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Abstract. It is known that the convolution of a smooth density with itself can be estimated at the
root-n rate by a convolution of an appropriate density estimator with itself. We show that this remains

true even for discontinuous densities as long as they are of bounded variation. The assumption of
bounded variation can be relaxed. We consider convergence in weighted L1-norms and show that the
standardized convolution estimator converges in distribution to a centered Gaussian process.

1. Introduction

Let X1, . . . , Xn be independent and identically distributed random variables with distribution func-
tion F and density f . Let g denote the convolution f ∗ f of f with itself,

g(x) = f ∗ f(x) =
∫
f(x− y)f(y) dy, x ∈ R.

We are interested in obtaining root-n consistent estimators of g under weak assumptions. Estimators of
g = f ∗ f can in particular be used to test whether f belongs to a given family of densities that is closed
under convolutions, like the normal densities.

There are two estimators for g in the literature. Frees (1994) introduced the U-statistic kernel-type
estimator

ĝ(x) =
2

n(n− 1)

∑
1≤i<j≤n

kb(x−Xi −Xj), x ∈ R,

where kb(x) = k(x/b)/b for some density k and some bandwidth b = bn. Saavedra and Cao (2000)
studied the convolution-type plug-in estimator ĝ∗ = f̂ ∗ f̂ with f̂ a kernel estimator of f ,

f̂(x) =
1
n

n∑
j=1

kb(x−Xj), x ∈ R.

Let k̃ = k ∗ k and k̃b(x) = k̃(x/b)/b. Then k̃b = kb ∗ kb, and it is easy to see that ĝ∗(x) can be expressed
as the von Mises statistic

ĝ∗(x) =
1
n2

n∑
i=1

n∑
j=1

k̃b(x−Xi −Xj), x ∈ R.
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This estimator is closely related to the Frees estimator with the special kernel k = k̃,

g̃(x) =
2

n(n− 1)

∑
1≤i<j≤n

k̃b(x−Xi −Xj), x ∈ R.

Frees (1994) and Saavedra and Cao (2000) showed that their estimators converge pointwise at the root-n
rate. We are interested in minimal assumptions under which ĝ and g̃ have root-n rates in L1-spaces.
It follows from Schick and Wefelmeyer (2004) that under appropriate conditions on f and for proper
choices of kernel and bandwidth, the estimator ĝ∗ is root-n consistent in the L1-norm, and that the
scaled process

√
n(ĝ∗ − g) converges in distribution in the space L1 to a centered Gaussian processes.

More precisely, the following result can be derived from their Theorem 2.

Theorem 1. Suppose that ψ = F 1/2(1−F )1/2 is integrable and that there is an integrable function
f ′ such that f(x) =

∫ x

−∞ f ′(u) du, x ∈ R. Let nb2 → ∞ and nb4 → 0. Let k be uniformly continuous
with mean zero and finite variance. Then

√
n(ĝ∗ − g) converges in distribution (in the space L1) to

2W ∗ f ′ with W = B0 ◦ F and B0 a standard Brownian bridge.

The goal of this paper is to study what results are possible under weaker smoothness assumptions
on the density f . The above theorem does not apply to densities with jumps such as uniform densities
or exponential densities. These latter densities are of bounded variation. For such densities, root-n
consistency and weak convergence still hold.

Theorem 2. Suppose f is of bounded variation and
∫
|x|αf(x) dx is finite for some α > 1. Let

nb2 → ∞ and nb4 → 0. Let k have mean zero and finite variance and be bounded. Then
√
n(ĝ − g)

and
√
n(ĝ∗ − g) converge in distribution (in the space L1) to the same centered Gaussian process whose

covariance structure matches that of 2f(· −X1).

The moment assumption in Theorem 2 is weaker than the integrability of ψ = F 1/2(1 − F )1/2

required in Theorem 1. Indeed, Schick and Wefelmeyer (2004) have shown in the proof of their Theorem
2 that the latter condition implies that f has a finite moment of order 3/2. If one repeats their argument,
one can derive that f has finite moments of all orders less than 2 if ψ is integrable.

