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Abstract We consider estimation of the drift function of a stationary diffusion pro-

cess when we observe high-frequency data with microstructure noise over a long time

interval. We propose to estimate the drift function at a point by a Nadaraya–Watson

estimator that uses observations that have been pre-averaged to reduce the noise. We

give conditions under which our estimator is consistent and asympotically normal. Its

rate and asymptotic bias and variance are the same as those without microstructure

noise. To use our method in data analysis, we propose a data-based cross-validation

method to determine the bandwidth in the Nadaraya–Watson estimator. Via simula-
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tion, we study several methods of bandwidth choices, and compare our estimator to

several existing estimators. In terms of mean squared error, our new estimator out-

performs existing estimators.

Keywords diffusion process, nonparametric estimation, discrete observations,

high-frequency observations, microstructure noise, pre-averaging, drift estimation,

Nadaraya–Watson estimator

1 Introduction

Consider a one-dimensional time-homogeneous diffusion process given by the stochas-

tic differential equation

dXt = µ(Xt)dt +σ(Xt)dWt ,

where µ and σ are real-valued functions, the drift and the diffusion functions, respec-

tively, and (Wt)t≥0 is a Wiener process. We want to estimate the drift function µ at a

point x.

Suppose first that we have no microstructure noise, and we observe the process at

times t = i∆ for i = 1, . . . ,n, where ∆ → 0 and n∆ → ∞. Under our Assumption 3 of

stationarity, we have µ(x) = lim∆→0 E(Xt+∆ −Xt |Xt = x)/∆ . Hence a natural estima-

tor of µ(x) is the Nadaraya–Watson estimator suggested by Arfi (1995) and Stanton

(1997),

µNW (x) =
∑

n−1
i=1 SiKh(Xi∆ − x)

∑
n−1
i=1 Kh(Xi∆ − x)

,

with slopes Si = (X(i+1)∆ − Xi∆ )/∆ , where Kh(x) = K(x/h)/h for a kernel K and

a bandwidth h. Several competitors to this estimator can be found in the literature.
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Bandi and Phillips (2003) modify the estimator by double smoothing, replacing the

slopes Si by smoothed slopes obtained as moving averages

S̃i =
1
|Bi| ∑

k∈Bi

X(k+1)∆ −Xk∆

∆

where Bi = {k : |Xk∆ −Xi∆ | ≤ `} with bandwidth ` tending to zero at an appropriate

rate as specified in Theorem 3 of Bandi and Phillips (2003). They show that the

resulting estimator

µBP(x) =
∑

n−1
i=1 S̃iKh(Xi∆ − x)

∑
n−1
i=1 Kh(Xi∆ − x)

is consistent and determine the asymptotic distribution both in ergodic and noner-

godic cases. Moloche (2001) and Bandi and Phillips (2009a) suggest extensions with

local polynomial smoothers in place of kernel estimators. Bandi and Nguyen (2004)

obtain analogous results for diffusions with jumps. Hoffmann (1999) constructs rate-

optimal estimators for µ based on wavelet thresholding. Comte et al. (2007) and

(2012) construct a rate-optimal penalized least squares estimator and local polyno-

mial smoothers for µ based on piecewise polynomial splines. For the multivariate

version of the diffusion process, Schmisser (2013) extends the result of Comte et al.

to the multivariate version of the diffusion process. Similar results exist for continu-

ously observed diffusions. For one-dimensional diffusions we refer to Dalalyan and

Kutoyants (2002) and Dalalyan (2005). For multivariate diffusions see Strauch (2015,

2016).

Suppose now that at times ti = i∆ with i = 1, . . . ,n we observe the process up to

microstructure noise εni. This means that the observations are

Yi∆ = Xi∆ + εni, i = 1, . . . ,n,
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with errors εn1, . . . ,εnn that are independent of the process (Xt)t≥0. Such measurement

errors are in particular observed in financial time series. For example, Zhou (1996)

reported the presence of measurement error in foreign exchange rates data, and Jones

(2003) argued for the presence of measurement error in the seven-day Eurodollar

rates dataset of Aı̈t-Sahalia (1996). When microstructure noise is present, we can use

the pre-averaging approach introduced in Podolskij and Vetter (2009) in the context

of volatility. See also Jacod et al. (2009) and Chapter 16 of Jacod and Protter (2012).

Assume that n = mr. Decompose the time indices into m disjoint blocks of length r

and take averages of the observations over each block,

Y j =
1
r

r

∑
i=1

Y(( j−1)r+i)∆ .

Our version of the Nadaraya–Watson estimator based on these averages is

µ̂Ave(x) =
∑

m−2
j=1

Y j+2−Y j+1
r∆

Kh(Y j− x)

∑
m−2
j=1 Kh(Y j− x)

.

For technical convenience, we have shifted the slope in the numerator one time block

forward. Our main result is analogous to Corollary 2 of Bandi and Phillips (2003),

now with microstructure noise. In our notation, their result reads as follows:

Let µ and σ be twice continuously differentiable. Let the kernel K ∈ L2(R)

be a bounded, symmetric and continuously differentiable density function such that∫
s2K(s)ds < ∞ and K′ is absolutely integrable. Assume that µ and σ grow locally at

most as fast as x, and that σ is positive. Let X be stationary with stationary density f .

