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Abstract. We consider a partially linear regression model with multivariate covariates

and with responses that are allowed to be missing at random. This covers the usual settings

with fully observed data and the nonparametric regression model as special cases. We first

develop a test for additivity of the nonparametric part in the complete data model. The

test statistic is based on the difference between two empirical estimators that estimate

the errors in two ways: the first uses a local polynomial smoother for the nonparametric

part; the second estimates the additive components by a marginal integration estimator

derived from the local polynomial smoother. We present a uniform stochastic expansion

of the empirical estimator based on the marginal integration estimator, and we derive the

asymptotic distribution of the test statistic. The transfer principle of Koul, Müller and

Schick (2012) then allows a direct adaptation of the results to the case when responses are

missing at random. We examine the performance of the tests in a small simulation study.
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1. Introduction

Data sets with a large number of covariates are commonly observed in applications, in
particular in biological studies. It is well known that many nonparametric methods do not
perform well in this situation, which is often referred to as the ‘curse of dimensionality’.
A popular semiparametric model which is used to cope with this difficulty is the partially
linear model. It combines the flexible nonparametric regression model with the basic linear
regression model. In this article we consider a partially linear regression model of the form

Y = ϑ>U + %(X) + ε,
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where ϑ is an unknown vector in Rp and % is an unknown smooth function. The error
ε has mean zero and is assumed to be independent of the pair (U,X), where U and X

are (random) covariate vectors. In the ideal situation one observes the triplet (U,X, Y ).
However, in almost all real life data sets there are missing values. This is an important
problem which needs to be handled with care, since the presence of missing data can easily
distort statistical inferences if the wrong method is used. In this article we are specifically
interested in the case when some responses Y are missing. Then one observes (δ, U,X, δY )
with δ an indicator random variable, with the interpretation that for δ = 1 one observes
the full triplet (U,X, Y ), while for δ = 0 one observes only the covariates (U,X). We make
the common assumption that the responses are missing at random, which means that the
conditional distribution of δ given (U,X, Y ) depends only on the covariates (U,X),

P (δ = 1|U,X, Y ) = P (δ = 1|U,X).

Monographs on missing data are Little and Rubin (2002) and Tsiatis (2006).
The partially linear regression model considered here has by definition a partially addi-

tive structure. We want to go one step further and test the hypothesis that the regression
function is completely additive, i.e. even the smooth function % is actually additive,

%(x) = %1(x1) + · · ·+ %q(xq), x = (x1, . . . , xq) ∈ Rq.

It is important to have a diagnostic tool to assess additivity. As shown by Stone (1985),
additive models avoid the curse of dimensionality completely and are easy to interpret.

We will first develop a test procedure for the model with fully observed data, which
we describe next. Then we will apply a method by Koul, Müller and Schick (2012), which
they call the transfer principle, to derive a corresponding procedure for the model with
missing responses. The transfer principle is a novel approach that makes it easy to derive
procedures for certain missing data problems from those with fully observed data.

Assume that we observe n independent copies (U1, X1, Y1), . . . , (Un, Xn, Yn) of (U,X, Y ).
Our test statistic for additivity will be of the form

T = n1/2‖F̂− F̃‖ = n1/2 sup
t∈R
|F̂(t)− F̃(t)|

with two different residual-based empirical distribution functions F̂ and F̃. The first uses
residuals of the form ε̂j = Yj − ϑ̂>Uj − %̂(Xj) with %̂ a local polynomial smoother based
on the covariates Xj and the “observations” Yj − ϑ̂>Uj . The second exploits the additivity
assumption and works with residuals of the form ε̃j = Yj−ϑ̂>Uj−%̃(Xj) with %̃ the marginal
integration estimator derived from %̂. In both cases, ϑ̂ is some

√
n-consistent estimator of ϑ.

Efficient estimators of ϑ for additive % are constructed in Schick (1996b). Our test statistic
T is a variant of the test statistic in Neumeyer and Van Keilegom (2010), who test for
additivity in a nonparametric regression model with heteroscedastic errors. Those authors
study a bootstrap test based on their test statistic. Here we use the asymptotic distribution
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to develop our test. We show that, under additivity, T converges in distribution to κ|Z|,
where Z is standard normal and κ is a constant depending on the underlying distribution.
This leads us to the test 1[T > κ̂zα/2] which rejects the null hypothesis if T exceeds κ̂zα/2
with zα/2 the (1 − α/2)-quantile of the standard normal distribution and κ̂ a consistent
estimator of κ.

Our test for missing data uses the complete case version of the above test, which is con-
structed using only the observations with observed responses. More precisely, we reject the
null hypothesis if Tc exceeds κ̂czα/2, where Tc and κ̂c are the complete case versions of T and
κ̂. The complete case version of a statistic Sn = sn((U1, X1, Y1), . . . , (Un, Xn, Yn)) is of the
form Sc = sN ((Ui1 , Xi1 , Yi1), . . . , (UiN , XiN , YiN )), where (Ui1 , Xi1 , Yi1), . . . , (UiN , XiN , YiN )
are the N =

∑n
j=1 δj observations with observed responses. An implementation of the test

is straightforward since it suffices to write a program for the model with fully observed
data. This program then can be used for applications with responses missing at random:
just delete all cases that involve missing responses and work with the the remaining N cases
that are complete. Note that the omitted covariates do not carry information about the
error distribution: the complete cases are sufficient for inference about functionals of the
error distribution function F ; see the discussion in Koul et al. (2012).

