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Abstract

We consider estimation of linear functionals of the joint law of regression models in
which responses are missing at random. The usual approach is to work with the fully ob-
served data, and to replace unobserved quantities by estimators of appropriate conditional
expectations. Another approach is to replace all quantities by such estimators. We show
that the second method is usually better than the first.
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1. Introduction

Let (X,Y ) be a random vector. We want to estimate the expectation E[h(X,Y )] of some
known square-integrable function h. If we are able to sample from (X,Y ), we can use the
empirical estimator 1

n

∑n
i=1 h(Xi, Yi). If nothing is known about the distribution of (X,Y ),

this estimator is efficient. We are interested in the situation where we always observe X, but
Y only if some indicator Z equals one. We assume that Z and Y are conditionally independent
given X. Then one says that Y is missing at random. In this case the empirical estimator is
not available unless all Zi are one. Let π(X) = E(Z | X) = P (Z = 1 | X). If π is known and
positive, we could use the estimator 1

n

∑n
i=1 Zih(Xi, Yi)/π(Xi). If π is unknown, one could

replace π by an estimator π̂, resulting in

(1.1)
1
n

n∑
i=1

Zi
π̂(Xi)

h(Xi, Yi).

Surprisingly, even if π is known, replacing π by an estimator can decrease the asymptotic
variance. Such an improvement is given by Schisterman and Rotnitzky (2001). A similar result,
∗Supported in part by NSF Grant DMS 0072174
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on average treatment effects, is in Hirano, Imbens and Ridder (2002). Another estimator for
E[h(X,Y )] is the partially imputed estimator

(1.2)
1
n

n∑
i=1

(
Zih(Xi, Yi) + (1− Zi)χ̂(Xi)

)
,

where χ̂(Xi) is an estimator of the conditional expectation χ(Xi) = E(h(Xi, Yi) | Xi). An
alternative to the partially imputed estimator is the fully imputed estimator

(1.3)
1
n

n∑
i=1

χ̂(Xi).

An extreme case would be that the conditional distribution of Y given X is known. It is easy
to see that then the fully imputed estimator 1

n

∑n
i=1 χ(Xi) is at least as good as the partially

imputed estimator, and strictly better if and only if Z(h(X,Y ) − χ(X)) is not zero almost
surely.

We show that the fully imputed estimator (1.3) is usually better than the partially imputed
estimator (1.2). We restrict attention to the situation where π is bounded away from zero but
otherwise completely unknown. We also impose no structural assumptions on the covariate
distribution. We consider four different models for the conditional distribution of Y given X.

Suppose first that the conditional distribution Q(X, dy) of Y given X is completely un-
known. For the case h(X,Y ) = Y , Cheng (1994) shows that the partially and fully imputed
estimators are asymptotically equivalent, and obtains their asymptotic distribution. He es-
timates E(Y | X) by a truncated kernel estimator. Wang and Rao (2002) obtain a similar
result with a differently truncated kernel estimator. Cheng and Chu (1996) study estimation
of the response distribution function and quantiles. We generalize Cheng’s result to arbitrary
functions h and prove efficiency.

Suppose now that we have a parametric model Qϑ(X, dy) for the conditional distribution of
Y given X. In this case the conditional expectation is of the form χϑ(x) =

∫
h(x, y)Qϑ(x, dy).

This suggests estimating χϑ by χϑ̂. The natural estimator for ϑ is the conditional maximum
likelihood estimator. We show that the fully imputed estimator 1

n

∑n
i=1 χϑ̂(Xi) is efficient, and

better than the corresponding partially imputed estimator except in degenerate cases. This is
related to Tamhane (1978) who assumes a parametric model for the joint distribution of X
and Y . Then E[h(X,Y )] is a smooth function of ϑ; hence it can be estimated efficiently by
plugging in an efficient estimator, such as the maximum likelihood estimator.

