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Abstract

The expectation of a local function on a stationary random field can be esti-
mated from observations in a large window by the empirical estimator, i.e., the
average of the function over all shifts within the window. Under appropriate con-
ditions, the estimator is consistent and asymptotically normal. Suppose that the
field is a Gibbs field with known finite range of interactions but otherwise un-
known potential. We show that the empirical estimator is efficient if and only if
the function is (equivalent to) a sum of functions each of which depends only on
the values of the field on a clique of sites.
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1 Introduction

Suppose we observe a configuration x = (xi)i∈Zd of a stationary random field X =
(Xi)i∈Zd on a window [−n, n]d. Call a function fD on the random field local if it depends
only on the values xD = (xi)i∈D at sites in a finite set D ⊂ Zd. We want to estimate the
expectation of such a local function. The usual estimator is the empirical estimator

EnfD = |Dn|−1
∑

j:D+j⊂[−n,n]d

fD ◦ ϑj,

where ϑj(x)i = xi+j is the shift of x by −j, and |Dn| is the number of shifts of D which
are contained in the window [−n, n]d.

1Work supported by NSERC, Canada, and the Crisis Points group of the Peter Wall Institute for
Advanced Studies at UBC. Research done while the second author was visiting the Department of
Mathematics at UBC.
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Conditions for asymptotic normality are given in Bolthausen (1982) and Künsch
(1982a), (1982b). If nothing is known about the random field, the estimator is efficient;
see the Remark in Section 3. If the field has only local interactions, with known range,
is the empirical estimator for the expectation of a local function still efficient? If it is
not efficient for all local functions, can we characterize the functions for which it is?

To begin let us recall what is known for i.i.d. sequences of observations. Suppose
X1, . . . , Xn are independent with unknown distribution. Let fD be a function which
depends only on X = (Xi)i∈D with D ⊂ Z finite, say D = {1, . . . , s}, and suppose that
fD cannot be written as a sum of functions fE with E a strict subset of D. The empirical
estimator for the expectation of fD is

1

n− s + 1

n−s∑
j=0

fD ◦ ϑj =
1

n− s + 1

n−s+1∑
j=1

fD(Xj, . . . , Xj+s−1).

It is well-known that this estimator is efficient if and only if D consists of a single site,
e.g., D = {1}.

For s > 1, an efficient estimator is the von Mises statistic

1

ns

n∑
i1,...,is=1

fD(Xi1 , . . . , Xis);

see Levit (1974) and Koshevnik and Levit (1976). The result translates to random fields
with no interactions.

There is an analogous result for Markov chains. Let X0, . . . , Xn be observations of a
stationary k-order Markov chain (Xi)i∈Z. Let fD be a function which depends only on
the values (Xi)i∈D with D ⊂ Z finite, say D = {0, . . . , s}, and suppose that fD cannot
be written as a sum of functions fE with E a strict subset of D. The empirical estimator
for the expectation of fD is

1

n− s + 1

n−s∑
j=0

fD ◦ ϑj =
1

n− s + 1

n−s∑
j=0

fD(Xj, . . . , Xj+s).

It follows easily from Greenwood and Wefelmeyer (1995) that this estimator is efficient
if and only if D is a set of k + 1 adjacent sites, e.g., D = {0, . . . , k}. These are the sites
involved in the transition distribution Q(X0, . . . , Xk−1, dxk) which ‘parametrizes’ the
distribution of the chain. Similar results for Markov step processes and for semi-Markov
processes are in Greenwood and Wefelmeyer (1994), (1996).

For s > k and discrete state space, the expectation of fD can be written∑
x0,...,xs

π(x0, . . . , xk−1)

(
s−k∏
j=0

q(xj, . . . , xj+k−1; xj+k)

)
fD(xs−k−1, . . . , xs)

=
∑

x0,...,xs

π(x0, . . . , xk−1)

(
s−k∏
j=0

π(xj, . . . , xj+k)

π(xj, . . . , xj+k−1)

)
fD(xs−k−1, . . . , xs),
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where q(x0, . . . , xk−1; xk) is the transition probability from (x0, . . . , xk−1) to xk, and
π(x0, . . . , xk−1) is the corresponding stationary probability of (x0, . . . , xk−1). Now an
efficient estimator is obtained by replacing the probabilities by empirical estimators.
For s > k and continuous state space, the construction of an efficient estimator is
considerably more involved; see Schick and Wefelmeyer (1998).