The reason for using the marginal integration estimator in F̃ is that the stochastic
expansion of F̃ is then different from that of F̂ even under the hypothesis of additivity of
%, as will be shown in Section 2. This is necessary for the test based on T to have power
under contiguous alternatives of the form %(x) = %1(x1) + · · · + %q(xq) + n−1/2s(x). The
two stochastic expansions of F̂ and F̃ imply in particular an expansion of our test statistic
T under the hypothesis of additivity. From this we obtain the asymptotic distribution of T
and hence an asymptotic critical value for the test.

We note that the marginal integration estimator is not particularly well suited for es-
timating the error distribution function. A better estimator would be the series estimator
studied in Section 4 of Müller, Schick and Wefelmeyer (2012). The empirical distribution
function of this estimator would however be stochastically equivalent to F̂ and therefore
lead to a test with local asymptotic power equal to the significance level. The estimator F̂
was studied in Müller et al. (2012), generalizing results by Müller, Schick and Wefelmeyer
(2007) who estimate the error distribution function in the partially linear regression model
but only for one-dimensional X. The case ϑ = 0 was studied by Müller, Schick and We-
felmeyer (2009), and by Neumeyer and Van Keilegom (2010), who assume heteroscedastic
errors.

The components of the regression function in additive regression models can be esti-
mated in several ways. Stone (1985) uses an additive spline estimator. The backfitting
method of Breiman and Friedman (1985), and Buja, Hastie and Tibshirani (1989), esti-
mates the additive components one by one and iterates this procedure. Orthogonal series
estimators for semiparametric regression models are studied by Eubank, Hart and Speckman
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(1990), Andrews (1991), Donald and Newey (1994), Eubank (1999), Li (2000), and Dele-
croix and Protopopescu (2001); for partially linear additive regression models see Müller et
al. (2012). Here we use the marginal integration method of Newey (1994), Tjøstheim and
Auestad (1994), and Linton and Nielsen (1995). The method starts with an estimator %̂ for
a multivariate nonparametric regression function and obtains estimators for the additive
components by integrating out all but one of the variables, usually with empirical estima-
tors based on the remaining components of the covariates. Linton (1997) uses marginal
integration to provide an initial estimator, and then a single backfitting step. See also Fan,
Härdle and Mammen (1998), and Mammen, Linton and Nielsen (1999). The estimators are
compared by Sperlich, Linton and Härdle (1999), Delecroix and Protopopescu (2000), and
Dette, Von Lieres und Wilkau and Sperlich (2005).

Residual-based empirical distribution functions can be used to test various other hy-
potheses about regression models. Tests for parametric hypotheses about the regression
function are considered in nonparametric regression by Stute (1997), Khmaladze and Koul
(2004, 2009), and Stute, Xu and Zhu (2008). Tests for a parametric regression function in
heteroscedastic nonparametric regression are studied in Van Keilegom, González Manteiga
and Sánchez Sellero (2008).

The paper is organized as follows. In Section 2 we derive a uniform stochastic expansion
for F̃. The proof is in Section 6. We apply the result to testing %(x) = %1(x1) + · · ·+ %q(xq)
in Section 3. Section 4 shows how the results carry over to the situation with responses
missing at random. In Section 5 we discuss the finite sample performance of the test and
summarize some simulation results.

2. Residual-based empirical distribution functions

First we consider the general partially linear model Y = ϑ>U + %(X) + ε, where the
error ε has mean zero, finite variance σ2 and a density f , and is independent of the covariate
pair (U,X), with U a p-dimensional random vector and X a q-dimensional random vector.
We make the following standard assumptions on U and X.

(G) The distribution G of X is quasi-uniform on C = [0, 1]q in the sense that G(C ) = 1
and has a density g that is bounded and bounded away from zero on C .

(H) The covariate vector U satisfies E[|U |2] <∞ and the matrix

W = E[(U − E(U |X))(U − E(U |X))>]

is positive definite.

For a non-negative integer m and a γ ∈ (0, 1] we introduce the Hölder space Hq(m, γ)
as follows. We say that a function h from C to R belongs to Hq(m, γ) if it has continuous
partial derivatives up to order m and the partial derivatives of order m are Hölder with
exponent γ. We assume that the function % belongs to Hq(m, γ), and estimate it by a local
polynomial smoother of degree m; see Stone (1980, 1982), and Ruppert and Wand (1994)
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for general results on multivariate local polynomial smoothers. Such estimators were used
in Müller et al. (2009) for estimating the error distribution function in the case ϑ = 0, i.e.,
for the nonparametric regression model. Since ϑ is not zero here, we need a

√
n-consistent

estimator ϑ̂ of ϑ. Such estimators exist, see e.g. Schick (1996a). We then work with the
difference Yj − ϑ̂>Uj instead of the response variable Yj .

