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Abstract

We consider a stationary Markov renewal process whose inter-arrival time density
depends multiplicatively on the distance between past and present state of the embedded
chain. This is appropriate when the jump size is governed by influences that accumulate
over time. Then we can construct an estimator for the inter-arrival time density that
has the parametric rate of convergence. The estimator is a local von Mises statistic.
The result carries over to the corresponding semi-Markov process.
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1 Introduction

Let (X0, T0), . . . , (Xn, Tn) be observations of a Markov renewal process with real state space.
Assume that the embedded Markov chain X0, X1, . . . has transition density q(x, y) and
is stationary. Then Xj has a stationary density, say p1, and the stationary density of
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(Xj−1, Xj) at (x, y) is p2(x, y) = p1(x)q(x, y). Write q(m)(x, y) for the m-step transi-
tion density, and write Vj = Tj − Tj−1 for the inter-arrival times. Assume that Vj has
a conditional density r(x, y, v) at v given (Xj−1, Xj) = (x, y). Then the Markov chain
(X1, V1), (X2, V2), . . . has a transition density from (Xj−1, Vj−1) = (x, u) to (Xj , Vj) = (y, v)
that factors as s(x; y, v) = q(x, y)r(x, y, v) and does not depend on u.

We are interested in estimating the stationary density of Vj at v > 0,

%(v) =
∫∫

p2(x, y)r(x, y, v) dx dy.

Write fs(x) = f(x/s)/s for a density f scaled by s > 0. Let k be a kernel and b = bn a
bandwidth that tends to zero as n goes to infinity. The usual estimator of %(v) is a kernel
estimator

%̃(v) =
1
n

n∑
j=1

kb(v − Vj).

Kernel estimators have been studied under various mixing conditions; recent papers are
Liebscher (1992), Lu (2001), Prieur (2001), and Ragache and Wintenberger (2006). The
convergence rates are similar or worse than those for the case of i.i.d. observations and
depend on the degree of smoothness of % and on the choice of bandwidth.

It is the purpose of this paper to show that, under additional structural assumptions on
r, we can construct an estimator for % that converges at the faster, parametric, rate n−1/2.
Specifically, we assume that the inter-arrival times depend multiplicatively on the distance
between the past and present states Xj−1 and Xj of the embedded Markov chain,

Vj = |Xj −Xj−1|αWj ,

where α > 0 is known and the Wj are positive, independent with common density g, and
independent of the embedded Markov chain. This means that the jump sizes are roughly
proportional to a power of the inter-arrival times.

Such a model is plausible when the jumps result from influences that accumulate over
time. An example is the size of a tectonic earthquake. Here the stress builds up over time
because it is due to the relative motion of adjacent tectonic plates. See Shimazaki and
Nakata (1980), Murray and Segall (2002), and Corral (2006), who also considers the spatial
distribution of earthquakes. Similarly, the number of susceptibles will rise again after an
epidemic, due to loss of immunity in the population, so the size of the next epidemic will
be larger if more time has elapsed. It is interesting that in finance, shorter waiting times
imply larger jumps, because higher volatility leads to faster trading. This would correspond
to α < 0 in our model and could be treated similarly. See Raberto et al. (2002) and
Meerschaert and Scalas (2006).

Since Zj = |Xj−Xj−1|α and Wj = |Xj−Xj−1|−αVj are independent, ZiWj is distributed
as ZjWj , and we can estimate the density of Vj = ZjWj at v > 0 by a local von Mises
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statistic

(1.1) %̂(v) =
1
n2

n∑
i=1

n∑
j=1

kb(v − ZiWj) =
1
n2

n∑
i=1

n∑
j=1

kb

(
v − |Xi −Xi−1|α

Tj − Tj−1

|Xj −Xj−1|α
)
.

The von Mises statistic is called local because its kernel involves a scale parameter b that
tends to zero. For i.i.d. observations X1, . . . , Xn, similar local U-statistics for densities of
transformations a(X1, . . . , Xm) with m ≥ 2 have been studied by Frees (1994) and Giné
and Mason (2007), among others. For (non-local) von Mises statistics based on dependent
observations we refer to Dehling (2006). The von Mises statistic (1.1) considered here is
both local and based on dependent observations. In Section 2 we give conditions under
which the density estimator %̂(v) is asymptotically linear and asymptotically normal and
therefore converges to %(v) at the parametric rate n−1/2.