For a stationary random field, a role similar to the transition distribution is played
by its local characteristic say at site 0, i.e., the conditional distribution of X0 given the
configuration on the other sites. If the field has local interactions, the local characteristic
conditions only on a finite set of sites C ⊂ Zd\{0}, the neighborhood of 0. A first guess
might be that the empirical estimator for the expectation of fD is efficient if and only if
fD is a sum of functions which depend only on shifts of C ∪ {0}.

We will see that this guess is wrong. Indeed, the analogy with Markov chains is
misleading. The local characteristic is not a freely varying parameter like the transition
distribution. The transition distribution is an arbitrary Markov kernel, whereas the local
characteristic must satisfy certain consistency conditions. These additional restrictions
contain information which is not used by the empirical estimator and makes it inefficient,
in general.

The restrictions can be seen by looking at the simplest case, a one-dimensional field
in which the neighborhood of site 0 consists of the two adjacent sites, C = {−1, 1}. The
local characteristic at 0 involves the three sites −1, 0, 1. But the field can also be viewed
as a Markov chain and is then described by the transition distribution Q(X0, dx1) which
involves only the two sites 0, 1. The local characteristic has an expression in terms of
Q, which constitutes a restriction; see Georgii (1988, Theorems 3.5 and 10.25). Indeed,
as mentioned above, the empirical estimator is efficient if and only if fD is a sum of
functions which depend only on two adjacent sites.

For higher-dimensional random fields, there is in general no description by simpler
objects than the local characteristics, except when the latter are strictly positive. In that
case, the field can be written as a Gibbs field and is described by the potential. Notice
that the assumption of positivity does not change the efficiency question, which depends
only on the structure of the model in a neighborhood of the distribution governing the
observations.

Suppose that the field is stationary and has only local interactions (with known
range), i.e., the local characteristic at 0 depends on a finite set C of sites, the neighbors
of 0. A clique is a set of sites such that each two points are neighbors of each other. The
potential involves only functions which depend on cliques. This suggests that the sets
which play the role of singletons in the i.i.d. case and of pairs of adjacent sites in the
first-order Markov chain case are, in the case of Gibbs fields, the cliques. Suppose, for
example, that the lattice is two-dimensional, and that the local characteristic at a site
depends only on the four adjacent sites. Then the local characteristic involves five sites,
whereas the cliques are the one-point sets and the pairs of adjacent sites. We show in
Section 3 that indeed the cliques are the appropriate sets: The empirical estimator for
the expectation of a local function is efficient if and only if the function is (equivalent
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to) a sum of functions each of which depends only on the values of the field on a clique
of sites.

Improved estimators for other functions in the discrete state space case are con-
structed in Greenwood, McKeague and Wefelmeyer (1998).

We do not prove the result under minimal conditions. It remains true as long as the
likelihood admits a stochastic expansion of the form (3.3), and the empirical estimators
for expectations of local functions are asymptotically normal with variance of the form
(3.6).

2 The model

In this section we introduce our model, the family of all stationary Gibbs measures on
EZd

with general state space E, and with given range of interactions. We begin with
notation for general Gibbs measures.

We consider the d-dimensional square lattice S = Zd. To each site we attach the
state space E which we take to be a complete separable metric space with Borel field E .
The corresponding configuration space is (Ω,F) = (ES, ES).

For V ⊂ S let FV ⊂ F denote the σ-field generated by the projections x → xi, for
each i ∈ V . If S is partitioned into V , W , and y ∈ EV , z ∈ EW , then yz denotes
the configuration x such that xi = yi for i ∈ V and xi = zi for i ∈ W . In particular,
x = xV xE\V .

Call a function f on Ω local if f is FV -measurable for some finite set V ⊂ S. Let ‖ ‖
denote the sup-norm of functions on Ω. Call a function quasilocal if there is a sequence
of local functions fn such that ‖fn − f‖ → 0 for n →∞.

A specification is a family γ of Markov kernels γV from FE\V to F , with V ⊂ S
finite, which satisfies the consistency condition

γV γW = γV when W ⊂ V.

A random field µ on E is specified by γ if

µV (F |·) := µ(F |FE\V ) = γV (F |·) almost surely for all finite V ⊂ S and F ∈ F .

