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It has been shown recently that, under an appropriate integra-
bility condition, densities of functions of independent and identically
distributed random variables can be estimated at the parametric rate
by a local U-statistic, and a functional central limit theorem holds.
For the sum of two squared random variables, the integrability con-
dition typically fails. We show that then the estimator behaves dif-
ferently for different arguments.

At points in the support of the squared random variable, the rate
of the estimator slows down by a logarithmic factor and is inde-
pendent of the bandwidth, but the asymptotic variance depends on
the rate of the bandwidth, and otherwise only on the density of the
squared random variable at this point and at zero. A functional cen-
tral limit theorem cannot hold.

Of course, for bounded random variables, the sum of squares is
more spread out than a single square. At points outside the support of
the squared random variable, the estimator behaves classically. Now
the rate is again parametric, the asymptotic variance has a different
form and does not depend on the bandwidth, and a functional central
limit theorem holds.

1. Introduction. Suppose that X1, . . . , Xn are independent observa-
tions with density f . It is sometimes of interest to estimate the density p
of a transformation q(X1, . . . , Xm) of m of these observations, with m ≥ 2.
Frees (1994) proposed as estimator of p(z) the local U-statistic

p̂F (z) =
1(n
m

) ∑
1≤i1<···<im≤n

kb(z − q(Xi1 , . . . , Xim))

with kb(x) = k(x/b)/b for a kernel k and a bandwidth b. He showed that this
estimator can be pointwise

√
n-consistent under some assumptions on f and

q. Saavedra and Cao (2000) consider the function q(X1, X2) = X1 + aX2.
They obtain pointwise

√
n-consistency for their convolution estimator

p̂SC(z) =
∫
f̂(z − ax)f̂(x) dx
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with a kernel estimator f̂ of f . This is a plug-in estimator which replaces the
unknown density f in the representation of p(z) by f̂ . The estimator p̂SC(z)
is asymptotically equivalent to p̂F (z) with m = 2 and q(X1, X2) = X1+aX2,
and with k replaced by the kernel K defined by K(y) =

∫
k(y− ax)k(x) dx.

It is even possible to obtain
√
n-consistency in various norms, together

with functional central limit theorems in the corresponding spaces. Schick
and Wefelmeyer (2004, 2007) prove such results for transformations of the
form q(X1, . . . , Xm) = u1(X1) + · · ·+ um(Xm) and q(X1, X2) = X1 +X2 in
the sup-norm and in L1-norms. Giné and Mason (2007a) consider general
transformations q(X1, . . . , Xm) and obtain such results in the Lp-norms.
Their results hold locally uniformly in the bandwidth. Giné and Mason
(2007b) prove a law of the iterated logarithm for the estimator. Du and
Schick (2007) generalize some of these results to derivatives of convolutions
of densities. More general results applicable to the estimation of densities of
sums of independent random variables are Nickl (2007) and (2009).

We want to show that the above results are less generally valid than
appears at first sight. Consider the case q(X1, X2) = u(X1) + u(X2). In
order to prove

√
n-consistency of the estimator, the above authors require

the density of u(X1) to be square-integrable. But this assumption is typically
already violated if u has a derivative that vanishes at a single point, for
example if u(X1) = X2

1 and the density of X1 is bounded away from zero in a
neighborhood of zero. How critical is the assumption of square-integrability?
In particular, is the Frees estimator p̂(z) for the density of q(X1, X2) =
X2

1 +X2
2 at the point z still

√
n-consistent if f is bounded away from zero in

a neighborhood of zero? We show that the answer to this question depends
on z.

For q(X1, X2) = X2
1 +X2

2 , the Frees estimator is

(1.1) p̂(z) =
2

n(n− 1)

∑
1≤i<j≤n

kb(z −X2
i −X2

j ).

Let h and g denote the densities of |X1| and X2
1 , respectively. Then

h(y) = (f(y) + f(−y))1[y > 0]

and
g(y) =

1
2
√
y
h(
√
y).

Hence p is the convolution g ∗ g of g with itself.
We assume that h has bounded variation. Then h has finite left- and

right-hand limits for all positive arguments. Assume that the right-hand
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limit h(0+) of h at 0 is positive. We get different results for p̂(z) depending
on whether the left-hand limit g(z−) of g at z is positive or not.

Our arguments differ on the positive and negative parts of the support
of the kernel k. This is why we state our results separately for kernels with
support [0, 1] and [−1, 0]. We also assume that the kernels are bounded
densities.

Let us first consider the case when g(z−) is positive. For kernels with
support [0, 1] and [−1, 0], we show in Theorem 1 that

√
n/ log n(p̂(z)−p(z))

is asymptotically normal with variance h2(0+)g(z−) if the bandwidth is
proportional to

√
log n/n. This non-standard choice of bandwidth is used

to control the bias. Under the present assumptions on h, the density p is
guaranteed to be Hölder with exponent 1/2 only, so that the bias is of order
b1/2.