In order to define the local polynomial smoother, we introduce some notation. By a
multi-index we mean a q-dimensional vector i = (i1, . . . , iq) whose components are non-
negative integers. For a multi-index i let ψi denote the function on Rq defined by

ψi(x) =
xi11
i1!
· · · x

iq
q

iq!
, x = (x1, . . . , xq) ∈ Rq.

Set i• = i1 + · · ·+ iq. Let I(m) denote the set of multi-indices i with i• ≤ m, and J(m) the
set of multi-indices i with i• = m. Now fix densities w1, . . . , wq and set

w(x) = w1(x1) · · ·wq(xq), x = (x1, . . . , xq) ∈ Rq.

Let cn be a bandwidth. Then the local polynomial smoother %̂ (of degree m) is defined as
follows. For a fixed x in C , the estimator %̂(x) is the component β̂0(x) corresponding to the
multi-index 0 = (0, . . . , 0) of a minimizer

β̂(x) = arg min
β=(βi)i∈I(m)

n∑
j=1

w
(Xj − x

cn

)(
Yj − ϑ̂>Uj −

∑
i∈I(m)

βiψi

(Xj − x
cn

))2

.

We estimate the errors εj by the residuals

ε̂j = Yj − ϑ̂>Uj − %̂(Xj).

The empirical distribution functions for F based on the errors εj and on the residuals ε̂j ,
respectively, are denoted by

F(t) =
1
n

n∑
j=1

1[εj ≤ t], F̂(t) =
1
n

n∑
j=1

1[ε̂j ≤ t].

Let us write

µ(X) = E(U |X), τ(X) = E(|U |2|X).

Müller et al. (2012) have shown the following uniform stochastic expansion for F̂.

Theorem 1. Suppose (G) and (H) hold, ‖U‖ has a moment greater than 2, µ is con-
tinuous and τg is bounded. Suppose that % belongs to Hq(m, γ) with s = m+ γ > 3q/2. Let
the error density f have mean zero, a finite moment of order greater than 4s/(2s − q),
and be Hölder with exponent greater than q/(2s − q). Let the densities w1, . . . , wq be
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(q + 2) times continuously differentiable with compact support [−1, 1]. Choose a bandwidth
cn ∼ (n log n)−1/(2s). Then we have the uniform stochastic expansion

sup
t∈R

∣∣∣F̂(t)− F(t)− f(t)
1
n

n∑
j=1

εj

∣∣∣ = op(n−1/2).

The smoothness parameter s = m+ γ is assumed to be greater than 3q/2. This means
that the higher the dimension q of the covariate vector X, the more partial derivatives for %
we need. We also point out that 4s/(2s− q) < 3 and q/(2s− q) < 1/2 if s > 3q/2. Thus the
assumptions on the error density f are satisfied if f has mean zero, a finite third moment,
and is Hölder with exponent 1/2. The Hölder condition is met by all densities with finite
Fisher information for location.

Suppose now that the regression function % is additive, %(x) = %1(x1) + · · · + %q(xq).
For this model we introduce an estimator for % such that the corresponding empirical dis-
tribution function has a stochastic expansion that is different from that of the empirical
distribution function F̂ based on the above local polynomial smoother %̂, even in this sub-
model. Specifically, we take the marginal integration estimator %̃ of %,

%̃(x) = (1− q)Ȳ∗ +
q∑
l=1

1
n

n∑
j=1

%̂(Xj,−l(xl)),

where the random vector Xj,−l(xl) is obtained from Xj by replacing its l-th coordinate by
xl, and where Ȳ∗ is the average

(2.1) Ȳ∗ =
1
n

n∑
j=1

(Yj − ϑ̂>Uj) =
1
n

n∑
j=1

εj +
1
n

n∑
j=1

%(Xj)− (ϑ̂− ϑ)>
1
n

n∑
j=1

Uj .

This leads to the residuals ε̃j = Yj − ϑ̂>Uj − %̃(Xj) and to the residual-based empirical
distribution function

F̃(t) =
1
n

n∑
j=1

1[ε̃j ≤ t]

for F . The asymptotic behavior of F̂ differs from that of F̃, as shown next. To state the
result, we need some notation.

For l = 1, . . . , q let gl denote the density of the l-th coordinate of X, let g−l denote the
density of the vector obtained from X by deleting its l-th coordinate, and set

g(l)(x) = gl(xl)g−l(x1, . . . , xl−1, xl+1, . . . , xq), x = (x1, . . . , xq) ∈ Rq.

Note that g(l) is the density of X1,−l(X2,l), where X2,l is the l-th coordinate of X2. Let us
write

h(x) =
q∑
l=1

g(l)(x)− g(x)
g(x)

, x ∈ C ,
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and

ν =
∫
µ(x)h(x)g(x) dx.

