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Suppose we observe an invertible linear process with independent
mean zero innovations, and with coefficients depending on a finite-

dimensional parameter, and we want to estimate the expectation of
some function under the stationary distribution of the process. The

usual estimator would be the empirical estimator. It can be improved

using that the innovations are centered. We construct an even better
estimator using the representation of the observations as infinite-order

moving averages of the innovations. Then the expectation of the function
under the stationary distribution can be written as expectation under the

distribution of an infinite series in terms of the innovations, and it can be

estimated by a U-statistic of increasing order (also called “infinite-order
U-statistic”) in terms of the estimated innovations. The estimator can be

further improved using that the innovations are centered. This improved
estimator is optimal if the coefficients of the linear process are estimated
optimally. The variance reduction of our estimator over the empirical

estimator can be considerable.

1. Introduction. There is a large literature on estimation in ergodic time
series driven by independent innovations. In the last fifteen years, optimality ques-
tions have also been addressed. Efficient estimators for the parameters of ARMA
type processes are constructed by Kreiss (1987a, 1987b), Jeganathan (1995), Drost,
Klaassen and Werker (1997), Koul and Schick (1997), and Schick and Wefelmeyer
(2002a). For invertible linear time series, the innovations can be estimated, and lin-
ear functionals of the innovation distribution can then be estimated by correspond-
ing empirical estimators based on the estimated innovations; see Boldin (1982) and
Kreiss (1991). Simple and efficient improvements of these estimators are possible
if the innovations are centered; see Wefelmeyer (1994) and Schick and Wefelmeyer
(2002b).

Here we are interested in estimating functionals of the stationary law. Such
functionals can be estimated in a straightforward way from observations of the time
series. Linear functionals of the stationary law can be estimated by corresponding
empirical estimators. The stationary density can be estimated by a kernel estimator;
see e.g. Tran (1992), Yakowitz (1989) and Honda (2000).
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These estimators are “nonparametric” in that they do not exploit the informa-
tion that the time series is driven by independent innovations. In this paper we
show how to use this information in order to construct efficient estimators for lin-
ear functionals of the stationary law of causal and invertible linear processes with
coefficients depending on a finite-dimensional parameter. We restrict attention to
estimation of expectations of smooth functions. Examples are moments, absolute
moments, the characteristic function, and other transformations of the stationary
law. One of the applications would be testing for Gaussianity. Under stronger con-
ditions on the time series, one could prove corresponding results for expectations
of step functions, for example the distribution function. An application would be
estimating the value-at-risk in finance mathematics.

In the simplest such time series, a moving average process of order one, Saavedra
and Cao (1999, 2000) show that the specific structure of the model allows the sta-
tionary density to be estimated at the parametric rate n−1/2. Schick and Wefelmeyer
(2002c) prove that the estimator of Saavedra and Cao is efficient. Analogous para-
metric rates can also be obtained for estimators of conditional expectations; see
Müller, Schick and Wefelmeyer (2002) for a result in nonlinear autoregressive pro-
cesses. Such estimators could be combined with the estimators in the present paper
in order to efficiently estimate functionals of joint laws of linear processes, for ex-
ample autocovariance functions.

A cautionary remark: Unlike the usual empirical estimators for functionals of
the stationary law, our efficient estimators use the full structure of the model, in
particular the independence of the innovations. Like all efficient estimators, they
are therefore sensitive against misspecification of the model.

Specifically, consider observations Y1, . . . , Yn from a causal linear process

Yt = Xt +
∞∑
s=1

δsXt−s, t ∈ Z,

with independent and identically distributed innovations Xt, t ∈ Z, with mean
zero and finite variance. A simple estimator of a linear functional E[h(Y0)] of the
stationary distribution is the empirical estimator 1

n

∑n
j=1 h(Yj). It does not use that

the process is linear and centered. We shall show how to construct better estimators
if the process is invertible,

Xt = Yt +
∞∑
s=1

γsYt−s, t ∈ Z.

The idea is to express the functional E[h(Y0)] as E[h(X0 +
∑∞
s=1 δsX−s], and to

estimate it by a U-statistic of increasing order based on estimated innovations,
taking into account the constraint that the innovations have mean zero. We do
this for a situation often encountered in applications: The coefficients δ1, δ2, . . . and
hence also γ1, γ2, . . . depend on an unknown Euclidean parameter ϑ.

The construction of our estimator involves several steps. Let us illustrate them
with the simplest example, a linear autoregressive model of order one,

Yt = ϑYt−1 +Xt, t ∈ Z,
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with ϑ belonging to the interval (−1, 1). Our result is new, and nontrivial, even for
this simple case. The model is a semiparametric model with one-dimensional pa-
rameter ϑ and infinite-dimensional parameter P , the distribution of the innovations.
The stationary distribution of this process thus depends on the pair (ϑ, P ).

We want to estimate the linear functional E[h(Y0)] of the stationary distribution.
The obvious estimator is again the empirical estimator 1

n

∑n
j=1 h(Yj). It is known

that the empirical estimator is a least dispersed regular estimator in Markov chain
models with completely unspecified transition distribution; see Penev (1991), Bickel
(1993) and Greenwood and Wefelmeyer (1995). Here, however, we are dealing with a
semiparametric submodel. Thus we should be able to improve upon this estimator.

Before we describe our estimator, let us briefly describe a simple improvement of
the empirical estimator, obtained by exploiting that the innovations, and hence the
observations, have mean zero. This is a linear constraint E[Y0] = 0 on the stationary
distribution. For any c ∈ R we obtain a new estimator for E[h(Y0)],

1
n

n∑
j=1

(h(Yj)− cYj).

For general Markov chain models, Müller, Schick and Wefelmeyer (2001b) deter-
mine the constant c which minimizes the asymptotic variance of the new estimator.
For our autoregressive model, this constant becomes particularly simple if h is a
polynomial. For example, for the stationary variance E[Y 2

0 ], i.e. h(y) = y2, the
optimal constant is

c = c∗ =
µ3

(1 + ϑ)µ2
,

with µk = E[Xk
1 ]. This optimal c∗ depends on P and ϑ and must be estimated. We

estimate ϑ by the least squares estimator ϑ̂∗ = 1
n

∑n
j=1 Yj−1Yj

/
1
n

∑n
j=1 Y

2
j−1, the

innovations by Yj − ϑ̂∗Yj−1, and µk by its empirical estimator based on estimated
innovations,

µ̂k =
1
n

n∑
j=1

(Yj − ϑ̂∗Yj−1)k.(1.1)

The resulting estimator for E[Y 2
0 ] is

1
n

n∑
j=1

(
Y 2
j −

µ̂3

(1 + ϑ̂∗)µ̂2

Yj

)
.

This simple improvement of the empirical estimator does not use the autore-
gressive structure of the chain. As mentioned above, this structure is exploited by
a U-statistic of increasing order. Improving the empirical estimator then involves
three steps. In the first step, we assume ϑ as known and exploit the structural rela-
tion Yt = ϑYt−1+Xt. In the second step, we use the information that the innovation
distribution has mean zero. The last step consists in replacing ϑ by an estimator.
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The key step is the first one: We represent the observations as an infinite series
of the innovations:

Yt =
∞∑
s=0

ϑsXt−s, t ∈ Z.

Suppose first that the parameter ϑ is known. Then we can calculate the innova-
tions Xt = Yt − ϑYt−1, t = 1, . . . , n, from the observations. Since Y0 has the same
distribution as S =

∑∞
s=1 ϑ

s−1Xs, the problem is now reduced to estimating the
functional

E[h(Y0)] = E[h(S)] = E
[
h
( ∞∑
s=1

ϑs−1Xs

)]
from i.i.d. observationsX1, . . . , Xn. This expectation is approximated by E[h(S(m))]
with S(m) =

∑m
s=1 ϑ

s−1Xs ifm increases with n. It suggests itself to use as estimator
for E[h(S(m))] the following variant of a U-statistic. Form the sums

Si(ϑ) =
m∑
s=1

ϑs−1Xi(s) =
m∑
s=1

ϑs−1(Yi(s) − ϑYi(s)−1)

for injective functions i from {1, . . . ,m} into {1, . . . , n}. These sums are distributed
as S(m). Hence we estimate E[h(Y0)] by an average over these sums, the U-statistic

κ̂(ϑ) =
(n−m)!

n!

