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Abstract. For the stationary invertible moving average process of order one with unknown

innovation distribution F , we construct root-n consistent plug-in estimators of conditional

expectations E(h(Xn+1)|X1, . . . , Xn). More specifically, we give weak conditions under which

such estimators admit Bahadur type representations, assuming some smoothness of h or of F .

For fixed h it suffices that h is locally of bounded variation and locally Lipschitz in L2(F ), and

that the convolution of h and F is continuously differentiable. A uniform representation for

the plug-in estimator of the conditional distribution function P (Xn+1 ≤ · |X1, . . . , Xn) holds if

F has a uniformly continuous density. For a smoothed version of our estimator, the Bahadur

representation holds uniformly over each class of functions h that have an appropriate envelope

and whose shifts are F -Donsker, assuming some smoothness of F . The proofs use empirical

process arguments.
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1. Introduction

Let X1, . . . , Xn be observations from a real-valued stationary time series. Let h be a mea-
surable function such that E[h2(X1)] is finite. The best predictor for h(Xn+1) is the conditional
expectation E(h(Xn+1)|X1, . . . , Xn). Suppose first that the time series is Markov of known or-
der r. Then the conditional expectation equals E(h(Xn+1)|Xn−r+1, . . . , Xn). Convergence rates
for kernel estimators of the function (x1, . . . , xr) 7→ E(h(Xn+1)|Xn−r+1 = x1, . . . , Xn = xr)
are in Roussas (1969, 1991), Yakowitz (1985), Masry (1989) and Delecroix and Rosa (1995).
Analogous results for estimators of conditional quantiles are in Gannoun, Saracco and Yu
(2003). If the observations come from a nonlinear r-order autoregressive process, Xt+1 =
%ϑ(Xt−r+1, . . . , Xt) + εt with independent innovations εt with distribution function F , then

E(h(Xn+1)|Xn−r+1 = x1, . . . , Xn = xr) =
∫
h(y + %ϑ(x1, . . . , xr)) dF (y)
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can be estimated at the “parametric” root-n rate by plugging in a root-n consistent estimator
for ϑ and a residual-based empirical estimator for F . Smoothed and weighted versions of such
plug-in estimators are studied in Müller, Schick and Wefelmeyer (2006).

Now let the time series be non-Markovian. Then E(h(Xn+1)|Xn−r+1, . . . , Xn) is still an
approximation for E(h(Xn+1)|X1, . . . , Xn) if r is large enough. Asymptotic results for kernel
estimators of E(h(Xn+1)|Xn−r+1 = x1, . . . , Xn = xr) are obtained by Robinson (1983, 1986),
Collomb (1984), Yakowitz (1987), Truong and Stone (1992), Roussas and Tran (1992) and Tran
(1993). Estimators of conditional medians are studied in Zhou and Liang (2000, 2003). Uniform
consistency of set-indexed conditional empirical processes and Bahadur–Kiefer representations
for generalized conditional quantile processes are in Polonik and Yao (2000, 2002). If the time
series is driven by independent observations, we expect again to obtain root-n consistent plug-in
estimators. We show this for a simple non-Markovian invertible linear time series, a stationary
moving average process of order one,

Xt = εt − ϑεt−1, t ∈ Z,

with ϑ ∈ (−1, 1) and independent and identically distributed innovations {εt, t ∈ Z} with finite
mean µ, finite variance σ2 and distribution function F . We write X and ε for random variables
distributed as Xt and εt, respectively. Aside from the better convergence rate, our result differs
from the above nonparametric results in two respects. We condition on the full past X1, . . . , Xn,
not just on a string Xn−r+1, . . . , Xn of fixed length r. For this reason, we estimate the random
variable

q(h) = E(h(Xn+1)|X1, . . . , Xn),

not a deterministic function (x1, . . . , xr) 7→ E(h(Xn+1)|Xn−r+1 = x1, . . . , Xn = xr).
In order to prove that an estimator q̂(h) of q(h) is root-n consistent, we approximate the

standardized errors n1/2(q̂(h)− q(h)) stochastically by a sequence of random variables that we
can show to be tight. Since these sequences involve sums of independent random variables, we
call the approximations Bahadur type representations.

Our estimator is constructed as follows. Invertibility of the moving average process allows
us to write the innovations as

εt =
∞∑

s=0

ϑsXt−s, t ∈ Z.

For non-negative integers r we can write εt = εt,r +ϑr+1εt−r−1, where εt,r is a truncated version
of εt,

εt,r =
r∑

s=0

ϑsXt−s.

In particular, Xn+1 = εn+1 − ϑεn,r − ϑr+2εn−r−1. Since εn+1 is independent of X1, . . . , Xn, we
obtain the representation

q(h) = E(qh(ϑεn,r + ϑr+2εn−r−1)|X1, . . . , Xn),
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where

qh(x) = E[h(ε− x)] =
∫
h(y − x) dF (y), x ∈ R.

Thus, if qh is Lipschitz, then q(h) is well approximated by qh(ϑεn,r) for large integers r. Indeed,
with L denoting the Lipschitz constant, we have

E[(q(h)− qh(ϑεn,r))2] ≤ L2E[(ϑr+2εn−r−1)2] = L2ϑ2r+4E[ε2].

Throughout the paper let ϑ̂ be a root-n consistent estimator of ϑ. We can mimic the innovation
εj by the truncated residual

ε̂j =
rn∑

s=0

ϑ̂sXj−s, j = rn + 1, . . . , n.