Theorem 2. Suppose that the assumption of Theorem 1 are satisfied, now for the par-
tially linear additive model with %1, . . . , %q belonging to H1(m, γ), where s = m+ γ > 3q/2.
Then we have the uniform stochastic expansion

sup
t∈R

∣∣∣F̃(t)− F(t)− f(t)
( 1
n

n∑
j=1

εj(1 + h(Xj))− (ϑ̂− ϑ)>ν
)∣∣∣ = op(n−1/2).

The proof of Theorem 2 is in Section 6.

3. Testing for additivity

In this section we test the hypothesis %(x) = %1(x1) + · · · + %q(xq) in the partially
linear regression model Y = ϑ>U + %(X) + ε. As in Section 2, let F̂ and F̃ denote the
residual-based empirical distribution functions based on residuals ε̂j = Yj − ϑ̂>Uj − %̂(Xj)
and ε̃j = Yj − ϑ̂>Uj − %̃(Xj), respectively.

It follows from Theorems 1 and 2 that, under the hypothesis of additivity, the test
statistic

T = n1/2‖F̂− F̃‖

satisfies the stochastic expansion

(3.1) T = ‖f‖
∣∣∣n−1/2

n∑
j=1

εjh(Xj)− n1/2(ϑ̂− ϑ)>ν
∣∣∣+ op(1).

Now assume that ϑ̂ satisfies the stochastic expansion

(3.2) ϑ̂ = ϑ+
1
n

n∑
j=1

W−1(Uj − µ(Xj))εj + op(n−1/2).

Many authors have constructed such estimators; see e.g. Chen (1988) and Schick (1996a),
and the references therein. For estimators satisfying (3.2) the expansion (3.1) becomes

T = ‖f‖
∣∣∣n−1/2

n∑
j=1

εj

(
h(Xj)− ν>W−1(Uj − µ(Xj))

)∣∣∣+ op(1),

and the test statistic T converges in distribution to ‖f‖σγ|Z|, where Z is a standard normal
random variable and

γ =
(
E[h2(X)] + ν>W−1ν

)1/2
.
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The implementation of this test requires estimators of ‖f‖, σ and γ. We estimate σ by the
sample standard deviation σ̂ based on the residuals ε̂1, . . . , ε̂n. An estimator for ‖f‖ is ‖f̂‖,
with f̂ a kernel density estimator based on these residuals. We estimate γ by

γ̂ =
( 1
n

n∑
j=1

ĥ2(Xj) + ν̂>Ŵ−1ν̂
)1/2

,

where ĥ is a plug-in estimator of h using kernel estimators of gl, g−l and g, and where

ν̂ =
1
n

n∑
j=1

µ̂(Xj)ĥ(Xj) and Ŵ =
1
n

n∑
j=1

(Uj − µ̂(Xj))(Uj − µ̂(Xj))>

with µ̂ a nonparametric estimator of µ such as a Nadaraya–Watson estimator. For properly
chosen kernels and bandwidths, these estimators are consistent under the assumptions of
Theorem 1. The resulting test is 1[T > ‖f̂‖σ̂γ̂zα/2]. If γ is positive, it will have asymptotic
size α.

The local asymptotic power of our test can be derived under a local alternative with %

replaced by % + n−1/2∆, where ∆ belongs to L2(G) and is orthogonal to the subspace of
additive functions. Let us briefly sketch this. Suppose that f has finite Fisher information
for location and set ` = −f ′/f . Under the local alternative, T converges in distribution to
‖f‖

∣∣σγZ +
∫
h∆ dG

∣∣. This follows from Le Cam’s third lemma which says that the shift
must be

E
[
ε(h(X)− ν>W−1(U − µ(X)))`(ε)∆(X)

]
= E

[
ε`(ε)

]
E[
(
h(X)− ν>W−1(U − µ(X)))∆(X)

]
=
∫
h∆ dG.

Here we used the property E[ε`(ε)] = 1. For the test to detect the local alternative, the
shift

∫
h∆ dG must be non-zero. The shift is always zero if, for example, the covariate X

follows a uniform distribution on C . Then g(l) = g = 1C and therefore h = 0.
Our test is easily modified to cover the nonparametric regression model Y = %(X) + ε.

In this case we take ϑ̂ = ϑ = 0 and obtain the expansion

(3.3) sup
t∈R

∣∣∣F̂(t)− F̃(t) + f(t)
1
n

n∑
j=1

εjh(Xj)
∣∣∣ = op(n−1/2)

under the assumption that % is additive. Now γ simplifies to γ0 = (E[(h2(X)])1/2, and we
work with the test

1
[
T > ‖f̂‖σ̂

( 1
n

n∑
j=1

ĥ2(Xj)
)1/2

zα/2

]
.