∑
i∈Φ

h(Si(ϑ)),

where Φ denotes the set of all injective functions from {1, . . . ,m} into {1, . . . , n}.
We can show, via Hoeffding decomposition, that if m = m(n) increases with n

at an appropriate rate, then the U-statistic κ̂(ϑ) is asymptotically linear,

κ̂(ϑ) = E[h(Y0)] +
1
n

n∑
j=1

h∗(Xj) + op(n−1/2),

with influence function h∗ =
∑∞
s=1 hs, where hs(x) = E[h(S)|Xs = x] − E[h(S)].

For fixed m, the U-statistic κ̂(ϑ) is a least dispersed regular estimator of
E[h(S(m))] = E[h(

∑m
s=1 ϑ

s−1Xs)] if nothing is known about the distribution
of the Xj . See Levit (1974), or argue via asymptotic equivalence of U-statistic
and von Mises statistic and efficiency of the empirical distribution function, Beran
(1977). Optimality is preserved if we let m tend to infinity at the appropriate rate.
For U-statistics of increasing order see also Shieh (1994) and Heilig and Nolan
(2001).

In Section 2 we prove these results for functionals of the more general form
E[h(

∑∞
s=1 βsXs)] with summable coefficients β1, β2, . . . . The results are of inde-

pendent interest. For simplicity we do not prove them under minimal assumptions
on the function h. In our applications to linear time series in Sections 4 and 5 we
shall need stronger assumptions anyway. The assumptions are general enough to
cover moments and absolute moments and other smooth functions.

Now we turn to the second step of the construction of our estimator, exploiting
that Xt has mean zero. This is a linear constraint of the form E[Y1−ϑY0] = E[X1] =
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0. The simple improvement of the empirical estimator 1
n

∑n
j=1 h(Yj), described

above, has used the linear constraint E[Y1] = 0 on observations from a Markov
chain. Here we use the constraint E[X1] = 0 on the observed innovations, which
are i.i.d. This simplifies improving our estimator κ̂(ϑ). Similarly as above we form,
for any a ∈ R, the estimator

κ̂(ϑ, a) = κ̂(ϑ)− a 1
n

n∑
j=1

(Yj − ϑYj−1),

which has influence function x 7→ h∗(x)− ax. It is easy to check that the choice

a = a∗ =
E[X1h∗(X1)]

E[X2
1 ]

yields an estimator with smallest asymptotic variance in this class of estimators. The
optimal a∗ stems from projection on [X1]. It depends on P and must be replaced
by an estimator. A consistent estimator is

â∗(ϑ) =

∑n
j=1(Yj − ϑYj−1)

∑m
s=1Hs,j(ϑ)∑n

j=1(Yj − ϑYj−1)2
,

where

Hs,j(ϑ) =
(n−m)!
(n− 1)!

∑
i∈Φ, i(s)=j

h(Si(ϑ)), s = 1, . . . ,m, j = 1, . . . , n.

This leads us to the estimator

κ̂(ϑ, â∗(ϑ)) = κ̂(ϑ)− â∗(ϑ)
1
n

n∑
j=1

(Yj − ϑYj−1).

We show that this is a least dispersed regular estimator of E[h(Y0)] in the submodel
with known parameter ϑ. For a related efficiency result in such i.i.d. models with
linear constraints, but for simpler functionals, see Levit (1975). In Section 3 we
generalize these results to functionals of the form E[h(

∑∞
s=1 βsXs)].

The third and last step of the construction of our estimator consists in replacing
ϑ by an estimator ϑ̂, leading to the substitution estimator κ̂(ϑ̂, â∗(ϑ̂)). It then fol-
lows from the substitution principle that the substitution estimator is efficient for
E[h(Y0)] = E[h(

∑∞
s=1 ϑ

s−1Xs)] if ϑ̂ is efficient for ϑ. Conditions for this principle
to hold were first formulated by Klaassen and Putter (2001) in models with inde-
pendent and identically distributed observations, and generalized to Markov chain
models by Müller, Schick and Wefelmeyer (2001a).

In Section 4, rather than checking the conditions for the substitution principle, we
calculate directly the influence function of the substitution estimator for functionals
E[h(

∑∞
s=1 αs(ϑ)Xs)] from observations which approximate X1, . . . , Xn. In Section

5 we apply the results of Sections 2 to 4 to estimate stationary expectations E[h(Y0)]
from observations of causal invertible linear processes. Efficiency of our estimator
follows from Schick and Wefelmeyer (2002a) who characterize efficient estimators
for arbitrary differentiable functionals in such time series models.
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In Section 6 we compare the asymptotic variances of the empirical estimator,
the improved empirical estimator and our estimator for the stationary variance in
AR(1) models. In this situation, the asymptotic variances of the estimators can
be calculated explicitly. For innovation distributions far from normal, the variance
decrease can be considerable.

2. Estimating the distribution of an infinite series. Let X1, X2, . . . be
independent and identically distributed random variables with

E[|X1|2p] <∞(2.1)

for some p ≥ 1 and with unknown common distribution P . Let β1, β2, . . . be known
real numbers such that

∞∑
r=1

|βr| <∞.(2.2)

Then the series

S =
∞∑
r=1

βrXr

converges almost surely, and in L2p. Let h be a function from R to R such that

|h(x)| ≤ C1(1 + |x|p), x ∈ R,(2.3)

|h(x+ y)− h(x)| ≤ C2(1 + |x|p)(|y|+ |y|p), x, y ∈ R,(2.4)

for some finite constants C1 and C2. Then the expectation E[h(S)] is well-defined.
Examples of functions h that satisfy (2.3) and (2.4) are polynomials in x or |x| of
degree at most p, and Lipschitz continuous functions.

We are interested in estimating E[h(S)] from the observations X1, . . . , Xn. Let
us introduce our estimator. It follows from (2.1) to (2.4) that the infinite sum S is
well approximated by the finite sum S(m) =

∑m
r=1 βrXr for moderately large m.

Indeed, the Minkowski inequality yields that

E
[∣∣∣ b∑
j=a

βjXj

∣∣∣q] ≤ E[|X1|q]
( b∑
j=a

|βj |
)q
, 1 ≤ a ≤ b, 1 ≤ q ≤ 2p.(2.5)

In view of (2.4) and the independence of S − S(m) and S(m),

E[|h(S)− h(S(m))|2] ≤ C2
2E[(1 + |S(m)|p)2](E[(|S − S(m)|+ |S − S(m)|p)2]).

It is now easy to see that there exists a constant K such that

E[|h(S)− h(S(m))|2] ≤ K2
( ∞∑
r=m+1

|βr|
)2

(2.6)

and hence

|E[h(S)]− E[h(S(m))]| ≤ K
∞∑

r=m+1

|βr|.(2.7)
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Actually, the constant K can be chosen to be

K = 2C2

(
1 +

∞∑
r=1

|βr|
)2p−1

(1 + E[X2
1 ] + E[|X1|2p).

Recall that Φ denotes the set of all injective functions from {1, . . . ,m} to
{1, . . . , n}. The random variables

Si =
m∑
r=1

βrXi(r), i ∈ Φ,

have the same distribution as S(m). Hence an unbiased estimator of E[h(S(m))] is
given by

κ̃ =
(n−m)!

n!

∑
i∈Φ

h(Si).

The estimator can be written as U-statistic
1(
n
m

) ∑
1≤i(1)<···<i(m)≤n

km(Xi(1), . . . , Xi(m))

with symmetric kernel km defined by

km(x1, . . . , xm) =
1
m!

∑
i∈Π

h(β1xi(1) + · · ·+ βmxi(m)), x1, . . . , xm ∈ R,

with Π the set of permutations of {1, . . . ,m}. Using standard U-statistic techniques
(see Serfling, 1980, p. 178, Lemma A, and p. 184, Lemma B) we obtain that

κ̃ = κm +
1
n

n∑
j=1

mkm,1(Xj) +R,

where

κm = E[km(X1, . . . , Xm)] = E[h(S(m))],

km,1(x) = E[km(x,X2, . . . , Xm)]− κm, x ∈ R,

and the remainder satisfies

E[R2] ≤
m∑
r=2

(
m

r

)2(
n

r

)−1

E[k2
m(X1, . . . , Xm)].

It is easy to check that E[k2
m(X1, . . . , Xm)] ≤ E[h2(S(m))]. Using m!/(m−r)! ≤ mr

and n!/(n− r)! ≥ (n− r)r we obtain for n−m > m2:

E[R2] ≤ E[h2(S(m))]
m∑
r=2

1
r!

( m2

n−m

)r
≤ E[h2(S(m))]

( m2

n−m

)2

.

Note also that

mkm,1(x) =
m∑
r=1

(
E[h(S(m)) | Xr = x]− E[h(S(m))]

)
, x ∈ R.
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Let now

hr(x) = E[h(S) | Xr = x]− E[h(S)], x ∈ R, r = 1, 2, . . . .

