterization (2.4) to various functionals. A version
of the characterization also holds for multivariate functionals as follows. The proof reduces
to the case of one-dimensional functionals. Let ϕ = (ϕ1, . . . , ϕq)> be a functional of (ϑ, f).
Differentiability of ϕ is then understood componentwise. The canonical gradient is obtained
by componentwise projection of gradients of ϕ1, . . . , ϕq. Regularity of an estimator ϕ̂ of ϕ

is defined as before, now with L a q-dimensional random vector. Asymptotic linearity of ϕ̂

is understood componentwise. Theorem 2 now says that

L = ((uϕ, vϕ), (uϕ, vϕ)>)1/2Nq + M in distribution,

where (uϕ, vϕ) = ((uϕ1 , vϕ1), . . . , (uϕq , vϕq))>, and where Nq is a q-dimensional standard
normal random vector and M is independent of Nq. Theorem 3 remains unchanged, and
characterization (2.4) is again understood componentwise.

3 Autoregression parameters

Before we construct an efficient estimator for ϑ, we begin with some results on least squares
estimators. An estimator for ϑ is the least squares estimator ϑ̃, the minimum in ϑ of

(3.1)
n∑

j=1

m∑
k=1

(Xjm+k − rkϑ(Xjm+k−1))2.
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It is a solution of a q-dimensional martingale estimating equation

n∑
j=1

m∑
k=1

ṙkϑ(Xjm+k−1)(Xjm+k − rkϑ(Xjm+k−1)) = 0.

Under appropriate conditions, the least squares estimator is asymptotically linear with
influence function

ξ(Y1−q, . . . ,Y1) = R−1
m∑

k=1

ṙkϑ(Xk−1)εk,

where R =
∑m

k=1 Rk with Rk = E[ṙkϑ(Xk−1)ṙ>kϑ(Xk−1)]. Hence ϑ̃ is asymptotically normal
with covariance matrix MLS = R−1

( ∑m
k=1 σ2

kRk

)
R−1. Here Yj = (X(j−1)m+1, . . . , Xjm)>

is defined as in Section 2.
The least squares estimator can be improved by weighting the martingale increments.

Let Wkϑ(x) be a d × d matrix of weights and ϑ̃W a solution of the martingale estimating
equation

n∑
j=1

m∑
k=1

Wkϑ(Xjm+k−1)ṙkϑ(Xjm+k−1)(Xjm+k − rkϑ(Xjm+k−1)) = 0.

Under appropriate conditions, a Taylor expansion shows that ϑ̃W has influence function

ξW (Y1−q, . . . ,Y1) = R−1
W

m∑
k=1

Wkϑ(Xk−1)ṙkϑ(Xk−1)εk,

where RW =
∑m

k=1 RkW with RkW = E[Wkϑ(Xk−1)ṙkϑ(Xk−1)ṙ>kϑ(Xk−1)]. Hence ϑ̃W is
asymptotically normal with covariance matrix R−1

W QW R−1
W , where

QW =
m∑

k=1

σ2
kE[Wkϑ(Xk−1)ṙkϑ(Xk−1)ṙ>kϑ(Xk−1)W>

kϑ(Xk−1)].

The covariance matrix is minimized for W ∗
kϑ(x) = σ−2

k Id with Id the d × d unit matrix.
This follows from the fact that ξW − ξW∗ is orthogonal to ξW∗ , which in turn is seen by
straightforward calculation. We have

ξW∗(Y1−q, . . . ,Y1) = R−1
W∗

m∑
k=1

σ−2
k ṙkϑ(Xk−1)εk,

where RW∗ =
∑m

k=1 σ−2
k Rk. An optimal weighted least squares estimator ϑ̃∗ is obtained as

solution of the estimating equation

n∑
j=1

m∑
k=1

σ̃−2
k ṙkϑ(Xjm+k−1)(Xjm+k − rkϑ(Xjm+k−1)) = 0,
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where σ̃2
k is a consistent estimator of σ2

k, for example the estimator

σ̃2
k =

1
n

n∑
j=1

ε̃2
jm+k

based on residuals ε̃jm+k = Xjm+k − rkϑ̃(Xjm+k−1), with ϑ̃ the least squares estimator
minimizing (3.1). The asymptotic covariance matrix of ϑ̃∗ is MLS∗ = R−1

W∗
. The estimator

ϑ̃∗ weights the squared martingale increments in (3.1) by the inverses of their variances,
which is a plausible result.

