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Abstract. Recent results show that densities of convolutions can be esti-

mated by local U-statistics at the root-n rate in various norms. Motivated by

this and the fact that convolutions of normal densities are normal, we intro-

duce new tests for normality which use as test statistics weighted L1-distances

between the standard normal density and local U-statistics based on standard-

ized observations. We show that such test statistics converge at the root-n rate

and determine their limit distributions as functionals of Gaussian processes.

We also address a choice of bandwidth. Simulations show that our tests are

competitive with other tests of normality.

1. Introduction

Suppose we observe independent and identically distributed random variables
X1, . . . , Xn with mean µ and finite variance σ2. We want to test the hypothesis
that the observations are normally distributed. The literature contains a wealth
of goodness-of-fit tests for this purpose, in particular the tests of Lilliefors (1967),
Shapiro–Wilk (1965), Csörgő (1986), and the BHEP test introduced by Epps and
Pulley (1983) and Baringhaus and Henze (1988).

Let Φ denote the standard normal distribution function, and let F2 denote the
distribution function of

X1 + X2 − 2µ

σ
√

2
.

The Lévy characterization says that X1 has a normal distribution if and only if
F2 = Φ. This can be used to test for normality. Arcones and Wang (2006) estimate
F2(x) by the U-statistic

F2(x) =
2

n(n− 1)

∑
1≤i<j≤n

1[Ẑi + Ẑj ≤ x]

based on estimated observations Ẑj = (Xj − X̄)/(σ̂
√

2) of Zj = (Xj − µ)/(σ
√

2),
where X̄ is the sample mean and σ̂ is the sample standard deviation. They propose
the Kolmogorov–Smirnov-type test statistic

(1) sup
x∈R

|F2(x)− Φ(x)|.
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Instead of comparing distribution functions, we can also compare densities. Den-
sities of convolutions can be estimated at the root-n rate by local U-statistics; see
Frees (1994), Saavedra and Cao (2000) for pointwise rates, and Schick and We-
felmeyer (2004, 2007) and Giné and Mason (2007) for rates in various norms and
functional central limit theorems in the corresponding function spaces. Du and
Schick (2007) consider estimating derivatives of convolution densities. The results
of Giné and Mason (2007) and Du and Schick (2007) cover random bandwidths.

Motivated by these results, we estimate the density f2 of F2 at x by the local
U-statistic

f̂2(x) =
2

n(n− 1)

∑
1≤i<j≤n

kb(x− Ẑi − Ẑj)

with kb(x) = k(x/b)/b for a kernel k and a bandwidth b. This suggests test statistics
of the form ‖f̂2 − ϕ‖ with ‖ ‖ a norm and ϕ the standard normal density. Here we
use the V-norm

(2) ‖f̂2 − ϕ‖V =
∫
|f̂2(x)− ϕ(x)|V (x) dx,

which is a weighted L1-norm, with positive weight function V . Let LV denote the
space of functions with finite V-norm. Schick and Wefelmeyer (2004) have shown
root-n consistency and a functional central limit theorem in LV for the version f̃2

of f̂2 which is obtained by replacing the estimated Ẑj by the true Zj ,

f̃2(x) =
2

n(n− 1)

∑
1≤i<j≤n

kb(x− Zi − Zj).

More precisely, their result shows that, under mild assumptions, the expansion

‖f̃2 − f2 −H‖V = op(n−1/2)

holds with

H(x) =
1
n

n∑
j=1

(
2g(x− Zj)− 2f2(x)

)
and g the density of Z1, and that n1/2H converges in distribution in LV to a centered
Gaussian process. Under the null hypothesis of normality, g is the normal density
with mean 0 and variance 1/2, and f2 = ϕ.

We show that under the null hypothesis, the stochastic expansion

(3) ‖f̂2 − ϕ−G‖V = op(n−1/2)

holds with

G(x) =
1
n

n∑
j=1

(
2g(x− Zj)− 2ϕ(x)− 2Zjxϕ(x)− (Z2

j − 1/2)(x2 − 1)ϕ(x)
)
,

and that n1/2G converges in distribution in LV to a centered Gaussian process.
This implies that the random variable ‖n1/2G‖V converges in distribution to some
random variable Γ . Thus, under the null hypothesis, the test statistic T = n1/2‖f̂2−
ϕ‖V also converges in distribution to Γ . A test of asymptotic level α is obtained
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by rejecting the null hypothesis if T exceeds the (1 − α)-quantile of Γ . Since the
distribution of Γ is intractable, the quantile must be determined by simulation.
We compare the power of our test for various choices of weight function V with
other tests available in the literature. Our simulations show that our tests are quite
competitive.