Next we consider a model between the fully nonparametric and parametric ones for Q,
a linear regression model with covariates and errors independent. For simplicity we take
Y = ϑX + ε. We do not assume that ε has mean zero but require X to have positive variance
for identifiability. Here Q(x, dy) = f(y − ϑx) dy, where f is the (unknown) density of the
errors. Then χ(x) =

∫
h(x, ϑx+u)f(u) du. Exploiting this representation, we estimate χ(x) by
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∑n
j=1 Zjh(x, ϑ̂x+Yj−ϑ̂Xj)/

∑n
j=1 Zj . We show that the corresponding fully imputed estimator

is efficient if an efficient estimator for ϑ is used. Again the partially imputed estimator will
not be efficient in general, even if an efficient estimator for ϑ is used.

Finally we consider a linear regression model without assuming independence between co-
variates and errors. For simplicity we take Y = ϑX+ε with E(ε | X) = 0. This can be written
as a constraint on the conditional distribution of Y given X, namely

∫
y Q(X, dy) = ϑX. For

h(X,Y ) = Y this suggests the estimator ϑ̂ 1
n

∑n
i=1Xi, which happens to be the fully imputed

estimator. Matloff (1981) has shown that such an estimator improves upon the partially im-
puted estimator for his choice of ϑ̂. We show that the fully imputed estimator of E[h(X,Y )]
for general h is efficient if an appropriate estimator for χ is used. This requires an efficient
estimator ϑ̂ for ϑ and a correction term to the nonparametric estimator of χ. An efficient
estimator of ϑ can be obtained as a weighted least squares estimator with estimated optimal
weights, based on the fully observed pairs. Efficient estimation of ϑ for more general regres-
sion models and various models for π has been studied in Robins, Rotnitzky and Zhao (1994),
Robins and Rotnitzky (1995), and Rotnitzky and Robins (1995), among others. Efficient score
functions for ϑ are calculated by Nan, Emond and Wellner (2004) and Yu and Nan (2003).
The partially imputed estimator will not be efficient, in general. In view of this, partially
imputed estimators such as the one by Wang, Härdle and Linton (2003) for E[Y ] in a partly
linear model are not efficient.

The paper is organized as follows. In Section 2 we characterize efficient estimators for linear
functionals of arbitrary regression models with responses missing at random; in particular for
the four cases above. Our results show that the model is adaptive in the sense that we can
estimate E[h(X,Y )] as well not knowing π as knowing π. In Section 3 we construct efficient
fully imputed estimators of E[h(X,Y )] in these four models.

2. Efficient influence functions

In this section we calculate the efficient influence function for estimating the expected value
E[h(X,Y )] with observations (X,ZY,Z) as described in the Introduction. The joint distribu-
tion P (dx, dy, dz) of the observations depends on the marginal distribution G(dx) of X, the
conditional probability π(x) of Z = 1 given X = x, and the conditional distribution Q(x, dy)
of Y given X = x. More precisely, we have

P (dx, dy, dz) = G(dx)Bπ(x)(dz)
(
zQ(x, dy) + (1− z)δ0(dy)

)
,

where Bp = pδ1 + (1 − p)δ0 denotes the Bernoulli distribution with parameter p and δt the
Dirac measure at t. Consider perturbations Gnu, Qnv and πnw of G, Q and π that are Hellinger
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differentiable in the following sense:∫ (
n1/2

(√
dGnu −

√
dG
)
− 1

2
u
√
dG
)2
→ 0,∫∫ (

n1/2
(√

dQnv(x, ·)−
√
dQ(x, ·)

)
− 1

2
v(x, ·)

√
dQ(x, ·)

)2
G(dx)→ 0,∫∫ (

n1/2
(√

dBπnw(x) −
√
dBπ(x)

)
− 1

2
(· − π(x))w(x)

√
dBπ(x)

)2
G(dx)→ 0.

This requires that u belongs to

L2,0(G) = {u ∈ L2(G) :
∫
u dG = 0};

that v belongs to

V0 = {v ∈ L2(M) :
∫
v(x, y)Q(x, dy) = 0}

with M(dx, dy) = Q(x, dy)G(dx); and that w belongs to L2(Gπ), where Gπ(dx) = π(x)(1 −
π(x))G(dx).