In ordinary (non-alternating) nonlinear autoregression, the least squares estimator is
not efficient, except when the innovations are normally distributed. We expect that our
optimally weighted least squares estimator is also inefficient. To see this, and to construct
an efficient estimator of ϑ, we first determine the canonical gradient of the d-dimensional
functional ϕ(ϑ, f) = ϑ, for which

n1/2(ϕ(ϑnu, fnv)− ϕ(ϑ, f)) = u.

Assume that Λ =
∑m

k=1 Λk is positive definite. From the d-dimensional version of
Proposition 1, the canonical gradient of ϑ is obtained as

Λ−1
m∑

k=1

sk(Xk−1, εk).

This is different from the influence function ξW∗ of the optimally weighted least squares
estimator ϑ̃∗, except in the following case. Suppose that for k = 1, . . . ,m the innova-
tion densities fk are normal with mean zero and variance σ2

k. Then `k(εk) = σ−2
k εk and

sk(Xk−1, εk) = σ−2
k ṙkϑ(Xk−1)εk. Hence Λk = σ−2

k Rk and Λ =
∑m

k=1 Λk = RW∗ , and the
canonical gradient equals ξW∗ .

As in Koul and Schick (1997), Section 6, we obtain an efficient estimator for ϑ under
additional conditions on ṙkϑ as follows. Let ϑ̃ be root-n consistent and discretized, i.e. with
values on a rectangular grid with side lengths of order n−1/2. For c = cn → ∞ introduce
the truncation

x̄ = x1[|x| ≤ c] + c
x

|x|
1[|x| > c], x ∈ Rd.

Estimate µk = E[ṙkϑ(Xk−1)] and Rk = E[ṙkϑ(Xk−1)ṙ>kϑ(Xk−1)] by truncated empirical
estimators

µ̃k =
1
n

n∑
j=1

¯̇rkϑ̃(Xjm+k−1), R̃k =
1
n

n∑
j=1

¯̇rkϑ̃(Xjm+k−1)¯̇r>kϑ̃
(Xjm+k−1).

Estimate σ2
k by σ̃2

k = (1/n)
∑n

j=1 ε̃2
jm+k. Let K be a kernel fulfilling Condition K of Schick

(1993), for example the logistic density. For a bandwidth b = bn → 0, set Kb(x) = K(x/b)/b.
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Then K ′
b(x) = K ′(x/b)/b2. Estimate fk and f ′k by

f̃k(x) =
1
n

n∑
j=1

Kb(x− ε̃jm+k), f̃ ′k(x) =
1
n

n∑
j=1

K ′
b(x− ε̃jm+k).

Let a = an ↓ 0 and estimate `k and Jk by

˜̀
k = −

f̃ ′k
f̃k + a

, J̃k =
1
n

n∑
j=1

˜̀2
k(ε̃jm+k).

Our estimator for ϑ is now obtained by the Newton–Raphson procedure, a one-step improve-
ment of ϑ̃, as

ϑ̂ = ϑ̃ + Λ̃−1 1
n

n∑
j=1

m∑
k=1

s̃k(Xjm+k−1, ε̃jm+k)

with Λ̃ =
∑m

k=1 Λ̃k and

Λ̃k = J̃k(R̃k − µ̃kµ̃
>
k ) + σ̃−2

k µ̃kµ̃
>
k ,

s̃k(Xk−1, εk) = (¯̇rkϑ̃(Xk−1)− µ̃k)˜̀k(εk) + σ̃−2
k µ̃kεk.

For appropriate choices of a, b and c, the influence function of the estimator ϑ̂ equals
the canonical gradient; hence ϑ̂ is efficient for ϑ. This follows as in the non-alternating
case, Koul and Schick (1997), which in turn uses results of Schick (1987). The asymptotic
covariance matrix of ϑ̂ is M = Λ−1.