With the help of (2.4) and the Cauchy–Schwarz inequality we verify that∫
h2
r dP ≤ 4E[(h(S)− h(S − βrXr))2]

≤ 4C2
2E[(1 + |S − βrXr|p)2]E[(|βrXr|+ |βrXr|p)2].

This and the Minkowski inequality show that there exists a constant C such that
for all sufficiently large m and k, m < k,∫ ( k∑

r=m+1

hr

)2

dP ≤ C
( k∑
r=m+1

|βr|
)2

.

Thus the series h∗ =
∑∞
r=1 hr is well-defined in L2(P ) and is the L2(P )-limit of∑m

r=1 hr: ∫ (
h∗ −

m∑
r=1

hr

)2

dP → 0 as m→∞.(2.8)

It follows from the Cauchy–Schwarz inequality and (2.6) that∫ (
mkm,1 −

m∑
r=1

hr

)2

dP ≤ 4mE[|h(S)− h(S(m))|2] ≤ 4mK2
( ∞∑
r=m+1

|βr|
)2

(2.9)

for large m. We arrive at the following result.

Theorem 2.1. Suppose we can choose m = m(n) such that

m4/n→ 0 and n1/2
∞∑

r=m+1

|βr| → 0.(2.10)

Let h fulfill (2.3) and (2.4). Then the estimator

κ̃ =
(n−m)!

n!

∑
i∈Φ

h
( m∑
r=1

βrXi(r)

)
is asymptotically linear for E[h(S)] with influence function h∗ =

∑∞
r=1 hr:

κ̃ = E[h(S)] +
1
n

n∑
j=1

h∗(Xj) + op(n−1/2).

In particular, κ̃ is asymptotically normal with variance
∫
h2
∗ dP .

We have phrased this and the following theorems about estimators as asymptotic
linearity results. The reason is that asymptotic linearity is useful for obtaining other,
more familiar results about estimators: They are then seen to be asymptotically
normal, their asymptotic variance is easily calculated, and we can check whether
they are regular and whether they are efficient in the sense of being least dispersed
among regular estimators.
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Remark 2.1. Let us briefly discuss the choice of m in two special cases.
(1) Suppose that the coefficients β1, β2, . . . decay exponentially, say

|βj | ≤ Cϑj , j = 1, 2, . . . ,

for a finite constant C and a positive number ϑ, ϑ < 1. Then the requirement (2.10)
is satisfied if m4/n → 0 and n1/2ϑm → 0. The latter holds if log(n)/m → ∞. If
ϑ < e−1/2, it even holds for m = log(n).

(2) Suppose βj = 0 for j > p. Then we can take m = p. We should point out
that in this case h∗ = h1 + · · ·+ hp is a finite sum and (2.8) holds even though m
does not go to infinity. This is the classical result for fixed degree U-statistics.

As it is very time consuming to calculate κ̃ for large m, it is advantageous to
choose m as small as possible.

Remark 2.2. If the coefficients do not decay fast enough, we may not be able
to satisfy (2.10). For example, if βj = j−1−a, j = 1, 2, . . . for some positive a, then
m needs to satisfy m4/n→ 0 and n/m2a → 0. But this is only possible if a > 2.

Let us now show that κ̃ is efficient. For this it suffices to show that E[h(S)] is
differentiable at the true P with canonical gradient equal to the influence function h∗
of our estimator κ̃. Since we will have to look at distributions near to, but different
from, the true P , it will occasionally be convenient to express the dependence
of expectations on the underlying distribution by writing EP for E. Note that
κ(P ) = EP [h(S)] defines a functional on the set of all distributions with finite
2p-th moments. We introduce a local model at the true P as follows. Let L∗(P )
denote the set of all measurable functions g from R to R such that

∫
g dP = 0 and∫

g2 dP <∞. To each g in L∗(P ) associate a sequence gn in L∗(P ) such that

|gn| ≤ n1/8 and
∫

(gn − g)2 dP → 0.(2.11)

A possible choice is gn = g1[2|g| ≤ n1/8] −
∫
g1[2|g| ≤ n1/8] dP . Let Pn,g denote

the distribution with P -density 1 + n−1/2gn. Since 0 ≤ 1 + n−1/2gn and
∫

(1 +
n−1/2gn) dP = 1, the function 1 + n−1/2gn is indeed a probability density.

Theorem 2.2. Suppose we can choose m = m(n) such that (2.10) holds. Let
h satisfy (2.3) and (2.4). Then the functional κ(P ) = EP [h(S)] is differentiable at
P with gradient h∗ =

∑∞
r=1 hr:

n1/2(κ(Pn,g)− κ(P ))→
∫
h∗g dP.

Proof. Let m = m(n) fulfill (2.10). Let Gn,0 = 1 and

Gn,k =
k∏
r=1

(1 + n−1/2gn(Xr)), k = 1, 2, . . . .



10 ANTON SCHICK AND WOLFGANG WEFELMEYER

Since

n1/2(Gn,k − 1) =
k∑
r=1

Gn,r−1gn(Xr) =
k∑
r=1

gn(Xr) +
k∑
r=2

gn(Xr)(Gn,r−1 − 1)

and

E[(Gn,k − 1)2] = E[G2
n,k]− 1 = (1 + n−1E[g2

n(X1)])k − 1

≤ k

n
E[g2

n(X1)](1 + n−1E[g2
n(X1)])k−1,

we get by an application of the Cauchy–Schwarz inequality and the independence
of Xr and Gn,r−1 that∣∣∣n1/2E[h(S)(Gn,m − 1)]− E

[
h(S)

m∑
r=1

gn(Xr)
]∣∣∣

≤
m∑
r=2

(
E[h2(S)]E[g2

n(Xr)]E[(Gn,r−1 − 1)2]
)1/2

→ 0.

Since
∫
gn dP = 0, we find that

E[h(S)gn(Xr)] = E[(E[h(S) | Xr]− E[h(S)])gn(Xr)] =
∫
gnhr dP.

Thus, in view of (2.8) and (2.11),

E
[
h(S)

m∑
r=1

gn(Xr)
]

=
∫
gn

m∑
r=1

hr dP →
∫
gh∗ dP.

This shows that

n1/2E[h(S)(Gn,m − 1)]→
∫
gh∗ dP.(2.12)

Note that EPn,g [h(S(m))] = EP [h(S(m))Gn,m], so that κ(Pn,g)− κ(P ) equals

EPn,g [h(S)− h(S(m))] + E[(h(S(m))− h(S))Gn,m] + E[h(S)(Gn,m − 1)].

The desired result now follows from (2.12) and (2.10) because

n1/2|EPn,g [h(S)− h(S(m))]| = O
(
n1/2

∞∑
r=m+1

|βr|
)

by the same argument that yields (2.7), and

n1/2|E[(h(S)− h(S(m)))Gn,m]| = O
(
n1/2

∞∑
r=m+1

|βr|
)

by (2.6) and E[G2
n,m]→ 1.

Theorems 2.1 and 2.2 imply that κ̃ is least dispersed among regular estimators of
EP [h(S)] if nothing is known about P . For an appropriate version of the convolution
theorem see Bickel et al. (1998, p. 63, Theorem 2, and p. 65, Proposition 1).
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3. Estimation with constraints. In the setting of Section 2, we can find
better estimators for E[h(S)] = E[h(

∑∞
r=1 βrXr)] if additional information about

the distribution P is available. Suppose we know that∫
ψ dP = 0(3.1)

for some measurable function ψ from R to R such that
∫
ψ2 dP is finite and positive.

An important case is the choice ψ(x) = x. This just means that P has mean zero.
Under the constraint (3.1) we can consider the estimator

˜̃κ(a) = κ̃− a 1
n

n∑
j=1

ψ(Xj)

for real a and verify that it has influence function h∗ − aψ if m = m(n) fulfills
(2.10):

˜̃κ(a) = E[h(S)] +
1
n

n∑
j=1

(h∗(Xj)− aψ(Xj)) + op(n−1/2).

Its asymptotic variance is minimized for the choice

a = a∗ =
∫
h∗ψ dP∫
ψ2 dP

,

which is the coefficient of the projection of h∗ onto ψ. Let us now construct an
estimator of a∗ that is consistent if m = m(n) fulfills (2.10). Our candidate is

â∗ =

∑n
j=1 ψ(Xj)

∑m
r=1Hr,j∑n

j=1 ψ
2(Xj)

,

where

Hr,j =
(n−m)!
(n− 1)!

∑
i∈Φ, i(r)=j

h(Si), r = 1, . . . ,m, j = 1, . . . , n.

