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Abstract

Suppose we have independent observations of a pair of independent random vari-

ables, one with a density and the other discrete. The sum of these random variables

has a density, which can be estimated by an ordinary kernel estimator. Since the two

components are independent, we can write the density as a convolution and alterna-

tively estimate it by a convolution of a kernel estimator of the continuous component

with an empirical estimator of the discrete component. We show that for a given kernel

and optimal bandwidth, this estimator has the same rate as the first estimator, and

the same asymptotic bias, but a much smaller asymptotic variance. We also show how

pointwise constraints on derivatives of the density of the continuous component can be

used to improve our estimator of the convolution density.

1 Introduction

Let X and Y be independent real-valued random variables. Assume that X has a density

f . Let Y be discrete with finite support T , and taking the value t with positive probability

pt for t ∈ T . Then the convolution Z = X + Y has density

h(z) =
∑
t∈T

f(z − t)pt.

Suppose we have independent observations (X1, Y1), . . . , (Xn, Yn) and want to estimate the

density h. An obvious estimator is a kernel estimator

ĥ(z) =
1

nb

n∑
i=1

K
(z −Xi − Yi

b

)
based on the sums Zi = Xi +Yi, where K is a kernel and b a bandwidth. Better estimators

will be obtained by exploiting that X and Y are independent. One possibility is

ĥ∗(z) =
1

n2b

n∑
i=1

n∑
j=1

K
(z −Xi − Yj

b

)
.

Note that these estimators do not require knowledge of T .
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Let us set

Nt =
n∑
i=1

1[Yi = t] and p̂t =
Nt

n
for t ∈ R.

Then the first estimator can be expressed as

ĥ(z) =
∑
t∈T

f̃t(z − t)p̂t

with kernel estimator f̃t(x) = 1/(Ntb)
∑n

i=1 1[Yi = t]K((x − Xi)/b) based only on the

observations Xi with Yi = t, while the second one can be written as

ĥ∗(z) =
∑
t∈T

f̂(z − t)p̂t

with kernel estimator f̂(x) = 1/(nb)
∑n

i=1K((x−Xi)/b) based on all Xi. These represen-

tations suggest that ĥ∗(z) should be better than ĥ(z).

Let f be r times differentiable. Then so is h. Let K be of order r. Then the optimal rate

of the bandwidth is n−1/(2r+1). We may take b = n−1/(2r+1), absorbing a possible positive

factor as a scale parameter into K. It is known (see Lemma 1) that nr/(2r+1)(ĥ(z)− h(z))

is asymptotically normal with mean

B = h(r)(z)
(−1)r

r!

∫
urK(u) du

and variance

V = h(z)

∫
K2(u) du =

∑
t∈T

f(z − t)pt
∫
K2(u) du.

In Section 2 we show that nr/(2r+1)(ĥ∗(z) − h(z)) is asymptotically normal with the

same mean, but with variance

V∗ =
∑
t∈T

f(z − t)p2t
∫
K2(u) du.

Unless Y is a constant, V∗ is strictly smaller than V because it has p2t in place of pt. The

variance reduction is, in general, considerable. If Y is uniformly distributed, the variance

is reduced by a factor |T |−1.
The result applies in particular to spatial statistics, where we often estimate the length of

a vector with independent components, using distance measures involving sums of functions

of the components. Whenever only one of the components has a density and the others are

discrete, our result applies. When more than one component has a density, we get different

convergence rates. This holds in particular when all components have densities, which

is the case treated extensively in the literature so far. Similar results can be obtained

when we estimate the response density of a regression model Y = r(X) + ε with X and

ε independent, and with X discrete or ε discrete or r a step function. Here we have
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independent observations (Xi, Yi) for i = 1, . . . , n but do not observe r(Xi) and εi = Yi −
r(Xi). We must therefore estimate the regression function r by an estimator r̂ and use

r̂(Xi) and residuals ε̂i = Yi − r̂(Xi) in place of r(Xi) and εi. We treat this elsewhere.