Remark 2. The case of equal autoregression functions does not lead to noticeable simpli-
fications. The expectations µk = E[ṙϑ(Xk−1)] and the covariance matrices

Rk = E[ṙϑ(Xk−1)ṙ>ϑ (Xk−1)]

still depend on k. The optimally weighted least squares estimator now solves
n∑

j=1

m∑
k=1

σ̃−2
k ṙϑ(Xjm+k−1)(Xjm+k − rϑ(Xjm+k−1)) = 0,

and its asymptotic covariance matrix is (
∑m

k=1 σ−2
k Rk)−1. The efficient estimator for ϑ

remains unchanged except that now ṙkϑ = ṙϑ for k = 1, . . . ,m.

Remark 3. The case of linear autoregression functions rkϑ(Xk−1) = %>kϑXk−1 leads to
considerable simplifications. We have

sk(Xk−1, εk) = %̇kϑXk−1, Λk = Jk%̇kϑΣk%̇
>
kϑ,

and we can take residuals ε̃jm+k = Xjm+k−%>
kϑ̃

Xjm+k−1. An efficient estimator of ϑ is now
obtained as

ϑ̂ = ϑ̃ +
( m∑

k=1

J̃k%̇kϑ̃Σ̃k%̇
>
kϑ̃

)−1 1
n

n∑
j=1

m∑
k=1

%̇kϑ̃Xjm+k−1
˜̀
k(ε̃jm+k),
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where

Σ̃k =
1
n

n∑
j=1

Xjm+k−1X>
jm+k−1.

Compare this with Remark 1. For alternating autoregression of order p = 1 see Müller,
Schick and Wefelmeyer (2007).

4 Innovation distributions

In this section we fix one of the indices ν ∈ {1, . . . ,m} within a period and consider esti-
mators of linear functionals ϕ(fν) = E[h(εν)] =

∫
h(x)fν(x) dx.

If ϑ were known, a simple estimator would be Eh = (1/n)
∑n

j=1 h(εjm+ν), the em-
pirical estimator based on the innovations. Since E[εν ] = 0, we obtain new unbiased
estimators Eha with ha(x) = h(x) − ax. Their asymptotic variance is minimized for
a = a∗ = σ−2

ν E[ενh(εjm+ν)]. Since a∗ depends on the unknown distribution of εν , we
must replace it by an estimator, for example a ratio of empirical estimators, and arrive at
the estimator

(4.1)
1
n

n∑
j=1

h(εjm+ν)−
∑n

j=1 εjm+νh(εjm+ν)∑n
j=1 ε2

jm+ν

1
n

n∑
j=1

εjm+ν

for E[h(εν)], which is known to be efficient.
Here we have improved the empirical estimator by an additive correction. Following

Owen (1988, 2001), we can also choose random weights wjm+ν such that the weighted
empirical distribution has mean zero,

∑n
j=1 wjm+νεjm+ν = 0, and estimate E[h(εν)] by the

weighted empirical estimator
1
n

n∑
j=1

wjm+νh(εjm+ν).

By the method of Lagrange multipliers, the weights are seen to be of the form wjm+ν =
1/(1 + λνεjm+ν). This implies λν = σ−2

ν (1/n)
∑n

j=1 εjm+ν + oPn(n−1/2) and therefore

1
n

n∑
j=1

wjm+νh(εjm+ν) =
1
n

n∑
j=1

h(εjm+ν)− σ−2
ν E[ενh(εν)]

1
n

n∑
j=1

εjm+ν + oPn(n−1/2).

Hence the weighted empirical estimator is asymptotically equivalent to the additively cor-
rected empirical estimator (4.1).