Neumeyer and Van Keilegom (2010) consider testing for additivity in the heteroscedastic
nonparametric regression model Y = %(X) + s(X)η with E[η] = 0 and E[η2] = 1. They
study a bootstrap test based on an appropriate version of n1/2‖F̂ − F̃‖ using standardized



TESTING FOR ADDITIVITY 9

residuals. Under the null hypothesis they obtain an expansion which coincides with (3.3)
when specialized to the homoscedastic case, i.e. to the case s(X) = σ and ε = ση.

4. Responses missing at random

The results of the previous sections carry over to the situation in which responses are
missing at random. Then we observe i.i.d. copies (δ1, U1, X1, δ1Y1), . . . , (δn, Un, Xn, δnYn) of
(δ, U,X, δY ) where δ is an indicator variable depending on the covariables (U,X), but not
on the response Y . The simplest approach is the complete case analysis, which uses only
the N =

∑n
j=1 δj completely observed triplets (Ui1 , Xi1 , Yi1), . . . , (UiN , XiN , YiN ), where

i1, . . . , iN are the indices ij for which δij = 1. Koul et al. (2012) show how stochastic ex-
pansions carry over from a statistic Tn = tn(U1, X1, Y1, . . . , Un, Xn, Yn) to the corresponding
complete case statistic Tc = tN (Ui1 , Xi1 , Yi1 , . . . , UiN , XiN , YiN ). We apply this to our empir-
ical distribution functions F̂ and F̃. For the conditional probability of δ = 1 given (U,X, Y )
we write

π(U,X) = P (δ = 1|U,X) = P (δ = 1|U,X, Y ).

Let R denote the joint law of the covariates (U,X), and Q(U,X, dy) the conditional distri-
bution of the response Y given (U,X). Then the joint law of (δ, U,X, δY ) is

P (dz, du, dx, dy) = R(du, dx)Bπ(u,x)(dz)
(
zQ(u, x, dy) + (1− z)∆0(dy)

)
,

where Bp denotes the Bernoulli distribution with parameter p, and ∆t is the Dirac measure
at t. It follows that the conditional distribution of (U,X, Y ) given δ = 1 is

Pc(du, dx, dy) = R(du, dx)
π(u, x)
E[δ]

Q(u, x, dy).

Let µc, gc, hc and νc be defined like µ, g, h and ν in Section 2, but now with the distribution
of (U,X) replaced by the conditional distribution of (U,X) given δ = 1. Explicitly, µc(X) =
E(U |X, δ = 1), and gc is the density of X given δ = 1. For l = 1, . . . , q let gc,l denote the
conditional density of the l-th coordinate of X given δ = 1, let gc,−l denote the conditional
density of the vector obtained from X by deleting its l-th coordinate, and set

gc(l)(x) = gc,l(xl)gc,−l(x1, . . . , xl−1, xl+1, . . . , xq), x = (x1, . . . , xq) ∈ Rq.

Write

hc(x) =
q∑
l=1

gc(l)(x)− gc(x)
gc(x)

, x ∈ C ,

and define νc =
∫
µc(x)hc(x)gc(x) dx.

We must of course assume that E[δ] > 0. The assumptions (G) and (H) on U and X are
now required to hold under the conditional distribution of (U,X) given δ = 1. This means
that the conditional distribution of U given δ = 1 is quasi-uniform, E(|U |2|δ = 1) < ∞,
and

Wc = E
(
(U − µc(X))(U − µc(X))>|δ = 1

)



10 URSULA U. MÜLLER, ANTON SCHICK AND WOLFGANG WEFELMEYER

is positive definite. These assumptions are implied by (G) and (H) if π is bounded away
from zero.

Assume that ϑ̂ has a stochastic expansion of the form (3.2). Let ϑ̂c denote the version of
ϑ̂ based on the complete observations. From the arguments of Koul et al. (2012) it follows
that ϑ̂c has the stochastic expansion

ϑ̂c = ϑ+
1
n

n∑
j=1

δj
E[δ]

W−1
c (Uj − µc(Xj))εj + op(n−1/2).

Define the local polynomial smoother %̂c and the marginal integration estimator %̃c as in
Section 2, now using only the complete observations. Note that minimax properties of such
complete case estimators in nonparametric regression are obtained by Efromovich (2011).
Define residuals ε̂c,j = Yj − ϑ̂>c Uj − %̂c(Xj), and ε̃c,j = Yj − ϑ̂>c Uj − %̃c(Xj). The complete
case versions of the empirical distribution functions F, F̂ and F̃ are

Fc(t) =
1
N

n∑
j=1

δj1[εj ≤ t], F̂c(t) =
1
N

n∑
j=1

δj1[ε̂c,j ≤ t], F̃c(t) =
1
N

n∑
j=1

δj1[ε̃c,j ≤ t].

Using Koul et al. (2012) again, from the uniform stochastic expansions for F̂ and F̃ in
Theorems 1 and 2 we obtain uniform stochastic expansions for the complete case versions,

sup
t∈R

∣∣∣F̂c(t)− Fc(t)− f(t)
1
n

n∑
j=1

δj
E[δ]

εj

∣∣∣ = op(n−1/2),

sup
t∈R

∣∣∣F̃c(t)− Fc(t)− f(t)
1
n

n∑
j=1

δj
E[δ]

εj

(
1 + hc(Xj)− ν>c W−1

c (Uj − µc(Xj))
)∣∣∣ = op(n−1/2).