We can choose larger bandwidths if p is known to be smoother at z.
Specifically, if p is Hölder at z with exponent α for 1/2 < α ≤ 1, we can
choose a bandwidth of order n−1/(2α) and obtain that

√
n/ log n(p̂(z)−p(z))

is asymptotically normal with variance h2(0+)g(z−)/(2α). Thus, under ad-
ditional smoothness assumptions on p, a smaller asymptotic variance can
be achieved by choice of bandwidth, but the rate of convergence cannot be
improved.

The asymptotic behavior of p̂(z) is governed by observations Xj with X2
j

close to z. This implies that ∆(z1) and ∆(z2) are asymptotically independent
for different z1 and z2, where ∆(z) =

√
n/ log n(p̂(z)− p(z)). In particular,

functional central limit theorems for ∆ are not possible. This is analogous
to known results for classical kernel estimators.

Now we consider the case when g(z−) is zero. Then the above asymptotic
variances reduce to zero, indicating that better rates for p̂(z) are possible.
Suppose that g is left Hölder at z, say h(

√
z − s) = O(sβ) as s ↓ 0, where β is

positive. For a kernel with support [0, 1] we show in Theorem 2 that then p̂(z)
behaves quite differently. If the bandwidth is again proportional to

√
log n/n,

we obtain that
√
n(p̂(z)−p(z)) is asymptotically normal with variance given

by the variance of 2g(z−X2
1 ). This is analogous to the recent results on

√
n-

consistent density estimation of transformations. The same result holds for
a kernel with support [−1, 0] under a two-sided Hölder condition on g, say
h(
√
z − s) = O(|s|β) as s→ 0, where β is again positive.

If the observations are bounded, then the support of p is larger than the
support of g. Outside the support of g we have g(z−) = 0 and h(

√
z − s) =

0 for small positive s. Hence p̂(z) has the parametric rate for z outside
the support of g. Functional central limit theorems in the space C(I) of
continuous functions on a compact interval I are possible as long as I is a
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subinterval of the complement of the support of g.
In Theorem 3 we combine the above results on one-sided kernels to obtain

better rates under additional smoothness properties on p using higher-order
kernels. Specifically, if k is a bounded symmetric density on [−1, 1], the
bandwidth is proportional to (n log n)−1/4, and p has a second derivative
at z, then

√
n/ log n(p̂(z) − p(z)) is asymptotically normal with variance

h2(0+)g(z−)/4. If g(z−) = 0 and g is Hölder at z, then
√
n(p̂(z)− p(z)) is

asymptotically normal with variance given by the variance of 2g(z −X2
1 ).

In Proposition 3 we show that our results remain valid if we replace the
fixed bandwidth b by a random bandwidth ŝb with ŝ a positive random
variable such that ŝ+ 1/ŝ = Op(1) provided we choose a smooth kernel.

Let us illustrate the above with two special cases.

Example 1. Suppose that f is the standard normal density. Then p
is the exponential density with mean 2 which is Hölder with exponent
1 at each positive z. We find h(0+) = (2/π)1/2 and g(z−) = g(z) =
(2πz)−1/2 exp (−z/2) > 0 for all positive z. Thus

√
n/ log n(p̂(z) − p(z))

is asymptotically normal with variance π−3/2(z/2)−1/2 exp (−z/2)/(2α) for
a bandwidth of order n−1/(2α) with 1/2 ≤ α ≤ 1. This holds for bounded
kernels with compact support. Since p has a second derivative for positive z,
the smaller variance π−3/2(z/2)−1/2 exp (−z/2)/4 can be achieved by using
a symmetric kernel and a bandwidth proportional to (n log n)−1/4.

Example 2. Suppose that f is the uniform density on (0, 1). Using (2.1)
one calculates

p(z) =
π

4
1[0 < z ≤ 1] +

(
π

4
− arcsin

√
z − 1
z

)
1[1 < z < 2].

A graph of this density is given next.

0 1 2

π
4

We have h(0+) = 1 and g(z−) = 1/(2
√
z)1[0 < z ≤ 1]. If 0 < z < 1, then

g(z−) is positive and
√
n/ log n(p̂(z)− p(z)) is asymptotically normal with

variance 1/(4α
√
z) for a bandwidth of order n−1/(2α) with 1/2 ≤ α. This
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result holds also at z = 1 if the kernel has support [0, 1]. Since p is right
Hölder with exponent 1/2 at z = 1,

√
n/ log n(p̂(z)−p(z)) is asymptotically

normal for z = 1 with variance 1/2 if the kernel has support [−1, 0] and the
bandwidth is proportional to

√
log n/n. For z > 1 we have g(z−) = 0, and√

n(p̂(z)− p(z)) is asymptotically normal with variance

1
2

∫ 1

l(z)

1
z − y

1
√
y
dy − 1

4

( ∫ 1

l(z)

1√
z − y

1
√
y
dy
)2
,

where l(z) = min{1, z−1}. This variance is zero for z ≥ 2 so that
√
n(p̂(z)−

p(z)) = op(1) for such z.

It is not very surprising that densities of transformations q(X1, . . . , Xm)
can often be estimated at the rate

√
n. Such densities at a point are rep-

resented as functionals of other densities, and the plug-in principle can be
invoked. The slightly worse rate in our case q(X1, X2) = X2

1 + X2
2 is ex-

plained by the fact that the influence function for the corresponding density
is just barely not square-integrable. For sum of more than two squares, and
for sums |X1|ν + |X2|ν with ν < 2,

√
n-consistency can again be achieved.