We refer to Giné and Mason (2005) for general functional central limit theorems for the variance
term

√
n(ĝ − E[ĝ]) in Lp, 1 ≤ p ≤ ∞, in the general setting of Frees (1994), and uniformly in the

bandwidth.
The conclusions of Theorem 2 hold even for some functions of unbounded variation such as Gamma

densities with shape parameter between 1/2 and 1. More precisely, we shall prove the following result
which is formulated in terms of the smoothness of g. For this we need the following terminology. We
say a measurable function h is L1-Hölder with exponent γ (with 0 < γ ≤ 1) if there is a finite constant
Ch such that

∫
|h(x− t)− h(x)| dx ≤ Ch|t|γ for t ∈ R.

Theorem 3. Suppose
∫

(1+|x|)α(f(x)+f2(x)) dx is finite for some α > 1. Let k have mean zero and
a finite variance and be bounded. Let nb→∞. Then

√
n(ĝ− g) and

√
n(ĝ∗− g) converge in distribution

(in the space L1) to the same centered Gaussian process if one of the following three conditions hold.
(1) The function g is L1-Hölder with exponent γ > 1/2, and nb2γ → 0.
(2) The function g is absolutely continuous with integrable a.e.-derivative, and nb2 = O(1).
(3) The function g is absolutely continuous with an integrable a.e.-derivative that is also L1-Hölder

with exponent γ, and nb2+2γ → 0.
The covariance structure of the limiting process matches that of 2f(· −X1).
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If g is of bounded variation, then g is L1-Hölder with exponent γ = 1; see Corollary 2 in Section
4. If f is of bounded variation, then g satisfies (3) of Theorem 3 with γ = 1 as shown in Corollary 2
below, and since f is bounded the integrability required of f in Theorem 3 follows from that required
in Theorem 2. Thus Theorem 2 follows from Theorem 3.

In Section 2 we prove an extension of Theorem 3 to function spaces with stronger norms, namely
V -norms ‖h‖V =

∫
V (x)|h(x)| dx with V such that

(1.1) ‖h1 ∗ h2‖V ≤ ‖h1‖V ‖h2‖V

and show that the above theorems are special cases of this result. Functional convergence in the
stronger LV distance rather than in L1 is needed if we want to estimate expectations E[a(X1 +X2)] =∫
a(x)g(x) dx by

∫
a(x)ĝ∗(x) dx, where a is a function bounded by V but not by a constant, for example

moments of X1 +X2. Especially when g is smooth, the estimator
∫
a(x)ĝ∗(x) dx can be better for small

samples than the von Mises statistic

1
n2

n∑
i=1

n∑
j=1

a(Xi +Xj).

In Section 3 we characterize compact subsets of the space LV of functions with finite V -norm and prove
equi-continuity of

∫
h(· − bt)k(t) dt at b = 0 in LV with h ranging over compact subsets of LV . Section

4 gives expansions of shifts and related transformations in LV .

2. The main result

Let V be a positive measurable function. For a measurable function h, the V -norm is defined by

‖h‖V =
∫
V (x)|h(x)| dx.

If we take V = 1, this is the usual L1-norm. Let LV denote the (separable) Banach space of all
(equivalence classes of) measurable functions with finite V -norm. We impose the following assumptions
on V .

Assumption 1. The function V is continuous at 0 with V (0) = 1 and satisfies

V (x+ y) ≤ V (x)V (y), x, y ∈ R;(2.1)
V (sx) ≤ V (x), |s| ≤ 1, x ∈ R.(2.2)

Possible choices for V are V (x) = (1 + log(1 + |x|))r, V (x) = (1 + |x|)r and V (x) = exp(r|x|) with
r ≥ 0. In each case, the choice r = 0 gives again the L1-norm. The condition (2.1) meshes well with
shifts and convolutions. Indeed, (2.1) yields

(2.3) ‖h(· − s)‖V =
∫
V (x+ s)|h(x)| dx ≤ V (s)‖h‖V , s ∈ R,

and this and (2.2) imply

(2.4) sup
|w|≤1

‖h(· − wt)‖V ≤ V (t)‖h‖V , t ∈ R.