2. Result

We now give conditions under which the stochastic expansion (3) holds. As
in Schick and Wefelmeyer (2004) we require the weight function V to satisfy the
following conditions:

The function V is continuous at 0 with V (0) = 1 and satisfies

V (x + y) ≤ V (x)V (y), x, y ∈ R,

V (sx) ≤ V (x), |s| ≤ 1, x ∈ R.

In addition, we require the integrability condition∫
(1 + |x|)2V 2(x)ϕ(x) dx < ∞.

Possible choices of V are V (x) = 1, which yields the usual L1-norm, and V (x) =
(1 + |x|)r and V (x) = exp(r|x|) with r ≥ 0.

We assume that the kernel k is an absolutely continuous and symmetric density
and satisfies the integrability conditions∫

(1 + |x|)2V 2(
√

2x)(k2(x) + x2k′2(x)) dx < ∞,∫
k(x)(1 + |x|)2V (

√
2x) dx < ∞.

Possible kernels are the normal kernel or absolutely continuous densities with com-
pact support such as the Epanechnikov kernel.

To allow for some data-driven bandwidth selection we assume that the bandwidth
b is of the form b = λ̂c for nonstochastic c = cn satisfying ncn →∞ and nc4

n → 0,
and positive random variables λ̂ = λ̂n such that λ̂n+1/λ̂n is bounded in probability.

Theorem 1. Suppose the weight function V , the kernel k and the bandwidth b

are as above. Then, under the null hypothesis of normality, we have the stochastic
expansion (3), and the test statistic T = n1/2‖f̂2 − ϕ‖V converges in distribution
to Γ .

It is well known that the quality of kernel estimators depends crucially on the
choice of bandwidth, see e.g. Wand and Jones (1995). This is to some extent also
true for the local U-statistic f̃2. If µ and σ are known, we use a bandwidth which
minimizes the mean integrated squared error M(b) = E[(

∫
(f̃2(x)−φ(x))2 dx]. Using

the Hoeffding decomposition, we obtain

M(b) =
4τ

n
+

2
n(n− 1)b

‖K2‖1 +
b4

4
‖(φ′′)2‖1σ4

K + O
(b2

n
+

1
n2

)
+ o(b4),
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where τ =
∫

(g2 ∗ g(x) − φ2(x))dx, ‖K2‖1 =
∫

K2(u)du, ‖(φ′′)2‖1 =
∫

(φ′′(u))2du,
σ2

K =
∫

u2K(u)du, and g = φ1/2 is the normal density with mean zero and variance
1/2. The minimizer of M(b) is asymptotically equal to the minimizer of

2
n2b

‖K2‖1 +
b4

4
‖(φ′′2)2‖1σ4

K ,

which is

(4) b∗ =
( 2||K2||1

n2||(φ′′)2||1σ4
K

)1/5

.

Estimating µ and σ is not expected to have a large effect on the optimal bandwidth.
For this reason we work with b∗ in the simulations below.

Brownrigg and Khmaladze (2010) have observed that it is difficult to distinguish
between a normal density and the convolution of this density with another (cen-
tered) density. For such alternatives, our estimator will also not work well. It is not
essential here that the first density is normal. One explanation of this phenomenon
is the following. Suppose we observe independent copies X1, . . . , Xn of a random
variable X. Consider, for simplicity, the problem of testing the one-point hypothe-
sis that X has density f . Introduce a one-dimensional family of alternatives under
which X is distributed as Y +aZ, where Y has density f and Z is independent of Y

and has a mean zero density g. Here a is a (non-negative) parameter. Under such
an alternative, X has density fa(x) =

∫
f(x − az)g(z) dz, and, under appropriate

conditions, its derivative with respect to a is ḟa(x) = −
∫

zf ′(x−az)g(z) dz. Hence
ḟ0 ≡ 0. In particular, the score function vanishes at a = 0. This will typically
imply that alternatives are contiguous even for parameters a of order n−1/4, not
just for the usual order n−1/2.

Specifically, let f be the standard normal density, and let g be the density of the
uniform distribution on the interval (−1/2, 1/2). Then fa(x) =

∫ 1/2

−1/2
f(x− az) dz.