However, we do not know ϑ and must replace the innovations εjm+ν by residuals ε̂jm+ν =
Xjm+ν − rνϑ̂(Xjm+ν−1) for some estimator ϑ̂. By the so-called plug-in principle, see e.g.
Müller, Schick and Wefelmeyer (2001) and Klaassen and Putter (2005), we expect to obtain
an efficient estimator for E[h(εν)] as

ϕ̂a =
1
n

n∑
j=1

h(ε̂jm+ν)−
∑n

j=1 ε̂jm+νh(ε̂jm+ν)∑n
j=1 ε̂2

jm+ν

1
n

n∑
j=1

ε̂jm+ν

12



if we use an efficient estimator ϑ̂ for the residuals.
Again, instead of ϕ̂a we can use a weighted residual-based empirical estimator

ϕ̂w =
1
n

n∑
j=1

ŵjm+νh(ε̂jm+ν)

with random weights ŵjm+ν determined by
∑n

j=1 ŵjm+ν ε̂jm+ν = 0. It is asymptotically
equivalent to ϕ̂a by similar arguments as above; see Müller, Schick and Wefelmeyer (2005).

Assumption 3. Let h ∈ L2(fν) be absolutely continuous with h′ ∈ L2(fν) and∫
sup
|a|≤η

(h′(x− a)− h′(x))2fν(x) dx → 0 as η →∞.

Set h∗(x) = h(x)− a∗x. By Taylor expansion, compare Schick and Wefelmeyer (2002),
the influence function of ϕ̂a and ϕ̂w is seen to be

−E[h′∗(εν)]µ>ν Λ−1
m∑

k=1

sk(Xk−1, εk) + h∗(εν)− E[h∗(εν)].

By Theorem 2, an estimator ϕ̂ is efficient if its influence function equals the canonical
gradient of ϕ(fν) = E[h(εν)]. To determine the canonical gradient, we note first that for
v ∈ Vν we have

n1/2(ϕ(fνnv)− ϕ(fν)) = E[h(εν)v(εν)].

On the right-hand side, we can replace h(εν) by its projection h∗(εν)− E[h∗(εν)] onto V̄ν .
By Proposition 1, the canonical gradient of E[h(εν)] is seen to be of the form

m∑
k=1

u>ϕ sk(Xk−1, εk) + h∗(εν)− E[h∗(εν)]

with uϕ so that
u>ϕΛ + E[h∗(εν)`∗ν(εν)]µ>ν = 0.

Hence the canonical gradient is

−E[h∗(εν)`∗ν(εν)]µ>ν Λ−1
m∑

k=1

sk(Xk−1, εk) + h∗(εν)− E[h∗(εν)].

Assumptions 1 and 3 imply in particular that E[h′∗(εν)] = E[h∗(εν)`k(εν)]. Hence

E[h∗(εν)`∗ν(εν)] = E[h∗(εν)`ν(εν)] = E[h′∗(εν)],

and the canonical gradient is seen to be equal to the influence function of ϕ̂a and ϕ̂w, which
are therefore efficient.
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Remark 4. We have assumed that h is absolutely continuous. This excludes the interesting
case h(x) = 1[x ≤ t], for which E[h(εν)] equals the distribution function Fν(t) at t of
the innovation density fν . If we assume that fν is uniformly continuous, then we also
obtain uniform stochastic expansions for the additively corrected residual-based empirical
distribution function

F̂a(t) =
1
n

n∑
j=1

1[ε̂jm+ν ≤ t]−
∑n

j=1 ε̂jm+ν1[ε̂jm+ν ≤ t]∑n
j=1 ε̂2

jm+ν

1
n

n∑
j=1

ε̂jm+ν

and for the weighted residual-based empirical distribution function

F̂w(t) =
1
n

n∑
j=1

ŵjm+ν1[ε̂jm+ν ≤ t].

See Schick and Wefelmeyer (2002). For results on smoothed versions of F̂w see also Müller,
Schick and Wefelmeyer (2005, Section 4). By Gill (1989), the quantile function is compactly
differentiable, and hence we obtain a stochastic expansion of the estimators F̂a and F̂w for
the quantile function F−1

ν .

Remark 5. If the autoregression function rνϑ is linear, rνϑ(Xν−1) = %>νϑXν−1, then, as
already noted in Remark 1,

µν = E[ṙνϑ(Xν−1)] = %̇νϑE[Xν−1] = 0.