For sums |X1|ν + |X2|ν with ν > 2 the Frees estimator behaves more like an
ordinary density estimator; it has the slower rate n−1/ν when the density of
|X1|ν is positive at z−. See Schick and Wefelmeyer (2009).

If g(z−) is zero, then by Proposition 2 the error of p̂(z) is approximated
up to op(1/

√
n) by the average 2A(z, g) defined before Proposition 1. Our

model is locally asymptotically normal, and one can show that p(z) is a
Hellinger differentiable functional of the underlying density f . This implies
that p̂(z) is asymptotically efficient in the sense of a nonparametric version
of the convolution theorem or a local asymptotic minimax theorem.

If g(z−) is positive, then by Proposition 1 the error of p̂(z) is approxi-
mated up to op(

√
log n/n) by the average 2A(z, g1(rb,∞)) with r ∼ log n. We

will show elsewhere that an extended version of local asymptotic normal-
ity still holds with a normalizing rate of order

√
n/ log n. With the help of

such a result we can show that the rate
√
n/ log n is optimal for estimating

p(z) in general (and not just by local U-statistics) and address asymptotic
efficiency of the estimator p̂(z). We get a non-standard rate because of the
non-standard assumption on the density: it is a convolution of two densities
that are not square-integrable.

The literature contains several other density estimation problems under
non-standard assumptions. For discontinuous densities, it is of interest to
estimate location and size of a jump. We refer to Liebscher (1990) and Chu
and Cheng (1996). For densities f with support bounded (to the right, say)
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by an unknown a and falling off as f(a−z) ∼ zα−1 with α > 0, the maximal
observation has rate n−1/α. For these classical results see e.g. Embrechts,
Klüppelberg and Mikosch (1997) or de Haan and Ferreira (2006). A more
general problem is to estimate the boundary of the support of a multivariate
density that falls off steeply at the boundary, or frontier estimation. Recent
references are Korostelev, Simar and Tsybakov (1995) and Hall and Park
(2004).

Our results are stated in Section 2; the proofs are in Section 3.

2. Results. We have the following representation for the density p,

p(z) =
∫ z

0

h(
√
z − y)

2
√
z − y

h(
√
y)

2
√
y
dy,

valid for z > 0. Using the substitution y = zs we find for such z that

p(z) =
∫ 1

0

h(
√
z(1− s))h(

√
zs)

4
√

(1− s)s
ds.

Of course, p(z) = 0 for negative z. The representation shows that p is
bounded if h is. Since the integrand is symmetric about 1/2, we have

(2.1) p(z) = 2
∫ 1/2

0

h(
√
z(1− s))h(

√
zs)

4
√

(1− s)s
ds.

We study the behavior of the estimator p̂(z) at a fixed positive point z.
We shall do so under the following condition on the bandwidth and under
two alternative conditions on the kernel.

(B) The bandwidth b satisfies b→ 0 and nb→∞.

(K+) The kernel k is a bounded density with support [0, 1].

(K–) The kernel k is a bounded density with support [−1, 0].

Let k+ and k− be kernels as specified in (K+) and (K–), respectively.
Write p̂+

b and p̂−b for the corresponding Frees estimators (1.1), stressing the
dependence on the kernel and the bandwidth b. Then we can define a new
kernel k by k(y) = λk−(y/c)/c+(1−λ)k+(y/d)/d for 0 ≤ λ ≤ 1 and positive
c and d. This kernel is a bounded density with support [−c, d]. The Frees
estimator p̂ corresponding to this kernel k is of the form p̂ = λp̂−cb+(1−λ)p̂+

db.
Thus the properties of the estimator corresponding to k are easily derived
from those of the estimators corresponding to k+ and k−.
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When working with condition (K+) we will control the bias by assuming
that the density p is left Hölder at z with exponent α at least 1/2. This
means that

|p(z − s)− p(z)| ≤ Csα, 0 < s < δ,

for some small positive δ and some constant C. When working with condition
(K–) we will control the bias by assuming that the density p is right Hölder
at z with exponent α at least 1/2. In both cases the bias E[p̂(z) − p(z)] =
p ∗ kb(z)− p(z) is of order bα.

The following lemma shows that p is (left and right) Hölder at z with
exponent 1/2 if the density h is of bounded variation.

Lemma 1. Suppose h is of bounded variation. Then p is Hölder with
exponent 1/2 at each positive argument.

If h falls off to 0 from the left of
√
z sufficiently fast, then p is left Hölder

at z with an exponent larger that 1/2. To make this precise, we use the
following assumption.

(H–) There are positive constants B and β such that for some positive δ

h(
√
z − s) ≤ Bsβ, 0 < s < δ.

Lemma 2. Suppose h is of bounded variation and (H–) holds. Then p is
left Hölder at z with exponent greater than 1/2.

When working with (K–) we require a two-sided version of (H–).

(H) There are positive constants B and β such that for some positive δ

h(
√
z − s) ≤ B|s|β, |s| < δ.