For the projection of γV we write

πV (F |x) = γV (xV ∈ F |x).

Dobrushin’s interdependence matrix is

Cij = sup{‖πi(·|x)− πi(·|y)‖ : xE\{j} = yE\{j}},

where ‖η‖ = supA∈F ‖η(A)‖ is the sup-norm of a signed measure η on F .
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A specification γ is quasilocal if γV (f |·) is quasilocal for all finite V and quasilocal
f . A specification satisfies Dobrushin’s condition if it is quasilocal and

sup
i∈S

∑
j∈S

Cij < 1. (2.1)

Then, by Dobrushin’s uniqueness theorem, Georgii (1988, Theorem 8.7), there is exactly
one random field specified by γ.

Here we restrict attention to stationary Gibbs fields. For i ∈ S let ϑi denote the shift
by −i, defined by ϑi(x)j = xj+i, j ∈ S. Let λ be a finite measure on E , and denote the
product measure on Ω = ES by λS. Let A be a finite collection of finite sets A ⊂ S.
We assume without loss of generality that no set in A is a shift of one of the other sets.
This is done so that each set represents a different equivalence class of shifts. Consider
a collection u = (uA)A∈A of FA-measurable functions uA on Ω such that∑

A∈A

|A|2‖uA‖ < 1. (2.2)

Each u generates a shift invariant potential

Uu = {uA ◦ ϑi : A ∈ A, i ∈ S}. (2.3)

The corresponding Hamiltonian is

Hu
V =

∑
A∈A,i∈S

(A+i)∩V 6=∅

uA ◦ ϑi.

For A ∈ A and i ∈ S, the sets A + i and their subsets are called cliques ; see, e.g.,
Winkler (1995, p. 49). The potential is λ-admissible, i.e.,

Zu
V (x) =

∫
λV (dy)e−Hu

V (yxE\V ) < ∞ for all finite V ⊂ S and all x ∈ Ω.

The function Zu
V is the partition function in V , and the Gibbs distribution in V is

γu
V (F |x) =

1

Zu
V (x)

∫
F

λV (dy)e−Hu
V (yxE\V ), F ∈ F .

The Gibbs specification corresponding to u is

γu = {γu
V : V ⊂ S, V finite}.

Any random field specified by γu is called a homogeneous Gibbs field.
The oscillation of a function f on Ω is

ρ(f) = sup{|f(x)− f(y)| : x, y ∈ Ω}.
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Assumption (2.2) implies

sup
j∈S

∑
A∈A,i∈S

j∈A+i

(|A| − 1)ρ(uA) =
∑
A∈A

|A|(|A| − 1)ρ(uA) < 2.

Hence Dobrushin’s condition (2.1) holds by Georgii (1988, Proposition 8.8), and by
Dobrushin’s uniqueness theorem there is exactly one Gibbs measure µu corresponding
to γu.

Our model is the family of Gibbs measures µu determined by all possible collections
u = (uA)A∈A of functions on Ω satisfying condition (2.2). Usually one describes the Gibbs
measure by the shift invariant potential Uu generated by u, see (2.3). Here we look at a
collection of representatives, u, because it leads to a more convenient parametrization.
Since the same Gibbs measure µu can result from several collections u, we parametrize
by equivalence classes. Two collections u and v are equivalent, u ∼ v, if

Hu−v
V is FE\V -measurable for all finite V ⊂ S,

see Georgii (1988, Theorem 2.34).
The linear structure of the collections u is compatible with the equivalence relation:

if u ∼ u′ and v ∼ v′, then u + u′ ∼ v + v′. This justifies working with representatives of
equivalence classes rather than with the classes themselves.