Convolution estimators for X+Y behave quite differently when Y also has a density, say

g. Then X+Y has density h(z) =
∫
f(z− y)g(y) dy and can be estimated by a convolution

estimator
∫
f̂(z − y)ĝ(y) dy with kernel estimators f̂ and ĝ. If f(X) and g(Y ) have finite

second moments, such an estimator has a faster rate than the obvious estimator ĥ(z), namely

the rate n−1/2 of an empirical estimator; see Frees (1994), Schick and Wefelmeyer (2004) and

(2007), and Giné and Mason (2007). Corresponding results for nonparametric regression are

in Schick and Wefelmeyer (2012a and 2013), and in Müller (2012) for nonlinear regression.

If f(X) or g(Y ) does not have a finite second moment, the convolution estimator does not

attain the rate n−1/2; see Schick and Wefelmeyer (2009a, 2009b and 2012b).

In Section 3 we assume that we have auxiliary information about f in the form of

constraints on certain derivatives of f at certain points z − t for t ∈ T . This requires that

the support T of Y is known. From Müller and Wefelmeyer (2014) we obtain improvements

of ĥ∗(z) that reduce the asymptotic mean squared error. The main applications are to cases

in which we know that certain derivatives are zero at one or several of the points z− t. For

example, the density may have a maximum at one point, f ′(z − t) = 0; an inflection point,

f
′′
(z − t) = 0; or a saddle point, f ′(z − t) = 0 and f

′′
(z − t) = 0. The density may also be

known to be bimodal with the two maxima and the minimum among the points z− t. The

proofs are in Section 4. As usual we write Xn = op(1) if the sequence of random variables

Xn converges in probability to zero, and Xn = Op(1) if it is bounded in probability, with

Xn = op(an) if a−1n Xn = op(1) and analogously for Op(an).

2 Main result

We begin with a general lemma on the asymptotic behavior of kernel estimators. It is

essentially known, also under mixing conditions and for linear processes; see Parzen (1962),

Chanda (1983), Bradley (1983), Tran (1992), Hallin and Tran (1996) and Lu (2001). We

obtain the asymptotic bias under a minimal differentiability assumption on the density. Let

K denote the set of bounded measurable functions with compact support. For functions K

and L in K, we set

µj(K) =
(−1)j

j!

∫
ujK(u) du and 〈K,L〉 =

∫
K(u)L(u) du.

We formulate our lemma abstractly for independent real-valued random variables ξ1, ξ2, . . .

with a common density g. Set

Hn(z, b,K) =
1

nb

n∑
j=1

K
(z − ξj

b

)
, z ∈ R, b > 0,K ∈ K.
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Lemma 1. Let bn be positive numbers such that bn → 0 and nbn →∞. If g is continuous

at z, then we have the convergence results

E[Hn(z, bn,K)]→ g(z) and nbnVarHn(z, bn,K)→ g(z)〈K,K〉,

and the random variable (nbn)1/2(Hn(z, bn,K)−E[Hn(z, bn,K)]) is asymptotically normal

with mean zero and variance g(z)〈K,K〉. If g is r times differentiable at z, then

E[Hn(z, bn,K)] =
r∑
j=1

bjng
(j)(z)µj(K) + o(brn).

If g is continuous at the distinct points z1, . . . , zk and K1, . . . ,Kk belong to K, then the

k-dimensional random vector

(nbn)1/2

Hn(z1, bn,K1)− E[Hn(z1, bn,K1)]
...

Hn(zk, bn,Kk)− E[Hn(zk, bn,Kk)]


is asymptotically normal with mean vector 0 and diagonal dispersion matrix

diag (〈K1,K1〉g(z1), . . . , 〈Kk,Kk〉 g(zk)).

In Section 3 we determine the asymptotic distribution of linear combinations of kernel

estimators for different derivatives of a density. This is obtained from the following general

result on the joint asymptotic distribution of kernel estimators. Let Kr denote the set of

functions K in K that are kernels of order r, i.e., that satisfy

µ0(K) = 1, µr(K) 6= 0, and µj(K) = 0, j = 1, . . . , r − 1.