Lemma 3. Suppose h is of bounded variation and (H) holds. Then p is
Hölder at z with exponent greater than 1/2.

Higher Hölder exponents can be guaranteed under stronger assumptions
on h. For example, if h is uniformly Lipschitz on (0,∞),

|h(v)− h(u)| ≤ Λ(v − u), 0 < u < v,
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for some constant Λ, then p is Hölder with exponent 1 at each positive
argument. Indeed, we see from (3.4) below that now

|p(z2)− p(z1)| ≤ 2‖h‖Λ
∫ 1

0
(
√
z2s−

√
z1s)

1
4
√
s(1− s)

ds

≤ ‖h‖Λ(
√
z2 −

√
z1)

∫ 1

0

1
2
√

1− s
ds

≤ ‖h‖Λ z2 − z1√
z2 +

√
z1
, 0 < z1 < z2.

Here ‖h‖ denotes the sup-norm of h.
We first study our estimator under condition (K+). The target density

is zero for negative arguments. A kernel with support on the positive axis
guarantees that the estimator p̂ vanishes for negative arguments.

If h(0+) and h(
√
z−) are positive, then g(z−X2

1 ) is not square-integrable.
This is the reason why we lose the parametric rate of p̂(z), as shown next.
For this we compare p̂(z) with its expected value E[p̂(z)] = p ∗ kb(z). To
state our results, for a function ψ on the real line we introduce the notation

A(z, ψ) =
1
n

n∑
j=1

(
ψ(z −X2

j )− E[ψ(z −X2
j )]
)

=
1
n

n∑
j=1

(
ψ(z −X2

j )− ψ ∗ g(z)
)
.

Proposition 1. Let h be of bounded variation with h(0+) positive. Let
(K+) or (K–) hold. Suppose the bandwidth b satisfies (B) and

(2.2) log(1/b)/ log n→ γ

for some γ with 0 < γ ≤ 1. Then for r ∼ log n we have

(2.3) p̂(z)− p ∗ kb(z) = 2A(z, g1(rb,∞)) + op

(√
log n/n

)
and

√
n/ log nA(z, g1(rb,∞)) is asymptotically normal with mean 0 and vari-

ance h2(0+)g(z−)γ. Hence
√
n/ log n(p̂(z)−p∗kb(z)) is asymptotically nor-

mal with mean 0 and variance h2(0+)g(z−)γ.

The requirement (2.2) is met by the choice b ∼ n−γ logτ n for some real τ
which needs to be positive if γ = 1 in order to fulfill (B). If p is left Hölder
with exponent α with 1/2 ≤ α ≤ 1, then the bias p ∗ kb(z)− p(z) is of order
bα. Thus

√
n/ log n(p̂(z)− p(z)) is asymptotically normal with mean 0 and
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variance h2(0+)g(z−)γ if γ > 1/(2α) or if γ = 1/(2α) and τ < 1/(2α). The
smallest asymptotic variance corresponds to the choice γ = 1/(2α). If we
know only that the density h is of bounded variation, then α may be as
small as 1/2, and γ = 1.

Theorem 1. Let h be of bounded variation with h(0+) positive. Let
(K+) or (K–) hold and suppose that b ∼

√
log n/n. Then

√
n/ log n(p̂(z)−

p(z)) is asymptotically normal with mean 0 and variance h2(0+)g(z−).

Proposition 1 shows that the estimator p̂(z) cannot have a faster rate
than

√
log n/n if g(z−) is positive.

We now address the case when g(z−) = 0.

Proposition 2. Let h be of bounded variation. Let (B) hold. Assume
that either (H–) and (K+) or (H) and (K–) hold. Then

(2.4) p̂(z)− p ∗ kb(z) = 2A(z, g) + op(1/
√
n),

and
√
n(p̂(z)−p∗kb(z)) is asymptotically normal with mean 0 and variance

4 Var(g(z −X2
1 )).

Since the Hölder exponent α is usually unknown, we should choose b as
in Theorem 1 and obtain the following result.

Theorem 2. Let h be of bounded variation. Assume that either (H–)
and (K+) or (H) and (K–) hold. Let b ∼

√
log n/n. Then

√
n(p̂(z) − p(z))

is asymptotically normal with mean 0 and variance 4 Var(g(z −X2
1 )).

The choice b ∼
√

log n/n works in both theorems and gives optimal con-
vergence rate

√
log n/n if g(z−) is positive, and the rate 1/

√
n if g(z−) is

zero and the assumptions of Theorem 2 hold.
If we are sure that h is Lipschitz, then we can choose b ∼ 1/

√
n log n

and obtain that
√
n/ log n(p̂(z)− p(z)) is asymptotically normal with mean

0 and variance h2(0+)g(z−)/2 if g(z−) is positive, and
√
n(p̂(z) − p(z)) is

asymptotically normal with mean 0 and variance 4 Var(g(z−X2
1 )) under the

assumptions of Theorem 2.
If p has a second derivative at z and the kernel k has mean zero and

compact support, then the bias is of order O(b2). Thus we have the following
result.