Let n→ ∞, ∆ → 0, n∆ → ∞ and (n∆/h)(∆ log(1/∆))1/2→ 0. Then the assumption

of Theorem 1 below holds for µBP.
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A different estimator is treated by Schmisser (2011). She constructs a rate-optimal

penalized least squares estimator for µ , following the approach of Comte et al. (2007,

2010). The optimal rate of convergence is the same as for our estimator.

The structure of this article is as follows. In Section 2, we introduce our assump-

tions and state our main result, the consistency and asymptotic normality of our es-

timator. In Section 3, we discuss the choice of the bandwidth h and the block size

r. In Section 4, we describe our simulation study. The proof of the main result is in

Section 5.

2 Result

We use the following assumptions.

Assumption 1 As n = mr→ ∞, the sequence of positive real numbers ∆ = ∆n and

the sequence of positive integers r = rn satisfy ∆ → 0, n∆ → ∞, r→ ∞, r∆ → 0.

Note that this implies that the integers m = mn = n/r satisfy m→ ∞.

Assumption 2 The functions µ and σ are twice differentiable on R, and the second

derivatives are Hölder with exponent ε for some ε > 0. In addition, σ2(x)> 0 for all

x ∈ R.

Assumption 3 The solution process {Xt} is positive recurrent and strictly stationary

with stationary density f . In addition, both E(µ2(X0)) and E(σ2(X0)) are finite.

Sufficient conditions for positive recurrence and ergodicity are: Both µ and σ are

globally Lipschitz, σ is bounded and bounded away from zero, and xµ(x) . −|x|α

for large |x| and some α ≥ 1.
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Assumption 4 The kernel K ∈ L2(R) is a bounded, symmetric and continuously dif-

ferentiable density function such that
∫

∞

−∞
s2K(s)ds < ∞. In addition, its derivative,

K′, is bounded and is in L1(R).

Assumption 5 The errors εn1, . . . ,εnn are independent, and independent of the pro-

cess (Xt)t≥0. Also, E(εni) = 0 and Var(εni) is bounded by a finite constant σ2
ε for all

i and n.

In the literature, the εni with i = 1, . . . ,n are usually assumed to be identically

distributed. Some authors assume that Var(εni) = σ2
ε for all i and n; see e.g. Zhang

et al. (2005). In contrast, some papers in the literature, and most of the papers in the

rounding error literature according to Jacod et al. (2009), assume that Var(εni)= anσ2
ε

for all i, where an → 0 as n→ ∞; see e.g. Bandi et al. (2009b). Our Assumption 5

includes both specifications as special cases.

Now we state our main result.

Theorem 1 Suppose Assumptions 1–5 hold, and let

(n∆

h

)2
r∆ log

1
r∆
→ 0, n∆h→ ∞,

n
h3r2 → 0.

Then the following results hold for each x such that f (x)> 0:

(1) If n∆h5→ 0, then

(n∆h)1/2(
µ̂Ave(x)−µ(x)

)
⇒ N

(
0,

σ2(x)
f (x)

∫
K2(s)ds

)
.

(2) If n∆h5 is bounded, then

(n∆h)1/2(
µ̂Ave(x)−µ(x)−h2

Γ (x)
)
⇒ N

(
0,

σ2(x)
f (x)

∫
K2(s)ds

)
,
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where

Γ (x) =
(

µ
′(x)

f ′(x)
f (x)

+
1
2

µ
′′(x)

)∫
s2K(s)ds.

In order to keep the technical details at a minimum, we have restricted attention

to the simplest case. The result can be generalized in several directions.

1. Since we reduce our proof to that of Bandi and Phillips (2003), we must have

their assumptions on µ and σ , namely that they are twice continuously differentiable.

We expect analogous results assuming more generally that µ and σ are, say, r-times

differentiable with r-th derivative fulfilling a certain Hölder condition. The optimal

bandwidth must then be chosen accordingly.

2. Bandi and Phillips (2003) also construct an estimator for the diffusion func-

tion σ . In the ergodic case, Corollary 3 of their paper, their estimator needs to be

standardized differently from the estimator for the drift function µ . In particular, the

asymptotic variance of their estimator depends on the number of observations. We do

not know whether and how their result carries over to observations with microstruc-

ture noise.

3. The errors εn1, . . . ,εnn need not be independent. The proof would go through

without changes as long as the variance of the averages ε̄ j = ∑
r
i=1 εn(( j−1)+i) is of the

order 1/r uniformly in j, for example if a central limit theorem holds for the errors.

4. For the case without microstructure noise, Bandi and Phillips (2003), Theo-

rem 3, obtain a central limit theorem for their drift estimator that covers also a non-

ergodic (null-recurrent) situation. The estimator is then normed with an estimator of

the “chronological” local time of the process. We do not know whether this result

also carries over to the case of observations with microstructure noise.
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5. As noted above, again for the case without microstructure noise, Schmisser

(2013) obtains a rate-optimal penalized least-squares estimator for the drift function

in the multivariate case. We expect our result on kernel estimators also to carry over

to the multivariate case, with a correspondingly changed bias-variance trade-off of

course.