Here rn is an integer that tends to infinity slowly with the sample size, rn ∼ log n log log n. Then
qh(ϑεn,rn) approximates q(h) up to op(n−1/2), and we can estimate the conditional expectation
q(h) by

q̂(h) =
1

n− rn

n∑
j=rn+1

h(ε̂j − ϑ̂ε̂n).

A stochastic expansion of q̂(h) is easy to derive by Taylor expansion for a fixed and smooth
function h. We do this first, for illustration, and without striving for minimal conditions.
Similarly as relation (13) in Schick and Wefelmeyer (2004) one can show that

1
n− rn

n∑
j=rn+1

(
ε̂j − εj − (ϑ̂− ϑ)Yj−1

)2 = Op(n−2) (1.1)

with

Yj−1 =
∞∑

s=1

sϑs−1Xj−s =
∞∑

s=0

ϑsεj−1−s.

Note that

ν = E[Y0] =
µ

1− ϑ
.

Suppose that h has a bounded second derivative. Then a Taylor expansion yields that

q̂(h) =
1

n− rn

n∑
j=rn+1

(
h(εj − ϑεn) + (ϑ̂− ϑ)(Yj−1 − ϑYn−1 − εn)h′(εj − ϑεn)

)
+ op(n−1/2).

Since εn + ϑYn−1 = Yn and since Yj−1 and εj are independent, we derive that

1
n− rn

n∑
j=rn+1

(Yj−1 − ϑYn−1 − εn)h′(εj − ϑεn) = (Yn − ν)q′h(ϑεn) + op(1),

where q′h is the derivative of qh,

q′h(x) = −E[h′(ε− x)] = −
∫
h′(y − x) dF (y), x ∈ R.
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We arrive at the Bahadur type representation

q̂(h) =
1

n− rn

n∑
j=rn+1

h(εj − ϑεn) + (ϑ̂− ϑ)(Yn − ν)q′h(ϑεn) + op(n−1/2). (1.2)

It implies that q̂(h) is a root-n consistent estimator of q(h),

q̂(h) = q(h) +
1

n− rn

n∑
j=rn+1

(
h(εj − ϑεn)−

∫
h(y − ϑεn) dF (y)

)
+ (ϑ̂− ϑ)(Yn − ν)q′h(ϑεn) + op(n−1/2).

(1.3)

The above result applies to h(x) = x and h(x) = x2. For the first choice, expansion (1.3)
becomes

1
n− rn

n∑
j=rn+1

(ε̂j − ϑ̂ε̂n) = E(Xn+1|X1, . . . , Xn) +
1

n− rn

n∑
j=rn+1

(εj − µ)

+ (ϑ̂− ϑ)(Yn − ν) + op(n−1/2),

and for the second choice it becomes

1
n− rn

n∑
j=rn+1

(ε̂j − ϑ̂ε̂n)2 = E(X2
n+1|X1, . . . , Xn) +

1
n− rn

n∑
j=rn+1

((εj − µ)2 − σ2)

+ 2(µ− ϑεn)
1

n− rn

n∑
j=rn+1

(εj − µ)− 2(µ− ϑεn)(ϑ̂− ϑ)(Yn − ν) + op(n−1/2).

It is the purpose of this paper to explore minimal conditions under which q̂(h) admits
the Bahadur representation (1.2) and is therefore root-n consistent. We give results both for
fixed h and uniformly over classes of functions h. We need smoothness of the function qh,
and this can be achieved by assuming some smoothness either of h or of F . In Section 2 we
consider a fixed h that is locally of bounded variation and locally L2(F )-Lipschitz and show
that (1.2) holds if qh is continuously differentiable. Examples are conditional absolute moments.
Section 3 treats functions hz(x) = 1[x ≤ z], estimates the conditional distribution function
P (Xn+1 ≤ z|X1, . . . , Xn) by q̂(hz) = F̂(z + ϑ̂ε̂n) with F̂ a residual-based empirical distribution
function, and gives a Bahadur representation uniformly in z for q̂(hz), under the assumption
that F has a uniformly continuous density f . The result applies to conditional quantiles. Section
4 gives stochastic expansions for residual-based kernel estimators of the density f of F and for
estimators of the conditional density of Xn+1 given X1, . . . , Xn. Section 5 considers general
classes of functions h. We use a smoothed version of q̂(h), namely q̂s(h) =

∫
h(y − ϑ̂ε̂n)f̂(y) dy

with f̂ a residual-based kernel density estimator of f . We show in particular that (1.2) holds for
q̂s(h) uniformly over h ∈ H if H has an appropriate envelope and {h(· − t) : h ∈ H, |t| ≤ C} is
F -Donsker for each C <∞, assuming some smoothness of F . The proof uses results of Section
4.
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2. Conditional expectations

In this section we prove the Bahadur representation (1.2) of q̂(h) for a fixed function h that
need not be smooth. To this end we write

q̂(h)− qh(ϑεn) = Ψ̂(ϑ̂ε̂n) + (qh(ϑ̂ε̂n)− qh(ϑεn)),

where

Ψ̂(t) =
1

n− rn

n∑
j=rn+1

(
h(ε̂j − t)− E[h(ε− t)]

)
, t ∈ R.