Consider the semi-Markov process Zt, t ≥ 0, corresponding to the above Markov renewal
process. Suppose we observe a path Zt, 0 ≤ t ≤ n. Set N = max{j : Tj ≤ n}. The result
of Section 2 carries over to the semi-Markov process by replacing the sample size n by the
random sample size N .

2 Result

Assume that the inter-arrival times are of the form Vj = Tj − Tj−1 = |Xj − Xj−1|αWj ,
where α is a known positive constant and the non-negative random variables W1,W2, . . .

are independent and identically distributed with common density g and are independent
of the embedded Markov chain. Recall that q and q(m) denote the one-step and m-step
transition densities of this chain.

We call the embedded Markov chain uniformly ergodic if

sup
x∈R

sup
|f |≤1

∣∣∣ ∫
(q(m)(x, y)− p1(y))f(y) dy

∣∣∣ → 0 as m →∞.

This implies uniform ergodicity at a geometric rate; see e.g. Meyn and Tweedie (1993,
Chapter 16).

The conditional density at y > 0 of |Xj −Xj−1| given Xj−1 = x is

γ(x, y) = q(x, x + y) + q(x, x− y).

Setting Zj = |Xj − Xj−1|α and β = 1/α, the conditional density at y > 0 of Zj given
Xj−1 = x is

ζ(x, y) = βyβ−1γ(x, yβ).

Hence the stationary density at y > 0 of Zj is

h(y) =
∫

p1(x)ζ(x, y) dx = βyβ−1

∫
p1(x)γ(x, yβ) dx.
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We can therefore write the stationary density of Vj = ZjWj at some positive v as a scale
mixture in two different ways,

%(v) =
∫

hw(v)g(w) dw =
∫

gy(v)h(y) dy.

See also Rohatgi and Ehsanes Saleh (2001), Section 4.4, or Glen et al. (2004). Of course
γ(x, y), ζ(x, y), h(y) and %(y) equal zero if y is not positive.

Recall that a function f from R to R is Hölder at t with exponent ξ if |f(s) − f(t)| ≤
L|s− t|ξ for some constant L and all s in a neighborhood of t.

Theorem 1. Suppose the embedded Markov chain is uniformly ergodic. Let the functions
v 7→ vg(v) and v 7→ vh(v) be bounded and continuous. Let % be Hölder at v with exponent
ξ > 1/2. Assume that the kernel k is a bounded symmetric density with support [−1, 1] and
that the bandwidth b = bn fulfills nbn →∞ and nb2α

n → 0. Then

%̂(v) = %(v) +
1
n

n∑
j=1

(
hWj (v)− %(v) + gZj (v)− %(v)

)
+ oP (n−1/2).

Proof. First we calculate the Hoeffding decomposition of %̂(v). Since Zi and Wj are inde-
pendent, the conditional expectation of kb(v − ZiWj) given Wj = w > 0 is given by

H(w) = E(kb(v − ZiWj)|Wj = w) =
∫

kb(v − zw)h(z) dz

=
∫

kb(v − z)hw(z) dz =
∫

hw(v − bu)k(u) du.

Similarly, the conditional expectation of kb(v − ZiWj) given Zi = z > 0 is

G(z) = E(kb(v − ZiWj)|Zj = z) =
∫

kb(v − zw)g(w) dw =
∫

gz(v − bu)k(u) du.

The expectation of kb(v − ZiWj) is

R = E[H(W1)] = E[G(Z1)] = E[kb(v − Z1W1)] =
∫

%(v − bu)k(u) du.

Hence the Hoeffding decomposition of %̂(v) is

%̂(v) = R + Ḡn + H̄n + Un

with

Ḡn =
1
n

n∑
j=1

(
G(Zj)− E[G(Z1)]

)
, H̄n =

1
n

n∑
j=1

(
H(Wj)− E[H(W1)]

)
,

and

Un =
1
n2

n∑
i=1

n∑
j=1

(
kb(v − ZiWj)−G(Zi)−H(Wj) + R

)
.
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To show that Un = oP (n−1/2), we introduce the following notation,

Uij = K(Zi,Wj) = kb(v − ZiWj)−G(Zi)−H(Wj) + R.