It follows from these two expansions that under the hypothesis of additivity the complete
case test statistic

Tc = sup
t∈R

N1/2|F̂c(t)− F̃c(t)|

satisfies the stochastic expansion

Tc = ‖f‖(E[δ])−1/2
∣∣∣n−1/2

n∑
j=1

δjεj

(
h(Xj)− ν>c W−1

c (Uj − µc(Xj))
)∣∣∣+ op(1).

The test is now
1[Tc > ‖f̂c‖σ̂cγ̂czα/2],

where f̂c, σ̂c and γ̂c are complete case versions of the estimators f̂ , σ̂, and γ̂ from the
previous section. For example, if f̂ is the kernel estimator

f̂(t) =
1
nbn

n∑
j=1

k
( ε̂j − t

bn

)
, t ∈ R,
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based on the kernel k and bandwidth bn, then its complete case version is of the form

f̂c(t) =
1

NbN

n∑
j=1

δjk
( ε̂c,j − t

bN

)
, t ∈ R.

Since the pairs (U,X) are always observed, one might be tempted to use γ̂ instead
of γ̂c. However, for missing data we need to estimate γc, which is a functional of the
conditional distribution of (U,X) given δ = 1, and not γ, which is the same functional of
the unconditional distribution of (U,X). Thus γc is typically different from γ, and it is
imperative to use γ̂c in the present case. Note also that the use of γ̂ instead of γ̂c would
not result in a complete case estimator.

5. Finite sample performance

A marginal integration estimator of F is used to ensure convergence of the test statistic
T to a non-degenerate distribution. Working with the additive series estimator proposed
by Müller et al. (2012) gives a better estimator of F , but yields convergence to a degenerate
limiting distribution. Indeed, for the additive series estimator the test statistic T converges
to zero in probability.

The convergence to the limiting distribution may be slow. Thus a bootstrap version
of our test might be preferable in small to moderate sample sizes. For very large sample
sizes, however, the bootstrap test becomes intractable and our proposed test provides a
reasonable alternative. The simulations in Neumeyer and Van Keilegom (2010) demonstrate
good performance of their bootstrap test in their setting. We expect this to carry over to
our situation.

In the following we will give the results for one particular scenario for which the simula-
tions turned out fairly well, even for the relatively small sample size n = 100. We considered
the case q = 2 and ϑ = 0, i.e. X is two-dimensional and the regression function does not
have a linear part. We generated covariates X = (X1, X2) from a quasi-uniform distribution
on C = [0, 1]2 specified by the density

g(x) = g(x1, x2) = 1 + 0.5 sign(x1 − 0.5)sign(x2 − 0.5), x = (x1, x2) ∈ C .

Note that g alternately takes the values 0.5 and 1.5 on the four quarters of C and that
g1 = g2 = g−1 = g−2 = 1 on [0, 1]. The conditional probability of δ = 1 given the covariates
is π(X) = π(X1) = cos(X1) so that the data contain on average about 84% complete
cases. The errors are generated from a normal distribution with mean zero and standard
deviation σ. The test is

1
[
Tc > ‖f̂c‖σ̂c

( 1
n

n∑
j=1

ĥ2
c(Xj)

)1/2
zα/2

]
.
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In order to implement the test statistic Tc we used a locally linear smoother provided by
the R routine “loess”. We looked at several choices of the smoothing parameter “span”
(between zero and one). Under the null hypothesis of additivity we chose %(X) = X1 +X2.
Since our smoother is locally linear, it is not too surprising that the test performs best for
large values of “span” (see Table 1; note that the default value in R is 0.75).

Table 1. Test performance under the null hypothesis, %(X) = X1 +X2.

n = 100 n = 500
π(x) = cos(x) π(x) = 1 π(x) = cos(x) π(x) = 1

Span σ = 0.1 σ = 0.5 σ = 0.1 σ = 0.5 σ = 0.1 σ = 0.5 σ = 0.1 σ = 0.5

1 0.07 0.08
0.06 0.06

0.03 0.03
0.01 0.02

(0.07) (0.07) (0.01) (0.01)

0.95 0.13 0.14
0.10 0.10

0.09 0.10
0.05 0.08

(0.09) (0.10) (0.04) (0.05)

0.9 0.18 0.19
0.16 0.17

0.10 0.12
0.09 0.10

(0.14) (0.15) (0.09) (0.09)

0.75 0.19 0.20
0.16 0.18

0.13 0.14
0.12 0.13

(0.24) (0.26) (0.13) (0.14)

0.5 0.28 0.29
0.27 0.28

0.19 0.21
0.16 0.17

(0.31) (0.33) (0.14) (0.15)
The figures are the (rounded) proportions of tests with significance level α =
0.05 that reject the null hypothesis (in fact true) of additivity. The entries
in parentheses are the proportions if the ‘true’ quantile is used instead of the
estimated quantile.