We assume that qh is continuously differentiable. Then for every C <∞ we have

sup
|x|≤C

|qh(x+ t)− qh(x)− tq′h(x)| = o(t). (2.1)

We also have ϑ̂ε̂n − ϑεn = (ϑ̂− ϑ)ε̂n + ϑ(ε̂n − εn) = (ϑ̂− ϑ)(εn + ϑYn−1) + op(n−1/2) and thus

ϑ̂ε̂n − ϑεn = (ϑ̂− ϑ)Yn + op(n−1/2). (2.2)

Together with ϑεn = Op(1) we obtain

qh(ϑ̂ε̂n)− qh(ϑεn)− (ϑ̂− ϑ)Ynq
′
h(ϑεn) = op(n−1/2), (2.3)

q′h(ϑ̂ε̂n)− q′h(ϑεn) = op(1). (2.4)

Hence the desired expansion (1.2) is valid if we show that

Ψ(ϑ̂ε̂n) = Ψ(ϑεn) + op(n−1/2) (2.5)

and
sup
|t|≤C

|Ψ̂(t)−Ψ(t) + (ϑ̂− ϑ)νq′h(t)| = op(n−1/2) (2.6)

for all C <∞, where

Ψ(t) =
1

n− rn

n∑
j=rn+1

(
h(εj − t)− E[h(ε− t)]

)
, t ∈ R.

If the function h can be written as a linear combination of monotone right-continuous functions,
it suffices to study the behavior of q̂(h) for the latter functions. We have the following result.

Theorem 1. Let h be a non-decreasing right-continuous function such that
∫
h2 dF is finite,

qh is continuously differentiable, and there is a non-decreasing function L on (0,∞) so that∫
(h(y − t)− h(y − s))2 dF (y) ≤ L(C)|t− s|2, |t|, |s| < C, (2.7)

for all C <∞. Then

q̂(h) =
1

n− rn

n∑
j=rn+1

h(εj − ϑεn) + (ϑ̂− ϑ)(Yn − ν)q′h(ϑεn) + op(n−1/2).
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Proof. It remains to show (2.5) and (2.6). It follows from (2.7) that nE[(Ψ(t)−Ψ(s))2] ≤
L(C)|t − s|2 for all positive finite C and all |s|, |t| ≤ C. Thus it follows from Theorems 12.4
and 15.6 in Billingsley (1968) that, for each finite positive C, the sequence {nΨ(t) : |t| ≤ C} of
processes converges in distribution in D[−C,C] to a Gaussian process with continuous sample
paths. Thus we have

sup
|t|≤C

|Ψ(t+ ξn)−Ψ(t)| = op(n−1/2) (2.8)

for all C <∞ and every sequence ξn = op(1). The desired (2.5) is now immediate.
Let us now verify (2.6). Set

Ψ(∆, t) = H(∆, t)− H̄(∆, t), ∆, t ∈ R,

where

H(∆, t) =
1

n− rn

n∑
j=rn+1

h(εj + n−1/2∆Yj−1 − t),

H̄(∆, t) =
1

n− rn

n∑
j=rn+1

∫
h(y + n−1/2∆Yj−1 − t) dF (y).

Note that Ψ(0, t) = Ψ(t). As a first step we shall show that for C <∞,

sup
|∆|,|t|≤C

|Ψ(∆, t)−Ψ(0, t)| = op(n−1/2). (2.9)

To prove (2.9), fix a constant C <∞ and a positive integer M . Set η = C/M and let

∆i = −C + (2i− 1)η, Uij = ∆iYj−1 − η|Yj−1|, Vij = ∆iYj−1 + η|Yj−1|

for i = 1, . . . ,M and j = rn + 1, . . . , n. For ∆ in the sub-interval [∆i − η,∆i + η] of [−C,C] we
obtain

|Ψ(∆, t)−Ψ(0, t)| ≤ |Ψ(∆i, t)−Ψ(0, t)|+ |Ψ(∆, t)−Ψ(∆i, t)|

and Uij ≤ ∆Yj−1 ≤ Vij for all j. Thus, exploiting the monotonicity of h,

|Ψ(∆, t)−Ψ(∆i, t)| ≤ Ki(t) + K̄i(t) ≤ Ki(t)− K̄i(t) + 2K̄i(t),

where

Ki(t) =
1

n− rn

n∑
j=rn+1

(
h(εj + n−1/2Vij − t)− h(εj + n−1/2Uij − t)

)
,

K̄i(t) =
1

n− rn

n∑
j=rn+1

∫ (
h(y + n−1/2Vij − t)− h(y + n−1/2Uij − t)

)
dF (y).

This shows that the left-hand side of (2.9) is bounded by

sup
|t|≤C

max
1≤i≤M

(|Ψ(∆i, t)−Ψ(0, t)|+ |Ki(t)− K̄i(t)|+ 2K̄i(t)).
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Since the variables Yj are stationary with finite second moment, we have

P
(

max
rn<j≤n

|Yj−1| > εn1/2
)
≤ ε−2E[Y 2

0 1[|Y0| > εn1/2]] = op(1). (2.10)

Now let Ynj denote a truncated version of Yj−1, defined by

Ynj = Yj−11[|Yj−1| ≤ n1/2] + sign(Yj−1)n1/21[|Yj−1| > n1/2].