Theorem 3. Assume that h is of bounded variation and that p is twice
differentiable at z. Suppose that k is a bounded symmetric density with sup-
port [−1, 1] and b ∼ (n log n)−1/4. Then the following hold.
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(i) If h(0+) is positive, then
√
n/ log n(p̂(z)−p(z)) is asymptotically nor-

mal with mean 0 and variance h2(0+)g(z−)/4.
(ii) If (H) holds, then

√
n(p̂(z)−p(z)) is asymptotically normal with mean

0 and variance 4 Var(g(z −X2
1 )).

We conclude this section by showing that we can replace in the above
results the constant bandwidth b by a random bandwidth of the form ŝb for
some positive random variable ŝ such that ŝ + 1/ŝ = Op(1). This requires
that we also use a continuously differentiable kernel.

It should be clear that the treatment of the bias is unaffected by this
choice of random bandwidth. To treat the variance term, write p̂sb(z) for
the Frees estimator with bandwidth sb and p̄sb(z) = p ∗ ksb(z) for its mean,
where s is positive. In order to use a random bandwidth ŝb as above, we
need to show that for each compact interval I contained in (0,∞) one has

(2.5) sup
s∈I

|p̂sb(z)− p̄sb(z)− 2A(z, g1(b log n,∞))| = op

(√
log n/n

)
or, respectively,

(2.6) sup
z∈I

|p̂sb(z)− p̄sb(z)− 2A(z, g)| = op(1/
√
n).

Note that (2.5) is a uniform version of (2.3) with b replaced by sb and
sr = log n, and (2.6) is a uniform version of (2.4) with b replaced by sb. Thus
(2.5) holds if the sequence {

√
n/ log n(p̂sb(z)− p̄sb(z)), s ∈ I} of processes is

tight in C(I), while (2.6) holds if the sequence {
√
n(p̂sb(z)− p̄sb(z)), s ∈ I}

of processes is tight in C(I). Conditions for tightness are given next.

Proposition 3. Suppose the kernel k is a continuously differentiable
density with support contained in [−1, 1]. Let h have bounded variation and
let I be a compact interval in (0,∞). Then the sequence {

√
n/ log n(p̂sb(z)−

p̄sb(z)), s ∈ I} of processes is tight in C(I). If also (H–) holds, then the
sequence {

√
n(p̂sb(z)− p̄sb(z)), s ∈ I} of processes is tight in C(I).

3. Proofs. This section contains the proofs of Lemmas 1 to 3 and of
Propositions 1 to 3. In what follows we repeatedly use the inequalities

(3.1) (s+ t)γ ≤ sγ + tγ and tγ − sγ ≤ (t− s)γ

valid for 0 ≤ s < t and 0 < γ ≤ 1.

Proof of Lemma 1. Since h is of bounded variation, we may assume that
h(y) =

∫
1[0 ≤ t ≤ y]ν(dt), where ν is the difference ν1 − ν2 of two finite
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measures. Write µ = ν1 + ν2, and set∫ v

u
r(t)µ(dt) =

∫
r(t)1[u < t ≤ v]µ(dt)

for 0 ≤ u ≤ v <∞. Then

(3.2) |h(v)− h(u)| ≤
∫ v

u
µ(dt).

Let
w(s) =

1[0 < s < 1]
2
√
s · 2

√
1− s

.

It is easy to check that

(3.3)
∫ v

u
w(s) ds ≤

√
v − u, 0 < u < v < 1.

We can write

|p(z2)− p(z1)| ≤ ‖h‖
∫
|h(
√
z1s)− h(

√
z2s)|w(s) ds

+ ‖h‖
∫ ∣∣∣h(√z1(1− s)

)
− h

(√
z2(1− s)

)∣∣∣w(s) ds.

Using the substitution u = 1 − s and the identity w(s) = w(1 − s), we see
that the two integrals on the right-hand side are the same. Thus we have

(3.4) |p(z2)− p(z1)| ≤ 2‖h‖
∫
|h(
√
z1s)− h(

√
z2s)|w(s) ds

for 0 < z1 < z2. Using (3.2) and (3.3), we can bound the integral on the
right-hand side by∫ ∫ √

z2s

√
z1s

µ(dt)w(s) ds =
∫ √

z2

0

∫ t2/z1

t2/z2

w(s) ds µ(dt)

≤
√

1
z1
− 1
z2

∫ √
z2

0
t µ(dt)

and thus obtain

|p(z2)− p(z1)| ≤ 2‖h‖
√
z2 − z1
z1

µ[0,
√
z2], 0 < z1 < z2.

Since µ is a finite measure, this yields the desired result.
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Proof of Lemma 2. It suffices to show that

(3.5) |p(uz)− p(z)| ≤ D(1− u)α, 1/2 < u < 1,

for some positive D and some α > 1/2. Since h is of bounded variation, it
follows that h is bounded, and thus we may assume that (H–) holds with
δ = z. Thus

(3.6) h(
√
zv) ≤ Bzβ(1− v)β , 0 ≤ v ≤ 1.