Recall that Si =
∑m
r=1 βrXi(r) for i ∈ Φ. In view of the law of large numbers we

need only show that

(3.2)
1
n

n∑
j=1

ψ(Xj)
m∑
r=1

Hr,j =
1
n

n∑
j=1

h∗(Xj)ψ(Xj) + op(1).

Given X1, the random variable Hr,1 is a U-statistic (of degree m−1 in the variables
X2, . . . , Xn). Thus we have for r = 1, . . . ,m and n−m ≥ (m− 1)2:

E[(Hr,1 − E[Hr,1 | X1])2] ≤ E[h2(S(m))]
m−1∑
k=1

(
m− 1
k

)2(
n− 1
k

)−1

≤ E[h2(S(m))]
2(m− 1)2

n−m
.
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From this and the Cauchy–Schwarz inequality we get

E
[ 1
n

n∑
j=1

( m∑
r=1

(Hr,j − E[Hr,j | Xj ])
)2]
≤ m

m∑
r=1

E[(Hr,1 − E[Hr,1 | X1])2]

= O(m4(n−m)−1).

Thus m4/n→ 0 implies that

(3.3)
1
n

n∑
j=1

( m∑
r=1

(Hr,j − E[Hr,j | Xj ])
)2

= op(1).

From this and another application of the Cauchy–Schwarz inequality we can now
conclude that

1
n

n∑
j=1

ψ(Xj)
m∑
r=1

Hr,j =
1
n

n∑
j=1

ψ(Xj)
m∑
r=1

E[Hr,j | Xj ] + op(1).

It is easy to check that

(3.4)
m∑
r=1

E[Hr,j | Xj ] = m(κm + km,1(Xj)).

As mκm = o(n1/2), we obtain from the central limit theorem that

1
n

n∑
j=1

ψ(Xj)mκm = op(1).

In view of this, (2.8) and (2.9), we can now conclude the desired (3.2). Let us
summarize this in the following theorem.

Theorem 3.1. Suppose we can choose m = m(n) such that (2.10) holds. Let
h satisfy (2.3) and (2.4). Then the estimator

˜̃κ(â∗) = κ̃− â∗
1
n

n∑
j=1

ψ(Xj)

is asymptotically linear for κ(P ) = EP [h(S)] with influence function h∗ − a∗ψ:

˜̃κ(â∗) = κ(P ) +
1
n

n∑
j=1

[h∗(Xj)− a∗ψ(Xj)] + op(n−1/2).

In particular, ˜̃κ(â∗) is asymptotically normal with variance

E[(h∗(X1)− a∗ψ(X1))2] =
∫
h2
∗ dP −

(
∫
h∗ψ dP )2∫
ψ2 dP

.

It is straightforward to check that h∗− a∗ψ is the efficient influence function for
estimators of EP [h(S)] under the constraint

∫
ψdP = 0; see Levit (1975). It follows

from Theorem 3.1 that ˜̃κ(â∗) is a least dispersed regular estimator of EP [h(S)]
when P is unknown except for

∫
ψdP = 0; see again the convolution theorem in

Bickel et al. (1998, pp. 63 and 65).



ESTIMATING INVARIANT LAWS OF LINEAR PROCESSES 13

4. Estimated coefficients and perturbed observations. Let X1, . . . , Xn

be i.i.d. random variables with distribution P fulfilling (2.1). We want to estimate
the expectation E[h(

∑∞
r=1 βrXr)]. In the applications to time series we have in

mind, the coefficients β1 = α1(ϑ0), β2 = α2(ϑ0), . . . depend on an unknown param-
eter ϑ0, and the random variables X1, . . . , Xn are the unobservable innovations of
a time series. In this case, both the coefficients and the innovations must be esti-
mated from the time series using estimators of ϑ0. This will be done in Section 5. In
preparation, the present section considers general estimators Xn,1(ϑ̂), . . . , Xn,n(ϑ̂)
of X1, . . . , Xn. Theorem 4.1 shows asymptotic linearity of a U-statistic based on
observations Xn,1(ϑ̂), . . . , Xn,n(ϑ̂); Theorem 4.2 treats the case with constraint∫
ψ dP = 0. As underlying parameter space we take an open subset Θ of Rd.

We assume that α1, α2, . . . are continuously differentiable functions from Θ to R
such that for some η > 0,

∞∑
r=1

|αr(ϑ0)| <∞ and
∞∑
r=1

sup
‖ϑ−ϑ0‖<η

‖α̇r(ϑ)‖ <∞,(4.1)

where α̇r denotes the gradient of αr. Note that this implies that

∞∑
r=1

sup
‖ϑ−ϑ0‖<η

|αr(ϑ)| <∞(4.2)

for the same η as in (4.1). We consider random variables Xn,1(ϑ), . . . , Xn,n(ϑ) such
that Xn,j(ϑ) approximates Xj if ϑ is close to ϑ0: There are d-dimensional random
vectors ξ1, ξ2, . . . such that

sup
j≥1

E[‖ξj‖2] <∞,(4.3)

max
j≤n

n−1/2‖ξj‖ = op(1),(4.4)

sup
‖t‖≤T

n∑
j=1

(
Xn,j(ϑ0 + n−1/2t)−Xj − n−1/2t>ξj

)2

= op(1)(4.5)

for all finite T .

Remark 4.1. The conditions (4.3) and (4.4) are implied by uniform integra-
bility of the variables ‖ξ1‖2, ‖ξ2‖2, . . . . The former is obvious, the latter follows
as

P
(

max
1≤j≤n

n−1/2‖ξj‖ > η
)
≤ 1
nη2

n∑
j=1

E[‖ξj‖21[‖ξj‖ > n1/2η]]

≤ 1
η2

max
1≤j≤n

E[‖ξj‖21[‖ξj‖ > n1/2η]], η > 0.

Thus, if the random vectors ξ1, ξ2, . . . are identically distributed, then (4.3) and
(4.4) follow from E[‖ξ1‖2] < ∞. Sufficient conditions for (4.5) are asymptotic dif-
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ferentiability of Xn,j at ϑ0 in the sense that

sup
‖t‖≤T

n∑
j=1

(
Xn,j(ϑ0 + n−1/2t)−Xn,j(ϑ0)− n−1/2t>Ẋn,j(ϑ0)

)2

= op(1)(4.6)

for all finite T together with

1
n

n∑
j=1

‖Ẋn,j(ϑ0)− ξj‖2 = op(1),(4.7)

n∑
j=1

(Xn,j(ϑ0)−Xj)2 = op(1).(4.8)

In applications to time series, Xn,j(ϑ0) is a truncated series representation of inno-
vations, see (5.5) below.

For ϑ ∈ Θ and i ∈ Φ set now

S(ϑ) =
∞∑
r=1

αr(ϑ)Xr,

Si(ϑ) =
m∑
r=1

αr(ϑ)Xi(r),

Sn,i(ϑ) =
m∑
r=1

αr(ϑ)Xn,i(r)(ϑ).

Set S = S(ϑ0) and Si = Si(ϑ0). These are the series in Section 2. Think of Sn,i(ϑ)
as an approximation of Si(ϑ). Next define

κ̂(ϑ) =
(n−m)!

n!

∑
i∈Φ

h(Sn,i(ϑ)), ϑ ∈ Θ.

Then κ̂(ϑ0) is an “estimator” of E[h(S)] and defined as in Section 2, but now with
X1, . . . , Xn replaced by Xn,1(ϑ0), . . . , Xn,n(ϑ0). Let ϑ̂ be an estimator of ϑ0. In
this section we calculate the influence function of κ̂(ϑ̂). The result will be used in
Section 5.

Assumption H. The function h satisfies (2.3) and (2.4) and is absolutely con-
tinuous with an almost everywhere derivative h′ that is almost surely continuous
with respect to the distribution of S and satisfies the growth condition

|h′(x)| ≤ C3(1 + |x|)q, x ∈ R,

for some constant C3 and some q ∈ [0, p].

Examples of functions h that satisfy Assumption H are again polynomials in x
or |x| of degree at most p, and Lipschitz continuous functions.
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Theorem 4.1. Suppose assumptions (4.1) to (4.5) hold, h fulfills Assumption
H, and we can choose m = m(n) such that (2.10) holds with βr = αr(ϑ0). If ϑ̂ is
n1/2-consistent for ϑ0, then

κ̂(ϑ̂) = κ̃+ ∆>n (ϑ̂− ϑ0) + op(n−1/2),(4.9)

where

∆n =
(n−m)!

n!