The square-root sa(x) =
√

fa(x) is twice continuously differentiable in a with
derivatives

ṡa(x) = −

∫ 1/2

−1/2
f ′(x− az)z dz

2sa(x)

and

s̈a(x) =

∫ 1/2

−1/2
f ′′(x− az)z2 dz

2sa(x)
−

( ∫ 1/2

−1/2
f ′(x− az)z dz

)2

4s3
a(x)

.

Since ṡ0(x) = 0 for all x, we have

sa(x)− s0(x) = a2

∫ 1

0

(1− t)s̈ta(x) dt.
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For the standard normal density f we have −f ′(x) = xf(x) = xs(x)s(x) with
s(x) =

√
f(x) = s0(x). Two applications of the Cauchy–Schwarz inequality yield( ∫ 1/2

−1/2

f ′(x− az)z dz
)2

≤ s2
a(x)

∫ 1/2

−1/2

(x− az)2f(x− az)z2 dz

≤ s3
a(x)

( ∫ 1/2

−1/2

(x− az)4f(x− az)z4 dz
)1/2

.

For the standard normal density f we also have f ′′(x) = (x2−1)f(x). The Cauchy–
Schwarz inequality therefore yields∣∣∣ ∫ 1/2

−1/2

f ′′(x− az)z2 dz
∣∣∣ ≤ sa(x)

( ∫ 1/2

−1/2

(
(x− az)2 − 1

)2
f(x− az)z4 dz

)1/2

.

From this we derive that

|s̈a(x)| ≤
( ∫ 1/2

−1/2

(
1 + (x− az)4

)
f(x− az)z4 dz

)1/2

and can conclude∫
|s̈a(x)|2 dx ≤

∫ ∫ 1/2

−1/2

(
1 + (x− az)4

)
f(x− az)z4 dz dx

=
∫

(1 + x4)f(x) dx

∫ 1/2

−1/2

z4 dz ≤ 1.

Since s̈a(x) → s̈0(x) as is easily checked, and

s̈0(x) =
f ′′(x)

2
√

f(x)

∫ 1/2

−1/2

z2 dz =
1
24

(x2 − 1)
√

f(x),

we conclude from the above that∫ (
sa(x)− s0(x)− 1

48
a2(x2 − 1)

√
f(x)

)2

dx = o(a4).

This means that sa is twice Hellinger differentiable at a = 0, with vanishing first
derivative. It implies that the likelihood ratio of the observations (X1, . . . , Xn)
under a = tn−1/4 and under a = 0 is asymptotically normal for each t > 0. Hence
the distributions of the observations (X1, . . . , Xn) under a = 0 and a = tn−1/4 are
mutually contiguous. We refer to Le Cam and Yang (2000, Section 6.2) for these
results.

3. Simulations

For practical purposes, our test statistics need to be evaluated by numerical
integration, and for this it is convenient to replace the domain of integration by a
symmetric interval. This is done in the simulations reported below. We evaluate
the integral from −3 to 3 and divide the interval into 24 equally spaced subintervals
of length 1/4. The integrals over these subintervals are evaluated using the 7-point
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closed Newton–Cotes formula: for a subinterval [a, b], we pick h = (b−a)/6 = 1/24,
and approximate the integral

∫ b

a
g(x)dx by

h

140

(
41g(a)+216g(a + h) + 27g(a + 2h) + 272g(a + 3h)

+ 27g(a + 4h) + 216g(a + 5h) + 41g(a + 6h)
)
.

We will compare our tests based on (2) with several other tests of normality. The
test statistic AW of Arcones and Wang (2006) is described in (1). We also consider
the QH test proposed by Chen and Shapiro (1995). It has power comparable or
superior to the original Shapiro–Wilk test and is based on the test statistic

1− 1
(n− 1)σ̂

n−1∑
j=1

Xi+1 −Xi

Hi+1 −Hi
,

where Hi is the (i − 3/8)/(n + 1/4) quantile of the standard normal distribution.
The CS test of Csörgő (1986) is based on the test statistic

sup
|t|≤T

∣∣|χ̂(t)|2 − exp (−t2)
∣∣

with

χ̂(t) =
1
n

n∑
j=1

exp(it
√

nẐj).

As recommended by Csörgő (1986), in the simulations we use instead the test
statistic

sup
−102≤k≤102

∣∣|χ̂((1.47)10−2k)
∣∣2 − exp

(
− ((1.47)10−2k)2

)∣∣.
The BHEP test proposed by Epps and Pulley (1983) and Baringhaus and Henze
(1988) is based on the test statistic∫ (

χ̂(t)− exp(−t2/2)
)2 exp(−t2/2) dt.