In particular, we obtain (1.1).
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Remark 1. It follows from (2.2) that V (x) ≥ V (0) = 1 for all x in R, that V is symmetric in the
sense that V (x) = V (−x) for all x in R, and that V (x) ≥ V (y) if |x| ≥ |y|. These properties and (2.1)
yield

(2.5) |V (x+ s)− V (x)| ≤ V (x)(V (s)− 1), x, s ∈ R.

The following lemma shows that g̃ and ĝ∗ are asymptotically equivalent. We can therefore concen-
trate on the estimator ĝ.

Lemma 1. Suppose Assumption 1 holds. Let
∫
V (x)k(x) dx and

∫
V 2(x)f(x) dx be finite. Then

‖ĝ∗ − g̃‖V = Op(n−1).

Proof. It is easy to check that n(ĝ∗− g̃) = f̂2− g̃ with f̂2(x) = 1
n

∑n
j=1 k̃b(x−2Xj), x ∈ R, a kernel

estimator of the density of 2X1. Thus we only need to show that ‖f̂2‖V = Op(1) and ‖g̃‖V = Op(1).
For b < 1, we have

‖f̂2‖V ≤ 1
n

n∑
j=1

∫
V (bx+ 2Xj)k̃(x) dx ≤

1
n

n∑
j=1

V 2(Xj)‖k ∗ k‖V

and

‖g̃‖V ≤ 2
n(n− 1)

∑
1≤i<j≤n

∫
V (bx+Xi +Xj)k̃(x) dx ≤

2
n(n− 1)

∑
1≤i<j≤n

V (Xi)V (Xj)‖k ∗ k‖V .

By the assumptions on f and k we see that ‖f̂2‖V = Op(1) and ‖g̃‖V = Op(1). �

The Hoeffding decomposition yields

ĝ(x) = kb ∗ g(x) + 2Kn(x) + Un(x), x ∈ R,
where Kn(x) is the average

Kn(x) =
1
n

n∑
j=1

(
kb ∗ f(x−Xj)− kb ∗ g(x)

)
and Un(x) is the degenerate U-statistic

Un(x) =
2

n(n− 1)

∑
1≤i<j≤n

(
kb(x−Xi −Xj)− kb ∗ f(x−Xi)− kb ∗ f(x−Xj) + kb ∗ g(x)

)
.

One can express Kn as Hn ∗ kb, where

Hn(x) =
1
n

n∑
j=1

(
f(x−Xj)− E[f(x−Xj)]

)
=

1
n

n∑
j=1

(
f(x−Xj)− g(x)

)
, x ∈ R.

Thus we arrive at the representation

(2.6) ĝ − g = 2Hn + g ∗ kb − g + 2(Hn ∗ kb −Hn) + Un.

Our approach will be to show that norms of the bias g ∗ kb − g and of the terms Hn ∗ kb − Hn and Un

are of order op(n−1/2), and that
√
nHn converges in distribution in LV .

We first consider the remainder term ‖Un‖V . For this and for later use, we introduce, for α ≥ 0,
the function Wα by

Wα(x) =
∫

(1 + |x|)αV 2(x), x ∈ R.



ROOT-n CONSISTENT DENSITY ESTIMATORS 5

This function has the same properties as V . In particular we have

(2.7) ‖h1 ∗ h2‖Wα
≤ ‖h1‖Wα

‖h2‖Wα
.

An application of the Cauchy–Schwarz inequality yields that for measurable h and α > 1,

(2.8) ‖h‖2
V ≤ Kα‖h2‖Wα

with Kα =
∫

(1 + |x|)−α dx. We also need to impose the following condition on the kernel k.

(K) The density k is bounded and has mean zero, and ‖k‖W2 is finite.