3 The result

In this section we characterize the efficient estimators among the empirical estimators.
Our efficiency concept is based on a nonparametric version of Hájek’s (1970) convolution
theorem for the asymptotic distribution of regular estimators. The theorem requires the
model to be asymptotically normal. Hence our next step is to introduce a local parameter
space, the linear space K of all (equivalence classes) of collections k = (kA)A∈A of
bounded FA-measurable functions kA on Ω. Fix a parameter u = (uA)A∈A fulfilling
(2.2). The perturbed parameter u + tk also fulfills (2.2) for sufficiently small t: There is
a c > 0 such that

sup
|t|≤c

∑
A∈A

|A|2‖(u + tk)A‖ < 1. (3.1)

The proof of local asymptotic normality is based on the following Proposition 1, a
perturbation expansion of Künsch (1982a, Proposition 5.3) for expectations of quasilocal
functions, which generalizes a result of Gross (1981); see also Georgii (1988, Corollary
8.37). We use only the version for stationary random fields. Let

ρi(f) = sup{|f(x)− f(y)| : xE\{i} = yE\{i}}.
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Proposition 1. For every k ∈ K and every quasilocal f with
∑

i∈S ρi(f) < ∞, the
expectation µu+tk(f) is continuously differentiable at t = 0, and

d

dt
µu+tk(f)|t=0 = −µu(T uRk · f)

with

Rk =
∑
A∈A

∑
i∈A

1

|A|
kA ◦ ϑi,

T ur =
∑
j∈S

(r ◦ ϑj − µu(r)) for local r,

i.e.,

T uRk =
∑
j∈S

∑
A∈A

(kA ◦ ϑj − µu(kA)).

Künsch’s proof of Proposition 1 starts from the corresponding result for conditional
expectations,

d

dt
µu+tk(f |FV )|t=0 = −

∑
j∈S

µu ((Rk ◦ ϑj − µu(Rk ◦ ϑj|FV ))f |FV ) , (3.2)

which we will also use. A representation of the likelihood ratio dµu+ck
V /dµu

V of the field
in the window V can be derived from Proposition 1.

Proposition 2. For k ∈ K, and c > 0 small enough,

log
dµu+ck

V

dµu
V

= −c

∫ 1

0

µu+tck(T u+tckRk|FV )dt.

The proof is in Section 4. We can now prove local asymptotic normality. Our proof is
similar to that for a parametric Gibbs field model in Janžura (1989). Let Vn = [−n, n]d

and cn = (2n + 1)d.

Proposition 3. For k ∈ K,

log
dµu−c

−1/2
n k

Vn

dµu
Vn

= c−1/2
n

∑
j∈Vn

(Rk ◦ ϑj − µu(Rk))

−1

2

∑
j∈S

covu(Rk ◦ ϑj, Rk) + oµu(1), (3.3)

7



and the stochastic term on the right is asymptotically normal under µu with mean zero
and variance

∑
j∈S covu(Rk ◦ ϑj, Rk). The covariance is taken with respect to µu.

The proof is in Section 4. Our approximation to the likelihood is measurable with
respect to a σ-field which is larger than FVn . This is for notational convenience. An
asymptotically equivalent FVn-measurable approximation could be obtained by extend-
ing the sum over a smaller window than Vn.

Local asymptotic normality induces an inner product on K; for k, k′ ∈ K,

(k, k′) =
∑
j∈S

covu(Rk ◦ ϑj, Rk′).

Since the field is stationary, the inner product simplifies,

(k, k′) =
∑
j∈S

∑
A∈A

∑
A′∈A

1

|A||A′|
∑
i∈A

∑
i′∈A′

covu(kA ◦ ϑi ◦ ϑj, k
′
A′ ◦ ϑi′)

=
∑
j∈S

covu

(∑
A∈A

kA ◦ ϑj,
∑
A∈A

k′A

)
. (3.4)

This means that the local parameter k enters the inner product through (the equivalence
class of shifts of)

∑
A∈A(kA − µu(kA)). Write

K0 = {
∑
A∈A

(kA − µu(kA)) : k ∈ K}.

Consider a bounded local function, say a bounded FD-measurable function fD, with
D ⊂ S finite. The empirical estimator for the expectation µu(fD) is

EnfD = |Dn|−1
∑
j∈Dn

fD ◦ ϑj, (3.5)

where Dn = {j : D + j ⊂ Vn = [−n, n]d} and |Dn| is the number of sites in Dn. By
a variant of the central limit theorem of Künsch (1982a), (1982b), applied for the local
function fD, as opposed to a continuous function, see also Bolthausen (1982), we have

|Dn|1/2(EnfD − µu(fD)) = |Dn|−1/2
∑
j∈Dn

(fD ◦ ϑj − µu(fD))

⇒

(∑
j∈S

covu(fD ◦ ϑj, fD)