∑
i∈Φ

h′(Si)Di,

Di =
m∑
r=1

[α̇r(ϑ0)Xi(r) + αr(ϑ0)ξi(r)], i ∈ Φ.

Proof. For i ∈ Φ set

Dn,i = Sn,i(ϑ̂)− Si =
m∑
r=1

[αr(ϑ̂)Xn,i(r)(ϑ̂)− αr(ϑ0)Xi(r)].

Since h is absolutely continuous, we see that

κ̂(ϑ̂)− κ̃ =
(n−m)!

n!

∑
i∈Φ

Dn,i

∫ 1

0

h′(Si + zDn,i) dz.

The desired result can now be written as
(n−m)!

n!

∑
i∈Φ

(
Dn,i

∫ 1

0

h′(Si + zDn,i) dz −D>i (ϑ̂− ϑ0)h′(Si)
)

= op(n−1/2).

But this is a consequence of the following statements.

(n−m)!
n!

∑
i∈Φ

(h′(Si))2 = Op(1),(4.10)

(n−m)!
n!

∑
i∈Φ

‖Di‖2 = Op(1),(4.11)

(n−m)!
n!

∑
i∈Φ

(Dn,i −D>i (ϑ̂− ϑ0))2 = op(n−1),(4.12)

(n−m)!
n!

∑
i∈Φ

∫ 1

0

(
h′(Si + zDn,i)− h′(Si)

)2

dz = op(1).(4.13)

Of course, (4.10) holds because its left-hand side has an expectation that converges
to that of E[h′(S)2] by the properties of h′. Next, we have

E[‖Di‖2] ≤ 2
( m∑
r=1

‖α̇r(ϑ0)‖
)2

E[X2
1 ] + 2

( m∑
r=1

|αr(ϑ0)|
)2

max
1≤j≤n

E[‖ξj‖2](4.14)

by the following version of the Cauchy–Schwarz inequality:

(
∑
r

arbr)2 ≤
∑
r

|ar|
∑
r

|ar|b2r.
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Relation (4.11) follows from (4.14) and assumptions (4.1) to (4.3). To obtain relation
(4.12), use the formula

(n−m)!
n!

∑
i∈Φ

( m∑
r=1

|arbi(r)|
)2

≤
( m∑
r=1

|ar|
)2 1

n

n∑
j=1

b2j

to bound the left-hand side of (4.12) by

3
( m∑
r=1

∣∣αr(ϑ̂)− αr(ϑ0)
∣∣)2 1

n

n∑
j=1

‖ξj‖2‖ϑ̂− ϑ0‖2

+3
( m∑
r=1

|αr(ϑ̂)|
)2 1

n

n∑
j=1

(
Xn,j(ϑ̂)−Xj − ξ>j (ϑ̂− ϑ0)

)2
+3
( m∑
r=1

∫ 1

0

∥∥α̇r(ϑ0 + z(ϑ̂− ϑ0))− α̇r(ϑ0)
∥∥ dz)2 1

n

n∑
j=1

|Xj |2‖ϑ̂− ϑ0‖2.

The desired (4.12) is now immediate in view of (4.1) to (4.5) and the n1/2-
consistency of ϑ̂. Note that n1/2-consistency of ϑ̂, continuity of α̇r and (4.1)
yield

m∑
r=1

∫ 1

0

∥∥α̇r(ϑ0 + z(ϑ̂− ϑ0))− α̇r(ϑ0)
∥∥ dz = op(1).

We also have

Dn = max
i∈Φ
|Dn,i| = op(1).(4.15)

This is a consequence of (4.12) and the fact that

max
i∈Φ

n−1/2‖Di‖ ≤
∞∑
r=1

‖α̇r(ϑ0)‖ max
1≤j≤n

n−1/2|Xj |+
∞∑
r=1

|αr(ϑ0)| max
1≤j≤n

n−1/2‖ξj‖

= op(1).

Thus it suffices to prove (4.13) with Dn,i replaced by D∗n,i = Dn,i1[|Dn,i| ≤ 1]. It
follows from Assumption H that

Zn,i =
∫ 1

0

(
h′(Si + zD∗n,i)− h′(Si)

)2

dz ≤ 4C2
3 (2 + |Si|)2p, i ∈ Φ.

Since Si has the same distribution as S(m)(ϑ0) =
∑m
r=1 αr(ϑ0)Xj and S(m) con-

verges in L2p to S, we see that the random variables {Zn,i : i ∈ Φ, n ≥ 1} are
uniformly integrable. Thus (4.13) will follow if we can show that for every L,

(n−m)!
n!

∑
i∈Φ

∫ 1

0

L ∧
(
h′(Si + zD∗n,i)− h′(Si)

)2

dz = op(1).(4.16)

Fix L. Define a map H from Q, the set of all probability measures on the Borel
σ-field of R2, into [0, L] by

H(Q) =
∫
L ∧ (h′(x)− h′(y))2 Q(dx, dy), Q ∈ Q.
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With the aid of this map we can write the expected value of the left-hand side of
(4.16) as

(n−m)!
n!

∑
i∈Φ

∫ 1

0

H(Qzn,i) dz,

where Qzn,i is the distribution of the bivariate random vector

Y zn,i = (Si + zD∗n,i, Si)
>.

Endow Q with the topology of weak convergence. This topology is generated by the
Prohorov metric ρ. By the properties of h′, the map H is bounded and continuous
at Q0, the distribution of (S, S)>. Note also that H(Q0) = 0. Hence for ε > 0 there
exists δ > 0 such that ρ(Q,Q0) < δ implies |H(Q)| < ε. It thus suffices to show
that

sup{ρ(Qzn,i, Q0) : i ∈ Φ, z ∈ [0, 1]} → 0.(4.17)

For this we use the following simple property of the Prohorov metric. If X and
Y are two bivariate random vectors with distributions Q and R, then ρ(Q,R) ≤
η + P (‖X − Y ‖ ≥ η) for each η > 0. Let now Yi = (S∗i , S

∗
i )> with

S∗i = Si +
∞∑
r=1

αm+r(ϑ0)Xn+r.

Then Yi has distribution Q0 and ‖Y zn,i−Yi‖ ≤
√

2|Si−S∗i |+ |D∗n,i| for all z ∈ [0, 1]
and all i ∈ Φ. The desired (4.17) is now immediate.

Remark 4.2. For i ∈ Φ set

Ṡi =
m∑
r=1

α̇r(ϑ0)Xi(r) and Ti =
m∑
r=1

αr(ϑ0)ξi(r),

so that Di = Ṡi + Ti. Under the assumptions of Theorem 4.1, one can show that

(n−m)!
n!

∑
i∈Φ

h′(Si)Ṡi = µ+ op(1),(4.18)

where µ = E[h′(S)Ṡ] with Ṡ =
∑∞
r=1 α̇r(ϑ0)Xr.

One also expects that under mild additional assumptions,

(n−m)!
n!

∑
i∈Φ

h′(Si)Ti = ν + op(1)(4.19)

for some vector ν ∈ Rd. Then (4.9) simplifies to

κ̂(ϑ̂) = κ̃+ (µ+ ν)>(ϑ̂− ϑ0) + op(n−1/2).

In the following lemma we formulate a set of sufficient conditions for (4.19) that
is useful for the applications we have in mind.
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Lemma 4.1. Suppose Assumption H holds, m4/n → 0, the random vectors
ξ1, ξ2, . . . are stationary with E[‖ξ1‖2] <∞ and

sup
r>s

E[‖ξr − E[ξr | Xr−s, . . . , Xr−1]‖2]→ 0 as s→∞.(4.20)

Then (4.19) holds with

ν = E[h′(S)]
∞∑
r=1

αr(ϑ0)E[ξ1].

Proof. Without loss of generality we may assume that d = 1. Let s denote the
integer part of 1 + log(n). Let Φs denote the set of all i in Φ such that i(q) > s and
|i(q)− i(r)| > s for all q, r = 1, . . . ,m and q 6= r. Set ξr,s = E[ξr | Xr−s, . . . , Xr−1]
for r > s and

Ti,s =
m∑
r=1

αr(ϑ0)ξi(r),s, i ∈ Φ.

Since m4/n→ 0, we have that nm/(n−ms)m → 0. This shows that the cardinality
of Φs is of the same order as that of Φ. Hence the cardinality of the complement
Φ\Φs of Φs with respect to Φ is of order o(n!/(n−m)!). We now use this and (4.20)
to show that the left-hand side of (4.19) differs from

D =
(n−m)!

n!

∑
i∈Φs

h′(Si)Ti,s

by a term of order op(1). Indeed, the expected value of the absolute value of this
term is bounded by

(n−m)!
n!