Let Lr denote the set of functions K in K that satisfy

µr(K) = 1 and µi(K) = 0, i = 0, . . . , r − 1.

For j = 0, . . . , r − 1, let Lj denote the set of functions K in K that satisfy

µi(K) = 1[i = j], i = 0, . . . , r − 1.

Integration by parts shows that if K ∈ Kr is r times continuously differentiable, then K(j)

belongs to Lj .
For Lj ∈ Lj , j = 0, . . . , r, set L = (L0, L1, . . . , Lr)

> and

∆n = b−rn




Hn(z, bn, L0)

Hn(z, bn, L1)
...

Hn(z, bn, Lr−1)

Hn(z, bn, Lr)

−


g(z)

bng
′(z)
...

br−1n g(r−1)(z)

brng
(r)(z)



− g
(r)(z)


µr(L0)

µr(L1)
...

µr(Lr−1)

0

 .
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Since Hn(z, b,K) is linear in K, we have with bn = n−1/(2r+1) that

(2.1) ∆n ⇒ N(0, g(z)〈L,L>〉).

This implies that v̂>∆n ⇒ N(0, g(z)〈v>L, v>L〉) whenever the (r+ 1)-dimensional random

vector v̂ converges in probability to the constant vector v. A special case of this result is

formulated in the next lemma. It is needed in the next section.

Lemma 2. Suppose g is r times differentiable at z. Let Lj belong to Lj for j = 0, . . . , r,

and let the random coefficient d̂k converge in probability to the constant dk for k = 1, . . . , r.

Take bn = n−1/(2r+1). Then the random variable

Tn = Hn(z, bn, L0)− g(z)−
r∑

k=1

d̂k
(
Hn(z, bn, Lk)− bkng(k)(z)

)
satisfies

(2.2) nr/(2r+1)Tn ⇒ N(g(r)(z)ν, g(z)〈L̃, L̃〉)

with

ν = µr(L0)−
r−1∑
k=1

dkµr(Lk) and L̃ = L0 −
r∑

k=1

dkLk.

This result holds in particular with Lj = K(j), j = 0, . . . , r, if K is an r times con-

tinuously differentiable member of Kr. In this case, ν simplifies to µr(K), and L̃ equals

K −
∑r

j=1 djK
(j).

Since the density f of X is r times differentiable at z − t for t ∈ T , the density h(z) =∑
t∈T f(z − t)pt of Z = X + Y is r times differentiable at z. Hence Lemma 1 implies the

following result.

Proposition 1. Let f be r times differentiable at z− t for t ∈ T , let K ∈ Kr, and let b→ 0

and nb → ∞. Then b−r(E[ĥ(z)] − h(z)) → B and nbVar ĥ(z) → V , with B and V defined

in Section 1. Set b = n−1/(2r+1). Then nr/(2r+1)(ĥ(z)−h(z)) is asymptotically normal with

mean B and variance V .

For t ∈ T choose a kernel Kt and set f̂t(x) = 1/(nb)
∑n

i=1Kt((x−Xi)/b) and

ĥ∗(z) =
∑
t∈T

f̂t(z − t)p̂t.

Here p̂t = Nt/n is the empirical estimator of pt introduced in Section 1.

Theorem 1. Let f be r times differentiable at z − t, let Kt ∈ Kr for t ∈ T , and set

b = n−1/(2r+1). Then nr/(2r+1)(ĥ∗(z)− h(z)) is asymptotically normal with mean

C =
∑
t∈T

f (r)(z − t)ptµr(Kt)

and variance

W∗ =
∑
t∈T

f(z − t)p2t 〈Kt,Kt〉.
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In order to compare ĥ with the convolution estimator ĥ∗, we use the same kernel K = Kt

for each t ∈ T . Then the asymptotic mean of nr/(2r+1)(ĥ∗(z)− h(z)) is

C =
∑
t∈T

f (r)(z − t)ptµr(K) = h(r)(z)µr(K) = B,

and the asymptotic variance is

W∗ =
∑
t∈T

f(z − t)p2t 〈K,K〉 = V∗,

which is strictly smaller than V .