)1/2

N, (3.6)

where N is a standard normal random variable.
Consider µu(fD) as a functional of u. By Proposition 1,

c1/2
n (µu−c

−1/2
n k(fD)− µu(fD)) → µu(T uRk · fD) =

∑
j∈S

covu(Rk ◦ ϑj, fD). (3.7)
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The right-hand side is an inner product of k and fD. We write it as the inner product
(3.4) induced by local asymptotic normality,

∑
j∈S

covu(Rk ◦ ϑj, fD) =
∑
j∈S

covu

(∑
A∈A

kA ◦ ϑj, fD

)
. (3.8)

It depends on fD only through (the equivalence class of shifts of) fD − µu(fD). We
call fD − µu(fD) a gradient of µu(fD). The canonical gradient gD is the projection of
fD − µu(fD) into K0.

Call an estimator Tn for µu(fD) regular with limit L if

c1/2
n (Tn − µu−c

−1/2
n k(fD)) ⇒ L under µu−c

−1/2
n k for all k ∈ K.

Regularity is a weak form of continuous convergence: For each continuous and bounded
function h and each k ∈ K,

E
u−c

−1/2
n k

h(Tn − µu−c
−1/2
n k(fD)) → Eh(L).

For the convolution theorem of Hájek (1970), see now Bickel, Klaassen, Ritov and Well-
ner (1993, p. 63, Theorem 2), regularity must be assumed in order to exclude supereffi-
cient estimators. The convolution says that if Tn is regular with limit L, then

L =

(∑
j∈S

covu(gD ◦ ϑj, gD)

)1/2

N + M in distribution,

with M independent of N . If M is independent of N , we have

P (|cN + M | < t) ≤ P (|cN | < t) for all t,

i.e., cN is more concentrated in symmetric intervals than cN + M . This justifies calling
an estimator Tn efficient if

c1/2
n (Tn − µu(fD)) ⇒

(∑
j∈S

covu(gD ◦ ϑj, gD)

)1/2

N under µu.

Call an estimator Tn for µu(fD) asymptotically linear with influence function h if h is
bounded and local with µu(h) = 0, and

c1/2
n (Tn − µu(fD)) = c−1/2

n

∑
j∈Vn

h ◦ ϑj + oµu(1).

By Proposition 3, the model is locally asymptotically normal, and by relations (3.7) and
(3.8), the functional µu(fD) is differentiable with gradient fD − µu(fD). Therefore, we
have the following characterizations; see Bickel et al. (1993, p. 63).
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Proposition 4. An asymptotically linear estimator Tn is regular for µu(fD) if and only
if its influence function is a gradient of µu(fD).

An estimator Tn is regular and efficient for µu(fD) if and only if it is asymptotically
linear with influence function equal to the canonical gradient,

c1/2
n (Tn − µu(fD)) = c−1/2

n

∑
j∈Vn

gD ◦ ϑj + oµu(1). (3.9)

Suppose that fD is a sum of functions fD1 + fD2 with D2 + j ⊂ D1 for some j, say.
Then it is preferable to use the empirical estimator EnfD1

, where fD1
= fD1 + fD2 ◦ ϑj

is FD1-measurable. The reason is that |D1n| > |Dn| unless D2 ⊂ D1. Hence EnfD1

is an average over more shifts than EnfD. Asymptotically, however, the estimators
EnfD and EnfD1

are equivalent. More generally, any local function admits a minimal
representation by a constant or by a function

fD =
m∑

r=1

fDr , (3.10)

where fDr is FDr -measurable, the sets Dr are finite and non-empty, none of them is
a shift of one of the other sets, and none of the functions fDr admits a non-trivial
representation of the form (3.10).

If two local functions have the same minimal representation, the corresponding em-
pirical estimators are asymptotically equivalent.

Theorem. Let fD be bounded and FD-measurable, with D ⊂ S finite. Then the
empirical estimator EnfD defined in (3.5) is regular for µu(fD), and it is efficient if and
only if fD has a minimal representation (3.10) which is a sum of functions each of which
is FC-measurable, with C a clique.

The proof is in Section 4.