Lemma 2. Suppose Assumption 1 and (K) hold and ‖f‖Wα is finite for some α > 1. Then

‖Un‖V = Op(n−1b−1/2).

Proof. We may assume that α < 2. It follows from (K) that ‖k2‖Wα is finite. We calculate

E[U2
n(x)] ≤ 2

n(n− 1)
E[k2

b (x−X1 −X2)] ≤
2

n(n− 1)
k2

b ∗ g(x).

From this we obtain that

E[‖U2
n‖Wα

] ≤ ‖E[U2
n]‖Wα

≤ 2
n(n− 1)

‖k2
b ∗ g‖Wα

.

Since Wα inherits the properties of V , it follows that

‖k2
b ∗ g‖Wα

= b−1

∫∫∫
Wα(x+ y + bz)f(x)f(y)k2(z) dx dy dz ≤ b−1‖f‖2

Wα
‖k2‖Wα

for b < 1. This shows that E[‖U2
n‖Wα ] = O(n−2b−1). �

To deal with Hn, we rely on the following central limit theorem in L1-spaces; see Ledoux and
Talagrand (1991, Theorem 10.10) or van der Vaart and Wellner (1996, page 92).

Theorem 4. Let µ be a σ-finite measure on the Borel-σ-field on R. Let Z1, Z2, . . . be independent
and identically distributed zero-mean random elements in L1(µ). Then the sequence n−1/2

∑n
i=1 Zi

converges in distribution (in L1(µ)) to a centered Gaussian process if and only if

lim
t→∞

t2P
( ∫

|Z1(x)|µ(dx) > t
)

= 0 and
∫
E[Z2

1 (x)]1/2 µ(dx) <∞.

Lemma 3. Suppose Assumption 1 holds and ‖f‖Wα
and ‖f2‖Wα

are finite for some α > 1. Then
‖Hn∗kb−Hn‖V = op(n−1/2) and

√
nHn converges in distribution in the space LV to a centered Gaussian

process whose covariance structure matches that of f(· −X1).

Proof. The second conclusion implies tightness of
√
nHn and hence the first conclusion in view of

Remark 5 below. To prove the second conclusion, we apply the previous theorem with µ(dx) = V (x) dx
and Zi(x) = f(x−Xi)− g(x). Using (2.8) we find that

E
[( ∫

|Z1(x)|V (x) dx
)2]

= E[‖Z1‖2
V ] ≤ Kα

∫
Wα(x)E[Z2

1 (x)] dx

and ( ∫
E[Z2

1 (x)]1/2V (x) dx
)2

≤ Kα

∫
Wα(x)E[Z2

1 (x)] dx.
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Thus we only need to show that
∫
Wα(x)E[Z2

1 (x)] dx is finite. Since E[Z2
1 (x)] ≤ E[f2(x−X1)] = f2∗f(x),

this follows from ‖f2 ∗ f‖Wα < ∞. But ‖f2 ∗ f‖Wα ≤ ‖f2‖Wα‖f‖Wα is finite by the assumptions on
f . �

To deal with the bias term, we introduce the following terminology.

Definition 1. We say that h is V -Hölder with exponent γ for some 0 < γ ≤ 1 if there is a finite
constant C such that ∫

V (x)|h(x− t)− h(x)| dx ≤ C|t|γV (t), t ∈ R.

We say that a function h is V -smooth if h is absolutely continuous (on compacts) and if its almost
everywhere derivative h′ has finite V -norm. We say h is V -smooth of order 1 + γ if h is V -smooth and
h′ is V -Hölder with exponent γ.

Lemma 7 below now gives the desired extension of Theorem 3 to the space LV . The choice V = 1
yields Theorem 3.

Theorem 5. Let Assumption 1 and (K) hold and let nb→∞. Let ‖f‖Wα and ‖f2‖Wα be finite for
some α > 1. Then

√
n(ĝ − g) converges in distribution (in the space LV ) to some centered Gaussian

process if one of the following three conditions holds.
(1) The function g is V -Hölder with exponent γ > 1/2, and nb2γ → 0.
(2) The function g is V -smooth, and nb2 = O(1).
(3) The function g is V -smooth of order 1 + γ, and nb2+2γ → 0.