Since we have Yj−1 = Ynj for all j except on the event {maxrn<j≤n |Yj−1| > n1/2} whose
probability tends to zero, we see that we may work with versions of the above processes in
which the variables Yj−1 are replaced by Ynj . Let Ψ∗(∆, t), K∗

i (t), K̄∗
i (t), U∗ij and V ∗ij denote

these versions. Since |n−1/2Ynj | ≤ 1, we obtain with the help of a martingale argument that

(n− rn)E[(Ψ∗(∆, t)−Ψ∗(∆, s))2]

≤ E
[ ∫ (

h(y + n−1/2∆Yn1 − t)− h(y + n−1/2∆Yn1 − s)
)2
dF (y)

]
≤ L(C + |∆|)|t− s|2, |s|, |t| ≤ C.

Thus, by Theorem 15.6 of Billingsley (1968), the sequence {n1/2(Ψ∗(∆, t)−Ψ∗(0, t)) : |t| ≤ C}
of processes is tight in D[−C,C] for each ∆. Since, for each t ∈ R,

(n− rn)E[(Ψ∗(∆, t)−Ψ∗(0, t))2] ≤ E
[ ∫ (

h(y + n−1/2∆Yn1 − t)− h(y − t)
)2
dF (y)

]
≤ L(|t|+ |∆|)n−1∆2E[Y 2

0 ] → 0,

we obtain that
max

1≤i≤M
sup
|t|≤C

|Ψ∗(∆i, t)−Ψ∗(0, t)| = op(n−1/2).

Similarly, one verifies

(n− rn)E[(K∗
i (t)− K̄∗

i (t)−K∗
i (s) + K̄∗

i (s))2] ≤ 4L(2C)|t− s|2, |s|, |t| ≤ C,

and

(n− rn)E[(K∗
i (t)− K̄∗

i (t))2] ≤ E
[ ∫ (

h(y + n−1/2V ∗i1 − t)− h(y + n−1/2U∗i1 − t)
)2
dF (y)

]
≤ L(|t|+ C)4n−1η2E[Y 2

0 ] → 0.

Hence we obtain as above that

max
1≤i≤M

sup
|t|≤C

|K∗
i (t)− K̄∗

i (t)| = op(n−1/2).

Finally, for |t| ≤ C we find that

n(K̄∗
i (t))2 ≤ n

n− rn

n∑
j=rn+1

∫ (
h(y + n−1/2V ∗ij − t)− h(y + n−1/2U∗ij − t)

)2
dF (y)

≤ L(2C)4η2 1
n− rn

n∑
j=rn+1

Y 2
j−1
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and obtain
max
1≤i≤n

sup
|t|≤C

n1/2K̄∗
i (t) ≤ ηKC + op(1),

where KC = 2(L(2C)E[Y 2
0 ])1/2. Combining the above we see that

n1/2 sup
|∆|,|t|≤C

|Ψ(∆, t)−Ψ(0, t)| ≤ CKC

M
+ op(1).

This holds for all positive integers M and thus yields the desired result (2.9).
In view of (2.8) and (2.9) we obtain for each C <∞ that

sup
|∆|,|t|≤C

|Ψ(∆, t+ ξn)−Ψ(0, t)| = op(n−1/2)

for any random variable ξn = op(1). Because of ∆̂ = n1/2(ϑ̂− ϑ) = Op(1) we then obtain

A(ξn) = sup
|t|≤C

|Ψ(∆̂, t+ ξn)−Ψ(0, t)| = op(n−1/2)

for any random variable ξn = op(1). Assume now that ξn = op(n−1/2). Then one also has

B(ξn) = sup
|t|≤C

|H̄(∆̂, t+ ξn)− H̄(0, t) + (ϑ̂− ϑ)νq′h(t)| = op(n−1/2).

This follows if we show that

sup
|∆|,|t|≤C

|H̄(∆, t+ ξn)− H̄(0, t) + n−1/2∆νq′h(t)| = op(n−1/2)

for finite C. The left-hand side can be bounded by T1 + T2, where

T1 = sup
|∆|,|t|≤C

∣∣∣ 1
n− rn

n∑
j=rn+1

(
qh(t+ ξn − n−1/2∆Yj−1)− qh(t)− (ξn − n−1/2∆Yj−1)q′h(t)

)∣∣∣,
T2 = sup

|t|≤C
|q′h(t)|

(
|ξn|+ Cn−1/2

∣∣∣ 1
n− rn

n∑
j=rn+1

Yj−1 − ν
∣∣∣).

It is clear that T2 = op(n−1/2). It follows from (2.1) that T1 = op(n−1/2).
Set

Rj = ε̂j − εj − (ϑ̂− ϑ)Yj−1, j = rn + 1, . . . , n.

Then we have
R∗n = max

rn<j≤n
|Rj | = op(n−1/2). (2.11)

The monotonicity of h yields the bounds

H(∆̂, t+R∗n)− H̄(0, t) ≤ Ψ̂(t) ≤ H(∆̂, t−R∗n)− H̄(0, t)

for all real t. Using this and Ψ(t) = Ψ(0, t), we find that

sup
|t|≤C

|Ψ̂(t)−Ψ(t) + (ϑ̂− ϑ)νq′h(t)| ≤ max
(
A(−R∗n), A(R∗n)

)
+ max

(
B(−R∗n), B(R∗n)

)
.
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The desired (2.6) is now immediate. �

Remark 1. Theorem 1 applies to estimating conditional absolute moments. Let β ≥ 1 and
h(y) = |y|β. Then q(h) = E(|Xn+1|β|X1, . . . , Xn). Assume that F has a moment of order 2β.
We can write h as the difference h1 − h2 of the continuous non-decreasing functions h1 and h2

defined by h1(y) = h(y)1[y > 0] and h2 = −h(y)1[y < 0], y ∈ R. Then the assumptions of
Theorem 1 hold with h = h1 and h = h2 if β > 1 and require continuity of the distribution
function F in the case β = 1. Our estimator is

q̂(h) =
1

n− rn

n∑
j=rn+1

|ε̂j − ϑ̂ε̂n|β .

