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Abstract

Convergence rates and central limit theorems for kernel estimators of the stationary
density of a linear process have been obtained under the assumption that the innovation
density is smooth (Lipschitz). We show that smoothness is not required. For example, it
suffices that the innovation density has bounded variation.
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1 Introduction

Consider a linear process Xt =
∑∞

s=0 asεt−s with independent and identically distributed (i.i.d.)
innovations εt that have mean zero, finite variance, and density f . We assume that a0 = 1 and
that the coefficients are summable,

∑∞
s=0 |as| < ∞. Then Xt has a stationary density g. It can

be estimated by the kernel estimator

ĝ(x) =
1
n

n∑
j=1

kb(x−Xj),

where kb(v) = k(v/b)/b with k a square-integrable kernel (i.e. a function such that
∫

k(v) dv = 1
and

∫
k2(v) dv < ∞), and b is a bandwidth such that b → 0 and nb →∞. Pointwise and uniform

convergence rates have been studied by several authors, see for example Hall and Hart (1990),
Tran (1992), Hallin and Tran (1996), Lu (2001), Wu and Mielniczuk (2002), and Bryk and
Mielniczuk (2005).

Wu and Mielniczuk (2002) prove the following result: If f is Lipschitz, then
√

nb(ĝ(x) −
E[ĝ(x)]) is asymptotically normal with mean zero and variance σ2(x) = g(x)

∫
k2(v) dv. We

prove in Section 2 that this result can be obtained under weaker assumptions on f . In particular,
it suffices that f is of bounded variation, except in the degenerate case with as = 0 for all s ≥ 1.
This exceptional case corresponds to the i.i.d. case, for which sufficient conditions are already
known, see Parzen (1962). In the latter case moment assumptions are not needed. Instead
Parzen requires continuity of f = g at x and a kernel that is bounded and satisfies |vk(v)| → 0
as |v| → ∞.
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2 Results

We consider observations X1, . . . , Xn of a linear process with the following properties.

Assumption 1. The process Xt, t ∈ Z, has the representation Xt =
∑∞

s=0 asεt−s with i.i.d.

innovations εt that have mean zero, finite variance, and density f . The coefficients as, s ∈ N,

are summable, a0 = 1, and N is positive, where

N =
∞∑

s=1

1(as 6= 0)

denotes the number of non-zero coefficients as, s ≥ 1. The kernel k is square-integrable and

the bandwidth satisfies b → 0 and nb →∞.

We restrict ourselves to the case N > 0, since N = 0 corresponds to the i.i.d. case already
treated by Parzen (1962).

Let g denote the stationary density and ĝ the kernel estimator described above. First
we obtain the above-mentioned conclusion of Theorem 1 in Wu and Mielniczuk (2002) under
weaker assumptions. We do this by generalizing their approach. They express ĝ(x)−E[ĝ(x)] =
ĝ(x)− g ∗ kb(x) as a sum D0 + R0, where

D0 =
1
n

n∑
j=1

(
kb(x−Xj)− f ∗ kb(x− Yj,1)

)
is a martingale, and

R0 =
1
n

n∑
j=1

(
f ∗ kb(x− Yj,1)− g ∗ kb(x)

)
.

Here we use the notation

Yj,i =
∞∑
s=i

asεj−s.

Then they show in their Lemma 2 that
√

nbD0 ⇒ N(0, σ2(x)) under the assumption that f

is Lipschitz. In their proof, this assumption is used only to guarantee continuity of g at x,
boundedness of f and hence g, and to prove

(2.1)
∫

k2(v)|H̄(bv)− H̄(0)| dv = op(1),

where

H̄(z) =
1
n

n∑
j=1

(
f(x− Yj,1 − z)− g(x− z)

)
.

Assume now that f is bounded. This guarantees that g is bounded and uniformly continuous.
Indeed, we can express g as the convolution of f and the density g1 of Y1,1 and obtain g(x) ≤
‖f‖∞‖g1‖1 and

|g(x− t)− g(x)| ≤ ‖f‖∞
∫
|g1(y − t)− g1(y)| dy
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for all x ∈ R. Uniform continuity of g now follows from the continuity of translations in L1, see
e.g. Rudin (1974, Theorem 9.5). In view of these properties of g and the square-integrability of
k, property (2.1) follows from

(2.2)
∫

k2(v)
∣∣∣ 1
n

n∑
j=1

(
f(x− Yj,1 − bv)− f(x− Yj,1)

)∣∣∣ dv = op(1).

The expected value of the left-hand side of (2.2) is bounded by∫
k2(v)

∫
|f(x− y − bv)− f(x− y)|g1(y) dy dv

≤ ‖g1‖∞
∫

k2(v)
∫
|f(t− bv)− f(t)| dt dv.

Since
∫
|f(t− bv)− f(t)| dt is bounded by 2 and tends to zero by the continuity of translations

in L1, the Lebesgue dominated convergence theorem gives that∫
k2(v)

∫
|f(t− bv)− f(t)| dt dv → 0.

Thus the conclusion of their Lemma 2 remains true if f is bounded.
Wu and Mielniczuk (2002) also use Lipschitz continuity of f to conclude that

√
nR0 = Op(1).

To avoid this assumption, we express R0 as

R0 =
m∑

i−1

Di + Rm,

where

Di =
1
n

n∑
j=1

(
fi−1 ∗ kb(x− Yj,i)− fi ∗ kb(x− Yj,i+1)

)
,

Rm =
1
n

n∑
j=1

(
fm ∗ kb(x− Yj,m+1)− g ∗ kb(x)

)
.

