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Abstract. We consider nonparametric regression models with multivariate covariates

and estimate the regression curve by an undersmoothed local polynomial smoother. The

resulting residual-based empirical distribution function is shown to differ from the error-

based empirical distribution function by the density times the average of the errors, up

to a uniformly negligible remainder term. This result implies a functional central limit

theorem for the residual-based empirical distribution function.

1. Introduction and Main Results

We consider the nonparametric regression model

Y = r(X) + ε,

where the error ε has mean zero, finite variance and is independent of the m-dimensional
covariate vector X which is assumed to be quasi-uniform on the unit cube C = [0, 1]m. By
the latter we mean that X has a density g that is bounded and bounded away from zero
on C and is zero otherwise. We are interested in estimating the error distribution function
F by a residual-based empirical distribution function. This problem was already addressed
by Müller, Schick and Wefelmeyer (2007) in the case m = 1. They used residuals based on
an undersmoothed local linear smoother for the regression function. Here we follow their
approach, but use local polynomial smoothers in order to cover multivariate covariates.

Let (X1, Y1), . . . , (Xn, Yn) be n independent copies of of (X,Y ). In order to define the
local polynomial smoother we introduce some notation. By a multi-index we mean an
m-dimensional vector i = (i1, . . . , im) whose components are non-negative integers. For a
multi-index i let ψi denote the function on Rm defined by

ψi(x) =
xi1

1

i1!
· · · x

im
m

im!
, x = (x1, . . . , xm) ∈ Rm.

Set i• = i1 + · · ·+ im. For a non-negative integer k, let I(k) denote the set of multi-indices
i with i• ≤ k and J(k) the set of multi-indices i with i• = k. Now fix densities w1, . . . , wm

and set
w(x) = w1(x1) · · ·wm(xm), x = (x1, . . . , xm) ∈ Rm.
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2 URSULA U. MÜLLER, ANTON SCHICK AND WOLFGANG WEFELMEYER

Let cn be a bandwidth. Fix a non-negative integer d. Then the local polynomial smoother
r̂ (of degree d) is defined as follows. For an x in C , r̂(x) is the component β̂0 corresponding
to the multi-index 0 = (0, . . . , 0) of a minimizer

β̂ = arg min
β=(βi)i∈I(d)

n∑
j=1

(
Yj −

∑
i∈I(d)

βiψi

(Xj − x

cn

))2

w
(Xj − x

cn

)
.

To state our main result we also need to introduce the Hölder spaces H(k, γ) for k =
0, 1, . . . and 0 < γ ≤ 1. A function h from C to R belongs to H(k, γ) if it has continuous
partial derivatives up to order k and the partial derivatives of order k are Hölder with
exponent γ. For such functions h we define the norm

‖h‖k,γ = max
i∈I(k)

sup
x∈C

|Dih(x)|+ max
i∈J(k)

sup
x,y∈C ,x 6=y

|Dih(y)−Dih(x)|
‖x− y‖γ

where ‖v‖ denotes the euclidean norm of a vector v and

Dih(x) =
∂i•

∂xi1
1 · · · ∂x

im
m

h(x), x = (x1, . . . , xm) ∈ C .

Let H1(k, γ) denote the unit ball of H(k, γ) for this norm. The following result will be
proved in the next section.

Lemma 1. Suppose the regression function r belongs to H(d, γ) with s = d + γ > 3m/2,
the error variable has mean zero and a finite moment of order ζ > 4s/(2s −m), and the
densities w1, . . . , wm are (m+2)-times continuously differentiable and have compact support
[−1, 1]. Let cn ∼ (n log n)−1/(2s). Then there is a random function â such that

(1.1) P (â ∈ H1(m,α)) → 1

for some α > 0,

(1.2)
∫
|â(x)|1+ξg(x) dx = op(n−1/2)

for ξ > m/(2s−m),

(1.3)
∫
â(x)g(x) dx =

1
n

n∑
j=1

εj + op(n−1/2),

and

(1.4) sup
x∈C

|r̂(x)− r(x)− â(x)| = op(n−1/2).