6. Again for the case without microstructure noise, Schmisser (2014) obtains

bounds for the rate of penalized least-squares estimators for the drift function of cer-

tain one-dimensional processes that are the sum of a diffusion process and a centered

pure-jump Lévy process. Presumably, in the case with microstructure noise, our result

for kernel estimators also carries over to processes with jumps.

7. Like Bandi and Phillips (2003) we restrict attention to equally spaced observa-

tions. In finance mathematics, when estimating the (integrated) realized volatility, one

often has observations at non-equidistant times. We are not aware of results for esti-

mators of the drift and diffusion functions µ and σ under such observation schemes

but expect appropriate versions to hold.

The proof is in Section 5. In particular, we obtain the following result for a band-

width h = (n∆)−1/5:

(n∆)2/5(
µ̂Ave(x)−µ(x)

)
⇒ N

(
Γ (x),

σ2(x)
f (x)

∫
K2(s)ds

)
.

The bandwidth rate of (n∆)−1/5 is optimal in the sense of minimizing asymptotic

mean squared error, as discussed in Section 3.
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3 Bandwidth Choices

For our simulation study in Section 4 we use three different methods of choosing the

bandwidth, based on minimizing the asymptotic mean squared error (AMSE) at x, the

asymptotic mean integrated squared error (AMISE), and a cross-validation criterion.

For an overview of bandwidth choice methods, see e.g. Jones et al. (1996) and the

references therein.

Bandwidth minimizing AMSE. By Theorem 1(2), the AMSE at x of µ̂AV E(x) is

AMSE(x) = h4
Γ

2(x)+
σ2(x)

∫
K2(s)ds

f (x)n∆h
.

When Γ 2(x) 6= 0, the minimizer of AMSE(x), the oracle bandwidth hopt(x), satisfies

n∆h5
opt(x) =

σ2(x)
∫

K2(s)ds
4Γ 2(x) f (x)

. (3.1)

We use hopt in our simulation study, where we know Γ (x), σ(x) and f (x). However,

in data analysis, Γ (x), σ(x) and f (x) are unknown, and so we must use an estimator

of hopt(x).

Bandwidth minimizing AMISE. A global bandwidth, that is, a bandwidth not de-

pending on x, is obtained as follows. The AMISE of µ̂Ave(x) is defined by

AMISE =
∫

AMSE(x) f (x)dx = h4
∫

Γ
2(x) f (x)dx+

∫
σ2(x)dx

∫
K2(s)ds

n∆h
.

When
∫

Γ 2(x) f (x)dx 6= 0, the minimizer of AMISE, the oracle global bandwidth

hinteg
opt , is defined by

(n∆)(hinteg
opt )5 =

∫
σ2(x)dx

∫
K2(s)ds

4
∫

Γ 2(x) f (x)dx
. (3.2)
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Again, in our simulation study, we can use hinteg
opt , but in data analysis, we must use an

estimator of hinteg
opt .

Bandwidth based on H-block cross-validation. For data analysis, we do not use es-

timators of hopt(x) or hinter
opt . Rather, we use H-block cross-validation, as proposed

by Chu and Marron (1991) and further developed by Burman et al. (1994), who

coined the name “H-block”. It adapts the well-known leave-one-out cross-validation

of Stone (1974) to dependent data. For an integer H we estimate the prediction error

given the bandwidth h by

P̂E(h) =
m−1

∑
k=1

(
µ̂k(Y k)−

Y k+1−Y k

r∆

)2
, (3.3)

where µ̂k(Y k) is our estimator µ̂Ave(x) evaluated at x =Y k and calculated without the

data Y j+1−Y j, j = k−H, . . . ,k+H, that is,

µ̂k(Y k) =
∑ j∈Ak

Y j+1−Y j
r∆

Kh(Y j−Y k)

∑ j∈Ak
Kh(Y j−Y k)

(3.4)

for the set of indices Ak = { j = 1, . . . ,m− 1 : j 6= k−H, . . . ,k +H}. The integer

H is chosen so that the dependence between Y k and Y j, j ∈ Ak is “weak enough”.

For the implementation, H can be chosen by looking at the empirical autocorrelation

function of the Y j’s. In P̂E(h), we use (Y k+1−Y k)/(r∆) as it will provide a good

target value for µ̂k(Y k), since the pre-averaged process {Y j} is close to the underly-

ing, unobserved process. Then the cross-validation bandwidth hcv is the minimizer of

P̂E(h):

hcv = argmin P̂E(h). (3.5)
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4 Simulation Study

We carry out a simulation study to assess the finite sample performance of our esti-

mator. We simulate data with two kinds of underlying models for the drift coefficient

µ:

dXt = 0.858× (0.086−Xt)dt +0.157
√

XtdWt , (4.1)

dXt = −(Xt −1)(Xt +1)2dt +2dWt . (4.2)

The process defined by Equation (4.1) is called a Cox–Ingersoll–Ross (CIR) pro-

cess and is used as an underlying model for a short-term interest rate process. The

value of a CIR process at time t equals the annual interest rate, and the time is mea-

sured in years, with a year being 250 days (counting business days only). Following

the parameter choice of Chapman and Pearson (2000), we use the parameter val-

ues (0.858,0.086,0.157) in Equation (4.1) to match the solution process’s monthly

(i.e. 21st-order) autocorrelation, unconditional mean and unconditional variance to

the corresponding sample quantities of the dataset of Aı̈t-Sahalia (1996). We use the

process defined by (4.2) to study the performance of our estimator when the true drift

coefficient is nonlinear. Note that (4.2) satisfies the sufficient conditions for Assump-

tion 3 mentioned after Assumption 3, but (4.1) does not. However, Assumption 3

holds also for the CIR process by Bhan and Mandrekar (2010) and Jin et al. (2013).