For estimation of the quantiles we used the routine “density” implemented in R to
estimate the error density, with a particularly small bandwidth (the range of the residuals ε̂j
divided by 20) to avoid oversmoothing, in order to obtain a good estimate of the maximum.
Our estimator σ̂2

c is the residual-based empirical estimator. Finally we hand coded ĥc (which
involves estimators of the bivariate covariate density and of the marginal densities) using a
uniform kernel function and the bandwidth 1/3.

In Table 1 we consider the situation when the regression function is additive and the
null hypothesis should be rejected. The entries are the proportions of tests that reject the
hypothesis of additivity in 1000 trials (n = 100) and in 500 trials (n = 500). We study both
the scenario with missing responses and the scenario where all data are completely observed
(π(X) = 1). In order to keep the significance level of the test (α = 0.05 in all simulations),
we work with a large “span”. For completely observed data and our choice of g, we have
Eh2(X) = 4/3. The ‘true’ quantile for the simulation scenario thus computes to 0.903. The
rejection rates of the tests that use this quantile are given in Table 1 in parentheses. The
results are apparently similar to the case when the quantile is estimated. We also observe
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that there is no great difference between the two cases missing data / no missing data, which
can perhaps be explained by the fact that only a relatively small percentage of responses
(about 16%) are missing.

Table 2. Performance under the alternative hypothesis with regression
function %(X) + cX1X2, where %(X) = X1 +X2.

span 1 span 0.95
π(x) c σ = 0.1 0.25 0.5 0.75 σ = 0.1 0.25 0.5 0.75

cos(x1) 0.1 0.09 0.09 0.08 0.09 0.17 0.16 0.17 0.15
0.5 0.53 0.15 0.09 0.08 0.66 0.25 0.17 0.17
1 0.94 0.41 0.18 0.13 0.98 0.52 0.28 0.19

1 0.1 0.10 0.09 0.08 0.07 0.18 0.15 0.14 0.11
(0.10) (0.09) (0.07) (0.07) (0.19) (0.14) (0.14) (0.12)

0.5 0.62 0.21 0.11 0.08 0.77 0.29 0.19 0.13
(0.65) (0.20) (0.11) (0.08) (0.79) (0.31) (0.19) (0.14)

1 0.98 0.47 0.20 0.12 1.00 0.61 0.29 0.21
(0.99) (0.50) (0.20) (0.13) (1.00) (0.62) (0.29) (0.22)

The figures are proportions of tests that reject (in fact correctly) the null hy-
pothesis as in Table 1. The sample size is n = 100.

In Table 2 we work with the regression function %(X) + cX1X2, c ∈ {0.1, 0.5, 1}, which
violates the null hypothesis since it contains an additional multiplicative part. Note that for
c = 0.1 the additional part can be regarded a local alternative since cX1X2 = n−1/2X1X2.
We observe that the rejection rates for this particular case are quite low and not greatly
affected by the error variance σ2. The situation is different for c = 0.5 and c = 1, which
denotes alternatives that are easier to detect. As expected, the rejection rates are high for
small σ and large c, and decrease as σ becomes larger. Consider, for example, the rejection
rates for span 1 (which yielded reasonable results under the null hypothesis) and c = 1: for
σ = 0.1 about 98% of the simulated tests reject the (false) null hypothesis, but only about
12% of the tests reject it when σ = 0.75.

Although the simulation results turned out rather well in the above example, this was
not the case in other scenarios that we considered. The problem seems to be that the
distribution of T is not close to the asymptotic distribution. A sample size of several
hundreds may not be sufficient for the finite sample approximation to be appropriate.

Summing up, the proposed additivity test can be recommended for large samples that
involve covariates whose distribution is not uniform (or close to uniform): in Section 3 we
have shown that under local alternatives the limiting distribution of the test statistic T
is shifted by the value

∫
h∆ dG, which is zero for uniform covariates, i.e. the test has no

local asymptotic power. A bootstrap test based on T should nevertheless perform well,
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as demonstrated by Neumeyer and Van Keilegom (2010), who consider this scenario with
n = 100 in their simulation study.

6. Proof of Theorem 2

The marginal integration estimator %̃ is based on the local polynomial smoother %̂. We
begin by recalling results on %̂ from Müller et al. (2012). Order the multi-indices i ∈ I(m)
lexicographically. Let ψ be the vector with components ψi, i ∈ I(m). By definition, %̂ is
the component β̂0 of β̂, where β̂ is the solution of the normal equation

R(x) = W (x)β̂(x)

with

R(x) =
1
ncqn

n∑
j=1

w
(Xj − x

cn

)
(Yj − U>j ϑ̂)ψ

(Xj − x
cn

)
and

W (x) =
1
ncqn

n∑
j=1

w
(Xj − x

cn

)
ψ
(Xj − x

cn

)
ψ>
(Xj − x

cn

)
.