We have local asymptotic normality : With Pnuvw denoting the joint distribution of the
observations (X,ZY,Z) under the perturbed parameters Gnu, Qnv and πnw,

n∑
i=1

log
dPnuvw
dP

(Xi, ZiYi, Zi) = n−1/2
n∑
i=1

tuvw(Xi, ZiYi, Zi)−
1
2
E[t2uvw(X,ZY,Z)] + op(1),

where tuvw(X,ZY,Z) = u(X) + Zv(X,Y ) + (Z − π(X))w(X) and

E[t2uvw(X,ZY,Z)] = E[u2(X)] + E[Zv2(X,Y )] + E[(Z − π(X))2w2(X)]

=
∫
u2 dG+

∫∫
π(x)v2(x, y)Q(x, dy)G(dx) +

∫
w2 dGπ.

If we have models for the parameters G, Q and π, then, in order for the perturbations
Gnu, Qnv and πnw to be within these models, the functions u, v and w must be restricted
to subsets U of L2,0(G), V of V0, and W of L2(Gπ). The choices U = L2,0(G) and V = V0

correspond to fully nonparametric models for G and Q. Parametric models for G and Q result
in finite-dimensional U and V . In what follows the spaces U , V and W will be assumed to be
closed and linear.

Let now κ be a functional of G, Q and π. The functional is differentiable with gradient
g ∈ L2(P ) if, for all u ∈ U , v ∈ V and w ∈W ,

n1/2
(
κ(Gnu, Qnv, πnw)− κ(G,Q, π)

)
→ E[g(X,ZY,Z)tuvw(X,ZY,Z)].

The gradient g is not unique. The canonical gradient is g∗, where g∗(X,ZY,Z) is the projection
of g(X,ZY,Z) onto the tangent space

T = {tuvw(X,ZY,Z) : u ∈ U, v ∈ V,w ∈W}.
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Since T is a sum of orthogonal spaces

T1 = {u(X) : u ∈ U},

T2 = {Zv(X,Y ) : v ∈ V },

T3 = {(Z − π(X))w(X) : w ∈W},

the random variable g∗(X,ZY,Z) is the sum u∗(X) + Zv∗(X,Y ) + (Z − π(X))w∗(X), where
u∗(X), Zv∗(X,Y ) and (Z − π(X))w∗(X) are the projections of g(X,ZY,Z) onto T1, T2 and
T3, respectively. We assume that E[g2

∗(X,ZY,Z)] is positive.
An estimator κ̂ for κ is regular with limit L if L is a random variable such that, for all

u ∈ U , v ∈ V and w ∈W ,

n1/2
(
κ̂− κ(Gnu, Qnv, πnw)

)
⇒ L under Pnuvw.

The Hájek–Le Cam convolution theorem says that L is distributed as the sum of a normal
random variable with mean zero and variance E[g2

∗(X,ZY,Z)] and some independent random
variable. This justifies calling an estimator κ̂ efficient if it is regular with limit such a normal
random variable.

An estimator κ̂ for κ is asymptotically linear with influence function ψ ∈ L2,0(P ) if

n1/2
(
κ̂− κ(G,Q, π)

)
= n−1/2

n∑
i=1

ψ(Xi, ZiYi, Zi) + op(1).

As a consequence of the convolution theorem, a regular estimator is efficient if and only if it is
asymptotically linear with influence function g∗. A reference for the convolution theorem and
the characterization is Bickel, Klaassen, Ritov and Wellner (1998).

We are interested in estimating

κ(G,Q, π) = E[h(X,Y )] =
∫∫

h(x, y)Q(x, dy)G(dx) =
∫
h dM.