The covariance structure of the limiting process matches that of 2f(· −X1).

Remark 2. The requirement γ > 1/2 in part (1) of Theorem 5 is needed to guarantee the existence
of a bandwidth that satisfies nb→∞ and nb2γ → 0. The choice b = (log n)/n works for all three cases,
while the choice b = n−1/2 works in cases (2) and (3).

Remark 3. If k satisfies condition (K), so does k ∗ k. Thus Theorem 5 holds with ĝ replaced by ĝ∗
and thus, by Lemma 1, also with ĝ replaced by g̃.

Remark 4. For the following discussion let us take V (x) = (1 + |x|)r for some non-negative r. Let
f = fa, with fa the Gamma density with positive shape parameter a:

fa(x) = 1(x > 0)xa−1e−x/Γ(a), x ∈ R.

If a ≥ 1, then fa is of bounded variation and Theorem 3 applies. If a < 1, then fa is no longer of bounded
variation. Let us now show that the assumptions of Theorem 5 can be met if a > 1/2. Actually, ‖f‖Wα

is finite for all a > 0, but ‖f2‖Wα is finite for a > 1/2 only. We have fa ∗ fa = f2a, and f2a is absolutely
continuous with almost everywhere derivative f ′2a = (2a− 1)(Γ(2a− 1)/Γ(2a))f2a−1 − f2a. Since f2a−1

and f2a have finite moments of all order, we see that part (2) of Theorem 5 can be met with b = n−1/2.
A more careful analysis shows that f2a is V -smooth of order 1 + γ for any 0 < γ < 2a− 1.

Let h be an integrable function of bounded variation. Then we can write h as the difference of two
bounded non-decreasing functions which vanish at −∞. Without loss of generality we may assume that
these functions are right-continuous as this changes h only on a countable set. This shows that

(2.9) h(x) = µ1((−∞, x])− µ2((−∞, x]), x ∈ R,
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for two finite measures µ1 and µ2. We call νh = µ1 + µ2 the measure of variation of h.
If f is of bounded variation, then f is bounded and ‖f‖Wα < ∞ implies ‖f2‖Wα < ∞. If also∫

V dνf is finite, then g is V -smooth of order 2 by Lemma 8 below. Thus we have the following corollary.

Corollary 1. Suppose Assumption 1 and (K) hold and ‖f‖Wα
is finite for some α > 1. Let the

density f be of bounded variation with
∫
V dνf finite. Let nb → ∞ and nb4 → 0. Then

√
n(ĝ − g)

converges in distribution (in the space LV ) to some centered Gaussian process.

Since the assumptions of this corollary become those of Theorem 2 if V = 1, Theorem 2 is a special
case of Corollary 1.

3. Compact subsets of the space LV .

In this section we study compact subsets of the (Banach) space of all (equivalence classes of) mea-
surable functions h with finite V -norm ‖h‖V =

∫
V (x)|h(x)| dx. We shall do this under the following

condition, which by Remark 1 is a consequence of Assumption 1.

Assumption 2. The function V satisfies V ≥ 1 and

(3.1) sup
x∈R

|V (x+ t)− V (x)|
V (x)

→ 0 as t→ 0.

It is easy to see that a subset H of LV is compact if and only if V H = {V h : h ∈ H} is compact in
L1. A characterization of compact subsets of L1 is given by the Fréchet–Kolmogorov theorem; see Yosida
(1980, p. 275). From this theorem and the properties of V we obtain the following characterization of
compact subsets of LV .