Here fi is the density of
∑i

s=0 asεs. Then fi+1(x) =
∫

fi(x − ai+1y)f(y) dy and f0 = f . For
i = 1, 2, . . . , the sequence Di is a square-integrable martingale with

nE[D2
i ] ≤ E[(fi−1 ∗ kb)2(x− Y1,i)]

≤ ‖fi−1 ∗ kb‖∞E[fi−1 ∗ |kb|(x− Y1,i)]

≤ ‖fi−1‖∞
∫
|k(v)| dv g ∗ |kb|(x)

≤
(
‖f‖∞

∫
|k(v)| dv

)2
.

Thus, if f is bounded, then
√

nDi = Op(1).
Now consider Rm. If as = 0 for all s > m, then Yj,m+1 = 0 and thus Rm = 0. Now assume

that there are infinitely many as that are not zero, and that fm is Lipschitz. Then we can
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proceed as in the proofs of Lemma 3 (with our fm replacing their f1) and Theorem 1 of Wu
and Mielniczuk (2002) to conclude that

√
nRm = Op(1). We arrive at the following result.

Theorem 1. Suppose Assumption 1 holds and f is bounded. If N = ∞, assume also that fm

is Lipschitz for some m. Then

√
nb(ĝ(x)− g ∗ kb(x)) ⇒ N(0, σ2(x)),

where σ2(x) = g(x)
∫

k2(v) dv.

Remark 1. A function h is L1-Lipschitz if∫
|f(x− t)− f(x)| dx ≤ L|t|, t ∈ R,

for some constant L. If N = ∞, the requirement that fm is Lipschitz for some m can be replaced
by the requirement that fr is L1-Lipschitz for some r. To see this, let m = inf{s > r : as 6= 0}.
Then fm(x) =

∫
fr(x− amy)f(y) dy. Since f is assumed bounded, we have

|fm(x + t)− fm(x)| ≤
∫
|fr(x + t− amz)− fr(x− amz)|f(z) dz

≤ ‖f‖∞
∫
|fr(x + t− amz)− fr(x− amz)| dz

≤ ‖f‖∞
1
|am|

∫
|fr(u + t)− fr(u)| du

≤ ‖f‖∞
1
|am|

L|t|.

The requirement that a density is L1-Lipschitz is rather mild: it is met by all densities of
bounded variation. For details see Lemma 8 in Schick and Wefelmeyer (2005). Thus, if f is of
bounded variation, we have the following result.

Corollary 1. Suppose Assumption 1 holds and f is of bounded variation. Then

√
nb(ĝ(x)− g ∗ kb(x)) ⇒ N(0, σ2(x)).

So far we have looked at the variance term ĝ(x)− g ∗ kb(x). The bias term g ∗ kb(x)− g(x)
can be made small by choice of b and k if g is sufficiently smooth. Smoothness of g does not
require smoothness of f if N > 0. For example, if f is of bounded variation and N ≥ m > 0,
then g has m− 1 bounded derivatives, and g(m−1) is Lipschitz. This follows by induction from
Lemma 1 below. Thus we have the following theorem.

Theorem 2. Suppose Assumption 1 holds. If f is of bounded variation, a kernel of order m is

used, and N ≥ m, then

ĝ(x)− g(x) = Op(n−1/2b−1/2) + O(bm).
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Remark 2. Suppose N is known to be infinite and f has bounded variation. Then we can
control the rate O(bm) of the bias by choosing a kernel of high order m. A choice of bandwidth
b ∼ n−1/(2m+1) yields the rate ĝ(x)− g(x) = Op(n−m/(2m+1)). Thus we can achieve a rate close
to the parametric rate n−1/2.

3 An Auxiliary Result

Lemma 1. Let p and q be integrable functions with q of bounded variation and p bounded and
L1-Lipschitz. Then p ∗ q is Lipschitz and has an almost everywhere derivative that is bounded,
integrable, and L1-Lipschitz.

Proof. The proof is similar to the proof of Lemma 8 in Schick and Wefelmeyer (2005). Since q is
integrable and of bounded variation, we can write q as difference of two bounded nondecreasing
functions that vanish at −∞. Without loss of generality we may assume that these functions
are right-continuous, as this changes q only on a countable set and hence does not affect p ∗ q.
Thus we may assume that

q(x) = µ1(−∞, x]− µ2(−∞, x], x ∈ R,

for two finite measures µ1 and µ2. Let µ = µ1 + µ2 and set h = h1 − h2, where

hi(x) =
∫

p(x− y)µi(dy), x ∈ R, i = 1, 2.

Note that h is integrable and bounded since

‖hi‖1 ≤
∫∫

|p(x− y)|µi(dy) dx ≤ ‖p‖1µi(R) and ‖hi‖∞ ≤ ‖p‖∞µi(R), i = 1, 2.

We have ∫ z

−∞
hi(x) dx =

∫ ∫
x≤z

p(x− y) dxµi(dy)

=
∫ ∫

u≤z−y
p(u) du µi(dy)

=
∫

µi(−∞, z − u]p(u) du.

This shows that p ∗ q is absolutely continuous with almost everywhere derivative h. As h is
bounded, p ∗ q is Lipschitz. In view of the inequality∫

|h(x + t)− h(x)| dx ≤
∫∫

|p(x + t− y)− p(x− y)| dx µ(dy)

≤ µ(R)
∫
|p(x + t)− p(x)| dx,

the function h inherits the L1-Lipschitz property from p. �
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