Let Mnuv(dx, dy) = Qnv(x, dy)Gnu(dx). Then Mnuv is Hellinger differentiable in the following
sense: ∫ (

n1/2
(
dM1/2

nuv − dM1/2
)
− 1

2
t dM1/2

)2
→ 0

with t(x, y) = u(x) + v(x, y). If Mnuv satisfies lim supn
∫
h2 dMnuv <∞, then

n1/2
(∫

h dMnuv −
∫
h dM

)
→ E

[
h(X,Y )

(
u(X) + v(X,Y )

)]
;

see e.g. Ibragimov and Has’minskĭı (1981, p. 67, Lemma 7.2).
Thus the canonical gradient of E[h(X,Y )] is determined by

E[u∗(X)u(X)] + E[Zv∗(X,Y )v(X,Y )] + E[(Z − π(X))2w∗(X)w(X)]

= E
[
h(X,Y )

(
u(X) + v(X,Y )

)]
5



for all u ∈ U , v ∈ V and w ∈ W . Setting first u = 0 and v = 0, we see that w∗ = 0. Setting
v = 0, we see that u∗(X) is the projection of h(X,Y ) onto T1. Taking u = 0, we see that the
projection of Zv∗(X,Y ) onto Ṽ = {v(X,Y ) : v ∈ V } must equal the projection of h(X,Y )
onto Ṽ .

We are mainly interested in a fully nonparametric model for G, for which U = L2,0(G).
Then u∗(X) = χ(X) − E[χ(X)]. We now give explicit formulas for v∗, and hence for the
canonical gradient of E[h(X,Y )], in four cases: fully nonparametric conditional distribution,
with V = V0; parametric conditional distribution, with V finite-dimensional; and two semi-
parametric models, namely linear regression with and without independence of covariate and
error.

1. Nonparametric conditional distribution. If V = V0, then the projections of h(X,Y )
and Zv∗(X,Y ) onto Ṽ are h(X,Y )− χ(X) and π(X)v∗(X,Y ). Thus

v∗(X,Y ) =
h(X,Y )− χ(X)

π(X)
.

Hence, if U = L2,0(G), the canonical gradient of E[h(X,Y )] is

ψnp(X,ZY,Z) = χ(X)− E[χ(X)] +
Z

π(X)
(h(X,Y )− χ(X)).

For the important special case h(X,Y ) = Y we obtain ψnp(X,ZY,Z) = E(Y | X) − E[Y ] +
Z(Y − E(Y | X))/π(X).

2. Parametric conditional distribution. Let Q(x, dy) = qϑ(x, y) dy, where ϑ is an m-
dimensional parameter. In this case, V will be the span of the components of the score function
`ϑ, the Hellinger derivative of the parametric model qϑ at ϑ:∫∫ (√

qϑ+t(x, y)−
√
qϑ(x, y)− 1

2
t>`ϑ(x, y)

√
qϑ(x, y)

)2
dy G(dx) = o(t2).

We also assume that E[Z`ϑ(X,Y )`ϑ(X,Y )>] is positive definite. If qϑ is differentiable in ϑ, then
`ϑ = q̇ϑ/qϑ, where q̇ϑ is the derivative of qϑ with respect to ϑ. If we set L = `ϑ(X,Y ), then Ṽ =
{c>L : c ∈ Rm}. Thus v∗ is of the form c>∗ L. Since the projections of h(X,Y ) and Zv∗(X,Y )
onto Ṽ are a>L and b>L with a = (E[LL>])−1E[Lh(X,Y )] and b = (E[LL>])−1E[ZLL>] c∗,
we obtain c∗ = (E[ZLL>])−1E[Lh(X,Y )]. Thus, if U = L2,0(G), the canonical gradient of
E[h(X,Y )] is

ψp(X,ZY,Z) = χ(X)− E[χ(X)] + Zc>∗ `ϑ(X,Y ).

3. Linear regression with independence. We consider the linear regression model
Y = ϑX + ε with ε and X independent. We assume that ε has an unknown density f with
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finite Fisher information J for location and X has finite and positive variance. We do not
assume that ε has mean zero. In this model, Q(x, dy) = f(y − ϑx) dy. Write F for the
distribution function of f . As shown in Bickel (1982),

Ṽ = {αX`(ε) + β(ε) : α ∈ R, β ∈ L2,0(F )}.