( ∑
i∈Φ\Φs

E[|h′(Si)Ti|] +
∑
i∈Φs

E[|h′(Si)(Ti,s − Ti)|]
)
.

Now use the fact that the expected values E[h′(Si)2] and E[T 2
i ] are uniformly

bounded and that E[(Ti,s − Ti)2]1/2 ≤
∑∞
j=1 |αj(ϑ0)| supr>s(E[‖ξr − ξr,s‖2])1/2, to

conclude that this bound tends to zero.
It is easy to check that two summands h′(Si)Ti,s and h′(Sj)Tj,s of D are indepen-

dent if their indices i and j satisfy |i(r)− j(r)| > s for all r = 1, . . . ,m. This shows
that the variance of D goes to zero, so that D = E[D] +op(1). Since Si and Ti,s are
independent for i ∈ Φs, and Si has the same distribution as S(m) =

∑m
r=1 αr(ϑ0)Xr,

we have

E[D] = E[h′(S(m))]
(n−m)!

n!

∑
i∈Φs

E[Ti,s].

The properties of h′ imply E[h′(S(m))]→ E[h′(S)]. From (4.20) and (4.1) we get

sup
i∈Φs

∣∣∣E[Ti,s]−
∞∑
r=1

αr(ϑ0)E[ξ1]
∣∣∣→ 0.

We can now conclude that E[D]→ ν. This completes the proof.
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Let us now turn to the constrained setting of Section 3, with ψ a function such
that

∫
ψ dP = 0 and

∫
ψ2 dP finite and positive. For ϑ ∈ Θ, consider

ˆ̂κ(ϑ, â∗(ϑ)) = κ̂(ϑ)− â∗(ϑ)
1
n

n∑
j=1

ψ(Xn,j(ϑ)),

where

â∗(ϑ) =

∑n
j=1 ψ(Xn,j(ϑ))

∑m
r=1Hr,j(ϑ)∑n

j=1 ψ
2(Xn,j(ϑ))

,

Hr,j(ϑ) =
(n−m)!
(n− 1)!

∑
i∈Φ, i(r)=j

h(Si(ϑ)), r = 1, . . . ,m, j = 1, . . . , n.

We write now a∗(ϑ0) for the a∗ of Section 3 to stress the dependence on the pa-
rameter.

Theorem 4.2. Suppose the assumptions of Theorem 4.1 hold. Suppose also that
ψ is Lipschitz with an almost everywhere derivative ψ′ that is continuous P -almost
surely. If ϑ̂ is n1/2-consistent for ϑ0, then

1
n

n∑
j=1

â∗(ϑ̂)ψ(Xn,j(ϑ̂)) = a∗(ϑ0)
1
n

n∑
j=1

ψ(Xj) + a∗(ϑ0)Γ>n (ϑ̂− ϑ0) + op(n−1/2)

with

Γn =
1
n

n∑
j=1

ψ′(Xj)ξj .

If, in addition, the random vectors ξ1, ξ2, . . . are stationary and satisfy (4.20), then

Γn = E[ψ′(X1)]E[ξ1] + op(1),(4.21)

and hence ˆ̂κ∗n = ˆ̂κ(ϑ̂, â∗(ϑ̂)) equals

ˆ̂κ∗n = κ̂(ϑ̂)− a∗(ϑ0)
1
n

n∑
j=1

ψ(Xj)− a∗(ϑ0)E[ψ′(X1)]E[ξ>1 ](ϑ̂− ϑ0) + op(n−1/2).

Proof. Since (4.21) is easy, we prove only the first conclusion. It suffices to
show that

â∗(ϑ̂) = a∗(ϑ0) + op(1),(4.22)

1
n

n∑
j=1

(ψ(Xn,j(ϑ̂))− ψ(Xj)) =
1
n

n∑
j=1

ψ′(Xj)ξ>j (ϑ̂− ϑ0) + op(n−1/2).(4.23)

The latter is a special case of Theorem 4.1 with h replaced by ψ and α1(ϑ) = 1
and αr(ϑ) = 0 for r ≥ 2. As ψ is Lipschitz, we obtain from (4.4), (4.5) and the
n1/2-consistency of ϑ̂ that

Ψn = max
1≤j≤n

|ψ(Xn,j(ϑ̂))− ψ(Xj)| = op(1).(4.24)
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In view of (3.2) and (4.24), the desired statement (4.22) will follow from

1
n

n∑
j=1

(ψ(Xn,j(ϑ̂))− ψ(Xj))
m∑
r=1

Hr,j(ϑ0) = op(1),(4.25)

1
n

n∑
j=1

ψ(Xn,j(ϑ̂))
m∑
r=1

(Hr,j(ϑ̂)−Hr,j(ϑ0)) = op(1).(4.26)

It follows from (2.9), (3.3) and (3.4) that

1
n

n∑
j=1

(
mκm −

m∑
r=1

Hr,j(ϑ0)
)2

= Op(1).

It follows from (4.23) that

1
n

n∑
j=1

(ψ(Xn,j(ϑ̂))− ψ(Xj))mκm = op(1).

Together with (4.24), these statements yield (4.25). Next, bound the absolute value
of the left-hand side of (4.26) by

m∑
r=1

(n−m)!
n!

n∑
j=1

∑
i∈Φ,i(r)=j

|ψ(Xn,j(ϑ̂))|C3(1 + |Si|+ |Dn,i|)q|Dn,i|

≤ C4

m∑
r=1

(n−m)!
n!

n∑
j=1

∑
i∈Φ,i(r)=j

(1 + |Xj |+ Ψn)(1 + |Si|+Dn)q|Dn,i|,

where Dn,i and Dn are as in the proof of Theorem 4.1 and C4 is a constant. An
application of the Cauchy–Schwarz inequality now shows that the square of the
left-hand side of (4.26) is bounded by m2C2UnVn, where

Un =
(n−m)!

n!

∑
i∈Φ

D2
n,i,

Vn =
1
m

m∑
r=1

(n−m)!
n!

n∑
j=1

∑
i∈Φ,i(r)=j

(1 + |Xj |+ Ψn)2(1 + |Si|+Dn)2q.

It follows from (4.11) and (4.12) that nUn = Op(1). It follows from (4.24), (4.15)
and q ≤ p− 1 that Vn = Op(1). As m2/n→ 0, we obtain the desired (4.26).

5. Application to semiparametric linear processes. Now we apply Sec-
tions 2 to 4 to real-valued causal invertible processes Yt, t ∈ Z, with infinite-order
moving average and autoregressive representations

Yt = Xt +
∞∑
s=1

δs(ϑ)Xt−s, t ∈ Z,(5.1)

Yt = Xt −
∞∑
s=1

γs(ϑ)Yt−s, t ∈ Z,(5.2)
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where the innovations {Xt, t ∈ Z} are i.i.d. with distribution P which has mean
zero and finite variance, and the parameter ϑ varies in an open subset Θ of Rd. We
assume that δ1, δ2, . . . and γ1, γ2, . . . are continuously differentiable functions from
Θ into R with the following growth conditions at the true parameter ϑ = ϑ0: For a
finite constant C and positive numbers η and a < 1,

sup
‖ϑ−ϑ0‖<η

[|δr(ϑ)|+ ‖δ̇r(ϑ)‖] ≤ Car, r = 1, 2, . . . ,(5.3)

sup
‖ϑ−ϑ0‖<η

[|γr(ϑ)|+ ‖γ̇r(ϑ)‖] ≤ Car, r = 1, 2, . . . .(5.4)

Here δ̇r is the gradient of δr, and γ̇r the gradient of γr.

Example 5.1. For the AR(1) process Yt = Xt + ϑYt−1 take Θ = (−1, 1) and
set γ1(ϑ) = −ϑ and γs(ϑ) = 0 for s ≥ 2. The infinite-order moving average repre-
sentation holds with δs(ϑ) = ϑs.

Example 5.2. For the MA(1) process Yt = Xt + ϑXt−1 take Θ = (−1, 1)
and set δ1(ϑ) = ϑ and δs(ϑ) = 0 for s ≥ 2. The infinite-order autoregressive
representation holds with γs(ϑ) = (−ϑ)s.

Example 5.3. For the ARMA(1,1) process Yt − ϑ1Yt−1 = Xt − ϑ2Xt−1 take
Θ = {(ϑ1, ϑ2) : ϑ1, ϑ2 ∈ (−1, 1), ϑ1 6= ϑ2}. The infinite-order moving average rep-
resentation holds with δs(ϑ) = (ϑ1 − ϑ2)ϑs−1

1 , and the infinite-order autoregressive
representation holds with γs(ϑ) = (ϑ2 − ϑ1)ϑs−1

2 .