Remark 1. If r has continuous partial derivatives of order s ≥ 1, then it belongs to
H(s − 1, 1) and the above lemma applies with d = s − 1 and γ = 1 provided s > 3m/2.
However, if s > 3m/2 and we choose the degree d to be s, then the conclusion of the lemma
still holds if we take cn ∼ n−1/(2s). Indeed, inspecting the proof of the lemma shows that
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then the left-hand side of (2.4) is of order o(‖y− x‖s) which implies that the left-hand side
of (2.8) is of order op(csn) = op(n−1/2).

Theorem 1. Suppose that the assumptions of the previous lemma are met and the error
variable has a density f that is Hölder with exponent ξ > m/(2s−m). Then

sup
t∈R

∣∣∣ 1
n

n∑
j=1

1[Yj − r̂(Xj) ≤ t]− 1
n

n∑
j=1

1[εj ≤ t]− f(t)
1
n

n∑
j=1

εj

∣∣∣ = op(n−1/2).

Proof. By Corollary 2.7.2 in van der Vaart and Wellner (1996), there is a constant K such
that

(1.5) logN[ ](η
2,H1(m,α), L1(G)) ≤ Kη−2m/(m+α), 0 < η.

Therefore ∫ 1

0

√
logN[ ](η2,H1(m,α), L1(G)) dη <∞.

Consequently, Theorem 2.2 in Müller, Schick and Wefelmeyer (2007) applied with D =
H1(m,α), boundedness of f , and the expansion (1.3) imply the desired result.

Remark 2. For parametric regression, analogous results to Theorem 1 can be found in Koul
(2002). In such models, the regression function can be estimated at the faster parametric
rate of convergence, and one thus gets by with weaker assumptions on the error density.
Uniform continuity of the error density and weaker moment conditions suffice. For example,
for linear regression r(x) = β>x one obtains the expansion

sup
t∈R

∣∣∣ 1
n

n∑
j=1

1[Yj − β̂>Xj ≤ t]− 1
n

n∑
j=1

1[εj ≤ t]− f(t)E[X]>(β̂ − β)
∣∣∣ = op(n−1/2),

with β̂ the least squares estimator. This only requires that ε has mean zero, finite variance
and a uniformly continuous density and that the matrix E[XX>] is invertible. If one of the
coordinates of X equals 1 or if more generally c>X equals 1 almost surely for some vector
c, then one has E[X]>(E[XX>])−1X = 1 almost surely and therefore

E[X]>(β̂ − β) = E[X]>
1
n

n∑
j=1

(E[XX>])−1Xjεj + op(n−1/2) =
1
n

n∑
j=1

εj + op(n−1/2),

and one consequently obtains the exact analogue of the expansion in Theorem 1. To see
that E[X]>(E[XX>])−1X = 1 almost surely we note that E[X]>(E[XX>])−1X equals
E[X]>A(E[A>XX>A])−1A>X for any invertible m×m matrix A. Now take A such that
its first column equals c and the other columns form a basis for {v ∈ Rm : v>E[X] = 0} and
are orthogonal for the inner product (v, w) = E[v>XX>w]. Then E[A>XX>A] equals the
m × m identity matrix, E[X]>A equals (1, 0, . . . , 0), and E[X]>A(E[A>XX>A])−1A>X

equals c>X.
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Remark 3. The expansion in Theorem 1 implies that the residual-based empirical process

n−1/2
n∑

j=1

(1[Yj − r̂(Xj) ≤ t]− F (t)), −∞ ≤ t ≤ ∞,

converges weakly in D[−∞,∞] to a centered Gaussian process with covariance function

(s, t) 7→ F (s ∧ t)− F (s)F (t) + f(s)c(t) + f(t)c(s) + f(s)f(t)σ2,

where c(t) =
∫ t
−∞ xf(x) dx is the mean of ε1[ε1 ≤ t].