We have qh(x) = E[|ε− x|β ] and q′h(x) = βE[sign(ε− x)|ε− x|β−1].

3. Conditional distribution function

For indicator functions hz(y) = 1[y ≤ z] and s < t, the integral∫
(hz(y − t)− hz(y − s))2 dF (y) = P (a+ s ≤ y < a+ t)

is of order t − s, and assumption (2.7) on h does not hold. Hence Theorem 1 does not apply
to estimating the conditional distribution function q(hz) = P (Xn+1 ≤ z|X1, . . . , Xn) of Xn+1

given X1, . . . , Xn at z. In this section we show that the Bahadur representation still holds for
q̂(hz) if F is smooth.

Let H be a class of functions h that is closed under shifts. The residual-based empirical
estimator for the (unconditional) expectation E[h(ε)] is

m̂(h) =
1

n− rn

n∑
j=rn+1

h(ε̂j).

Suppose that we have a Bahadur representation for m̂(h) uniformly over h ∈ H,

sup
h∈H

∣∣∣m̂(h)− 1
n− rn

n∑
j=rn+1

h(εj) + (ϑ̂− ϑ)νq′h(0)
∣∣∣ = op(n−1/2).

Let

B(h) =
1

n− rn

n∑
j=rn+1

(h(εj)− E[h(ε)]), h ∈ H.

If the process {n1/2B(h) : h ∈ H} is tight and qh is smooth uniformly in h ∈ H in an appro-
priate sense, then the Bahadur representation (1.2) for the estimator q̂(h) of the conditional
expectation q(h) follows from the above representation for m̂(h), and it is uniform in h ∈ H.
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We illustrate this with the problem of estimating the conditional distribution function q(hz).
Then qhz(x) = F (z + x). The plug-in estimator for q(hz) is q̂(hz) = F̂(z + ϑ̂ε̂n), where

F̂(z) =
1

n− rn

n∑
j=rn+1

1[ε̂j ≤ z], t ∈ R,

denotes the empirical distribution function based on the residuals ε̂rn+1, . . . , ε̂n. We are inter-
ested in a version of the Bahadur representation (1.2) that is uniform in z.

Assume that F has a uniformly continuous density f . Then we have

sup
t∈R

∣∣F (t+ s)− F (t)− sf(t)
∣∣ = o(s).

From this we get the following uniform version of (2.3),

sup
z∈R

∣∣F (z + ϑ̂ε̂n)− F (z + ϑεn)− (ϑ̂− ϑ)Ynf(z + ϑεn)
∣∣ = op(n−1/2).

By the stochastic equi-continuity of the empirical process we have

sup
z∈R

|F(z + ϑ̂ε̂n)− F(z + ϑεn)| = op(n−1/2).

The desired uniform version of (1.2) thus follows if we show that

sup
z∈R

| F̂(z)− F(z) + (ϑ̂− ϑ)νf(z)| = op(n−1/2), (3.1)

where

F(z) =
1

n− rn

n∑
j=rn+1

1[εj ≤ z], z ∈ R,

is the empirical distribution function based on the true innovations. The stochastic expansion
was obtained by Boldin (1989) under the assumption that f has a bounded derivative. He also
assumed that E[ε] = 0 and therefore ν = 0. Kreiss (1991) generalizes Boldin’s result to linear
processes with parametric coefficients, including ARMA(p,q) models. Koul (1992), Corollary
7.2.3, shows for ARMA(1,1) that it suffices to assume that f is uniformly continuous. (His
assumption that f is almost everywhere positive can be omitted). See also Koul and Ossiander
(1994), Koul (2002) and Koul and Ling (2006). We therefore have the following result.

Theorem 2. Suppose f is uniformly continuous. Then

sup
z∈R

∣∣F̂(z + ϑ̂ε̂n)− F(z + ϑεn)− (ϑ̂− ϑ)(Yn − ν)f(z + ϑεn)
∣∣ = op(n−1/2).

For u ∈ (0, 1) let ψ(u) denote the conditional u-quantile of Xn+1 given X1, . . . , Xn. Write
G−1 for the right-continuous inverse of a distribution function G. An estimator for ψ(u) is the
u-quantile of F̂(· + ϑ̂ε̂n), which can be written F̂−1(u) − ϑ̂ε̂n. Assume that f is positive. By
Proposition 1 of Gill (1989) on compact differentiability of quantile functions we obtain from
(3.1) and (2.2) the following Bahadur representation.
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Theorem 3. Suppose f is uniformly continuous and positive. Let 0 < a ≤ b < 1. Then

sup
a≤u≤b

∣∣∣F̂−1(u)− ϑ̂ε̂n − F−1(u) + ϑεn

+
1

f(F−1(u))
1

n− rn

n∑
j=rn+1

(1[εj ≤ F−1(u)]− u)− (ϑ̂− ϑ)(Yn − ν)
∣∣∣ = op(n−1/2).