Let ε̃jm+ν = Xjm+ν − %>
νϑ̃

Xjm+ν−1. Estimators of E[h(εν)] are

ϕ̃a =
1
n

n∑
j=1

h(ε̃jm+ν)−
∑n

j=1 ε̃jm+νh(ε̃jm+ν)∑n
j=1 ε̃2

jm+ν

1
n

n∑
j=1

ε̃jm+ν

and

ϕ̃w =
1
n

n∑
j=1

w̃jm+νh(ε̃jm+ν)

with random weights w̃jm+ν determined by
∑n

j=1 w̃jm+ν ε̃jm+ν = 0. By Taylor expansion,
the influence function of ϕ̃a and ϕ̃w is seen to be h∗(εν)−E[h∗(εν)] and does not depend on
the choice of ϑ̃. Similarly, the canonical gradient of E[h(εν)] reduces to h∗(εν)−E[h∗(εν)].
Hence ϕ̃a and ϕ̃w are efficient even if an inefficient estimator of ϑ is used. Compare this with
Remark 1. For alternating autoregression of order p = 1 see Müller, Schick and Wefelmeyer
(2007).

5 Equal innovation densities

In this section we study the submodel in which all innovation densities are equal, f1 = · · · =
fm = f , with mean 0 and variance σ2. To prove local asymptotic normality, we proceed as

14



in Section 2, now with perturbations fnv(x) = f(x)(1 + n−1/2v(x)) with v in the space V∗

of bounded measurable functions such that E[v(ε)] = 0 and E[εv(ε)] = 0.

Assumption 4. The innovation density f is absolutely continuous with a.e. derivative f ′

and finite Fisher information J = E[`2(ε)], where ` = −f ′/f .

Theorem 4. Let (u, v) ∈ Rd × V∗. Suppose Assumptions 4 and 2 hold and the stationary
density g depends smoothly on the parameters in the sense that

∫
|gnuv(x)− g(x)| dx → 0.

Then

log
dPnuv

dPn
= n−1/2

n∑
j=1

m∑
k=1

skuv(Xjm+k−1, εjm+k)−
1
2
‖(u, v)‖2 + oPn(1),(5.1)

n−1/2
n∑

j=1

m∑
k=1

skuv(Xjm+k−1, εjm+k) ⇒ ‖(u, v)‖N under Pn,(5.2)

where N is a standard normal random variable and

skuv(Xk−1, εk) = u>ṙkϑ(Xk−1)`(εk) + v(εk),

‖(u, v)‖2 =
m∑

k=1

E[s2
kuv(Xk−1, εk)].

Let V̄∗ denote the closure of V∗ in L2(f). The tangent space of the model is

S∗ =
{ m∑

k=1

skuv(Xk−1, εk) : (u, v) ∈ Rd × V̄∗

}
.

The tangent space corresponding to known ϑ is

SV∗ =
{ m∑

k=1

v(εk) : v ∈ V̄∗

}
.

Of course, SV∗ is a subspace of SV = {
∑m

k=1 vk(εk) : (v1, . . . , vm)> ∈ V̄ }, which is the
tangent space corresponding to known ϑ but possibly different innovation densities and was
introduced in Section 2.

A real-valued functional ϕ of (ϑ, f) is differentiable at (ϑ, f) with canonical gradient tϕ

if tϕ is of the form
∑m

k=1 skuϕvϕ(Xk−1, εk) with (uϕ, vϕ) ∈ Rd × V̄∗ and

(5.3) n1/2(ϕ(ϑnu, fnv)− ϕ(ϑ, f)) →
m∑

k=1

E[skuϕvϕ(Xk−1, εk)skuv(Xk−1, εk)]

for (u, v) ∈ Rd × V∗.
The projection of `(ε) onto V̄∗ is `∗(ε) = `(ε)− σ−2ε. Set

sk(Xk−1, εk) = (ṙkϑ(Xk−1)− µk)`(εk) + σ−2µkεk.

15



As in Section 2 we have the orthogonal decomposition

skuv(Xk−1, εk) = u>sk(Xk−1, εk) + u>µk`∗(εk) + v(εk).