Here ` denotes the score function `(y) = −f ′(y)/f(y) for location. The space Ṽ can be written
as the orthogonal sum of the spaces Ṽ1 = {αξ : α ∈ R} with

ξ = (X − E[X])`(ε),

and Ṽ2 = {β(ε) : β ∈ L2,0(F )}. The projection of h(X,Y ) onto Ṽ1 is chξ/E[ξ2] with ch =
E[h(X,Y )ξ], and the projection of h(X,Y ) onto Ṽ2 is h̄(ε)−E[h̄(ε)] with h̄(ε) = E(h(X,Y ) | ε).
For b ∈ L2(F ), the projection of Zb(ε) onto Ṽ1 is cξ/E[ξ2] with c = E[Zb(ε)ξ] = E[Z](E(X|Z =
1)− E[X])E[b(ε)`(ε)], and the projection of Zb(ε) onto Ṽ2 is E[Z](b(ε)− E[b(ε)]). Let

ξ∗ =
(
X − E(X | Z = 1)

)
`(ε).

Then Zξ∗ is orthogonal to Ṽ2, and its projection onto Ṽ1 is a∗ξ/E[ξ2] with a∗ = E[Zξ∗ξ] =
E[Zξ2

∗ ]. Since ch = E[h(X,Y )ξ] = E[h(X,Y )ξ∗] + (E(X|Z = 1) − E[X])E[h(X,Y )`(ε)], it
follows that

v∗(X,Y ) =
E[h(X,Y )ξ∗]

E[Zξ2
∗ ]

ξ∗ +
1

E[Z]
(
h̄(ε)− E[h̄(ε)]

)
.

Thus, if U = L2,0(G), the canonical gradient of E[h(X,Y )] is

ψI(X,ZY,Z) = χ(X)− E[χ(X)] + Z
(E[h(X,Y )ξ∗]

E[Zξ2
∗ ]

ξ∗ +
1

E[Z]
(
h̄(ε)− E[h̄(ε)]

))
.

For h(X,Y ) = Y we can use the identity E[ε`(ε)] = 1 to simplify the canonical gradient to

ϑ(X − E[X]) +
Z(E[X]− E(X|Z = 1))

E[Zξ2
∗ ]

ξ∗ +
Z(ε− E[ε])

E[Z]
.

4. Linear regression without independence. Now we consider the linear regression model
Y = ϑX + ε with E(ε | X) = 0. We write σ2(X) = E(ε2 | X) and ρh(X) = E(h(X,Y )ε | X).
In this model, we have only the constraint

∫
y Q(x, dy) = ϑx on the transition distribution Q.

In this case, the space Ṽ is the sum of the two orthogonal spaces

Ṽ1 = {aσ−2(X)Xε : a ∈ R},

Ṽ2 = {v(X,Y ) : v ∈ V0, E(v(X,Y )ε | X) = 0}.

For details see Müller, Schick and Wefelmeyer (2003). The projection of h(X,Y ) onto Ṽ1

is ahσ−2(X)Xε with ah = E[h(X,Y )σ−2(X)Xε]/E[σ−2(X)X2], while the projection onto
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Ṽ2 is h̃2 = h(X,Y ) − χ(X) − E[ρh(X)]σ−2(X)ε. It is now easy to check that v∗(X,Y ) =
a∗σ

−2(X)Xε+ h̃2/π(X). Thus, if U = L2,0(G), the canonical gradient of E[h(X,Y )] is

ψII(X,ZY,Z) = χ(X)− E[χ(X)] +
Z

π(X)
(h(X,Y )− χ(X))− Zε

σ2(X)

(ρh(X)
π(X)

− a∗X
)
.

Note that ψII = ψnp − ψ∗II with

ψ∗II(X,ZY,Z) =
Zε

σ2(X)

(ρh(X)
π(X)

− a∗X
)
.