The following table shows the critical values for size .05 of our test statistic (2)
with three different norms,

V1(x) = 1, V2(x) = (1 + |x|)4, V3(x) = exp(|x|).

In all three cases we use the bandwidth b∗ as given in (4). As kernel k we take the
standard normal density φ. The critical values were generated for sample sizes 30,
50, 100 and 200 using 10,000 simulations.

Table 1: Critical values for size .05.

V1 V2 V3

n = 30 0.15647500 5.642335 0.6261157
n = 50 0.12657350 4.661203 0.5101362
n = 100 0.09080627 3.353047 0.3691862
n = 200 0.06573999 2.428222 0.2669440
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The following tables present the power of the above tests for some selected al-
ternatives.

Table 2: Power for Gamma(18,1)

QH CS BHEP AW V1 V2 V3

n = 30 0.1375 0.1201 0.1044 0.1275 0.1418 0.1480 0.1476
n = 50 0.2018 0.1660 0.1262 0.1901 0.2181 0.2309 0.2326
n = 100 0.3849 0.3045 0.1805 0.3877 0.4159 0.4503 0.4432
n = 200 0.6817 0.5502 0.2362 0.6757 0.6937 0.7355 0.7307

Table 3: Power for Weibull(10,2)

QH CS BHEP AW V1 V2 V3

n = 30 0.2144 0.1966 0.1529 0.1989 0.2289 0.2382 0.2385
n = 50 0.3386 0.2879 0.1988 0.3225 0.3680 0.3813 0.3851
n = 100 0.6409 0.5469 0.3155 0.6318 0.6717 0.7072 0.7001
n = 200 0.9176 0.8417 0.4532 0.9089 0.9196 0.9425 0.9389

Table 4: Power for Beta(23,3)

QH CS BHEP AW V1 V2 V3

n = 30 0.4238 0.3645 0.2360 0.3331 0.4033 0.4329 0.4270
n = 50 0.6717 0.5543 0.3273 0.5423 0.6457 0.7076 0.6986
n = 100 0.9634 0.8808 0.4985 0.8976 0.9423 0.9709 0.9642
n = 200 1.0000 0.9972 0.6961 0.9987 0.9997 1.0000 1.0000

Table 5: Power for rlnorm(Nn,0,.2)

QH CS BHEP AW V1 V2 V3

n = 30 0.1962 0.1740 0.1471 0.1825 0.2065 0.2103 0.2094
n = 50 0.2968 0.2458 0.1959 0.2915 0.3239 0.3402 0.3441
n = 100 0.5619 0.4567 0.2976 0.5616 0.5924 0.6280 0.6215
n = 200 0.8601 0.7464 0.4187 0.8559 0.8704 0.8953 0.8907

Table 6: Power for F(30,20)

QH CS BHEP AW V1 V2 V3

n = 30 0.6477 0.5950 0.4899 0.5880 0.6536 0.6661 0.6643
n = 50 0.8627 0.7960 0.6508 0.8103 0.8650 0.8880 0.8854
n = 100 0.9939 0.9810 0.8816 0.9872 0.9926 0.9969 0.9960
n = 200 1.0000 0.9998 0.9852 1.0000 1.0000 1.0000 1.0000
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Table 7: Power for Gumbel(0,1)

QH CS BHEP AW V1 V2 V3

n = 30 0.4644 0.4194 0.3512 0.4248 0.4727 0.4848 0.4849
n = 50 0.6860 0.6084 0.4817 0.6473 0.7017 0.7268 0.7304
n = 100 0.9473 0.8948 0.7163 0.9310 0.9474 0.9630 0.9606
n = 200 0.9991 0.9954 0.9086 0.9985 0.9990 0.9995 0.9994

Table 8: Power for rt(Nn,df=30,ncp=5)

QH CS BHEP AW V1 V2 V3

n = 30 0.1269 0.1151 0.1146 0.1273 0.1333 0.1345 0.1355
n = 50 0.1798 0.1474 0.1447 0.1892 0.2095 0.2131 0.2170
n = 100 0.3234 0.2591 0.2147 0.3485 0.3500 0.3633 0.3633
n = 200 0.5475 0.4429 0.2930 0.5883 0.5886 0.6038 0.6046

Table 9: Power for rinvgauss(Nn,10,1/120)