Lemma 4. Let Assumption 2 hold. Then a closed subset H of LV is compact if and only if

sup
h∈H

‖h‖V <∞,(3.2)

lim
t→0

sup
h∈H

∫
V (x)|h(x− t)− h(x)| dx = 0,(3.3)

lim
K↑∞

sup
h∈H

∫
|x|>K

V (x)|h(x)| dx = 0.(3.4)

Proof. By the Fréchet–Kolmogorov theorem, the set V H is compact if and only if

sup
h∈H

∫
|(V h)(x)| dx <∞,(3.5)

lim
t→0

sup
h∈H

∫ ∣∣(V h)(x− t)− (V h)(x)
∣∣ dx = 0,(3.6)

lim
K↑∞

sup
h∈H

∫
|x|>K

|(V h)(x)| dx = 0.(3.7)

Clearly, (3.2) and (3.5) are equivalent, and so are (3.4) and (3.7). It remains to show that (3.3) is
equivalent to (3.6) under (3.2) and (3.1). For a measurable function h we have∣∣∣V (x)|h(x− t)− h(x)| − |(V h)(x− t)− (V h)(x)|

∣∣∣ ≤ |V (x)− V (x− t)||h(x− t)|,
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so that the substitution x = y + t and (2.5) yield∫ ∣∣∣V (x)|h(x− t)− h(x)| − |(V h)(x− t)− (V h)(x)|
∣∣∣ dx ≤ Dt‖h‖V ,

with Dt the left-hand side of (3.1). This shows that (3.6) and (3.3) are equivalent under (3.2) and
(3.1). �

Lemma 5. Let Assumption 1 hold. Let H be a compact subset of LV and k ∈ LV . Then

(3.8) sup
h∈H

∫
V (y)

∣∣∣∣∣
∫

(h(y − bt)− h(y))k(t) dt

∣∣∣∣∣ dy → 0 as b→ 0.

Proof. Without loss of generality we may assume that |b| ≤ 1. For such a b let ψb denote the
function defined by

ψb(t) = sup
h∈H

∫
V (y)|h(y − bt)− h(y)| dy, t ∈ R.

Then the left-hand side of (3.8) is bounded by
∫
ψb(t)|k(t)| dt. Since H is compact, we obtain from (3.3)

that ψb(t) → 0 as b→ 0, for each t ∈ R. We also have ψb(t) ≤ suph∈H ‖h‖V (1+V (t)) for all t ∈ R. Thus
the desired result follows from an application of the Lebesgue dominated convergence theorem. �

Remark 5. Let kb(x) = k(x/b)/b, x ∈ R, b > 0, for some density k with finite V -norm. Then the
lemma implies that ‖h∗kb−h‖V → 0 as b→ 0 uniformly in h over compact subsets of LV . In particular,
if Gn is a tight sequence in LV , then ‖Gn ∗ kb −Gn‖V = op(1) if b = bn → 0.

4. Expansions in LV

In this section we study continuity and Taylor expansions of shifts h(· − t) in LV .

Lemma 6. Let Assumption 1 hold. Let h be V -smooth and t ∈ R. Set ht(x) = h(x − t) and
h′t(x) = h′(x− t). Then

‖ht − h‖V ≤ ‖h′‖V |t|V (t),(4.1)
‖ht − h+ th′‖V ≤ |t| sup

|s|≤|t|
‖h′s − h′‖V .(4.2)

If h is V -smooth of order 1 + γ, we have

(4.3) ‖ht − h+ th′‖V ≤ C|t|1+γV (t).

Proof. Since h is absolutely continuous, we can write

(4.4) h(x− t)− h(x) = −
∫ 1

0

th′(x− ut) du, x ∈ R.

From this and (2.4) we obtain that the left-hand side of (4.1) is bounded by

|t|
∫ 1

0

∫
V (x)|h′(x− ut)| dx du ≤ |t|V (t)‖h′‖V .

The left-hand side of (4.2) is bounded by

|t|
∫ 1

0

‖h′ut − h′‖V du ≤ |t| sup
|s|≤|t|

‖h′s − h′‖V .
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If h′ is V -Hölder with exponent γ, then we have ‖h′s − h′‖V ≤ CV (s)|s|γ ≤ CV (t)|t|γ for |s| ≤ |t|, and
(4.3) follows from this and (4.2). �

Lemma 7. Let Assumption 1 hold. Let kb(x) = k(x/b)/b for b > 0 and some density k with zero
mean. Then the following are true.