Note that W1, . . . ,Wn are independent with a density g and independent of the Markov
chain X0, . . . , Xn, and therefore independent of Zi = |Xi −Xi−1|α for i = 1, . . . , n. Hence
two summands Uij and Ukl are uncorrelated if j 6= l. From this we immediately derive that

nE[U2
n] =

1
n3

n∑
i=1

n∑
j=1

n∑
k=1

E[UijUkj ]

=
1
n2

n∑
i=1

n∑
k=1

∫
E[K(Zi, w)K(Zk, w)]g(w) dw.

This shows that nE[U2
n] = E[A2

n], where

An =
1
n

n∑
j=1

K(Zj ,W1).

Now set

K0(Xj−1,W1) = E(K(Zj ,W1)|Xj−1,W1) =
∫

q(Xj−1, y)K(|y −Xj−1|α,W1) dy.

Let

An0 =
1
n

n∑
j=1

K0(Xj−1,W1).

Then n(An −An0) =
∑n

j=1

(
K(Zj ,W1)−K0(Xj−1,W1)

)
is a martingale, and

E[(An −An0)2] = n−1E[(K(Z1,W1)−K0(X0,W1))2] ≤ n−1E[K2(Z1,W1)] = O((nb)−1),

where for the last equality we have used

E[K2(Z1,W1)] ≤ E[k2
b (v − Z1W1)] = k2

b ∗ ρ(v) = b−1

∫
ρ(v − bu)k2(u) du = O(b−1).

Next we have

E[A2
n0] =

1
n2

n∑
i=1

n∑
j=1

E[K0(Xi−1,W1)K0(Xj−1,W1)]

=
1
n

E[K2
0 (X0,W1)] +

2
n2

n−1∑
m=1

(n−m)
∫

E[K0(X0, w)K0(Xm, w)]g(w) dw.

The embedded Markov chain is uniformly ergodic and therefore geometrically uniformly
ergodic. Hence there exist constants a > 0 and 0 < λ < 1 such that

Dm = sup
x∈R

sup
|f |≤1

∣∣∣ ∫
(q(m)(x, y)− p1(y))f(y) dy

∣∣∣ ≤ aλm.
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Let B be a bound for the kernel k. Then K0 is bounded by 4Bb−1. For positive w, we have∫
K0(x,w)p1(x) dx = 0 and thus

|E[K0(X0, w)K0(Xm, w)]| =
∣∣∣ ∫

K0(x,w)
∫

qm(x, y)K0(y, w) dy p1(x) dx
∣∣∣

≤ 4Bb−1Dm

∫
p1(x)|K0(x,w)| dx.

From this we immediately derive

1
n2

n−1∑
m=1

(n−m)
∫
|E[K0(X0, w)K0(Xm, w)]|g(w) dw ≤ 1

n

n−1∑
m=1

4Bb−1aλmE[|K0(X0,W1)|].

This and the inequality E[|K0(X0,W1)|] ≤ 4R show that

nE[U2
n] ≤ 2E[(An −An0)2] + 2E[A2

n0] = O((nb)−1).

We obtain that the centered local von Mises statistic %̂(v)−R is approximated by a sum of
two smoothed and centered empirical estimators,

n1/2(%̂(v)−R) = n−1/2
n∑

j=1

(
G(Zj)− E[G(Z1)] + H(Wj)− E[H(W1)]

)
+ oP (1).

The kernel k has bounded support,
∫

k(u) du equals 1 and
∫
|u|ξk(u) du is finite. Using

this, the Hölder property of %, and the properties of the bandwidth, we obtain

|R− %(v)| ≤
∣∣∣ ∫

(ρ(v − bu)− ρ(v))k(u) du
∣∣∣ ≤ Lbξ

∫
|u|ξk(u) du = O(bξ) = o(n−1/2).

Let χ(v) = vh(v). Then hw(v) = χ(v/w)/v. For v, w > 0 and δ < v/2 we have

|hw(v − δ)− hw(v)| ≤ 3
v

sup
x>0

χ(x).

Furthermore, by continuity of χ,

hw(v − δ) → hw(v) as δ → 0.

From the dominated convergence theorem we therefore obtain

E[(H(W1)− hW1(v))2] ≤
∫∫ (

hw(v − bu)− hw(v)
)2

k(u) du g(w) dw → 0.