3. Efficient estimators

In this section we indicate that the fully imputed estimators are efficient in the four models dis-
cussed at the end of Section 2. Throughout we assume that we have no structural information
on the covariate distribution G.

1. Nonparametric conditional distribution. In this model, Q is completely unspecified.
The usual partially imputed estimators for E[h(X,Y )] are of the form

Ĥ1 =
1
n

n∑
i=1

(
Zih(Xi, Yi) + (1− Zi)χ̂(Xi)

)
,

where χ̂ is a nonparametric estimator for χ of the form

χ̂(Xi) =
n∑
j=1

WijZjh(Xj , Yj)

with weights Wij depending on X1, . . . , Xn, Z1, . . . , Zn only. This includes kernel-type esti-
mators and linear smoothers. Under appropriate smoothness conditions on χ and π, and for
properly chosen weights Wij , the estimator Ĥ1 has the stochastic expansion

(3.1) Ĥ1 =
1
n

n∑
i=1

χ(Xi) +
1
n

n∑
i=1

Zi
π(Xi)

(h(Xi, Yi)− χ(Xi)) + op(n−1/2).

In the case h(X,Y ) = Y , such conditions are given by Cheng (1994) and Wang and Rao (2002).
These authors use weights Wij corresponding to truncated kernel estimators. Cheng (1994)
also shows that Ĥ1 is asymptotically equivalent to the fully imputed Ĥ2 = 1

n

∑n
i=1 χ̂(Xi). It

follows from (3.1) that Ĥ1 and Ĥ2 have influence function ψ = ψnp and are therefore efficient
by Section 2.

2. Parametric conditional distribution. In this model, Q = Qϑ, with ϑ an m-dimensional
parameter. Then

χ(x) = χϑ(x) =
∫
h(x, y)Qϑ(x, dy).
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Here we use an estimator ϑ̂ of ϑ and obtain for E[h(X,Y )] the partially and fully imputed
estimators

Ĥ3 =
1
n

n∑
i=1

(
Zih(Xi, Yi) + (1− Zi)χϑ̂(Xi)

)
and Ĥ4 =

1
n

n∑
i=1

χϑ̂(Xi).

For the following discussion, we assume again Hellinger differentiability of Qϑ as in Section
2 and write `ϑ for the score function. A natural estimator for ϑ is the conditional maximum
likelihood estimator, which solves 1

n

∑n
i=1 Zi`ϑ(Xi, Yi) = 0. Under some additional regularity

conditions, this estimator has the expansion

ϑ̂ = ϑ+ I−1
ϑ

1
n

n∑
i=1

Zi`ϑ(Xi, Yi) + op(n−1/2)

with Iϑ = E
[
π(X)`ϑ(X,Y )`ϑ(X,Y )>

]
. One can show that ϑ̂ is efficient for ϑ = κ(G,Qϑ, π).

Moreover, under regularity conditions, for any n1/2-consistent ϑ̂,

1
n

n∑
i=1

Ziχϑ̂(Xi) =
1
n

n∑
i=1

Ziχϑ(Xi) +D>1 (ϑ̂− ϑ) + op(n−1/2),

1
n

n∑
i=1

(1− Zi)χϑ̂(Xi) =
1
n

n∑
i=1

(1− Zi)χϑ(Xi) +D>0 (ϑ̂− ϑ) + op(n−1/2),

where
D1 = E[Zh(X,Y )`ϑ(X,Y )] and D0 = E[(1− Z)h(X,Y )`ϑ(X,Y )].

Thus, if we use the conditional maximum likelihood estimator for ϑ, we have the expansions

Ĥ3 =
1
n

n∑
i=1

(
Zih(Xi, Yi) + (1− Zi)χϑ(Xi) +D>0 I

−1
ϑ Zi`ϑ(Xi, Yi)

)
+ op(n−1/2),

Ĥ4 =
1
n

n∑
i=1

(
χϑ(Xi) + (D0 +D1)>I−1

ϑ Zi`ϑ(Xi, Yi)
)

+ op(n−1/2).