From now on we assume w.l.g. that β ≤ 1/2. In view of the representation
(2.1), we can bound the left-hand side of (3.5) by 2(I1 + I2), where

I1 =
∫ 1/2

0

|h(
√
uz(1− s))− h(

√
z(1− s))|h(

√
uzs)

4
√
s(1− s)

ds

≤ ‖h‖
∫ 1/2

0

|h(
√
uz(1− s))− h(

√
z(1− s))|

2
√
s

ds,

I2 =
∫ 1/2

0

h(
√
z(1− s))|h(

√
uzs)− h(

√
zs)|

4
√
s(1− s)

ds

≤ Bzβ
∫ 1/2

0
|h(
√
uzs)− h(

√
zs)|sβ−1/2 ds.

Using (3.2) and (3.1) with γ = β + 1/2, we can write∫ 1/2

0
|h(
√
uzs)− h(

√
zs)|sβ−1/2 ds =

∫ 1/2

0

∫ √
zs

√
uzs

µ(dt)sβ−1/2 ds

=
∫ √z/2

0

∫ t2/(uz)

t2/z
sβ−1/2 ds µ(dt)

≤
∫ √z/2

0

(
t2

uz −
t2

z

)β+1/2

β + 1/2
µ(dt)

≤ (1− u)β+1/2

β + 1/2
µ(0,∞).

Let 0 < η < 1/2. Using (3.6) with v = 1− s and v = u(1− s), we obtain

I11 =
∫ η

0

∣∣∣h(√uz(1− s)
)
− h

(√
z(1− s)

)∣∣∣ ds
2
√
s

≤
∫ η

0
Bzβ((1− u(1− s))β + sβ) ds

2
√
s
.
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By (3.1) we have (1−u(1−s))β = (s+(1−s)(1−u))β ≤ sβ +(1−s)β(1−u)β

and therefore
I11 ≤ Bzβ

∫ η

0

(
2sβ + (1− u)β) ds

2
√
s

= Bzβ
( ηβ+1/2

β + 1/2
+ (1− u)β√η

)
.

Using (3.2),

I12 =
∫ 1/2

η

∣∣∣h(√uz(1− s)
)
− h

(√
z(1− s)

)∣∣∣ ds
2
√
s

≤ 1
2
√
η

∫ 1/2

η

∫ √z(1−s)

√
uz(1−s)

µ(dt) ds

=
1

2
√
η

∫ √z(1−η)

√
uz/2

∫ 1−t2/z

1−t2/(uz)
ds µ(dt)

≤ 1
2
√
η

1− u

u
µ(0,∞).

The above shows that there is a constant C such that

|p(uz)− p(z)| ≤ C
(
ηβ+1/2 + (1− u)β√η +

1− u
√
η

+ (1− u)β+1/2
)

for all η and u such that 0 < η ≤ 1/2 < u < 1. Taking η to be the smaller of
1/2 and (1−u)1/(β+1), we see that (3.5) holds with α = (2β+1)/(2β+2).

Proof of Lemma 3. In view of Lemma 2 we only need to show that

(3.7) |p(uz)− p(z)| ≤ D(u− 1)α, 1 < u < 3/2,

for some positive D and some α > 1/2. In view of (H) and since h is bounded
we may assume that

h(
√
zv) ≤ Bzβ |1− v|β, 0 ≤ v ≤ 3/2,

and 0 < β ≤ 1/2. We then calculate as in the proof of Lemma 2 that

|p(uz)− p(z)| ≤ C
(
ηβ+1/2 + (u− 1)β√η +

u− 1
√
η

+ (u− 1)β+1/2
)

for some constant C and for all η and u such that 0 < η ≤ 1/2 and 1 < u <
3/2. Taking η to be the smaller of 1/2 and (u− 1)1/(β+1), we see that (3.7)
holds with α = (2β + 1)/(2β + 2).
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Proof of Proposition 1. For c < d < z, we have

Γ(c, d) = sup
c<s<d

g(z − s) ≤ ‖h‖
2
√
z − d

.

It follows from the assumptions on h that Γ(0, t) → g(z−) as t ↓ 0. Since
2
√
tg(t) ≤ ‖h‖, we obtain for 0 < u < v,

(3.8)
∫ v

u
g(t) dt ≤ ‖h‖(

√
v −

√
u) ≤ ‖h‖

√
v − u.

Note that for bounded ψ,

(3.9) nE[A2(z, ψ)] = ψ2 ∗ g(z)− (ψ ∗ g(z))2 ≤ ψ2 ∗ g(z).

The Hoeffding decomposition of the U-statistic p̂(z) is

p̂(z) = p ∗ kb(z) + 2A(z, g ∗ kb) + U(z)

where

U(z) =
2

n(n− 1)

∑
1≤i<j≤n

(
kb(z −X2

i −X2
j )

− g ∗ kb(z −X2
i )− g ∗ kb(z −X2

j ) + p ∗ kb(z)
)
.

We have

(3.10) n(n− 1)E[U2(z)] ≤ 2E[k2
b (z −X2

1 −X2
2 )] = 2k2

b ∗ p(z)

and

(3.11) k2
b ∗ p(z) =

∫
p(z − bu)k2(u) du/b ≤ ‖p‖

∫
k2(u) du/b.

