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Abstract. Densities of functions of independent and identically dis-
tributed random observations can be estimated by a local U-statistic.
Under an appropriate integrability condition, this estimator behaves
asymptotically like an empirical estimator. In particular, it converges at
the parametric rate. The integrability condition is rather restrictive. It
fails for the sum of powers of two observations when the exponent is at
least two. We have shown elsewhere that for exponent equal to two the
rate of convergence slows down by a logarithmic factor on the support
of the squared observation. Here we show that the estimator is efficient
in the sense of Hájek and Le Cam. In particular, the convergence rate
is optimal.
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1. Introduction

Suppose that X1, . . . , Xn are independent observations with density f .
It is sometimes of interest to estimate the density p of a transformation
q(X1, . . . , Xm) of m of these observations. Frees (1994) proposed as an
estimator of p(z) the local U-statistic

p̂b(z) =
1(
n
m

) ∑
1≤i1<···<im≤n

kb(z − q(Xi1 , . . . , Xim))

with kb(x) = k(x/b)/b for a kernel k and a bandwidth b. The
√
n-consistency

of this estimator requires that the conditional density of q(X1, . . . , Xm) given
Xi at z has a finite second moment for each i = 1, . . . ,m. Under appropriate
functional versions of these conditions, Schick and Wefelmeyer (2004, 2007)
and Giné and Mason (2007) obtain even functional central limit theorems
in various function spaces.
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In many applications the integrability conditions do not hold. Consider
transformations q(X1, X2) = |X1|ν + |X2|ν . Then |X1| has density

h(y) = (f(y) + f(−y))1[y > 0],

|X1|ν has density

gν(y) = βyβ−1h(yβ)

with β = 1/ν, and the conditional density of |X1|ν + |X2|ν given X1 = x or
X2 = x equals

gν(y − |x|ν).

If h is bounded and ν < 2, then gν(z − |X1|ν) has a finite second moment.
If ν ≥ 2, then gν(z − |X1|ν) does not have a finite second moment if the
one-sided limits h(0+) and gν(z−) exist and are positive.

Schick and Wefelmeyer (2009a) obtained the following results for the
local U-statistic

p̂b(z) =
2

n(n− 1)

∑
1≤i<j≤n

kb(z − |Xi|ν − |Xj |ν)

with continuously differentiable kernel k having support [−1, 1] and a fixed
positive z.

Theorem 1. Let ν < 2. Suppose the density h is of bounded variation
and the right-hand limit h(0+) at 0 is positive. Let b ∼

√
log n/n. Then

√
n(p̂b(z)− p(z))

d−→ N
(
0, 4 Var(gν(z − |X1|ν))

)
.

Theorem 2. Let ν > 2. Suppose h is of bounded variation and the right-
hand limit h(0+) and the left-hand limit gν(z−) are positive. Let b ∼ 1/n.
Then

p̂b(z)− p(z) = OP (n−1/ν).

Theorem 3. Let ν = 2 and g = g2. Suppose h is of bounded variation
and the right-hand limit h(0+) and the left-hand limit g(z−) are positive.
Let b ∼

√
log n/n. Then√

n

log n
(
p̂b(z)− p(z)

) d−→ N(0, h2(0+)g(z−)).

In the situation of Theorem 1, it is easy to show we have local asymptotic
normality and the estimator p̂b is efficient at the parametric rate

√
n. In

Section 2 we consider the situation of Theorem 3 and obtain efficiency of
p̂b(z) even though we now have the slower rate

√
n/ log n of convergence.

For this we exhibit a one-dimensional model that is locally asymptotically
normal with a scale factor 1/

√
n log n and is least favorable for estimating

p(z).
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2. Result

In this section we recall the notion of local asymptotic normality for
nonparametric models, and of regularity and efficiency for estimators of
real-valued functionals; see Theorem 2 in Section 3.3 of Bickel et al. (1998).
For each positive integer n, consider a family Pn = {Pn,f : f ∈ F} of
distributions on a measurable space (Ωn,An) with a common parameter
set F . Let φ be a function from F into R. We are interested in efficient
estimation of φ(f).

Let fn,t, t ∈ R, be a one-dimensional (local) submodel of F , for which
we have local asymptotic normality at fn,0 = f . This means the expansion

(2.1) Λn(t) = log
dPn,fn,t

dPn,f
= tSn −

1
2
t2σ2 + oPn,f

(1)

holds for all t ∈ R, some positive σ and random variables Sn which converge
in distribution to σN , where N denotes a standard normal random variable.
Let φ be differentiable at f in the sense that

(2.2) an(φ(fn,t)− φ(f))→ tγ

for a sequence an tending to infinity and a non-zero real number γ.
We call an estimator φ̂n regular for φ at f with limit L, if L is a random

variable such that

an(φ̂n − φ(fn,t))
d−→ L under Pn,fn,t

for each t ∈ R. The convolution theorem says that L has the same distribu-
tion as (γ/σ)N +M for some random variable M independent of N . Then
(γ/σ)N is more concentrated than L in symmetric intervals. This justifies
calling the regular estimator φ̂n efficient for φ at f if L can be taken to be
(γ/σ)N . An estimator φ̂n is regular and efficient if

(2.3) an(φ̂n − φ(f)) =
γ

σ2
Sn + oPn,f

(1).