Remark 4. Note that 4s/(2s −m) < 3 and m/(2s −m) < 1/2 for s > 3m/2. Thus the
assumptions on the error variable in the above theorem are met if the error variable has
a finite moment of order 3 and if its density f is Hölder with exponent 1/2. The latter is
implied if f has finite Fisher information for location; see e.g. Koul (2002, page 79). Thus
the conclusion of the above theorem holds if the error density f has mean zero, a finite
moment of order 3 and finite Fisher information for location, and if the regression function
r belongs to a Hölder space H(d, γ) with d+ γ > 3m/2.

Remark 5. For m = 1, and using a linear smoother, Müller, Schick and Wefelmeyer (2007)
obtained the assertion of Theorem 1 assuming that r is twice continuously differentiable,
the error distribution has a moment of order greater than 8/3, and the error density is
Hölder of order greater than 1/3. Here we allow for higher degree smoothers. Thus we can
relax the moment and smoothness assumptions on the error distribution at the expense of
more smoothness on the regression function. For example, if the second derivative of r is
Lipschitz and a quadratic smoother is used, then it suffices that F has a finite moment of
order greater than 12/5 and f is Hölder of order greater than 1/5.

2. proof of Lemma 1

Abbreviate I(d) by I. By the choice of bandwidth and since 2s > 3m we have

ρn =
log n
ncmn

∼ (log n)1+m/(2s)

n1−m/(2s)
≤ (log n)4/3n−2/3.

The minimizer β̂ must satisfy the normal equations

Ci(x)−
∑
k∈I

Q̂ik(x)β̂k = 0, i ∈ I,

where

Ci(x) =
1
ncmn

n∑
j=1

Yjψi

(Xj − x

cn

)
w
(Xj − x

cn

)
and

Q̂ik(x) =
1
ncmn

n∑
j=1

ψi

(Xj − x

cn

)
ψk

(Xj − x

cn

)
w
(Xj − x

cn

)
.
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Since Yj = r(Xj) + εj , we can write Ci(x) = Ai(x) +Bi(x) where

Ai(x) =
1
ncmn

n∑
j=1

εjψi

(Xj − x

cn

)
w
(Xj − x

cn

)
and

Bi(x) =
1
ncmn

n∑
j=1

r(Xj)ψi

(Xj − x

cn

)
w
(Xj − x

cn

)
.

Let Qik(x) = E[Q̂ik(x)]. It follows from Corollary 1 applied with T = 1, β = ∞ and
v = ψiψkw that

(2.1) sup
x∈C

|Q̂ik(x)−Qik(x)| = Op(ρ1/2
n )

and applied with T = ε, β > 4s/(2s−m) and v = Di(ψkw) that

(2.2) sup
x∈C

|ci•n DiAk(x)| = Op(ρ1/2
n ), i ∈ I(m+ 1).

Note that

Qik(x) =
∫
ψi(u)ψk(u)g(x+ cnu)w(u) du.

Since X is quasi-uniform on C , one now finds constants 0 < λ < Λ <∞ such that

(2.3) λ <
∑
i,k∈I

aiQik(x)ak < Λ

for all x ∈ C , all ai, i ∈ I, with
∑

i∈I a
2
i = 1 and all large n.

Since r belongs to H(d, γ), we obtain

(2.4)
∣∣∣r(y)−∑

k∈I

Dkr(x)ψk(y − x)
∣∣∣ ≤M‖y − x‖d+γ

for some finite constant M and all x, y in C . From this we see that

(2.5)
∣∣∣Bi(x)−

∑
k∈I

Q̂ik(x)β̄k(x)
∣∣∣ ≤Mcd+γ

n Q̂00(x), x ∈ C ,

where β̄k(x) = ck•n D
kr(x).