Since D0 + D1 = E[h(X,Y )`ϑ(X,Y )], we see that Ĥ4 has influence function ψ = ψp and is
therefore efficient. The difference between the estimators is

Ĥ3 − Ĥ4 =
1
n

n∑
i=1

Zi

(
h(Xi, Yi)− χϑ(Xi)−D>1 I−1

ϑ `ϑ(Xi, Yi)
)

+ op(n−1/2).

Hence Ĥ3 is asymptotically equivalent to Ĥ4, and therefore also efficient, if and only if
Z
(
h(X,Y ) − χϑ(X) − D>1 I

−1
ϑ `ϑ(X,Y )

)
is zero almost surely. Since this is usually not the

case, the partially imputed estimator Ĥ3 is typically inefficient.
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3. Linear regression with independence. In this model, Q(x, dy) = Qϑ,f (x, dy) =
f(y − ϑx) dy. We assume that f has finite Fisher information J for location and X has finite
and positive variance. In this model,

χ(x) = χ(x, ϑ, f) =
∫
h(x, ϑx+ u)f(u) du.

This suggests the estimator

χ̂(x, ϑ̂) =
1
n

∑n
j=1 Zjh(x, ϑ̂x+ Yj − ϑ̂Xj)

Z̄
,

where Z̄ = 1
n

∑n
j=1 Zj . Then the partially and fully imputed estimators for E[h(X,Y ] are

Ĥ5 =
1
n

n∑
i=1

(
Zih(Xi, Yi) + (1− Zi)χ̂(Xi, ϑ̂)

)
and Ĥ6 =

1
n

n∑
i=1

χ̂(Xi, ϑ̂).

Let

S =
1
n2

n∑
i=1

n∑
j=1

Zj
E[Z]

h(Xi, ϑXi + εj).

Then E[S] = E[h(X,Y )] = κ. By the Hoeffding decomposition,

S = κ+
1
n

n∑
i=1

(χ(Xi)− κ) +
1
n

n∑
j=1

(Zj h̄(εj)
E[Z]

− κ
)

with h̄(ε) = E(h(X,Y ) | ε). Using this we obtain

1
n

n∑
i=1

χ̂(Xi, ϑ) =
E[Z]
Z̄

S = S − Z̄ − E[Z]
E[Z]

κ+ op(n−1/2)

=
1
n

n∑
i=1

χ(Xi) +
1
n

n∑
j=1

Zj
E[Z]

(h̄(εj)− κ) + op(n−1/2).

Under additional assumptions,

Ĥ6 =
1
n2

n∑
i=1

n∑
j=1

Zj
Z̄
h
(
Xi, ϑXi + εj + (ϑ̂− ϑ)(Xi −Xj)

)
=

1
n2

n∑
i=1

n∑
j=1

Zj
Z̄
h(Xi, ϑXi + εj) +D(ϑ̂− ϑ) + op(n−1/2)

with

D =
1

E[Z]
E
[
h(X1, X1 + ε2)Z2(X1 −X2)`(ε2)

]
= E

[
h(X,Y )(X − E(X|Z = 1))`(ε)

]
.
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In the linear regression model without missing responses, efficient estimators for ϑ have been
constructed by Bickel (1982), Koul and Susarla (1983), and Schick (1987, 1993). Their influ-
ence function is ξ/E[ξ2] with ξ = (X − E[X])`(ε). An analogous construction based on the
observations (Xi, Yi) with Zi = 1 yields an estimator for ϑ with influence function Zξ∗/E[Zξ2

∗ ]
with ξ∗ =

(
X − E(X | Z = 1)

)
`(ε). One can show that ϑ̂ is efficient for ϑ = κ(G,Qϑ,f , π). If

we use an estimator ϑ̂ with this influence function, then Ĥ6 has the stochastic expansion

Ĥ6 =
1
n

n∑
i=1

(
χ(Xi) +

Zi
E[Z]

(h̄(εi)− κ) +
D

E[Zξ2
∗ ]
Zi
(
Xi − E(X | Z = 1)

)
`(εi)

)
+ op(n−1/2).