Remark. It follows from the Theorem that the empirical estimator EnfD is always
efficient in the model consisting of local interaction Gibbs fields of arbitrary range. In
this model, any finite set D ⊂ S is a clique. In fact, the empirical estimator will also be
efficient in the larger model consisting of all Gibbs fields, provided that we have local
asymptotic normality and a central limit theorem for empirical estimators under the
field which generates the observations.
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4 Proofs

Proof of Proposition 2. For FV -measurable f and s sufficiently small,

µu+sk

(
d

ds
log

dµu+sk
V

dµu
V

· f
)

= µu

dµu+sk
V

dµu
V

d
ds

dµu+sk
V

dµu
V

dµu+sk
V

dµu
V

· f


= µu

(
d

ds

dµu+sk
V

dµu
V

· f
)

=
d

ds
µu

(
dµu+sk

V

dµu
V

· f
)

=
d

ds
µu+sk(f) = −µu+sk(T u+skRk · f). (4.1)

The last equality follows from Proposition 1, applied with u+sk in place of u. It remains
to check that the interchange of the derivative with the integral is justified. It is easy to
check the following uniform version of Proposition 1. Uniformly for uniformly bounded
FV -measurable f ,

µu
V

((
dµu+tk

V

dµu
V

− dµu+sk
V

dµu
V

)
f

)
= µu+tk

V (f)− µu+sk
V (f) = O(t− s).

This implies

dµu+tk
V

dµu
V

(xV )− dµu+sk
V

dµu
V

(xV ) = O(t− s) uniformly for µu
V -a.a. xV .

Relation (4.1) implies

d

ds
log

dµu+sk
V

dµu
V

= −µu+sk
V (T u+skRk|FV ) µu-a.s.

Hence

log
dµu+ck

V

dµu
V

=

∫ 1

0

d

ds

dµu+tck
V

dµu
V

dt = −
∫ 1

0

µu+tck(T u+tckRk|FV )dt.

Proof of Proposition 3. (i) By Proposition 2,

log
dµu−c

−1/2
n k

Vn

dµu
Vn

= c−1/2
n

∫ 1

0

µu−tc
−1/2
n k(T u−tc

−1/2
n kRk|FVn)dt

= c−1/2
n

∫ 1

0

∑
j∈S

µu−tc
−1/2
n k(Rk ◦ ϑj − µu−tc

−1/2
n k(Rk)|FVn)dt

= c−1/2
n

∑
j∈Vn

(Rk ◦ ϑj − µu(Rk))− c1/2
n

∫ 1

0

(µu−tc
−1/2
n k(Rk)− µu(Rk))dt

−
∫ 1

0

Hu−tc
−1/2
n kdt +

∫ 1

0

Ju−tc
−1/2
n kdt (4.2)
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with

Hu = c−1/2
n

∑
j∈Vn

(Rk ◦ ϑj − µu(Rk ◦ ϑj|FVn)),

Ju = c−1/2
n

∑
j /∈Vn

(µu(Rk ◦ ϑj|FVn)− µu(Rk)).

The first summand in (4.2) is the stochastic term of the expansion of the likelihood.
The second summand contributes the deterministic term: By Proposition 1, applied

with u− sc
−1/2
n k in place of u,

c1/2
n

∫ 1

0

(µu−tc
−1/2
n k(Rk)− µu(Rk))dt

= c1/2
n

∫ 1

0

∫ t

0

d

ds
µu−sc

−1/2
n k(Rk)dsdt

=

∫ 1

0

∫ t

0

µu−sc
−1/2
n k(T u−sc

−1/2
n kRk ·Rk)dsdt. (4.3)

By Proposition 1, the integrand is the derivative of µu+tk at t = −sc
−1/2
n , and is contin-

uous at t = 0. Hence it converges uniformly for 0 ≤ s ≤ 1 to µu(T uRk ·Rk). Therefore,
(4.3) converges to

1

2
µu(T uRk ·Rk) =

1

2

∑
j∈S

µu
(
(Rk ◦ ϑj − µu(Rk))(Rk − µu(Rk))

)
=

1

2

∑
j∈S

covu(Rk ◦ ϑj, Rk).

It remains to show that the last two terms in (4.2) are negligible.

(ii) We show that
∫ 1

0
Hu−tc

−1/2
n kdt is of order oµu(1). By the dominated convergence

theorem, it suffices to show that Hu−tc
−1/2
n k is of order oµu(1) for 0 ≤ t ≤ 1. Write

Hu−tc
−1/2
n k = H1 + H2 with

H1 = c−1/2
n

∑
j∈Vn

(
Rk ◦ ϑj − µu(Rk ◦ ϑj|FVn)

)
,

H2 = c−1/2
n

∑
j∈Vn

(
µu(Rk ◦ ϑj|FVn)− µu−tc

−1/2
n k(Rk ◦ ϑj|FVn)

)
.