However,
∑m

k=1 u>µk`∗(εk) is in SV , but not in SV∗ . In order to obtain an orthogonal
decomposition of the tangent space S∗, we must project

∑m
k=1 µk`∗(εk) onto SV∗ . In general,

the projection of
∑m

k=1 vk(εk) ∈ SV onto SV∗ is
∑m

k=1 v∗(εk) with v∗(ε) = (1/m)
∑m

k=1 vk(ε).
Hence the projection of

∑m
k=1 µk`∗(εk) onto SV∗ is µ∗

∑m
k=1 `∗(εk) with

µ∗ =
1
m

m∑
k=1

µk.

We arrive at the orthogonal decomposition

m∑
k=1

skuv(Xk−1, εk) =
m∑

k=1

u>s∗k(Xk−1, εk) +
m∑

k=1

u>µ∗`∗(εk) +
m∑

k=1

v(εk)

with

s∗k(Xk−1, εk) = sk(Xk−1, εk) + (µk − µ∗)`∗(εk) = (ṙkϑ(Xk−1)− µ∗)`(εk) + σ−2µ∗εk.

This implies an orthogonal decomposition S∗ = S∗
0 + SV∗ of the tangent space, with

S∗
0 =

{ m∑
k=1

u>s∗k(Xk−1, εk) : u ∈ Rd
}

.

Set
Λ∗

k = E[s∗k(Xk−1, εk)s∗>k (Xk−1, εk)]

= Λk + σ−2(µk − µ∗)(µk − µ∗)>

= J(Rk − µkµ
>
k ) + 2σ−2µkµ

>
k − σ−2µ∗µ

>
∗

and Λ∗ =
∑m

k=1 Λ∗
k. We rewrite (5.3) as follows.

Proposition 2. Let ϕ be differentiable at (ϑ, f). Then its canonical gradient is of the form

m∑
k=1

u>ϕ s∗k(Xk−1, εk) +
m∑

k=1

vϕ(εk)

with (uϕ, vϕ) ∈ Rd × V̄∗ determined by

n1/2(ϕ(ϑnu, fnv)− ϕ(ϑ, f)) → u>ϕΛ∗u + mE[vϕ(ε)`∗(ε)]µ>∗ u + mE[vϕ(ε)v(ε)]

for (u, v) ∈ Rd × V∗.
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Autoregression parameters. The least squares estimator ignores the information of
equal innovation densities and remains unchanged. Since now σ1 = · · · = σm = σ, the
optimally weighted least squares estimator is asymptotically equivalent to the unweighted
one. From the d-dimensional version of Proposition 2, the canonical gradient of ϑ is obtained
as Λ−1

∗
∑m

k=1 s∗k(Xk−1, εk). Introduce residuals ε̃jm+k = Xjm+k − rkϑ̃(Xjm+k−1) for some
estimator ϑ̃. We can now estimate f and f ′ by

f̃(x) =
1

nm

nm∑
i=1

Kb(x− ε̃i), f̃ ′(x) =
1

nm

nm∑
i=1

K ′
b(x− ε̃i),

and `, J and σ2 by

˜̀=
f̃ ′

f̃ + a
, J̃ =

1
nm

nm∑
i=1

˜̀2(ε̃i), σ̃2 =
1

nm

nm∑
i=1

ε̃2
i .

We estimate µ∗ by µ̃∗ = 1
m

∑m
k=1 µ̃k, and Λ∗ and s∗k by

Λ̃∗ = J̃

m∑
k=1

(R̃k − µ̃kµ̃
>
k ) + 2σ̃−2

m∑
k=1

µ̃kµ̃
>
k − σ̃−2

m∑
k=1

µ̃∗µ̃
>
∗ ,

s̃∗k(Xk−1, εk) = (¯̇rkϑ̃(Xk−1)− µ̃∗)˜̀(εk) + µ̃∗σ̃
−2εk.