4. Conditional density

In this section we derive properties of residual-based kernel estimators of the innovation
density f that are needed in Section 5. We also apply these properties to estimators of the
conditional density of Xn+1 given X1, . . . , Xn. The required conditions on f are expressed in
terms of a norm defined as follows. Let V be a continuous function on R with V (0) = 1 and
such that

V (x+ y) ≤ V (x)V (y), x, y ∈ R, (4.1)

sup|s|≤1 V (sx) ≤ V (x), x ∈ R. (4.2)

These conditions imply that

|V (x+ y)− V (x)| ≤ V (x)(V (y)− 1), x, y ∈ R. (4.3)

With the function V we associate the V -norm

‖g‖V =
∫
V (x)|g(x)| dx.

If g has finite V -norm, so does the shifted function Stg = g(· − t),

‖Stg‖V ≤ V (t)‖g‖V . (4.4)

By Lemma 4 in Schick and Wefelmeyer (2006a), the shift is continuous in the V -norm,

lim
t→0

‖Stg − g‖V = 0. (4.5)

Finally, the convolution g1 ∗g2 of two functions g1 and g2 with finite V -norms has finite V -norm
and we have

‖g1 ∗ g2‖V ≤ ‖g1‖V ‖g2‖V .

We say g is V -Lipschitz (with constant L) if

‖Stg − g‖V ≤ L|t|V (t), t ∈ R.

By Lemma 6 in Schick and Wefelmeyer (2006a), if g is absolutely continuous and its a.e.
derivative g′ has finite V -norm, then g is V -Lipschitz with constant ‖g′‖V . Weaker sufficient
conditions for the V -Lipschitz property are given in Lemma 4.4 in Schick and Wefelmeyer
(2006c). For example, functions of bounded variation are V -Lipschitz for bounded V .
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Now let f̂ denote the kernel estimator of f based on the residuals ε̂rn+1, . . . , ε̂n,

f̂(y) =
1

n− rn

n∑
j=rn+1

kbn(y − ε̂j), y ∈ R,

where kbn(y) = k(y/bn)/bn for some kernel k and some bandwidth bn. Let f̃ denote the kernel
estimator based on the true innovations εrn+1, . . . , εn,

f̃(y) =
1

n− rn

n∑
j=rn+1

kbn(y − εj), y ∈ R.

We impose the following conditions on k and f .

(K) The kernel k is a symmetric density with support [−1, 1] and is three times continuously

differentiable.

(F1) The density f satisfies
∫ (

(1 + |x|)αV 2(x) + |x|ξ
)
f(x) dx < ∞ for some α > 1 and some

ξ > 16/7.

(F2) The density f is absolutely continuous, and its a.e. derivative f ′ has finite V -norm.

Remark 2. If V (x) = (1 + |x|)r for some non-negative r, then (F1) simplifies to a moment
condition. Indeed, (F1) is then equivalent to f having a finite moment of order β = max{ξ, 2r+
α} for some α > 1 and some ξ > 16/7. If r < 9/14, then β > 16/7 suffices; if r ≥ 9/14, then
β > 2r + 1 suffices.

Lemma 1. Suppose (F1), (F2) and (K) hold and bn ∼ (n log n)−1/4. Then

‖f̂ − f̃ + (ϑ̂− ϑ)νf ′‖V = op(n−1/2), (4.6)

‖f̂ ′ − f ′‖V = op(1). (4.7)

Proof. Set

f̂∗(y) =
1

n− rn

n∑
j=rn+1

kbn(y − εj − (ϑ̂− ϑ)Yj−1), y ∈ R.

Let Rj = ε̂j − εj − (ϑ̂ − ϑ)Yj−1. By (2.11) we have R∗n = maxrn<j≤n |Rj | = op(1). Relation
(2.10) and the root-n consistency of ϑ̂ imply S∗n = maxrn<j≤n |ϑ̂− ϑ||Yj−1| = op(1). From (F1)
we obtain

1
n− rn

n∑
j=rn+1

V 2(εj) = Op(1).
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Note that kbn is V -Lipschitz with constant ‖k′bn
‖V = O(b−1

n ). This, (4.1) and (4.4) yield

‖f̂ − f̂∗‖V ≤ ‖k′bn
‖V

1
n− rn

n∑
j=rn+1

|Rj |V (Rj)V (εj + (ϑ̂− ϑ)Yj−1)

≤ ‖k′bn
‖V V (R∗n)V (S∗n)

1
n− rn

n∑
j=rn+1

|Rj |V (εj).

The above and (1.1) imply

‖f̂ − f̂∗‖V = Op(n−1b−1
n ) = op(n−1/2). (4.8)

Similarly, one verifies
‖f̂ ′ − f̂ ′∗‖V = Op(n−1b−2

n ) = op(1). (4.9)

It follows with the arguments of Lemmas 4 and 3 in Schick and Wefelmeyer (2006b) that

‖f̂ ′∗ − f̃ ′‖V = Op(n−1b−3
n ) = op(1); (4.10)

‖f̃ ′ − f ∗ k′bn
‖V = Op(n−1/2b−3/2

n ) = op(1). (4.11)

Since f ∗ k′bn
= f ′ ∗ kbn and f ′ has finite V -norm, we have

‖f ∗ k′bn
− f ′‖V → 0. (4.12)

It follows from (4.9), (4.10), (4.11) and (4.12) that (4.7) holds. As in the proof of Lemma 5 in
Schick and Wefelmeyer (2006b) we obtain

‖f̂∗ − f̃ + (ϑ̂− ϑ)Γ̄‖V = op(n−1/2) with Γ̄ = f ∗ k′bn

1
n− rn

n∑
j=rn+1

Yj−1. (4.13)

Relation (4.12) implies that ‖Γ̄ − νf ′‖V = op(1). This, (4.8) and (4.13) imply (4.6). �

An estimator for the conditional density of Xn+1 given X1, . . . , Xn at y is f̂(y + ϑ̂ε̂n). We
show that it admits a stochastic expansion similar to expansion (4.6) for f̂ .