We generated 1,000 discretely observed independent sample paths for each of

models (4.1) and (4.2) at time increments of ∆ = 1/250, which represents daily ob-

servations, and with the number of observations n = 5505, which is the sample size

of the dataset of Aı̈t-Sahalia (1996). To generate these sample paths, we used the
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companion R package to Iacus (2008), sde: Simulation and Inference for Stochastic

Differential Equations (Iacus, 2014).

We then added independent and identically normally distributed measurement

errors to the generated discretely observed sample paths. For model (4.1), we took

0.002 as the standard deviation of our measurement errors. This value is an esti-

mate of the standard deviation of the measurement error of the dataset of Aı̈t-Sahalia

(1996), proposed by Jones (2003). We note that the value 0.002 is 5.7% of the un-

conditional standard deviation of the solution process of model (4.1). We also set the

standard deviation of the measurement error added to model (4.2) to be 5.7% of the

unconditional standard deviation of the solution process of model (4.2), that is, to be

0.0661.

Besides our pre-averaged estimator µ̂Ave(x), we considered four other estimators.

The first two are versions of the Nadaraya–Watson estimator µNW (x) and the double-

smoothing estimator µBP(x) of Bandi and Phillips (2003), but now using data Yi∆ ,

i = 1, . . . ,n, with microstructure noise,

µ̂NW (x) =
∑

n−1
i=1 SiKh(Yi∆ − x)

∑
n−1
i=1 Kh(Yi∆ − x)

, µ̂BP(x) =
∑

n−1
i=1 SiKh(Yi∆ − x)

∑
n−1
i=1 Kh(Yi∆ − x)

,

with Si = (Y(i+1)∆ −Yi∆ )/∆ and Si = (1/|Bi|)∑k∈Bi(Y(k+1)∆ −Yk∆ )/∆ . Here Bi = {k :

|Yk∆ −Yi∆ | ≤ `}. The other two are subsampled versions µ̂NWS(x) and µ̂BPS(x), using

only the subsample Yjr∆ , j = 1, . . . ,m, of Yi∆ , i = 1, . . . ,n.

For all estimators, the kernel K was equal to the standard normal density. In Ave,

NWS and BPS we chose r = 5, yielding pre-averaged data equal to weekly averages

for Ave and subsampled data equal to weekly closing prices (i.e. every fifth value) for

NWS and BPS, assuming 5 business days a week.
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For each estimator, we set h equal to the oracle bandwidth based on AMSE(x),

defined in (3.1). Note that all estimators have the same oracle bandwidths because

they have the same asymptotic biases and variances. For BPS, we used ` = hinteg
opt .

This is motivated by the result of Bandi and Phillips (2003) that h and ` should be of

the same order of magnitude (Remark 5 in Bandi and Phillips, 2003). We choose `

independent of x due to the high computational cost when ` depends on x.

In addition to these oracle bandwidths, we used cross-validation bandwidths but

for only three estimators, Ave, NWS and BPS, due to the high computational cost. For

Ave, we used P̂E as in Equation (3.3). For NWS and BPS, we used

P̂E(h) =
m−1

∑
k=1

(
µ̂k(Ykr∆ )−

Y(k+1)r∆ −Ykr∆

r∆

)2
,

where µ̂k is either µ̂NWS or µ̂BPS calculated without Yjr∆ , j = k−H, . . . ,k+H. For

BPS, we chose to minimize P̂E(h) with respect to h with the restriction that ` =

h, since, as noted above, h and ` should be the same order of magnitude. We set

H = 150 for Ave, NWS and BPS by the observation that, for most sample paths, the

empirical autocorrelation functions of the averaged and the subsampled data reached

zero before the time lag reached 150.

In order to numerically minimize P̂E for each sample path, we first calculated

D=maxi Yi∆−mini Yi∆ , and we found the local minimum of P̂E by computing P̂E(h)

for h = D/30,2D/30, . . . ,D. If there were multiple bandwidths that attained local

minima, we took the largest bandwidth, which is a common practice when using

cross-validation. In our simulation result, a grid of 30 values was fine enough to detect

the local minima. We obtained an interior minimizer of P̂E for Ave and NWS for every

sample path we generated. This was not the case for BPS. For the BPS estimator, for
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some sample paths, the curve h 7→ P̂E(h) evaluated at the grid of the bandwidths

was monotonically decreasing in h. In this case, we picked D as the bandwidth. This

occurred in 365 of 1000 sample paths for model (4.1) and in 214 of 1000 sample paths

for model (4.2). Whenever our chosen bandwidth was D, the BPS function estimate

was a constant function. These constant function estimates had very little variation

in the intercept. For example, the standard deviation of the intercepts for model (4.2)

was 0.07, which is small considering that the drift coefficient of model (4.2) ranges

from −1 to 1 at our evaluation points.