By the intermediate value theorem and (3.2), for some s between 0 and t,

H2 = −c−1/2
n

∑
j∈Vn

d

ds
µu−sc

−1/2
n k(Rk ◦ ϑj|FVn)

= c−1
n t
∑
j∈Vn

∑
i∈S

covu−sc
−1/2
n k(Rk ◦ ϑi, Rk ◦ ϑj|FVn).

12



Here (3.2) is applied at u = u − sc
−1/2
n k and for f = Rk ◦ ϑj. Because of assumption

(3.1), condition (2.1) holds uniformly for s ∈ [0, 1]. We may therefore, without loss of

generality, restrict attention to s = 0, i.e., u in place of u− sc
−1/2
n k.

A bound for the covariances will be described in terms of the following notation:

C = (Cij)i,j∈S; CV = (Cij)i,j∈V ;

χV
ij =

∑∞
n=0(C

n
V )ij for i, j ∈ V ; χij = χS

ij.

Clearly, χV
ij ≤ χij. For a local function f , we have ρi(f ◦ ϑj) = 0 for i, j sufficiently far

apart. Applying Künsch (1982a, Corollary 3.3) for µu−sc
−1/2
n k(·|FVn) and with semimetric

identically equal to zero, we obtain c, c′ > 0 such that

|H2| ≤ cc−1
n t
∑
j∈Vn

∑
i∈S

∑
a∈S

ρa(Rk ◦ ϑi)
∑
b∈S

ρb(Rk ◦ ϑj)

≤ cc′c−1
n t

(∑
i∈S

ρi(Rk)

)2

→ 0.

Since H1 is conditionally centered, it is easy to compute its variance:

µu(H2
1 ) = µu

(
c−1
n

∑
i,j∈Vn

covu(Rk ◦ ϑi, Rk ◦ ϑj|FVn)

)
.

The integrand tends to zero as H2. By the dominated convergence theorem, µu(H2
1 ) → 0,

and therefore H1 = oµu(1).

(iii) We show that
∫ 1

0
Ju−tc

−1/2
n kdt is of order oµu(1). By the dominated convergence

theorem, it suffices to show that Ju−tc
−1/2
n k is of order oµu(1) for 0 ≤ t ≤ 1. Write

Ju−tc
−1/2
n k = J1 + J2 with

J1 = c−1/2
n

∑
j /∈Vn

(
µu(µu−tc

−1/2
n k(Rk ◦ ϑj|FVn))− µu−tc

−1/2
n k(Rk)

)
,

J2 = c−1/2
n

∑
j /∈Vn

(
µu−tc

−1/2
n k(Rk ◦ ϑj|FVn)− µu(µu−tc

−1/2
n k(Rk ◦ ϑj|FVn))

)
.

By Proposition 1,

J1 =

∫ t

0

c−1/2
n

∑
j /∈Vn

d

ds
µu−sc

−1/2
n k(µu−tc

−1/2
n k(Rk ◦ ϑj|FVn))ds

=

∫ t

0

c−1
n

∑
j /∈Vn

µu−sc
−1/2
n k

(
T u−sc

−1/2
n kRk · µu−tc

−1/2
n k(Rk ◦ ϑj|FVn)

)
ds.

13



By the dominated convergence theorem, to show that J1 tends to zero, it suffices to show
that the right-hand integrand tends to zero. Applying Künsch (1982a, Corollary 3.3) for

µu−sc
−1/2
n k(·|FVn) and semimetric identically equal to zero, we obtain c, c′ > 0 such that

c−1
n

∑
j /∈Vn

µu−sc
−1/2
n k

(
T u−sc

−1/2
n kRk · µu−tc

−1/2
n k(Rk ◦ ϑj|FVn)

)
= c−1

n

∑
j /∈Vn

∑
i∈S

covu−sc
−1/2
n k(Rk ◦ ϑi, µ

u−tc
−1/2
n k(Rk ◦ ϑj|FVn))

≤ cc−1
n

∑
j /∈Vn

∑
i∈S

∑
a∈S

ρa(Rk ◦ ϑi)
∑
b∈S

ρb(µ
u−tc

−1/2
n k(Rk ◦ ϑj|FVn))

≤ cc′c−1
n

∑
i∈S

ρi(Rk)
∑
j /∈Vn

∑
b∈S

ρb(µ
u−tc

−1/2
n k(Rk ◦ ϑj|FVn)). (4.4)

By the argument in Künsch (1982a, proof of Corollary 2.4),

ρb(µ(f |FV )) = sup{|µV (f |x)− µV (f |y)| : xE\{b} = yE\{b}}
≤

∑
r,s/∈V

γbrχ
E\V
rs ρs(f) + ρb(f).