Thus this estimator has influence function ψ = ψI and is therefore efficient by Section 2. Note
that in general the partially imputed estimator Ĥ5 is different from Ĥ6 and therefore inefficient.
If h(X,Y ) = Y , our estimator becomes ϑ̂X̄ + 1

n

∑n
i=1 Zi(Yi − ϑ̂Xi)/Z̄.

4. Linear regression without independence. In this model, Q satisfies the constraint∫
y Q(x, dy) = ϑx. We estimate ϑ by a weighted least squares estimator based on (Xi, Yi) with

Zi = 1,

ϑ̂ =
∑n

i=1 Ziσ̂
−2(Xi)XiYi∑n

i=1 Ziσ̂
−2(Xi)X2

i

,

with σ̂2(x) an estimator of σ2(x) = E(ε2 | X = x). Such estimators have been studied without
missing responses by Carroll (1982), Müller and Stadtmüller (1987), Robinson (1987), and
Schick (1987). In view of their results, we get under appropriate conditions that

ϑ̂ = ϑ+
1
n

∑n
i=1 Ziσ

−2(Xi)Xiεi

E[Zσ−2(X)X2]
+ op(n−1/2).

This estimator can be shown to be efficient for ϑ.
A possible estimator for χ is the nonparametric estimator χ̂ introduced above for the

nonparametric model. Here, however, we have the constraint
∫
y Q(x, dy) = ϑx and use the

estimator
χ̂II(Xi) =

∑
WijZjh(Xj , Yj)− ĉ

with

ĉ =
1
n

n∑
i=1

Ziρ̂h(Xi)
π̂(Xi)σ̂2(Xi)

(Yi − ϑ̂Xi),

where π̂(x) and ρ̂h(x) are nonparametric estimators of π(x) and ρh(x) = E(h(X,Y )ε | X = x).
Note that ĉ is of order n−1/2. Hence χ̂II(x) is asymptotically equivalent to the nonparametric
estimator χ̂. Nevertheless, it leads to a better estimator for E[h(X,Y )]. Under appropriate
assumptions, ĉ has the expansion

ĉ =
1
n

n∑
i=1

Ziρh(Xi)
π(Xi)σ2(Xi)

εi − d(ϑ̂− ϑ) + op(n−1/2)
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with d = E[Zρh(X)X/π(X)σ2(X)] = E[h(X,Y )σ−2(X)Xε]. Using the expansion for the
weighted least squares estimator ϑ̂, we see that

ĉ =
1
n

n∑
i=1

Ziεi
σ2(Xi)

(ρh(Xi)
π(Xi)

− dXi

E[Zσ−2(X)X2]

)
+ op(n−1/2)

=
1
n

n∑
i=1

ψ∗II(Xi, ZiYi, Zi) + op(n−1/2).

Using this and the stochastic expansion of the nonparametric estimator χ̂, we obtain that the
estimators Ĥ1 − ĉ and Ĥ2 − ĉ have influence functions ψ = ψII and are therefore efficient by
Section 2. Of course, Ĥ2 − ĉ is the fully imputed estimator based on χ̂II . Both Ĥ1 − ĉ and
Ĥ2 − ĉ are better than the partially imputed estimators Ĥ1 based on the estimator χ̂, and
Ĥ1 − (1− Z̄)ĉ based on the estimator χ̂II .

Simpler estimators are possible for certain functions h, such as h(x, y) = y, which is usually
treated in the literature. Since E(Y | X) = ϑX, we can use the fully imputed estimator ϑ̂X̄,
with X̄ = 1

n

∑n
i=1Xi. As smooth function of the two efficient estimators ϑ̂ and X̄, the estimator

ϑ̂X̄ is efficient for E(Y | X). Matloff (1981) has recommended an estimator of this form, but
with a simpler, in general inefficient, estimator for ϑ.
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