To assess our estimators, we evaluated them pointwise at each point in the grid

which consists of 100 equispaced points ranging from the 20th percentile to the 80th

percentile of the stationary density

f (x) =
1

Gσ2(x)
exp
(

2
∫ x

0

µ(y)
σ2(y)

dy
)

with norming constant G defined by
∫

f (x)dx = 1.

Table 1 summarizes the estimated expected integrated squared errors (ISE) of

the estimators. For each combination of the model, the estimator and the bandwidth

choice method, we approximated the ISE for each sample path by a stationary-density-

weighted sum of the squared errors over the grid of evaluation points. We provide the

mean of the 1,000 ISEs along with the standard error of the mean in Table 1.

According to Table 1, if we use the oracle bandwidth, Ave has a smaller expected

ISE than any other listed estimators except for BPS. If we use the cross-validation

bandwidth, Ave outperforms both NWS and BPS. We note that using the oracle band-

width instead of cross-validation increases the expected ISE, except for the BPS es-
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Table 1 Means (and standard errors, i.e. standard deviations/
√

1000) of the integrated squared errors (ISE)

of candidate estimators over 1,000 sample paths. Labels NW and BP stand for the Nadaraya–Watson

(single smoothing) and the double-smoothing estimators of Bandi and Phillips (2003), respectively. Labels

NWS and BPS represent the subsampled NW and BP. Label Ave stands for the pre-averaging estimator.

ISE, Model (4.1) ISE, Model (4.2)

Estimator Oracle CV Oracle CV

NW 1.475 (0.048) — 94.8 (2.1) —

BP 0.628 (0.022) — 50.9 (1.5) —

NWS 0.479 (0.016) 0.187 (0.010) 48.9 (1.1) 27.84 (0.8)

BPS 0.194 (0.008) 0.283 (0.011) 27.2 (0.8) 22.67 (0.7)

Ave 0.197 (0.007) 0.118 (0.003) 24.2 (0.6) 15.83 (0.4)

timator in model (4.1). Thus we recommend using the Ave estimator with the cross-

validation bandwidth.

5 Proof of Theorem 1

We write our estimator as µ̂Ave(x) = N(x)/D(x) with

N(x) =
1

m−2

m−2

∑
j=1

Y j+2−Y j+1

r∆
Kh(Y j− x),

D(x) =
1

m−2

m−2

∑
j=1

Kh(Y j− x).

We compare it with the Nadaraya–Watson estimator based on the (unobserved) sub-

sample X jr∆ , j = 0, . . . ,m−2, which we write µ̂X = NX (x)/DX (x) with

NX (x) =
1

m−2

m−2

∑
j=1

X jr∆ −X( j−1)r∆

r∆
Kh(X( j−1)r∆ − x),

DX (x) =
1

m−2

m−2

∑
j=1

Kh(X( j−1)r∆ − x).
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We show that (n∆h)1/2
(
µ̂Ave(x)− µ̂X (x)

)
= op(1). Then the result of Theorem 1

follows from the corresponding result for µ̂X , which is proved in Theorems 1–3 of

Bandi and Phillips (2003) and equation (3.47) and Theorem 7 of Bandi and Phillips

(2009a). They also show DX (x)→ f (x) almost surely.

In order to prove (n∆h)1/2
(
µ̂Ave(x)− µ̂X (x)

)
= op(1), we show that

D(x)−DX (x) = op(1), (5.1)

(n∆h)1/2
(
N(x)−NX (x)

)
= op(1). (5.2)

The proof will use the following lemma repeatedly. Similarly as Y j we define

X j =
1
r

r

∑
i=1

X(( j−1)r+i)∆ , ε̄ j =
1
r

r

∑
i=1

εn(( j−1)r+i).

Lemma 1 Suppose that Assumptions 1, 2 and 3 hold. Define

κ = κn = max
j≤m

sup
( j−1)r∆≤s≤ jr∆

|Xs−X( j−1)r∆ |,

γ = γn = max
j≤m

E
(
(X j−X( j−1)r∆ )

2).
Then the following hold.

(1) κ2 = O(r∆ log(1/(r∆)) almost surely.

(2) γ ≤ β r∆ for some β < ∞.

(3) max j≤m E
(
(X jr∆ −X( j−1)r∆ )

2
)
≤ φr∆ for some φ < ∞.

(4) max j≤m |X j−X( j−1)r∆ | ≤ κ .

(5) max j≤m E
∣∣X j−X( j−1)r∆

∣∣≤√γ .

(6) max j≤m |X j+1−X j| ≤ 3κ .

(7) max j≤m E
∣∣X j+1−X j

∣∣≤ φ ∗
√

r∆ for some φ ∗ < ∞.
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Note that (1) and the assumptions of Theorem 1 imply that

n∆

h
κ → 0 almost surely. (5.3)

Proof. The proof of (1) uses Lévy’s modulus of continuity of diffusions. See Friz and

Victoir (2004), Theorem 22.