Then the one-step improvement of a root-n consistent and discretized initial estimator ϑ̃ is

ϑ̂ = ϑ̃ + Λ̃−1
∗

1
n

n∑
j=1

m∑
k=1

s̃∗k(Xjm+k−1, εjm+k).

For appropriate choices of a, b and c, this estimator is efficient for ϑ and has asymptotic
covariance matrix M∗ = Λ−1

∗ . The covariance bound Λ−1
∗ is strictly smaller than Λ−1, in

general, with Λ∗−Λ = σ−2
∑m

k=1(µk−µ∗)(µk−µ∗)>. So equality of the innovation densities
carries information about ϑ, except when µ1 = · · · = µm = µ∗. The latter holds of course
in alternating linear autoregression, for which µ1 = · · · = µm = 0.

Innovation distribution. In this subsection we consider estimation of a linear functional
ϕ(f) = E[h(ε)] =

∫
h(x)f(x) dx. We can now base it on all residuals. As in Section 4, we

expect the estimator

ϕ̂a =
1

nm

nm∑
i=1

h(ε̂i)−
∑nm

i=1 ε̂ih(ε̂i)∑nm
i=1 ε̂2

i

1
nm

nm∑
i=1

ε̂i

to be efficient for E[h(ε)] if an efficient estimator ϑ̂ is used for the residuals. Alternatively,
we can use the weighted residual-based empirical estimator

ϕ̂w =
1

nm

nm∑
i=1

ŵih(ε̂i)

with random weights ŵi chosen such that
∑nm

i=1 ŵiε̂i = 0.
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Assumption 5. Let h ∈ L2(f) be absolutely continuous with h′ ∈ L2(f) and∫
sup
|a|≤η

(h′(x− a)− h′(x))2f(x) dx → 0 as η →∞.

Set h∗(x) = h(x) − a∗x with a∗ = σ−2E[εh(ε)]. By Taylor expansion, ϕ̂a and ϕ̂w are
seen to have influence function

−E[h′∗(ε)]µ
>
∗ Λ−1

m∑
k=1

s∗k(Xk−1, εk) +
1
m

m∑
k=1

h∗(εk)− E[h∗(ε)].

We must show that this is the canonical gradient of E[h(ε)]. To determine the latter, we
note first that for v ∈ V∗ we have

n1/2(ϕ(fnv)− ϕ(f)) = E[h(ε)v(ε)].

On the right-hand side, we can replace h(ε) by its projection h∗(ε)−E[h∗(ε)] onto V̄∗. By
Proposition 2, the canonical gradient of E[h(ε)] is seen to be of the form

m∑
k=1

u>ϕ s∗k(Xk−1, εk) +
1
m

m∑
k=1

h∗(εk)− E[h∗(ε)]

with uϕ so that
u>ϕΛ∗ + E[h∗(ε)`∗(ε)]µ>∗ = 0.

Hence the canonical gradient is

−E[h∗(ε)`∗(ε)]µ>∗ Λ−1
m∑

k=1

s∗k(Xk−1, εk) +
1
m

m∑
k=1

h∗(εk)− E[h∗(ε)].

Assumptions 1 and 5 imply in particular that E[h′∗(ε)] = E[h∗(ε)`(ε)]. Hence

E[h∗(ε)`∗(ε)] = E[h∗(ε)`(ε)] = E[h′∗(ε)],

and the canonical gradient is seen to be equal to the influence function of ϕ̂a and ϕ̂w, which
are therefore efficient.

References

An, H. Z. and Huang, F. C. (1996). The geometrical ergodicity of nonlinear autoregressive
models. Statist. Sinica 6, 943–956.

Bhattacharya, R. and Lee, C. (1995). On geometric ergodicity of nonlinear autoregressive
models. Statist. Probab. Lett. 22, 311–315. Erratum: 41 (1999), 439–440.

Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1998). Efficient and Adaptive
Estimation for Semiparametric Models. Springer, New York.

18



Gill, R. D. (1989). Non- and semi-parametric maximum likelihood estimators and the von
Mises method. I. With a discussion by J. A. Wellner and J. Præstgaard and a reply by
the author. Scand. J. Statist. 16, 97–128.
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