Since p and k are bounded, we obtain

(3.12) U(z) = Op(1/(nb1/2)) = op(1/
√
n)

by (B).
Let [−a, c] denote the support of kb. We have [−a, c] = [0, b] under (K+)

and [−a, c] = [−b, 0] under (K–). Set gb = g ∗ kb. We will now show that

(3.13) T1 = A(z, gb1(−∞,rb)) = Op

(√
rΓ(−a, rb)/n

)
and

(3.14) T2 = A(z, gb1[rb,∞))−A(z, g1[rb,∞)) = op(1/
√
n).
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Note that gb(y) = 0 for y ≤ −a. For y > −a, applications of the Cauchy–
Schwarz inequality and (3.8) yield

(3.15) g2
b (y) =

(∫ c

−a
g(y − u)kb(u) du

)2

≤
∫ b

−a
g2(y − u)kb(u) du

and

(3.16) g2
b (y) ≤

∫ c

−a
g(y − u) du

∫ c

−a
g(y − u)k2

b (u) du ≤
√
b‖h‖‖kb‖gb(y).

Now we use (3.9) and (3.16) to derive the bound

nE[T 2
1 ] ≤

√
b‖h‖‖kb‖

∫ rb

−a
g(z − y)gb(y) dy.

In view of (3.8) we obtain∫ rb

−a
g(z − y)gb(y) dy ≤ Γ(−a, rb)

∫ rb

−a
gb(y) dy ≤ Γ(−a, rb)‖h‖

√
rb+ a.

Thus we have nE[T 2
1 ] ≤ ‖h‖2‖k‖Γ(−a, rb)

√
r + 1 which yields (3.13).

Note that

(3.17) |gb − g|1[s,∞) ≤
‖h‖√
s− b

, s > b.

Next we show that there is a constant C such that

(3.18)
∫ ∞

s
(gb(t)− g(t))2 dt ≤ Cb

s− b
, s > b.

For b < s ≤ t and |u| < b we have

(3.19)
|g(t− u)− g(t)| ≤ |h(

√
t− u)− h(

√
t)|

2
√
t− u

+ h(
√
t)
∣∣∣ 1
2
√
t− u

− 1
2
√
t

∣∣∣
≤ |h(

√
t− u)− h(

√
t)|

2
√
s− b

+
b‖h‖

4(t− b)3/2
.

Since h is of bounded variation and the map ϕ defined by ϕ(t) =
√

max(0, t)
is nondecreasing, h ◦ϕ is of bounded variation. Thus, as shown in the proof
of Lemma 8 of Schick and Wefelmeyer (2007), there is a constant L such
that ∫

|h ◦ ϕ(t− u)− h ◦ ϕ(t)| dt ≤ L|u|, u ∈ R.
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In particular, we have∫ ∞

s
|h(
√
t− u)− h(

√
t)| dt ≤ L|u|, |u| ≤ s.

Using this and (3.19) we obtain∫ ∞

s
|gb(t)− g(t)| dt ≤ sup

0<u<b

∫ ∞

s
|g(t− u)− g(t)| dt ≤ (L+ ‖h‖)b

2
√
s− b

for s > b. From this and (3.17) we derive (3.18) with C = ‖h‖(L+ ‖h‖)/2.
To prove (3.14), we write T2 = A(z, (gb − g)1[rb,∞)). Using (3.8), (3.9),

(3.17) and (3.18) and setting zr = z − 1/r, we obtain the bound

nE[T 2
2 ] ≤

∫ z

rb
g(z − t)(gb(t)− g(t))2 dy

≤ Γ(rb, zr)
∫ zr

rb
(gb(t)− g(t))2 dt+

‖h‖2

zr − b

∫ z

zr

g(z − t) dt

≤ ‖h‖
√
rCb

rb− b
+

‖h‖3

(zr − b)
√
r

= O(1/
√
r),

which implies (3.14).
The Hoeffding decomposition and relations (3.12)–(3.14) imply√

n/ log n(p̂(z)− p ∗ kb(z)) = 2T + op(1),

where

T =
√
n/ log nA(z, g1[rb,∞)) =

n∑
j=1

(Znj − E[Znj ])

with
Znj =

1√
n log n

(g1[rb,∞))(z −X2
j ).

We have √
n log nE[Znj ] = g1[rb,∞) ∗ g(z) ≤ g ∗ g(z) = p(z).

With e = rb+ 1/r we derive

(g1[rb,e])
2 ∗ g(z) =

∫ e

rb

h2(
√
t)g(z − t)
4t

dt =
(1
4
h2(0+)g(z−)+ o(1)

)
log

( e
rb

)
,

(g1(e,z/2])
2 ∗ g(z) =

∫ z/2

e

h2(
√
t)g(z − t)
4t

dt ≤ − log
(2e
z

)
‖h‖2Γ(e, z/2),
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(g1(z/2,∞))
2 ∗ g(z) =

∫ z

z/2

h2(
√
t)g(z − t)
4t

dt ≤ ‖h‖2

2z
.

Since − log e = o(log n) and log(1/b)/ log n→ γ, we obtain

nE[Z2
nj ] =

(g1[rb,∞))2 ∗ g(z)
log n

=
1
4
h2(0+)g(z−)γ + o(1)

and thus
n∑

j=1

VarZnj =
1
4
h2(0+)g(z−)γ + o(1).