The proof of (2) follows from the two bounds

E
[(∫ b

a
µ(Xs)ds

)2]
≤ (b−a)2E(µ2(X0)), (5.4)

E
[(∫ b

a
σ(Xs)dWs

)2]
≤ (b−a)E(σ2(X0)). (5.5)

To see this, write

X j−X( j−1)r∆ =
1

m−2

m−2

∑
j=1

(
X(( j−1)r+i)∆ −X( j−1)r∆

)
=

1
m−2

m−2

∑
j=1

∫ (( j−1)r+i)∆

( j−1)r∆

(
µ(Xs)ds+σ(Xs)dWs

)
and use (a+b)2 ≤ 2(a2 +b2) to apply the above two bounds.

The proof of (3) is similar, also using (5.4) and (5.5).

Conclusion (4) follows directly from the definitions of κ and X j. Conclusion (5)

follows by the Cauchy–Schwarz inequality. Conclusion (6) follows by rewriting

X̄ j+1− X̄ j = (X̄ j+1−X jr∆ )+(X jr∆ −X( j−1)r∆ )− (X̄ j−X( j−1)r∆ ),

then using the definition of κ and (4). Conclusion (7) follows similarly, but using (3)

with the Cauchy–Schwarz inequality, plus (5) and the bound on γ in (2). �

Throughout the proof of Theorem 1, we use the fact that K is bounded and Lip-

schitz continuous, the latter following by the existence and boundedness of K′. There-



18 Lee et al.

fore,

|Kh(x+ x0)−Kh(x)| ≤
M
h2 |x0|, |Kh(x)| ≤

M
h
, |K′h(x)| ≤

M
h2 , (5.6)

where M equals the maximum of supx |K(x)| and supx |K′(x)|.

Instead of proving (5.1), we prove the stronger statement that

D(x)−DX (x) = op((n∆h)−1/2).

We bound

|D(x)−DX (x)| ≤
1

m−2

m−2

∑
j=1

∣∣Kh(Y j− x)−Kh(X( j−1)r∆ − x)
∣∣

≤ M
h2

1
m−2

m−2

∑
j=1
|Y j−X( j−1)r∆ |. (5.7)

Using the definition of Y j and Lemma 1(4), we have

|Y j−X( j−1)r∆ |= |X j−X( j−1)r∆ + ε̄ j| ≤ κ + |ε̄ j|. (5.8)

Combining (5.7) and (5.8), we get

|D(x)−DX (x)| ≤
M
h2 κ +

M
h2

1
m−2

m−2

∑
j=1
|ε̄ j|. (5.9)

We show the first term is o((n∆h)−1/2) almost surely by showing the stronger result

that the first term is o((n∆h)−1) almost surely, recalling the assumption of Theorem 1

that n∆h→ ∞. We write

n∆h
κ

h2 =
(n∆

h
κ

)
which is o(1) almost surely by (5.3). To study the second term in (5.9) we use the

inequality E|ε̄ j| ≤ σε/
√

r and bound (n∆h)1/2 times the expected value of the second

term by

√
n∆h

M
h2

σε√
r
= Mσε

√
n

h3r2 r∆



Pre-averaged kernel estimators for the drift function 19

which converges to 0 by Assumption 1 and the assumptions in Theorem 1. It follows

from the Markov inequality that the second term in (5.9) is op((n∆h)−1/2).

In order to prove (5.2), we write

√
n∆h

(
N(x)−NX (x)

)
=

√
n∆h

(m−2)r∆

m−2

∑
j=1

[
(Ȳj+2− Ȳj+1)Kh(Ȳj− x)

−(X jr∆ −X( j−1)r∆ )Kh(X( j−1)r∆ − x)
]

≡
√

n∆h
(m−2)r∆

m−2

∑
j=1

[
A j +B j +C j +D j +E j

]
, (5.10)

where

A j = (Ȳj+2− Ȳj+1)
[
Kh(Ȳj− x)−Kh(X̄ j− x)

]
,

B j =
[
Ȳj+2− Ȳj+1− (X̄ j+2− X̄ j+1)

]
Kh(X̄ j− x),

C j = (X̄ j+2− X̄ j+1)
[
Kh(X̄ j− x)−Kh(X( j−1)r∆ − x)

]
,

D j =
[
X̄ j+2− X̄ j+1− (X( j+1)r∆ −X jr∆ )

]
Kh(X( j−1)r∆ − x),

E j =
[
X( j+1)r∆ −X jr∆ − (X jr∆ −X( j−1)r∆ )

]
Kh(X( j−1)r∆ − x).

To study the contributions of the A j to (5.10), we bound E|A j| using the bounds

involving Kh in (5.6):

E|A j| ≤
M
h2 E|(Ȳj+2− Ȳj+1)ε̄ j|=

M
h2 E|Ȳj+2− Ȳj+1|E|ε̄ j|

≤ M
h2

(
E|X j+2−X j+1|+E|ε̄ j+2− ε̄ j+1|

)
E|ε̄ j|

≤ M
h2

(
φ
∗√r∆ +

2σε√
r

)
σε√

r

by Lemma 1 (7), and the fact that E|ε̄ j| ≤ σε/
√

r for all j. Therefore, we bound the

contribution of the A j to (5.10) by

√
n∆h

(m−2)r∆

m−2

∑
j=1

E|A j| ≤
√

n∆h
r∆

M
h2

(
φ
∗√r∆ +

2σε√
r

)
σε√

r
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which converges to 0, since, by Lemma 1 and the assumptions of Theorem 1,

√
n∆h
r∆

1
h2

√
r∆

1√
r
=

√
n

h3r2 → 0

and
√

n∆h
r∆

1
h2

1
r
=

n
r2h3

h2
√

n∆h
→ 0.