Let now Q̂(x) denote the matrix with entries Q̂ik(x), i, k ∈ I, Q(x) the matrix with
entries Qik(x), i, k ∈ I, A(x) the vector with components Ai(x) and B(x) the vector with
components Bi(x). In view of (2.3) the eigen values of Q(x) are in the interval [λ,Λ]. Thus
Q(x) has an inverse Q−1(x) with eigen values in [1/Λ, 1/λ]. Hence Q̂(x) is invertible on
the event {supx∈C ‖Q̂(x)−Q(x)‖ ≤ λ/2} whose probability tends to one by (2.1). On this
event we have

r̂(x) = e>Q̂−1(x)C(x), x ∈ C ,
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where e = (ei)i∈I is such that e0 = 1 and ei = 0 for i 6= 0. Since r(x) = e>β̄(x), we obtain
on this event the identity

r̂(x)− r(x) = e>Q̂−1(x)(C(x)− Q̂(x)β̄(x))

= e>Q̂−1(x)A(x) + e>Q̂−1(x)[B(x)− Q̂(x)β̄(x)].

It follows from (2.1), (2.2), (2.5) and the choice of cn that

(2.6) sup
x∈C

‖Q̂−1(x)−Q−1(x)‖ = Op(ρ1/2
n ),

(2.7) sup
x∈C

‖ci•n DiA(x)‖ = Op(ρ1/2
n ), i ∈ I(m+ 1)

(2.8) sup
x∈C

‖B(x)− Q̂(x)β̄(x)‖ = Op(cd+γ
n ) = op(n−1/2).

Thus if we take
â(x) = e>Q−1(x)A(x), x ∈ C ,

we obtain the desired (1.4).
One verifies directly that supx∈C ‖ci•n DiQ(x)‖ = O(1). Note also that

∂

∂xk
Q−1(x) = Q−1(x)

[ ∂

∂xk
Q(x)

]
Q−1(x), k = 1, . . . ,m.

Thus we see that
sup
x∈C

|Diâ(x)| = Op(c−i•
n ρ1/2

n ), i ∈ I(m+ 1).

This shows that
max

i∈I(m)
sup
x∈C

|Diâ(x)| = Op(c−m
n ρ1/2

n ) = op(n−b/2)

for some 0 < b < 1 − 3m/(2s). In view of 2s > 3m, we have (3m + 2 − 2s)/(4s) < 1/(2s)
and thus

max
i∈J(m+1)

sup
x∈C

|Diâ(x)| = Op(c−(m+1)
n ρ1/2

n ) = op(n1/(2s)).

With α = min(b/2, 1− 1/(2s)) we obtain

max
i∈J(m)

sup
y 6=x,‖y−x‖>1/n

|Diâ(y)−Diâ(x)|
‖y − x‖α

= op(nα−b/2) = op(1)

and

max
i∈J(m)

sup
y 6=x,‖y−x‖≤1/n

|Diâ(y)−Diâ(x)|
‖y − x‖α

= op(nα−1+1/(2s)) = op(1).

This establishes (1.1) as α is positive.
Next we have∫

|â(x)|1+ξg(x) dx ≤ sup
x∈C

‖â(x)‖1+ξ ≤ (1/λ)1+ξ sup
x∈C

‖A(x)‖1+ξ = Op(ρ(1+ξ)/2
n ).
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We obtain the desired (1.2) as(
1− m

2s

)
(1 + ξ) >

(
1− m

2s

)(
1 +

m

2s−m

)
= 1

by the choice of ξ.
We can write ∫

â(x)g(x) dx =
1
n

n∑
j=1

εj∆n(Xj),

where

∆n(X) = c−m
n

∫
e>Q−1(x)ψ

(X − x

cn

)
w
(X − x

cn

)
g(x) dx

=
∫
e>Q−1(X − cnu)ψ(u)w(u)g(X − cnu) du

with ψ = (ψi)i∈I . Thus (1.3) follows if we show that E[(∆n(X) − 1)2] → 0. Since X is
quasi-uniform and ∆n is bounded by M/λ, where

M = sup
u∈[−1,1]m

‖ψ(u)‖w(u) sup
x∈C

g(x),

the desired E[(∆n(X)− 1)2] → 0 follows if we show

Rn = E[1[X ∈ Cn](∆n(X)− 1)2] → 0,

with Cn = [cn, 1− cn]m.
Let Q∗(x) = g(x)Ψ where Ψ is the invertible matrix with entries

Ψik =
∫
ψi(u)ψk(u)w(u) du, i, k ∈ I.