3 Pointwise constraints

As in Section 2 we assume that f is r times differentiable at z− t for t ∈ T . Suppose that T

is known, and that for t in a subset T0 of T we know the values of several of the derivatives

f ′(z− t), . . . , f (r)(z− t) at z− t. More precisely, we assume that there is a nonempty subset

Jt of {1, . . . , r} and numbers at,j such that

(3.1) f (j)(z − t) = at,j , j ∈ Jt.

Suppose, for example, that f is twice differentiable, with a maximum at z − t. Then r = 2

and the constraint is f ′(z − t) = 0. We will come back to this example at the end of the

section.

For j ∈ Jt, we estimate f (j)(z − t), the j-th derivative of f at z − t, by

f̂
(j)
t (z − t) =

1

nbj+1

n∑
i=1

Lt,j

(z − t−Xi

b

)
with Lt,j a member of Lj . In what follows we take b = n−1/(2r+1) and let Kt be a member

of Kr. In view of the constraints (3.1) we can try to improve the kernel estimator

f̂t(x) =
1

nb

n∑
i=1

Kt

(x−Xj

b

)
by looking at the estimators

f̂t,c(z − t) = f̂t(z − t)−
∑
j∈Jt

cjb
j(f̂

(j)
t (z − t)− at,j)

for vectors c = (cj)j∈Jt . By Lemma 2, the random variable nr/(2r+1)
(
f̂t,c(z − t)− f(z − t)

)
is asymptotically normal with mean

f (r)(z − t)
(
µr(Kt)−

∑
j∈Jt

cjµr(Lt,j)1[j 6= r]
)
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and variance

f(z − t)
(
〈Kt,Kt〉 − 2

∑
j∈Jt

cj〈Kt, Lt,j〉+
∑
j,k∈Jt

cj〈Lt,j , Lt,k〉ck
)
.

The asymptotic MSE is Mt − 2c>Bt + c>Ctc with nonnegative number Mt, vector Bt and

symmetric matrix Ct given by

Mt = f(z − t)〈Kt,Kt〉+ f (r)2(z − t)µ2r(Kt),

Bt = f(z − t)λt + f (r)2(z − t)µr(Kt)νt,

Ct = f(z − t)Λt + f (r)2(z − t)νtν>t ,

with λt,j = 〈Kt, Lt,j〉, Λt,jk = 〈Lt,j , Lt,k〉 and νt,j = 1[j 6= r]µr(Lt,j) for j, k ∈ Jt. Suppose

that the matrix Λt is invertible. Then so is Ct provided f(z − t) 6= 0. In this case the

asymptotic MSE is minimized by c = ct = C−1t Bt.

The vector ct depends on the unknown density f and must be replaced by an estimator.

Write B̂t and Ĉt for Bt and Ct with f(z − t) and f (r)(z − t) replaced by the estimators

f̂t(z−t) and f̂
(r)
t (z−t). Set ĉt = Ĉ−1t B̂t. Then ĉt−ct = op(1). Thus it follows from Lemma 2

that nr/(2r+1)(f̂t,ĉt(z − t)− f(z − t)) has minimal asymptotic MSE Mt −B>t C−1t Bt.

Using f̂t,ĉt(z− t) instead of f̂t(z− t) for t ∈ T0 in the definition of ĥ∗(z), we now obtain

new estimators for h(z) =
∑

t∈T f(z − t)pt as

ĥ0(z) =
∑
t∈T0

f̂t,ĉt(z − t)p̂t +
∑

t∈T−T0

f̂t(z − t)p̂t.