We consider the contribution of the B j to (5.10). Since B j = (ε̄ j+2− ε̄ j+1)Kh(X̄ j−x),

m−2

∑
j=1

B j = ε̄mKh(X̄m−2− x)− ε̄2Kh(X̄1− x)

+
m−3

∑
j=1

ε̄ j+2
[
Kh(X̄ j− x)−Kh(X̄ j+1− x)

]
.

Using the boundedness and Lipschitz continuity of K, we obtain

E
∣∣∣m−2

∑
j=1

B j

∣∣∣≤M
[E|ε̄m|

h
+

E|ε̄2|
h

+
1
h2

m−3

∑
j=1

E|ε̄ j+2|E|X̄ j+1− X̄ j|
]
.

By Lemma 1 (7), E|X̄ j+1− X̄ j| ≤ φ ∗
√

r∆ . Therefore, since E|ε̄ j| ≤ σε/
√

r, for some

constant C,

√
n∆h

(m−2)r∆
E
∣∣∣m−2

∑
j=1

B j

∣∣∣≤C

√
n∆h

(m−2)r∆

( 1
h
√

r
+

m−2
h2

√
∆

)
. (5.11)

To show that this converges to 0, recall that m = n/r and write

( √
n∆h

(m−2)r∆

1
h
√

r

)2
=
( m

m−2

)2 1
m2

n
r3∆h

=
( m

m−2

)2 1
rn∆h

.

This converges to 0, since r→∞ and n∆h→∞. Now consider the remaining portion

of (5.11): ( √
n∆h

(m−2)r∆

m−2
h2

√
∆

)2
=

n
h3r2

which converges to 0 by the third assumption made on the bandwidth h made in

Theorem 1.
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Studying the C j, D j and E j is more delicate, requiring a first order Taylor expan-

sion of K and a closer analysis of the behaviour of the diffusion component of the X

process. Specifically, when computing expected values, we will use the following.

0 = E
(∫ b

a
σ(Xs) dWs

∣∣∣∣ Xa

)
= E

(∫ b

a
σ(Xs) dWs

∣∣∣∣ Xt , t ≤ a
)
. (5.12)

To study the C j, first write

C j =
(
X j+2−X j+1

)
K′h(ξ j− x)

(
X j−X( j−1)r∆

)
, (5.13)

where ξ j is a value between X( j−1)r∆ and X j. By the integral expression for X , for

l ≥ k,

Xlr∆ −Xkr∆ =
∫ lr∆

kr∆

µ(Xs)ds+
∫ lr∆

kr∆

σ(Xs)dWs ≡M lr
kr +W lr

kr .

So we can write

X j+2−X j+1 =
1
r

r

∑
i=1

M
( j+1)r+i
jr+i +

1
r

r

∑
i=1

W
( j+1)r+i
jr+i

and

X j−X( j−1)r∆ =
1
r

r

∑
k=1

M
( j−1)r+k
( j−1)r +

1
r

r

∑
k=1

W
( j−1)r+k
( j−1)r .

Substituting these in the expression for C j and expanding yields

C j =C1 j +C2 j

where

C1 j =
1
r2

r

∑
i=1

r

∑
k=1

[
M

( j+1)r+i
jr+i M

( j−1)r+k
( j−1)r +M

( j+1)r+i
jr+i W

( j−1)r+k
( j−1)r

+W
( j+1)r+i
jr+i M

( j−1)r+k
( j−1)r

]
K′h(ξ j− x)

and

C2 j =
1
r2

r

∑
i=1

r

∑
k=1

W
( j+1)r+i
jr+i W

( j−1)r+k
( j−1)r K′h(ξ j− x).
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To bound the terms in C1 j, we use the fact that K′h is bounded by M/h2 and also

use the Cauchy–Schwarz inequality and (5.4) and (5.5). For instance,

E
∣∣∣M ( j+1)r+i

jr+i M
( j−1)r+k
( j−1)r

∣∣∣≤√E
([

M
( j+1)r+i
jr+i

]2)
E
([

M
( j−1)r+k
( j−1)r

]2)
≤ E(µ2(X0))r2

∆
2

by (5.4). By the same reasoning, E
∣∣M ( j+1)r+i

jr+i W
( j−1)r+k
( j−1)r

∣∣ and E
∣∣W ( j+1)r+i

jr+i M
( j−1)r+k
( j−1)r

∣∣
are both bounded by a constant times (r∆)3/2. Since r∆ → 0, (r∆)3/2 is of larger

magnitude than r2∆ 2. Therefore, for some constant C , the contribution of the C1 j to

(5.10) is bounded by

√
n∆h

(m−2)r∆
E
(m−2

∑
j=1
|C1 j|

)
≤ C M

√
n∆h

(m−2)r∆
(m−2)(r∆)3/2 1

h2

= C M
[(n∆

h

)2
r∆

1
n∆h

]1/2
→ 0

since n∆h→ ∞ and

(n∆

h

)2
r∆ =

(n∆

h

)2
r∆ log

( 1
r∆

) 1

log
(

1
r∆

) → 0, (5.14)

by the conditions of Theorem 1 and Assumption 1, that r∆ → 0.