(1) If h is V -Hölder with exponent γ and
∫
|t|γV (t) dt is finite, we have ‖h ∗ kb − h‖V = O(bγ).

(2) If h is V -smooth and
∫
|t|V (t)k(t) dt is finite, we have ‖h ∗ kb − h‖V = o(b).

(3) If h is V -smooth of order 1+γ and
∫
|t|1+γV (t)k(t) dt is finite, we have ‖h∗kb−h‖V = O(b1+γ).

Proof. Part (1) is immediate. Since
∫
tk(t) dt = 0, we can write

h ∗ kb(x)− h(x) =
∫ (

h(x− bt)− h(x) + bth′(x)
)
k(t) dt.

Part (2) is now an easy consequence of (4.2) and the Lebesgue dominated convergence theorem; note
that the supremum in (4.2) is bounded by (1 + V (t))‖h′‖V . Part (3) follows from (4.3). �

Lemma 8. Let Assumption 1 hold. Let h in LV be of bounded variation and let
∫
V dνh be finite

with νh the measure of variation of h. Then h is V -Hölder with exponent 1 and h ∗ h is Lipschitz and
V -smooth of order 2.

Proof. Let us first show that

(4.5)
∫
V (x)|h(x− t)− h(x)| dx ≤ |t|V (t)

∫
V (y) dνh(y), t ∈ R.

This bound shows that h is V -Hölder with exponent 1. The bound is clear for t = 0. For t > 0, we can
bound the left-hand side of (4.5) by∫

V (x)νh((x− t, x]) dx =
∫ ( ∫

[y,y+t)

V (x)dx
)
dνh(y) ≤ tV (t)

∫
V (y) dνh(y).

Here we used that V (x) ≤ V (y)V (t) for y ≤ x ≤ x+ t. The same arguments can be used to obtain the
bound with tV (t) replaced by −tV (t) for negative t.

Now set χ = χ1 − χ2, where

χi(x) =
∫
h(x− y) dµi(y), x ∈ R, i = 1, 2.

Then straightforward calculations show that

‖χ‖V ≤
∫
V (x+ y)|h(x)| dx dνh(y) ≤ ‖h‖V

∫
V dνh.

Next, using the substitution u = x− y we calculate for i = 1, 2 that∫ z

−∞
χi(x) dx =

∫∫
x<z

h(x− y) dµi(y) dx =
∫∫

u<z−y

h(u) dµi(y) du

=
∫
µi((−∞, z − u])h(u) du, z ∈ R.

This shows that h ∗ h is absolutely continuous with almost everywhere derivative χ. As χ has finite
V -norm, h ∗ h is V -smooth. Since h is bounded, so is χ. More precisely, ‖χ‖∞ ≤ ‖h‖∞νh(R). This
shows that h ∗ h is Lipschitz. Straightforward calculations show that

χ(x) = µ1 ∗ µ1((−∞, x]) + µ2 ∗ µ2((−∞, x])− 2µ1 ∗ µ2((−∞, x]), x ∈ R.
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This shows that χ is of bounded variation with measure of variation νχ = µ1 ∗ µ1 + µ2 ∗ µ2 + 2µ1 ∗ µ2 =
νh ∗ νh. We have

∫
V dνh ∗ νh ≤

∫
V dνh

∫
V dνh, so that

∫
V dνχ is finite. Thus, by what we have

already shown, χ is V -Hölder with exponent 1. This shows that h ∗ h is V -smooth of order 2. �

For V = 1, we have the following result.

Corollary 2. Let h be an integrable function of bounded variation. Then h is L1-Hölder with
exponent one, and h∗h is Lipschitz with an a.e.-derivative that is integrable and L1-Hölder with exponent
one.
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