Hence, writing u for u − tc
−1/2
n k, and using again ρi(f ◦ ϑj) = 0 for i, j sufficiently far

apart,

c−1
n

∑
j /∈Vn

∑
b∈S

ρb(µ
u(Rk ◦ ϑj|FVn))

≤ c−1
n

∑
r,s/∈Vn

(∑
b∈S

Cbr

)
χ−Vn

rs

∑
j /∈Vn

ρs(Rk ◦ ϑj) +
∑
j /∈Vn

∑
b∈S

ρb(Rk ◦ ϑj)

≤ cc−1
n

∑
s∈S

ρs(Rk)
∑
r∈S

χrs + cc−1
n

∑
b∈S

ρb(Rk) → 0. (4.5)

Inserting (4.5) into (4.4), we see that the integrand of J1 converges pointwise to zero,
and hence J1 converges to zero.

The variance of J2 is

µu(J2
2 ) = c−1

n

∑
i,j /∈Vn

covu
(
µu−tc

−1/2
n k(Rk ◦ ϑi|FVn), µu−tc

−1/2
n k(Rk ◦ ϑj|FVn)

)
.

By the same arguments as for (4.4), we have µu(J2
2 ) → 0, and therefore J2 = oµu(1).

(iv) Asymptotic normality of c
−1/2
n

∑
j∈Vn

(Rk ◦ϑj −µu(Rk)) follows from the central
limit theorem (3.6), applied for Rk in place of fD.

Proof of the Theorem. (i) By the first equation of (3.6), the empirical estimator
EnfD is asymptotically linear with influence function fD − µu(fD). By (3.7) and (3.8),
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this function is a gradient of µu(fD). Hence EnfD is regular by the characterization in
Section 3.

(ii) The functional µu(fD) is linear in fD. Furthermore, |Dn|1/2(EnfD − µu(fD)) is
linear in fD up to oµu(1) in the sense that we have homogeneity, and

|D1n|1/2(EnfD1 − µu(fD1)) + |D2n|1/2(EnfD2 − µu(fD2))

= |(D1 ∪D2)n|1/2
(
En(fD1 + fD2)− µu(fD1 + fD2)

)
+ oµu(1).

Hence it suffices to prove the assertion for functions fD which do not admit a non-trivial
representation (3.10). For that, we must prove the following two statements:

1. If D ⊂ A for some A ∈ A, then EnfD is efficient.
2. If some A ∈ A is a strict subset of D, then EnfD is not efficient.
(iii) We prove statement 1. Let A ∈ A and D ⊂ A. By (i), the empirical estimator

EnfD is asymptotically linear with influence function fD − µu(fD), and this function is
a gradient of µu(fD). Since the gradient is in K0, it is canonical. Hence EnfD is regular
and efficient by the characterization (3.9).

(iv) We prove statement 2. Let A ∈ A be a strict subset of D. Then the influence
function fD−µu(fD) of EnfD is not in K0. The canonical gradient gD is the projection of
fD−µu(fD) into K0. Hence the asymptotic variance of EnfD is larger than the variance
bound by the squared length of the residual h = fD − µu(fD)− gD with respect to the
inner product (3.4) induced by local asymptotic normality,

‖h‖2 = (h, h) =
∑
j∈S

covu(h ◦ ϑj, h).
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Hájek, J. (1970). A characterization of limiting distributions of regular estimates. Z.
Wahrsch. Verw. Gebiete 14, 323–330.
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Huškova, eds.), 275–284, Charles University, Prague.

Koshevnik, Y. A. and Levit, B. Y. (1976). On a non-parametric analogue of the infor-
mation matrix. Theory Probab. Appl. 21, 738–753.
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