To bound ∑
m−2
j=1 C2 j we will use the fact that, for fixed i and k and for j 6= l,

E
(
W

( j+1)r+i
jr+i W

( j−1)r+k
( j−1)r K′h(ξ j− x)W (l+1)r+i

lr+i W
(l−1)r+k
(l−1)r K′h(ξl− x)

)
= 0. (5.15)

To see this, suppose that j > l. Then

E
(
W

( j+1)r+i
jr+i W

( j−1)r+k
( j−1)r K′h(ξ j− x)

W
(l+1)r+i

lr+i W
(l−1)r+k
(l−1)r K′h(ξl− x)

∣∣∣Xt , t ≤ ( jr+ i)∆
)
= 0

by (5.12), since W
( j−1)r+k
( j−1)r , K′h(ξ j− x), W

(l+1)r+i
lr+i , W

(l−1)r+k
(l−1)r , and K′h(ξl− x) all de-

pend on Xt with t ≤ ( jr+ i)∆ .
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To bound ∑
m−2
j=1 C2 j, we first interchange the order of summation:

m−2

∑
j=1

C2 j =
1
r2

r

∑
i=1

r

∑
k=1

m−2

∑
j=1

W
( j+1)r+i
jr+i W

( j−1)r+k
( j−1)r K′h(ξ j− x) (5.16)

and bound the expectation of the absolute value of the inner sum, using, in order,

the Cauchy–Schwarz inequality, (5.15), (5.6), the independence of W
( j+1)r+i
jr+i , and

W
( j−1)r+k
( j−1)r , and (5.5):

E
∣∣∣m−2

∑
j=1

W
( j+1)r+i
jr+i W

( j−1)r+k
( j−1)r K′h(ξ j− x)

∣∣∣
≤
(

E
[m−2

∑
j=1

W
( j+1)r+i
jr+i W

( j−1)r+k
( j−1)r K′h(ξ j− x)

]2)1/2

=
(

E
m−2

∑
j=1

[
W

( j+1)r+i
jr+i W

( j−1)r+k
( j−1)r K′h(ξ j− x)

]2)1/2

≤ M
h2

(m−2

∑
j=1

E
[
W

( j+1)r+i
jr+i W

( j−1)r+k
( j−1)r

]2)1/2

=
M
h2

(m−2

∑
j=1

E
[
W

( j+1)r+i
jr+i

]2
E
[
W

( j−1)r+k
( j−1)r

]2)1/2
≤ M

h2 (m−2)1/2r∆E[σ2(X0)].

So the contribution of the C2 j to (5.10) is bounded by

√
n∆h

(m−2)r∆

∣∣∣m−2

∑
j=1

E(C2 j)
∣∣∣≤ √

n∆h
(m−2)r∆

M
h2 (m−2)1/2r∆E(σ2(X0))

= ME(σ2(X0))

√
m

m−2

√(n∆

h

)2
r∆h

1
(n∆h)2

which converges to 0 by (5.14) and the assumptions that h→ 0 and n∆h→ ∞.
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The analyses of ∑
m−2
j=1 D j and ∑

m−2
j=1 E j are similar so we only present the analysis

of the contribution of the D j to (5.10). Write

m−2

∑
j=1

D j =
m−2

∑
j=1

[X̄ j+2−X( j+1)r∆ ]Kh
(
X( j−1)r∆ − x

)
−

m−2

∑
j=1

[X̄ j+1−X jr∆ ]Kh
(
X( j−1)r∆ − x

)
=

m−2

∑
j=2

[X̄ j+1−X jr∆ ]
[
Kh(X( j−2)r∆ − x)−Kh(X( j−1)r∆ − x)

]
+[X̄m−X(m−1)r∆ ]Kh(X(m−3)r∆ − x)

−[X̄2−Xr∆ ]Kh(X0− x). (5.17)

We can write the first term in (5.17) as

−
m−2

∑
j=2

[X̄ j+1−X jr∆ ]K′h
(
ξ j− x

)
[X( j−1)r∆ −X( j−2)r∆ ]

for some ξ j between X( j−2)r∆ and X( j−1)r∆ . This sum’s contribution to (5.10) con-

verges to 0 in probability, by the same argument that was used in bounding ∑
m−2
j=1 C j,

in the calculations following equation (5.13).

To study the contribution of the last two terms of (5.17), write

E
∣∣[X̄l+1−Xlr∆ ]Kh(Xkr∆ − x)

∣∣≤ M
h

E
∣∣X̄l+1−Xlr∆

∣∣≤ M
h

√
β r∆

by Lemma 1 (2) and (5). Thus, we can bound the contribution to (5.10) of the last

two terms of (5.17) by a constant times

√
n∆h

mr∆

1
h

√
r∆ =

√
n

m2hr
=

√
r∆

nh∆

since m = n/r. This converges to 0 since r∆ → 0 and nh∆ → ∞.
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