Then we can write

1 = e>Ψ−1Ψe = e>Ψ−1

∫
ψ(u)w(u) du =

∫
e>Q−1

∗ (x− cnu)ψ(u)w(u)g(x− cnu) du

for x ∈ Cn. Thus on the event X ∈ Cn we have

(∆n(X)− 1)2 =
(∫

e>
[
Q−1(X − cnu)−Q−1

∗ (X − cnu)
]
ψ(u)w(u)g(X − cnu) du

)2

≤M2

∫
[−1,1]m

‖Q−1(X − cnu)−Q−1
∗ (X − cnu)‖2 du.

Therefore we have

Rn ≤M2 sup
x∈C

g(x)
∫

C
‖Q−1(x)−Q−1

∗ (x)‖2 dx

≤M2 sup
x∈C

g(x) sup
x∈C

‖Q−1(x)‖2 sup
x∈C

‖Q−1
∗ (x)‖2

∫
C
‖Q(x)−Q∗(x)‖2 dx.
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By the continuity of shifts in L2 (see Theorem 9.5 in Rudin (1974)), the square-integrability
of g implies∫

C
‖Q(x)−Q∗(x)‖2 dx ≤ sup

u∈[−1,1]m
‖ψ(u)‖4

∫∫
(g(x− cnu)− g(x))2w(u) du dx→ 0.

Thus we have the desired Rn → 0.

3. Auxiliary results

Throughout this section let Z,Z1, Z2, . . . be independent and identically distributed k-
dimensional random vectors, and, for each x in C , let hnx be a bounded measurable function
from Rk into R.

Proposition 1. Suppose that

(3.1) sup
x∈C

‖hnx‖∞ = O
( n

log n

)
,

(3.2) sup
x∈C

E[h2
nx(Z)] = O

( n

log n

)
,

and, for positive numbers κ1, κ2 and A,

(3.3) ‖hny − hnx‖∞ ≤ Anκ2‖y − x‖κ1 , x, y ∈ C .

Then

(3.4) sup
x∈C

∣∣∣ 1
n

n∑
j=1

hnx(Zj)− E[hnx(Z)]
∣∣∣ = Op(1).

Proof. Let Hn(x) denote the expression inside the absolute value in (3.4). We use an
inequality of Hoeffding (1963): If ξ1, . . . , ξn are independent random variables that have
mean zero and variance σ2 and are bounded by M , then for η > 0,

P
(∣∣∣ 1
n

n∑
j=1

ξj

∣∣∣ ≥ η
)
≤ 2 exp

(
− nη2

2σ2 + (2/3)Mη

)
.

Applying this inequality with ξj = hnx(Zj)− E[hnx(Z)], we obtain for η > 0:

P (|Hn(x)| ≥ η) ≤ 2 exp
(
− nη2

2E[h2
nx(Z)] + 2η‖hnx‖∞

)
.

Thus there is a positive number a such that for all η > 0,

sup
x∈C

P (|Hn(x)| ≥ η) ≤ 2 exp
(
− η2

1 ∨ η
a log n

)
.
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Let ν be an integer greater than α + κ2/κ1. We can cover C with nνm boxes of side
lengths n−ν . Let Cn denote the set of centers of these smaller boxes. The above yields for
η > max(1, νm/a),

P
(

max
x∈Cn

|Hn(x)| > η
)
≤
∑

x∈Cn

P (|Hn(x)| > η) ≤ 2nmν exp
(
− aη log n

)
= o(1).

This shows that
Hn,1 = max

x∈Cn

|Hn(x)| = Op(1).

It follows from (3.3) and ν > α+ κ2/κ1 that

Hn,2 = max
x∈Cn

sup
|x′−x|≤

√
mn−ν

|Hn(x′)−Hn(x)| ≤ Anκ2Bκ1
n mκ1/2n−νκ1 = op(1).