This estimator can be written as

ĥ0(z) = ĥ∗(z)−
∑
t∈T0

p̂t
∑
j∈Jt

ĉt,jb
j(f̂

(j)
t (z − t)− at,j)

Theorem 2. For t ∈ T , let f be r times differentiable at z− t and let Kt belong to Kr. For

t ∈ T0, let the constraints (3.1) hold, let f(z − t) 6= 0, and let Λt be positive definite. Set

b = n−1/(2r+1). Then nr/(2r+1)(ĥ0(z)− h(z)) is asymptotically normal with mean∑
t∈T

ptf
(r)(z − t)

(
µr(Kt)− dtνt

)
and variance ∑

t∈T
p2t f(z − t)

(
〈Kt,Kt〉 − 2d>t λt + c>t Λtct

)
,

where dt equals ct for t ∈ T0 and 0 otherwise.

The asymptotic MSE of nr/(2r+1)(ĥ0(z)− h(z)) is

M(dt) =
∑
s,t∈T

psptf
(r)(z − s)f (r)(z − t)

(
µr(Ks)− d>s νs

)(
µr(Kt)− d>t νt

)
+
∑
t∈T

p2t f(z − t)
(
〈Kt,Kt〉 − 2d>t λt + d>t Λtdt

)
.
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In particular, setting all dt = 0, we obtain the asymptotic MSE of ĥ∗(z) as M = M(0).

The most important special case is that of T0 being a singleton, say T0 = {u}. Then the

constraints can be written as f (j)(z − u) = au,j for j in some subset J = Ju of {1, . . . , r}.
These constraints can be used to construct the estimator

ĥ∗,c = ĥ∗(z)− p̂u
∑
j∈J

cjb
j(f̂ (j)u (z − u)− au,j)

with M − 2c>B+ c>Cc as asymptotic MSE, where the vector B and the symmetric matrix

C are
B = puνuf

(r)(z − u)
∑
t∈T

ptf
(r)(z − t)µr(Kt) + p2uλuf(z − u),

C = p2uf
(r)2(z − u)νuν

>
u + p2uf(z − u)Λu.

We require that Λu is positive definite and f(z − u) is positive. Then C is invertible and

the asymptotic MSE is minimized by the choice c = c∗ = C−1B. Write ĉ for c with f(z−u)

and f (r)(z − t) replaced by the estimators f̂u(z − u) and f̂
(r)
t (z − t), and pt replaced by

the estimator p̂t for t ∈ T . It follows that nr/(2r+1)(ĥ∗,ĉ(z)− h(z)) has minimal asymptotic

MSE M −B>C−1B.

For example, let r = 2. Then the bandwidth b = n−1/5 has the optimal rate. The

asymptotic MSE of n2/5(ĥ∗(z)− h(z)) is

M =
∑
s,t∈T

psptf
′′(z − s)f ′′(z − t)µ2(Ks)µ2(Kt) +

∑
t∈T

p2t f(z − t)〈Kt,Kt〉.

Let us return to the example from the beginning of this section in which the location of a

maximum is known, i.e. f ′(z − u) = 0 for some u ∈ T . New estimators for f(z − u) are of

the form f̂u,c(z − u) = f̂u(z − u) − cn−1/5f̂ ′u(z − u). Our proposed estimators for h(z) are

therefore

ĥ∗,c(z) = ĥ∗(z)− cn−1/5f̂ ′u(z − u)p̂u.

The asymptotic MSE of n2/5(ĥ∗,c(z)−h(z)) is M − 2cB+ c2C, where B and C are the real

numbers

B = puµ2(Lu,1)f
′′(z − u)

∑
t∈T

ptf
′′(z − t)µ2(Kt) + p2u〈Ku, Lu,1〉f(z − u),

C = p2uµ
2
1(Lu,1)f

′′2(z − u) + p2u〈Lu,1, Lu,1〉f(z − u).

The asymptotic MSE of n2/5(ĥ∗,c − h(z)) is therefore minimized if c is replaced by a con-

sistent estimator ĉ of c∗ = B/C, and the constraint f ′(z − u) = 0 leads to a reduction of

the asymptotic MSE by 2c∗B − c2∗C = B2/C.