QH CS BHEP AW V1 V2 V3

n = 30 0.3374 0.2944 0.2351 0.3003 0.3491 0.3561 0.3577
n = 50 0.5335 0.4477 0.3246 0.4831 0.5415 0.5760 0.5735
n = 100 0.8482 0.7432 0.4931 0.8161 0.8609 0.8933 0.8856
n = 200 0.9928 0.9679 0.6974 0.9874 0.9912 0.9956 0.9946

Table 10: Power for Double Exponential

QH CS BHEP AW V1 V2 V3

n = 30 0.3407 0.4882 0.3763 0.4377 0.3927 0.3373 0.3594
n = 50 0.4806 0.6809 0.5313 0.5867 0.5447 0.4298 0.4745
n = 100 0.7571 0.9073 0.8179 0.8174 0.8109 0.6557 0.7171
n = 200 0.9647 0.9949 0.9829 0.9721 0.9745 0.8845 0.9367

Table 11: Power for t-distribution with df=5

QH CS BHEP AW V1 V2 V3

n = 30 0.2459 0.3431 0.2354 0.2902 0.2689 0.2643 0.2656
n = 50 0.3396 0.4818 0.2943 0.3811 0.3663 0.3440 0.3568
n = 100 0.5232 0.7016 0.4887 0.5547 0.5574 0.5007 0.5240
n = 200 0.7750 0.9069 0.7444 0.7840 0.7836 0.7019 0.7398

The above simulations show that our tests are competitive with other normality
tests. The first eight alternative distributions are skewed, while the last two are
symmetric. Our tests dominate for the skewed distributions, while the CS test
dominates for the symmetric ones.
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4. Proof of Theorem 1

To stress the dependence of f̃2 on the bandwidth b, we write now f̃2,b instead of
f̃2. Note that

Ẑj =
Xj − X̄

σ̂
√

2
= ŝ(Zj − Z̄)

with ŝ = σ/σ̂ and Z̄ = (1/n)
∑n

j=1 Zj . Thus

x− Ẑi − Ẑj = ŝ
(x

ŝ
+ 2Z̄ − Zi − Zj

)
.

This shows that

f̂2(x) =
1
ŝ
f̃2,b/ŝ

(x

ŝ
+ 2Z̄

)
.

Under our assumptions on V we have, with V∗(x) = V (
√

2x),

Rn = ‖f̃2,b/ŝ − ϕ−H‖V∗ = op(n−1/2),

and n1/2H converges in distribution in LV∗ . This follows from Theorem 4.2 in Du
and Schick (2007), applied with p = 1, r = 0, m = 1 and ξ = 1. Thus, on the event
ŝ ≤

√
2, whose probability tends to one, we have∫ ∣∣∣1

ŝ
f̃2,b/ŝ

(x

ŝ
+ 2Z̄

)
− 1

ŝ
ϕ
(x

ŝ
+ 2Z̄

)
− 1

ŝ
H

(x

ŝ
+ 2Z̄

)∣∣∣V (x) dx

≤
∫
|f̃2,b/ŝ(u)− ϕ(u)−H(u)|V (ŝ(u− 2Z̄)) du

≤ V (2ŝZ̄)Rn = op(n−1/2).

For 0 < δ <
√

2, define maps Lδ on LV∗ by

Lδ(h) = sup
|s−1|≤δ

sup
|t|≤δ

∫
V (x)|sh(sx + t)− h(x)| dx.

These maps are continuous, and Lδ(h) decreases to zero for each h in LV∗ as δ

decreases to 0. Therefore Dini’s theorem yields

sup
|s−1|≤δ

sup
|t|≤δ

sup
h∈K

∫
V (x)|sh(sx + t)− h(x)| dx → 0

as δ → 0 for every compact subset K of LV∗ . Hence we have∫ ∣∣∣1
ŝ

H
(x

ŝ
+ 2Z̄

)
−H(x)

∣∣∣V (x) dx = op(n−1/2)

in view of the tightness of n1/2H in LV∗ . Finally, it is easy to verify that∫ ∣∣∣1
ŝ
ϕ
(x

ŝ
+ 2Z̄

)
− ϕ(x)− (ŝ− 1)(x2 − 1)ϕ(x) + 2Z̄xϕ(x)

∣∣∣V (x) dx = op(n−1/2)

in view of ŝ− 1 = Op(n−1/2) and Z̄ = Op(n−1/2). It is easy to check that

ŝ− 1 =
1
n

n∑
j=1

Z2
j −

1
2

+ op(n−1/2).

The result follows.
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