In view of the inequality |Hn(x)| ≤ Hn,1 +Hn,2 for x ∈ C , we have the desired result (3.4).

In the following corollary we interpret 1/β as zero if β is infinity. We also write ‖T‖β for
the Lβ(P )-norm of a random variable so that ‖T‖β equals (E[|T |β ])1/β if 1 ≤ β < ∞ and
equals the essential supremum of T if β = ∞.

Corollary 1. Suppose the function v on Rm is bounded, integrable and Hölder with positive
exponent κ, the m-dimensional random vector X has a bounded density g, the random
variable T satisfies ‖T‖β < ∞ for some 2 < β ≤ ∞, and τg is bounded, where τ(X) =
E(T 2|X). Let cn → 0 and c−m

n n−1+2/β log n = O(1). Then, for i.i.d. copies (Tj , Xj) of
(T,X), we have

sup
x∈C

∣∣∣ 1
ncmn

n∑
j=1

(
Tjv
(Xj − x

cn

)
− E

[
Tv
(X − x

cn

)])∣∣∣ = Op(ζ−1/2
n )

with ζn = ncmn / log n.

Proof. Set K = 2‖T‖β. Define

Rnj(x) = ζ1/2
n Tj1[|Tj | ≤ Kn1/β ]

1
cmn
v
(Xj − x

cn

)
,

Snj(x) = ζ1/2
n Tj1[|Tj | > Kn1/β ]

1
cmn
v
(Xj − x

cn

)
.

It suffices to show that

(3.5) sup
x∈C

∣∣∣ 1
n

n∑
j=1

(Rnj(x)− E[Rnj(x)])
∣∣∣ = Op(1)

and

(3.6) sup
x∈C

∣∣∣ 1
n

n∑
j=1

(Snj(x)− E[Snj(x)])
∣∣∣ = op(1).
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Statement (3.6) is true for β = ∞ as then Snj(x) = 0. For β <∞ we have

P
(

max
1≤j≤n

|Tj | > Kn1/β
)
≤

n∑
j=1

P (|Tj | > Kn1/β)

≤ K−βE[|T |β1[|T | > Kn1/β ]] → 0

and thus

P
(

sup
x∈C

∣∣∣ 1
n

n∑
j=1

Snj(x)
∣∣∣ > 0

)
≤ P

(
max

1≤j≤n
|Tj | > Kn1/β

)
→ 0.

In view of the inequality E[|T |1[|T | > Kn1/β ]] ≤ E[|T |β ](Kn1/β)1−β, we also have

sup
x∈C

∣∣∣ 1
n

n∑
j=1

E[Snj(x)]
∣∣∣ ≤ ζ1/2

n c−m
n ‖v‖∞E[|T |1[|T | > Kn1/β ]]

= O(n−1/2+1/βc−m/2
n (log n)−1/2) = o(1).

This shows that (3.6) holds for β <∞ as well.
To show (3.5) we apply Proposition 1 with hnx(Tj , Xj) = Rnj(x). We have

sup
x∈C

‖hnx‖∞ ≤ K‖v‖∞n1/2+1/βc−m/2
n (log n)−1/2 = O

( n

log n

)
.

Furthermore,

sup
x∈C

E[h2
nx(T,X)] ≤ n

cmn log n
E
[
τ(X)v2

(X − x

cn

)]
=

n

log n

∫
v2(y)τ(x+ cny)g(x+ cny) dy

≤ n

log n
‖τg‖∞

∫
v2(y) dy.

Since v is Hölder with exponent κ, we obtain, with Λ denoting the Hölder constant,

‖hny − hnx‖∞ ≤
( ncmn

log n

)1/2
Kn1/βc−m−κ

n Λ|y − x|κ ≤ Cnκ2 |y − x|κ,

for some κ2 > 1 + κ(1 + δ − 2/β)/m. Thus the assumptions of Proposition 1 hold, and we
obtain (3.5).
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