Theorem 4. Suppose (F1), (F2) and (K) hold and bn ∼ (n log n)−1/4. Then

‖f̂(·+ ϑ̂ε̂n)− f̃(·+ ϑεn)− (ϑ̂− ϑ)(Yn − ν)f ′(·+ ϑεn)‖V = op(n−1/2).

Proof. Let ∆ = ϑ̂ε̂n − ϑεn. Then f̂(y + ϑ̂ε̂n) = f̂(y + ϑεn + ∆). In view of (2.2), (4.4),
(4.6) and V (ϑεn) = Op(1) it suffices to show ‖ψ̂‖V = op(n−1/2) with

ψ̂(y) = f̂(y + ∆)− f̂(y)−∆f ′(y) = ∆
∫ 1

0

(
f̂ ′(y + s∆)− f ′(y)

)
ds.

We have the bound

‖ψ̂‖V ≤ |∆|
∫ 1

0

(
‖f̂ ′(·+ s∆)− f ′(·+ s∆)‖V + ‖f ′(·+ s∆)− f ′‖V

)
ds.

Hence the desired ‖ψ̂‖V = op(n−1/2) follows from (4.4), (4.5), (4.7) and ∆ = Op(n−1/2). �



14 ANTON SCHICK AND WOLFGANG WEFELMEYER

5. Smoothed predictors

In this section we obtain a uniform version of the stochastic expansion (1.2) over large
classes of functions that are not necessarily smooth. For this we require some smoothness of
the innovation density and work with a smoothed version of q̂(h), namely

q̂s(h) =
∫
h(y − ϑ̂ε̂n)f̂(y) dy,

where f̂ is the residual-based kernel estimator of Section 4. It is easy to verify that

q̂s(h) = q̂(hn),

where hn = h ∗ kbn is the convolution of h and kbn , which we can write as

hn(y) =
∫
h(y − bnu)k(u) du, y ∈ R.

We show that q̂s(h) has the same stochastic expansion as q̂(h), uniformly over certain classes
of functions h.

As shown in Lemma 6 of Schick and Wefelmeyer (2006a), it follows from (F2) that

‖Stf − f + tf ′‖V = o(t).

From this, (4.4) and (4.5) we derive that, for each measurable h bounded by a multiple of V ,
the function qh is continuously differentiable with derivative

q′h(x) =
∫
h(y − x)f ′(y) dy =

∫
h(y)f ′(y + x) dy, x ∈ R.

Theorem 5. Suppose (F1), (F2) and (K) hold and bn ∼ (n log n)−1/4. Let H be a class of
measurable functions that has envelope cV for some positive c and such that for all C <∞ the
class of shifts HC = {h(· − t) : h ∈ H, |t| ≤ C} is F -Donsker, and

%n(C) := sup
h∈HC

∣∣∣ ∫
h(y)(f ∗ kbn(y)− f(y)) dy

∣∣∣ = o(n−1/2). (5.1)

Then

sup
h∈H

∣∣∣q̂s(h)− 1
n− rn

n∑
j=rn+1

h(εj − ϑεn)− (ϑ̂− ϑ)(Yn − ν)q′h(ϑεn)
∣∣∣ = op(n−1/2). (5.2)

Proof. Let hn = h ∗ kbn . Then we can show that∫
h(y)f̃(y + ϑεn) dy =

1
n− rn

n∑
j=rn+1

hn(εj − ϑεn).
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Using this and the above representation for q′h we can express the term inside the absolute
values of (5.2) as the sum of the following three terms:

T̂1(h) =
∫
h(y)

(
f̂(y + ϑ̂ε̂n)− f̃(y + ϑεn)− (ϑ̂− ϑ)(Yn − ν)f ′(y + ϑεn)

)
dy,

T̂2(h) =
1

n− rn

n∑
j=rn+1

(
hn(εj − ϑεn)− h(εj − ϑεn)

)
− T̂3(h)

T̂3(h) =
∫ (

hn(y − ϑεn)− h(y − ϑεn)
)
f(y) dy =

∫
h(y − ϑεn)(f ∗ kbn(y)− f(y)) dy.

Thus it suffices to show that

D̂i = sup
h∈H

|T̂i(h)| = op(n−1/2), i = 1, . . . , 3.

Since H has envelope cV , we obtain D̂1 = op(n−1/2) from Theorem 4. For η > 0 and C <∞,

P (D̂3 ≥ ηn−1/2) ≤ P (|ϑεn| > C) + 1[%n(C) > ηn−1/2]

≤ ϑ2E[ε2]
C2

+ 1[%n(C) > ηn−1/2].

This shows that D̂3 = op(n−1/2).
Consider the stochastic process

A(x, h) =
1

n− rn

n∑
j=rn+1

(h(εj − x)− E[h(ε− x)]), x ∈ R, h ∈ H.

We can write

T̂2(h) = A(ϑεn, hn)− A(ϑεn, h) =
∫

(A(ϑεn + bnu, h)− A(ϑεn, h))k(u) du

and obtain

P (D̂2 > ηn−1/2) ≤ P (|ϑεn| > C) + P
(

sup
h∈H,|x|≤C,|t|≤bn

|A(x+ t, h)− A(x, h)| > ηn−1/2
)

for all η > 0 and C <∞. Define the empirical process

B(h) =
1

n− rn

n∑
j=rn+1

(h(εj)− E[h(ε)]), h ∈ HC .