In the following, we will occasionally write Yt(ϑ) for representation (5.1) of Yt,
and EP for expectation when P is true. We want to estimate the functional

κ(ϑ, P ) = EP [h(Y1(ϑ))]

from observations Y0, . . . , Yn. Since the true innovation distribution P has mean
zero, we have the linear constraint

∫
xP (dx) = 0, i.e. EP [ψ(X1)] = 0 for ψ(x) = x.

Note that if we observe only Y1, . . . , Yn, we cannot estimate the first few in-
novations so well that (4.5) holds. However, (4.5) can be achieved if we observe
also Y−r(n), . . . , Y0 for a properly chosen sequence r(n) of integers. For example,
r(n) = p − 1 works for AR(p). In general, we must have Assumption 3 in Schick
and Wefelmeyer (2002a), which under our assumption (5.4) holds with r(n) pro-
portional to (log n)1+ε for some ε > 0. We will assume in this section that those
additional observations are available. Otherwise, renumber the observations.

We apply Section 4 with αr = δr−1, r = 1, 2, . . . , where δ0 = 1, and take
Xn,1(ϑ), . . . Xn,n(ϑ) to be truncated versions of the representation (5.2) of the in-
novations X1, . . . , Xn in terms of the observations:

Xn,j(ϑ) = Yj +
r(n)+j∑
s=1

γs(ϑ)Yj−s, j = 1, . . . , n, ϑ ∈ Θ.(5.5)
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It is easy to see that assumption (5.3) implies assumptions (4.1) and (4.2). Let us
now show that (5.3) and (5.4) imply (4.3) to (4.5) with

ξj =
∞∑
s=1

γ̇s(ϑ0)Yj−s, j = 1, 2, . . . .

As ξ1, ξ2, . . . are stationary and square-integrable by (5.4), we obtain (4.3) and (4.4)
from Remark 4.1. To prove relation (4.5), we verify the sufficient conditions (4.6)
to (4.8) with Ẋn,j(ϑ) =

∑r(n)+j
s=1 γ̇s(ϑ)Yj−s. Conditions (4.7) and (4.8) are easy

consequences of the choice of r(n) and assumption (5.4). We bound the expectation
of the left-hand side of (4.6) by

n∑
j=1

E
( r(n)+j∑

s=1

sup
‖t‖≤T

∣∣γs(ϑ0 + n−1/2t)− γs(ϑ0)− n−1/2t>γ̇s(ϑ0)
∣∣|Yj−s|)2

≤ E(Y 2
1 )
( ∞∑
s=1

sup
‖t‖≤T

∣∣γs(ϑ0 + n−1/2t)− γs(ϑ0)− n−1/2t>γ̇s(ϑ0)
∣∣)2

.

We have used the Minkowski inequality here. Since γ1, γ2, . . . are continuously dif-
ferentiable, each term in the last series converges to zero as n tends to infinity.
Hence the sequence of series converges to zero since the dominated convergence
theorem applies by (5.4). This proves (4.6) and completes the proof of (4.5). Fi-
nally, assumptions (5.3) and (5.4) imply relation (4.20).

Now set

Sn,i(ϑ) =
m∑
r=1

δr−1(ϑ)Xn,i(r)(ϑ),

Hr,j(ϑ) =
(n−m)!
(n− 1)!

∑
i∈Φ, i(r)=j

h(Sn,i(ϑ)),

â∗(ϑ) =

∑n
j=1(Yj − ϑYj−1)

∑m
r=1Hr,j(ϑ)∑n

j=1(Yj − ϑYj−1)2
,

ˆ̂κ(ϑ, a) =
(n−m)!

n!

∑
i∈Φ

h(Sn,i(ϑ))− a 1
n

n∑
j=1

(Yj − ϑYj−1).

Since the random vectors ξ1, ξ2, . . . are stationary with EP [ξ1] = 0, Theorem 4.2
implies

ˆ̂κ(ϑ̂, â∗(ϑ̂)) = κ̂(ϑ̂)− a∗(ϑ0)
1
n

n∑
j=1

Xj + op(n−1/2),

and Theorem 4.1, Remark 4.2 and Lemma 4.1 imply

κ̂(ϑ̂) = κ̃+ EP [h′(Y1(ϑ0))Ẏ1(ϑ0)>](ϑ̂− ϑ0) + op(n−1/2)
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with Ẏ1(ϑ0) =
∑∞
r=1 δ̇r(ϑ0)X1−r. By Theorem 2.1 we have

κ̃ = κ(ϑ0, P ) +
1
n

n∑
j=1

h∗(Xj).

We arrive at the following result.

Theorem 5.1. Suppose assumptions (5.3) and (5.4) hold and h satisfies As-
sumption H (with Y1(ϑ0) playing the role of S(ϑ0)). Choose m = m(n) such that
m4/n→ 0 and log(n)/m→ 0. If ϑ̂ is n1/2-consistent for ϑ0, then

ˆ̂κ(ϑ̂, â∗(ϑ̂)) = κ(ϑ0, P ) + EP [h′(Y1(ϑ0))Ẏ1(ϑ0)>](ϑ̂− ϑ0)

+
1
n

n∑
j=1

[h∗(Xj)− a∗(ϑ0)Xj ] + op(n−1/2).

Computations are faster if m is small. We may choose m proportional to
(log n)1+ε with ε > 0.

Let us now show that ˆ̂κ(ϑ̂, â∗(ϑ̂)) is efficient for EP [h(Y1(ϑ0))] if ϑ̂ is efficient
for ϑ0. Schick and Wefelmeyer (2002a) give conditions for local asymptotic nor-
mality and characterize efficient estimators for differentiable functionals in causal
and invertible linear processes. We need only check that the functional κ(ϑ0, P ) =
EP [h(Y1(ϑ0))] is differentiable in an appropriate sense, with efficient influence func-
tion equal to the influence function of ˆ̂κ(ϑ̂, â∗(ϑ̂)).

We assume from now on that P has finite Fisher information I(P ) for location,
i.e. P has an absolutely continuous density f and I(P ) =

∫
`2 dP < ∞, where

` = f ′/f . We also assume that the matrix V (ϑ0) = EP [ξ1ξ>1 ] is positive definite.
Local asymptotic normality and differentiability require a local model. It is in-

troduced in Schick and Wefelmeyer (2002a) as follows. Set

G = {g ∈ L∗(P ) :
∫
g dP =

∫
xg(x)P (dx) = 0}.

For g in G define Pn,g by its P -density 1 + n−1/2gn with

gn = gn −
∫
gnγ

>
n dP

(∫
γnγ

> dP
)−1

γn,

where γ(x) = (1, x)> and γn(x) = (1,−n1/8 ∨ x ∧ n1/8)>, and

gn =
∫
g1[|g| ≤ n1/8](x− n−1/8y)ϕ(y) dy,

with ϕ the standard normal density. Set ϑn,t = ϑ0 + n−1/2t for t ∈ Rd. The argu-
ments of Theorems 2.2 and 4.1 yield the following.

Theorem 5.2. Suppose assumptions (5.3) and (5.4) hold and h satisfies As-
sumption H (with Y1(ϑ0) playing the role of S(ϑ0)). Then, for each (t, g) ∈ Rd ×G,

n1/2(κ(ϑn,t, Pn,g)− κ(ϑ0, P ))→ EP [h′(Y1(ϑ0))Ẏ1(ϑ0)>]t+
∫
h∗g dP.
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Schick and Wefelmeyer (2002a, Section 5) construct a least dispersed regular
estimator ϑ̂∗ for ϑ0. It is asymptotically linear,

ϑ̂∗ = ϑ0 +
1
n

n∑
j=1

(V (ϑ0)I(P ))−1ξj`(Xj) + op(n−1/2).

By Theorem 5.1, the substitution estimator ˆ̂κ(ϑ̂∗, â∗(ϑ̂∗)) is also asymptotically
linear,

ˆ̂κ(ϑ̂∗, â∗(ϑ̂∗)) = κ(ϑ0, P ) +
1
n

n∑
j=1

[
EP [h′(Y1(ϑ0))Ẏ1(ϑ0)>](V (ϑ0)I(P ))−1ξj`(Xj)

+ h∗(Xj)− a∗(ϑ0)Xj

]
+ op(n−1/2).

By the characterization in Schick and Wefelmeyer (2002a, Section 2), Theorem 5.2
shows that the efficient influence function of κ(ϑ, P ) equals the influence function
of the substitution estimator ˆ̂κ(ϑ̂∗, â∗(ϑ̂∗)), so that the latter is least dispersed and
regular for κ(ϑ0, P ) = EP [h(Y1(ϑ0))].