As pointed out in Remark 3 of Müller and Wefelmeyer (2014), it is important to use

different kernels for different derivatives. For example, there is no improvement if we take

Lu,1 = K ′u as then µ2(K
′
u) = 0 and 〈Ku,K

′
u〉 = 0.
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4 Proofs

Proof of Lemma 1. The first three results follow from Parzen (1962). The fourth con-

clusion follows from the identity

E[Hn(z, b,K)] =
1

b

∫
K
(z − x

b

)
g(x) dx =

∫
g(z − bu)K(u) du

and the Taylor expansion

g(z − bu) =
r∑
j=0

(−bu)j

j!
g(j)(z)

+ (−bu)r−1
∫ (

g(r−1)(z − buv)− g(r−1)(z)− buvg(r)(z)
)
Fr−1(dv),

where F0 denotes the point mass at 1 and Fk denotes the measure with density

fk(v) =
(1− v)k−1

(k − 1)!
1[0 < v < 1] for k > 0.

These identities allow us to derive the inequality∣∣∣E[Hn(z, b,K)]−
r∑
j=0

(−b)j

j!
g(j)(z)

∫
ujK(u) du

∣∣∣ ≤ brw(bC)

∫
|v| dFr−1(v)

∫
|urK(u)| du

with C a constant such that [−C,C] contains the support of K, and

w(δ) = sup
|t|≤δ

∣∣g(r−1)(z − t)− g(r−1)(z)− tg(r)(z)∣∣
|t|

for small δ > 0. Since g(r−1) is differentiable at z, we have w(δ)→ 0 as δ → 0.

For the fifth result one shows that the random vectors

Uni =
1√
bnn

K1((z1 − ξj)/bn)− E[K1((z1 − ξj)/bn)]
...

Kk((zk − ξj)/bn)− E[Kk((zk − ξj)/bn)]

 , i = 1, . . . , n,

are independent and centered, satisfy the Lindeberg condition in view of the bound ‖Uni‖2 ≤
4kB2/(nbn) = o(1) with B a bound for K1, . . . ,Kk, and their common dispersion matrix

multiplied by n converges to the diagonal matrix diag (〈K1,K1〉g(z1), . . . , 〈Kk,Kk〉g(zk)) in

view of the continuity of g at the points z1, . . . , zk and the fact that the functions K1, . . . ,Kk

have compact supports.

Proof of Theorem 1. By the properties of f and the kernels Kt, Lemma 1 lets us conclude

that

Tn = nr/(2r+1)
∑
t∈T

pt(f̂t(z − t)− f(z − t))
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is asymptotically normal with mean µ and variance σ2, where

µ =
∑
t∈T

ptf
(r)(z − t)µr(Kt) and σ2 =

∑
t∈T

p2t f(zt)〈Kt,Kt〉.

Since p̂t − pt = Op(n
−1/2) for all t ∈ T , we have

ĥ∗(z) =
∑
t∈T

f̂t(z − t)p̂t =
∑
t∈T

f̂t(z − t)pt +Op(n
−1/2).

Using the representation h(z) =
∑

t∈T f(z − t)pt we see that nr/(2r+1)(ĥ∗(z)− h(z)) equals

Tn+op(1) and is therefore asymptotically normal with mean µ and variance σ2 by Slutsky’s

Theorem. This is the desired result as µ and σ2 are as asserted.

Proof of Theorem 2. Let Lt = (Lt,j)j∈Jt and set

Sn =
∑
t∈T

pt

(
f̂t(z − t)− f(z − t)−

∑
j∈Jt

dt,jb
j
(
f̂
(j)
t (z − t)− f (j)(z − t)

))
with dt as in Theorem 2. It follows from Lemma 1 that nr/(2r+1)Sn is asymptotically normal

with mean

µ =
∑
t∈T

ptf
(r)(z − t)(µr(Kt)− d>t νt)

and variance

σ2 =
∑
t∈T

p2t f(z − t)〈Kt − d>t Lt,Kt − d>t Lt〉.

It follows from p̂t − pt = Op(n
−1/2) and the results in Section 3 that

ĥ0(z) = Sn + op(n
−r/(2r+1)).

The above and Slutsky’s theorem yield that nr/(2r+1)(ĥ0(z)−h(z)) is asymptotically normal

with mean and variance as asserted.
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