An analogous result holds for G in place of H. It follows that the two smoothed empirical
estimators are approximated by their unsmoothed versions,

n−1/2
n∑

j=1

(G(Zj)− E[G(Z1)]) = n−1/2
n∑

j=1

(
gZj (v)− %(v)

)
+ oP (1),

n−1/2
n∑

j=1

(H(Wj)− E[H(W1)]) = n−1/2
n∑

j=1

(
hWj (v)− %(v)

)
+ oP (1).

The assertion follows.
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The requirements on the bandwidth b are satisfied by the choice b = bn = log n/n, even
if the value of ξ is unknown. Larger values are possible for b if the value of ξ is known.
For example, if ξ = 1, then we can take b = bn = (n log n)−1/2. Even larger values of b

are possible if we impose additional smoothness assumptions on %. For example, if % is
differentiable in a neighborhood of v and its derivative is Hölder at v with exponent ξ, then
the bias will be of order O(b1+ξ) and we can relax nb2ξ → 0 to nb2+2ξ → 0.

The stationary density % of the inter-arrival time Vj = Tj −Tj−1 is Hölder at v > 0 with
exponent ξ if

∫
y−1−ξh(y) dy is finite and the density g of Wj satisfies

|g(s)− g(t)| ≤ L|s− t|ξ, 0 < s < t,

for some constant L. This follows from the inequality

|%(u)− %(v)| ≤
∫

h(y)y−1|g(u/y)− g(v/y)| dy ≤ L|u− v|
∫

y−1−ξh(y) dy.

A similar sufficient condition can be given by switching the roles of h and g.
Theorem 1 implies that %̂(v) is n1/2-consistent. More precisely, n1/2(%̂(v) − %(v)) is

asymptotically normal by a central limit theorem for Markov chains. Since the Wi are
independent of the Zj , the asymptotic variance of %̂(v) is the sum of the asymptotic variances
of the two terms n−1/2

∑n
j=1

(
hWj (v) − %(v)

)
and n−1/2

∑n
j=1

(
gZj (v) − %(v)

)
. Since the

Wj are independent, the asymptotic variance of the first term is E[h2
W1

(v)] − %2(v). The
asymptotic variance of the second term is

E[g2
Z1

(v)]− %2(v) + 2
∞∑

s=2

E[(gZ1(v)− %(v))gZs(v)].

We can however not expect functional results for the process v 7→ n1/2(%̂(v)− %(v)), in
general. This will be shown elsewhere. Comparable non-regular behavior is shown by local
U-statistics for the density of |X1|α + |X2|α when α ≥ 2; see Schick and Wefelmeyer (2009a)
and (2009b).

One can show that the local von Mises statistic %̂(v) is asymptotically efficient unless
we know more about the transition distribution of the Markov renewal process. We now
discuss briefly improvements over %̂(v) in two cases.

1. Assume that we have a parametric model for the density g of the Wj . For example, let
the Wj be exponentially distributed with unknown mean µ > 0, i.e., g(w) = exp(−w/µ)/µ

for w > 0. Then we can estimate %(v) as follows. Estimate µ by µ̂ = (1/n)
∑n

j=1 Wj .
Estimate the stationary density h of Zj by a kernel estimator

ĥ(y) =
1
n

n∑
j=1

kb(y − Zj).
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Then use the representation %(v) =
∫

hw(v)g(w) dw to estimate %(v) by the plug-in estima-
tor

%̂(v) =
1
µ̂

∫ ∞

0
ĥw(v)e−w/µ̂ dw.

2. Assume instead that we know more about the structure of the transition density q

of the embedded Markov chain. For example, assume that this chain is autoregressive, say
Xj = ϑXj−1 + εj , where |ϑ| < 1 and the innovations εj are i.i.d. with mean zero, finite
variance, and positive density f . Then q(x, y) = f(y − ϑx), and we can replace the kernel
estimator for the stationary density of Zj by a plug-in estimator

ĥ(y) = βyβ−1

∫
p̂1(x)γ̂(x, yβ) dx

with
γ̂(x, y) =

(
f̂(x + y − ϑ̂x) + f̂(x− y − ϑ̂x)

)
1(y > 0).

Here we can use the least squares estimator ϑ̂ to estimate ϑ, and a kernel estimator f̂ for f

based on residuals ε̂j = Xj − ϑ̂Xj−1. The simplest choice for p̂1 is a kernel estimator based
on observations based on the embedded Markov chain. Improvements over such kernel
estimators are studied in Schick and Wefelmeyer (2007, 2008, 2009c).
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