6. Variance reduction in a special case. We illustrate our results with the
autoregressive example considered in the Introduction. Let Y0, . . . , Yn be observa-
tions from the AR(1) model Yt = ϑ0Yt−1 +Xt with |ϑ0| < 1 and independent and
identically distributed innovations Xt with distribution P , density f , mean zero
and finite fourth moment µ4, where µk =

∫
xkP (dx), k = 2, 3, 4. We also assume

that P has finite Fisher information I(P ) =
∫
`2 dP for location, where ` = f ′/f .

We want to estimate the stationary variance

σ2 = κ(ϑ0, P ) = E[Y 2
1 ] = E

[( ∞∑
s=0

ϑs0Xs

)2]
.

Here h(x) = x2. The stationary variance reduces to

σ2 =
µ2

1− ϑ2
0

.

We consider the following estimators. The empirical estimator of σ2 is

σ̂2 =
1
n

n∑
j=1

Y 2
j

and has influence function
1

1− ϑ2
0

(y2 − ϑ2
0x

2 − µ2).

The improved empirical estimator of σ2 is

σ̂2
∗ =

1
n

n∑
j=1

(
Y 2
j −

µ̂3

(1 + ϑ̂∗)µ̂2

Yj

)
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with µ̂k as defined in (1.1) and ϑ̂)∗ the least squares estimator:

ϑ̂∗ =

∑n
j=1 Yj−1Yj∑n
j=1 Y

2
j−1

.

The improved empirical estimator has influence function

1
1− ϑ2

0

(
y2 − ϑ2

0x
2 − µ2 −

µ3

µ2
(y − ϑ0x)

)
.

For these results we refer to Example 2 in Müller, Schick and Wefelmeyer (2001b).
Finally, we write σ̂2

#(ϑ̂) = ˆ̂κ(ϑ̂, â∗(ϑ̂)) for our estimator of σ2. Suppose that
ϑ̂ is asymptotically linear with influence function w. Then, by Theorem 5.1, our
estimator is asymptotically linear with influence function

1
1− ϑ2

0

( 2ϑ0µ2

1− ϑ2
0

w(x, y) + (y − ϑ0x)2 − µ2 −
µ3

µ2
(y − ϑ0x)

)
.

The least squares estimator ϑ̂∗ has influence function

w(x, y) =
1− ϑ2

0

µ2
x(y − ϑ0x).

An efficient estimator ϑ̂# has influence function

w(x, y) = − 1− ϑ2
0

µ2I(P )
x`(y − ϑ0x).

If we use an estimator ϑ̂#, then the estimator σ̂2
#(θ̂#) is efficient by Section 5. In

the particular case of estimating moments, simpler efficient estimators are given
in Section 6 of Schick and Wefelmeyer (2002a). In particular, a simpler efficient
estimator of σ2 is

µ̂∗2

1− ϑ̂2
#

with µ̂∗2 = µ̂2 −
µ̂3

µ̂2
µ̂1.

The estimator is obtained by replacing µ2 and ϑ0 in σ2 = µ2/(1 − ϑ2
0) by effi-

cient estimators. The efficient estimator µ̂∗2 of µ2 uses the constraint µ1 = 0. Of
course, both efficient estimators for σ2 are stochastically equivalent. This can be
seen directly by simplifying σ̂2

#(ϑ̂#). More generally, µ̂∗2/(1 − ϑ̂2) is stochastically
equivalent to σ̂2

#(ϑ̂) for any n1/2-consistent estimator ϑ̂ of ϑ0.
Next we determine the asymptotic variances of these estimators. The empirical

estimator σ̂2 has asymptotic variance

1
(1− ϑ2

0)2

(
µ4 − µ2

2 + 4µ2
2

ϑ2
0

1− ϑ2
0

)
.

The improved empirical estimator σ̂2
∗ has asymptotic variance

1
(1− ϑ2

0)2

(
µ4 − µ2

2 + 4µ2
2

ϑ2
0

1− ϑ2
0

− µ2
3

µ2

)
.
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One calculates that the estimators σ̂2
#(θ̂∗) and µ̂∗2/(1−ϑ̂2

∗) have the same asymptotic
variance. Finally, the efficient estimators σ̂2

#(θ̂#) and µ̂∗2/(1− ϑ̂2
#) have asymptotic

variance
1

(1− ϑ2
0)2

(
µ4 − µ2

2 +
4µ2ϑ

2
0

I(P )(1− ϑ2
0)
− µ2

3

µ2

)
.

The relative asymptotic variance increase of the empirical estimator σ̂2 over the
efficient estimator is

I(P )(1− ϑ2
0)µ2

3/µ2 + 4ϑ2
0µ2(µ2I(P )− 1)

I(P )(1− ϑ2
0)(µ4 − µ2

2 − µ2
3/µ2) + 4ϑ2

0µ2
.

For the improved empirical estimator σ̂2
∗ the relative asymptotic variance increase

is
4ϑ2

0µ2(µ2I(P )− 1)
I(P )(1− ϑ2

0)(µ4 − µ2
2 − µ2

3/µ2) + 4ϑ2
0µ2

.

These estimators are efficient for values of ϑ0 and P for which the corresponding
ratios are 0. The second ratio is zero if and only if ϑ0 = 0 or µ2I(P ) = 1. The latter
happens if and only if P is normal. Thus, the improved empirical estimator σ̂2

∗ is
efficient if and only if ϑ0 = 0 or P is normal. The first ratio is 0 if and only if µ3 = 0
and also ϑ0 = 0 and µ2I(P ) = 1. Thus, the empirical estimator σ̂2 is efficient if P is
the normal distribution. For other distributions, it is efficient if and only if ϑ0 = 0
and µ3 = 0. The two ratios are the same if and only if µ3 = 0, which is the case for
symmetric P .

If ϑ0 is close to 1, both ratios are close to µ2I(P ) − 1. Note that µ2I(P ) − 1 is
the relative variance increase of the sample mean versus the efficient estimator in
the location model generated by P . It is well known that µ2I(P ) − 1 can be large
if P is not normal.

Acknowledgements. We thank the referees for helpful comments and sugges-
tions.

REFERENCES

Beran, R. (1977). Estimating a distribution function. Ann. Statist. 5, 400–404.

Bickel, P. J. (1993). Estimation in semiparametric models. In: Multivariate Analysis: Future
Directions (C. R. Rao, ed.), 55–73, North-Holland, Amsterdam

Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1998). Efficient and Adaptive
Estimation for Semiparametric Models. Springer, New York.

Boldin, M. V. (1982). Estimation of the distribution of noise in an autoregressive scheme. Theory
Probab. Appl. 27, 866–871.

Drost, F. C., Klaassen, C. A. J. and Werker, B. J. M. (1997). Adaptive estimation in time-series

models. Ann. Statist. 25, 786–817.

Fabian, V. and Hannan, J. (1982). On estimation and adaptive estimation for locally asymptot-

ically normal families. Z. Wahrsch. Verw. Gebiete 59, 459–478.

Greenwood, P.E. and Wefelmeyer, W. (1995). Efficiency of empirical estimators for Markov

chains. Ann. Statist. 23, 132–143.

Heilig, and Nolan, D. (2001). Limit theorems for the infinite-degree U-process. Statist. Sinica

11, 289–302.



ESTIMATING INVARIANT LAWS OF LINEAR PROCESSES 27

Honda, T. (2000). Nonparametric density estimation for a long-range dependent linear process.

Ann. Inst. Statist. Math. 52, 599–611.

Jeganathan, P. (1995). Some aspects of asymptotic theory with applications to time series models.
Econometric Theory 11, 818–887.

Klaassen, C. A. J. and Putter, H. (2001). Efficient estimation of Banach parameters in semi-

parametric models. Technical Report, Department of Mathematics, University of Am-
sterdam. http://preprint.beta.uva.nl/.

Koul, H. L. and Schick, A. (1997). Efficient estimation in nonlinear autoregressive time-series

models. Bernoulli 3, 247–277.

Kreiss, J.-P. (1987a). On adaptive estimation in stationary ARMA processes. Ann. Statist. 15,
112–133.

Kreiss, J.-P. (1987b). On adaptive estimation in autoregressive models when there are nuisance

functions. Statist. Decisions 5, 59–76.

Kreiss, J.-P. (1991). Estimation of the distribution function of noise in stationary processes.

Metrika 38, 285–297.

Levit, B. Y. (1974). On optimality of some statistical estimates. In: Proceedings of the Prague
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