If such an estimator exists, we call fn,t, t ∈ R, least favorable for φ at f .
Here we have independent observations X1, . . . , Xn with density f under

a measure Pf and take Pn,f to be the restriction of Pf to the sigma-field
generated by X1, . . . , Xn. The parameter set F consists of all densities f
which have bounded variation and for which y 7→ (f(y) + f(−y))1[y > 0]
has positive right-hand limit at 0 and positive left-hand limit at

√
z.

We write h for the density of |X1| and g for the density of X2
1 . As local

model at f we take

(2.4) fn,t(x) = f(x)
(
1 + cnt1[|t| ≤ dn]χn(x)

)
,

where cn = 1/
√
n log n, dn = (log n)5/4/(2 supx∈R f(x)), and

χn(x) = 1(rn,z](z − x
2)g(z − x2)− µn
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with rn = (log n)3/2/n and

µn =
∫

1(rn,z](z − u
2)g(z − u2)f(u) du→ p(z).

We now check that fn,t defines a local model in F . Since
∫
χn(x)f(x) dx

equals zero and cndn|χn(x)| is bounded by 1/2, we see that fn,t is a density.
It is easy to verify that fn,t has bounded variation. The limit requirements
follow from those of f , the bound cndn|χn(x)| ≤ 1/2, and from

χn(0+) = g(z−)− µn =
h(
√
z−)

2
√
z
− µn and χn(

√
z−) = −µn.

Thus fn,t belongs to F and defines a local model at fn,0 = f .
Next we verify local asymptotic normality. We have

Λn(t) =
n∑
j=1

log(1 + t1[|t| ≤ dn]Znj)

with
Znj = cnχn(Xj) = cn1(rn,z](z −X

2
j )g(z −X2

j )− cnµn.
We have

E[Znj ] = 0, j = 1, . . . , n,

max
1≤j≤n

|Znj | ≤
supx∈R f(x)
(log n)5/4

,

n∑
j=1

E[Z2
nj ] =

1
log n

∫
χ2
n(x)f(x) dx

=
1

log n

(∫ z−rn

0
g2(z − y)g(y) dy − µ2

n

)
=

1
log n

(∫ z−rn

0

h2(
√
z − y)g(y)

4(z − y)
dy − µ2

n

)
and thus

n∑
j=1

E[Z2
nj ]→ σ2 =

1
4
h2(0+)g(z−).

It follows that {Znj : j = 1, . . . , n} is a Lindeberg array. Therefore we have
n∑
j=1

Znj
d−→ σN

and
n∑
j=1

Z2
nj = σ2 + oPn,f

(1).

In view of the inequality∣∣∣ log(1 + x)− x+
x2

2

∣∣∣ =
∣∣∣ ∫ x

0

y2

1 + y
dy
∣∣∣ ≤ |x|3

3(1− |x|)
, |x| < 1,
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we obtain local asymptotic normality (2.1) as follows.

Theorem 4. For the local model (2.4) we have the stochastic expansion

log
dPn,fn,t

dPn,f
= t

1√
n log n

n∑
j=1

χn(Xj)−
1
2
t2σ2 + oPn,f

(1)

with σ2 = 1
4h

2(0+)g(z−).

If X has density fn,t, then |X| has density

hn,t(y) = h(y)(1 + cnt1[|t| ≤ dn]χn(y)), y ∈ R,
and X2 has density

gn,t(y) = g(y)(1 + cnt1[|t| ≤ dn]χn(
√
y)), y ∈ R.

Here the functional is φ(f) = g ∗ g(z) = p(z). We verify (2.2) with
an =

√
n/ log n. The left-hand side of (2.2) is√

n

log n
(
gn,t ∗ gn,t(z)− g ∗ g(z)

)
and eventually equals

1
log n

(
2t(χ̃ng) ∗ g(z) + t2cn(χ̃ng) ∗ (χ̃ng)(z)

)
,

where
χ̃n(y) = χn(

√
y) = 1(rn,z](z − y)g(z − y)− µn.

It is easy to see that we have

(χ̃ng) ∗ g(z) =
∫
g(z − y)χ̃n(y)g(y) dy

=
∫ z−rn

0
g2(z − y)g(y) dy − µnp(z)

= log n
1
4
h2(0+)g(z−) + o(log n)

and, with ψn = 1(rn,z)g,

(χ̃ng) ∗ (χ̃ng)(z) =
∫
g(z − y)(ψn(y)− µn)g(y)(ψn(z − y)− µn) dy

= ψ2
n ∗ ψ2

n(z)− 2µnψ2
n ∗ g(z) + p(z)µ2

n

= O

(∫ z−rn

rn

dy

(z − y)y
+
∫ z

rn

dy

y
√
z − y

)
= O(log n).

This shows that (2.2) holds with γ = 2σ2.
Our estimator for φ(f) = p(z) is

p̂b(z) =
2

n(n− 1)

∑
1≤i≤j≤n

kb(z −X2
i −X2

j )
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with b ∼
√

log n/n. Schick and Wefelmeyer (2009b) have shown the following
stochastic expansion for p̂b(z).

Theorem 5.√
n

log n
(
p̂b(z)− p(z)

)
=

2√
n log n

n∑
j=1

χn(Xj) + oPn,f
(1).

It follows from Theorem 5 and the characterization (2.3) with an =√
n/ log n, γ = 2σ2, σ2 = 1

4h
2(0+)g(z−) and Sn =

∑n
j=1 χn(Xj) that p̂b(z)

is regular and efficient for p(z).
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