For |x| ≤ C we can write A(x, h) = B(Sxh). Thus we have for all η > 0 and C <∞,

P (D̂2 > ηn−1/2) ≤ ϑ2E[ε20]
C2

+ P
(

sup
h∈HC ,|t|≤bn

|B(Sth)− B(h)| > ηn−1/2
)
.

Write df for the metric induced by the L2(F )-norm, i.e.

df (g1, g2) =
( ∫

(g1(y)− g2(y))2f(y) dy
)1/2

, g1, g2 ∈ L2(F ).
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Since HC is an F -Donsker class, we have stochastic equi-continuity : For every η > 0 there is a
δ > 0 (which depends on η and C) such that

sup
n
P

(
sup

h,g∈HC ,df (h,g)<δ
|B(h)− B(g)| > ηn−1/2

)
< η.

By (4.3) we have∫
(V (y + t)− V (y))2f(y) dy ≤ (V (t)− 1)2

∫
V 2(y)f(y) dy → 0, t→ 0.

Note that HC has envelope cV (C)V . Thus we get from Lemma 7.1 in Müller, Schick and
Wefelmeyer (2006) that

sup
h∈HC

df (Sth, h) → 0, t→ 0.

In view of this we have

P
(

sup
h∈HC ,|t|≤bn

|B(Sth)− B(h)| > ηn−1/2
)
→ 0.

Since this is true for every C <∞, we obtain D̂2 = op(n−1/2). �

Remark 3. Under the other conditions of Theorem 5, a sufficient condition for (5.1) is that
f ′ is V -Lipschitz. In the terminology of Schick and Wefelmeyer (2006a), f is then V -smooth of
order 2. Hence their Lemma 7 yields that ‖f ∗ kbn − f‖V = O(b2n) = op(n−1/2). Since HC has
envelope cV (C)V , the desired (5.1) follows as %n(C) ≤ cV (C)‖f ∗ kbn − f‖V .

Remark 4. Suppose we have

sup
h∈HC

|h(y + t)− h(y)| ≤MCV (y)|t|, y ∈ R, |t| ≤ C. (5.3)

Then (5.1) follows from (F2). Indeed, using the absolute continuity of f and the fact that k
has mean zero, we can write

f ∗ kbn(y)− f(y) =
∫ ∫ 1

0
bnu(f ′(y − sbnu)− f ′(u)) ds k(u) du

and thus obtain∫
h(y)(f ∗ kbn(y)− f(y)) dy =

∫ ∫
bnu

∫ 1

0
h(y)(f ′(y − sbnu)− f ′(y)) ds k(u) du dy

=
∫ 1

0

∫
bnu

∫
(h(y + sbnu)− h(y))f ′(y) dy k(u) du ds.

Using (5.3) we obtain for large n that

ρn(C) ≤MC‖f ′‖V

∫
u2k(u) du b2n

and thus (5.1) by the choice of bandwidth in Theorem 5.
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Remark 5. Theorem 5 applies to estimating the conditional distribution function. Let
h(y) = hz(y) = 1[y ≤ z] with z. Then q(hz) = P (Xn+1 ≤ z|X1, . . . , Xn). We have

qhz(x) = F (z + x), q′hz
(x) = f(z + x).

Our estimator is

q̂s(hz) =
∫ z+ϑ̂ε̂n

−∞
f̂(y) dy =

1
n− rn

n∑
j=rn+1

Kbn(z + ϑ̂ε̂n − ε̂j),

where K is the distribution function of k and Kb(y) = K(y/b). The class H = {1[· ≤ z] : z ∈ R}
is closed under shifts and F -Donsker. Here we can take V (x) = 1. Then (F1) holds if f has
a moment of order ξ > 16/7, and (F2) holds if f is absolutely continuous with integrable a.e.
derivative. If f ′ can be chosen to be bounded, then

ρn(C) = sup
z∈R

|F ∗ kbn(z)− F (z)| ≤ b2n‖f ′‖∞
∫
y2k(y) dy

and (5.1) holds for the choice of bn in Theorem 5. For the unsmoothed estimator F̂(z + ϑ̂ε̂n) of
q(hz) we obtain from Theorem 2 the same Bahadur representation as in Theorem 5 under the
assumption that f is uniformly continuous.

Remark 6. Theorem 5 applies to estimating conditional absolute moments. Let β ≥ 1 and
h(y) = |y|β. Then q(h) = E(|Xn+1|β|X1, . . . , Xn). We have

qh(x) =
∫
|y − x|βf(y) dy = E[|ε− x|β], q′h(x) =

∫
|y − x|βf ′(y) dy.

Our estimator is
q̂s(h) =

∫
|y − ϑ̂ε̂n|β f̂(y) dy.

We can take V (x) = (1 + |x|)β . As β ≥ 1, (F1) holds if f has a moment of order greater than
2β + 1. Here H consists of a single function, and HC is clearly F -Donsker for all C < ∞.
It is also easy to check that (5.3) holds for each C < ∞, so that (F2) implies (5.1). For the
unsmoothed estimator q̂(h), we obtain from Theorem 1 the same Bahadur representation as in
Theorem 5, assuming only that the innovation distribution has a moment of order 2β.
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