Also,

0 ≤ Znj ≤
‖h‖√

rbn log n
= o(1).

This implies the Lindeberg condition. Thus, by the Lindeberg–Feller cen-
tral limit theorem, T is asymptotically normal with mean 0 and variance
h2(0+)g(z−)γ/4.

Proof of Proposition 2. We use the notation of the proof of Propo-
sition 1. The stronger requirements on b are not needed for the proofs of
(3.12), (3.13) and (3.14). By our assumptions on h,

g2(z − t)g(t) ≤ B3(z − t)β−1t2β−1/21[0 < t < z].

Thus g(z−X2
1 ) has a finite second moment. Therefore

√
nA(z, g) is asymp-

totically normal with mean 0 and variance Var g(z −X2
1 ), and

A(z, g1(−∞,rb)) = op(1/
√
n).

This and the results of the proof of Proposition 1 yield

p̂(z)− p ∗ kb(z) = 2A(z, g) + 2T1 + op(1/
√
n).

Under (K+) and (H–) we have rΓ(−a, rb) = rΓ(0, rb) ≤ Br1+βbβ, and under
(K–) and (H) we have rΓ(−a, rb) ≤ Br1+βbβ . Thus in each case we have
T1 = op(1/

√
n) in view of (3.13).

Proof of Proposition 3. Write I = [L,R]. The assumptions on the kernel
imply that there is a constant K such that

‖kt − ks‖1 + ‖kt − ks‖2 ≤ K|t− s|, s, t ∈ I.

The Hoeffding decomposition yields

p̂sb(z)− p̄sb(z) = 2As + Us
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where As = A(z, g ∗ ksb) and

Us =
2

n(n− 1)

∑
1≤i<j≤n

(
ksb(z−Yi−Yj)−g∗ksb(z−Yi)−g∗ksb(z−Yj)+p̄sb(z)

)
.

Now fix s and t in I and set ∆ = kt − ks and ∆b = ktb − ksb. Then
∆b(x) = ∆(x/b)/b. Using (3.10) and (3.11) with k replaced by ∆ we de-
rive the inequality

n(n− 1)bE[(Ut − Us)2] ≤ 2‖p‖‖∆‖2
2.

We have the identity At − As = A(z, g ∗ ktb − g ∗ ksb) = A(z, g ∗ ∆b). This
and (3.9) yield the bound

nE[(At −As)2] ≤ g ∗ (g ∗∆b)2(z) =
∫
g(z − y)(g ∗∆b)2(y) dy.

Since ∆b has support contained in [−Rb,Rb], an application of the Cauchy–
Schwarz inequality and the use of (3.8) yield

(g ∗∆b)2(y) ≤
∫
g(y − u)∆2

b(u) du
∫ Rb

−Rb
g(y − u) du

≤ g ∗∆2
b(y)

√
2Rb‖h‖

and ∫ 2Rb

−∞
g ∗∆2

b(y) dy ≤ ‖∆b‖2
2

∫ 3Rb

0
g(v) dv ≤ ‖∆b‖2

2

√
3bR‖h‖.

These inequalities and the identity b‖∆b‖2
2 = ‖∆‖2

2 give the bound

I1 =
∫ 2Rb

−∞
g(z − y)(g ∗∆b)2(y) dy ≤

√
6RΓ(−∞, 2Rb)‖h‖2‖∆‖2

2.

An application of the Cauchy–Schwarz inequality yields

(g ∗∆b)2(y) ≤
∫
g2(y − u)|∆b(u)| du‖∆b‖1, y > 2Rb.

Since ‖∆b‖1 = ‖∆‖1, we obtain with δ > 0 that

I2 =
∫ 2Rb+δ

2Rb
g(z − y)(g ∗∆b)2(y) dy

≤ ‖∆‖1

∫∫
2Rb<y+bu<2Rb+δ

g(z − y − bu)g2(y)|∆(u)| dy du

≤ ‖∆‖2
1Γ(2Rb, 2Rb+ δ)‖h‖2

∫ 3Rb+δ

Rb

1
4x

dx
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and
I3 =

∫ z

2Rb+δ
g(z − y)(g ∗∆b)2(y) dy ≤ ‖∆‖2

1‖h‖
1

2
√
δ
‖p‖.

The above show that there is a constant M such that

(3.20) n2bE[(Ut − Us)2] ≤M |t− s|2, s, t ∈ I,

and

(3.21) nE[(At −As)2] ≤M |t− s|2 log n, s, t ∈ I.

The latter can be improved if (H–) holds. Then we have

g(z − y − bu) ≤ B(y + bu)β ≤ B(2y)β, 2Rb < y, |u| ≤ R,

and obtain

I2 ≤ ‖∆‖1

∫∫
2Rb<y+bu<2Rb+δ

2βByβg2(y)|∆(u)| dy du

≤ ‖∆‖2
1‖h‖22βB

∫ 3Rb+δ

Rb
yβ−1 dy.

Thus if (H–) holds we obtain

(3.22) nE[(At −As)2] ≤M |t− s|2, s, t ∈ I.

The result now follows from Theorem 12.3 in Billingsley (1968).
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