On the Hölder space Hq(m, γ) we introduce the norm

‖h‖(q)m,γ = max
i∈I(m)

sup
x∈C
|Dih(x)|+ max

i∈J(m)
sup

x,y∈C ,x 6=y

|Dih(y)−Dih(x)|
‖x− y‖γ

with

Dih(x) =
∂i1+···+iq

∂xi11 · · · ∂x
iq
q

h(x), x = (x1, . . . , xq) ∈ C .

Let Bq(m, γ) denote the unit ball of Hq(m, γ) for this norm. In the general partially lin-
ear regression model, Müller et al. (2012) have obtained the following uniform stochastic
expansion of the regression function estimator,

(6.1) sup
u∈Rp,x∈C

∣∣ϑ̂>u+ %̂(x)− ϑ>u− %(x)− (ϑ̂− ϑ)>(u− µ(x))− ĉ(x)
∣∣ = op(n−1/2)

with

ĉ(x) = e>(E[W (x)])−1 1
ncqn

n∑
j=1

w
(Xj − x

cn

)
εjψ
(Xj − x

cn

)
satisfying, for some α > 0 and ξ > q/(2s− q),

(6.2) P
(
ĉ ∈ Bq(q, α)

)
→ 1,

(6.3)
∫
|ĉ(x)|1+ξg(x) dx = op(n−1/2).

In the additive partially linear regression model, let us set

ã(u, x) = (ϑ̂− ϑ)>(u− µ∗(x)) + c̃(x),
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where

µ∗(x) = (1− q)E[U ] +
q∑
l=1

E[µ(X1,−l(xl))],

c̃(x) = (1− q) 1
n

n∑
j=1

εj +
q∑
l=1

1
n

n∑
j=1

ĉ(Xj,−l(xl)).

For the Hölder space H1(q, α) the above norm simplifies to

‖a‖(1)
q,α =

q∑
i=1

sup
0≤t≤1

|a(i)(t)|+ sup
0≤s≤t≤1

|a(q)(s)− a(q)(t)|
|s− t|α

.

Let B(q, α) denote the unit ball ofH1(q, α) for this norm. We write D for the set of functions
of the form

a(u, x) = b>(u− µ∗(x)) + a1(x1) + · · ·+ aq(xq)

with |b| ≤ 1 and al ∈ B(q, α) for l = 1, . . . , q. Here α is so small that (6.2) holds. Let Q
denote the joint distribution of U and X. Recall that f is bounded. By Theorem (2.2) in
Müller et al. (2007), the desired result then follows from the following statements:

P (ã ∈ D)→ 1;(6.4) ∫
|ã|1+ξ dQ = op(n−1/2), ξ > q/(2s− q);(6.5) ∫

ã dQ =
1
n

n∑
j=1

εj +
1
n

n∑
j=1

εjh(Xj)− (ϑ̂− ϑ)>ν = op(n−1/2);(6.6)

sup
u∈Rk,x∈C

∣∣ϑ̂>u+ %̃(x)− ϑ>u− %(x)− ã(u, x)
∣∣ = op(n−1/2).(6.7)

Note that requirement (2.1) of Müller et al. (2007) on the bracketing numbers of the class
D is verified as in that paper, but now using the bound (1.5) in Müller et al. (2009) in place
of the bound (3.1) in Müller et al. (2007). Statements (6.4) and (6.5) above are simple
consequences of the

√
n-consistency of ϑ̂ and the properties (6.2) and (6.3) of ĉ. Statement

(6.6) follows from the identities∫
ã dQ = (ϑ̂− ϑ)>

(
E[U ]− E[µ∗(X)]

)
+ (1− q) 1

n

n∑
j=1

εj +
q∑
l=1

1
n

n∑
j=1

∫
ĉ(Xj,−l(t))gl(t) dt

and

E[U ]− E[µ∗(X)] = qE[U ]−
q∑
l=1

∫
µ(x)g(l)(x) dx = −ν

and from the expansions

1
n

n∑
j=1

∫
ĉ(Xj,−l(t))gl(t) dt =

∫
ĉ(x)g(l)(x) dx+ op(n−1/2)
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and
q∑
l=1

∫
ĉ(x)g(l)(x) dx =

∫
ĉ(x)(q + h(x))g(x) dx =

1
n

n∑
j=1

εj(q + h(Xj)) + op(n−1/2).

These expansions are proved as in Müller et al. (2009). We omit the details.
We now verify (6.7). Note that (6.1) implies the expansion

sup
x∈C

∣∣%̂(x)− %(x) + (ϑ̂− ϑ)>µ(x)− ĉ(x)
∣∣ = op(n−1/2).

From this we can conclude that

sup
x∈C

∣∣∣ q∑
l=1

1
n

n∑
j=1

(
%̂(Xj,−l(xi))− %(Xj,−l(xl)) + (ϑ̂− ϑ)>µ(Xj,−l(xl))− ĉ(Xj,−l(xl))

)∣∣∣
= op(n−1/2).

In view of the additivity of %, we have the identity
q∑
l=1

1
n

n∑
j=1

%(Xj,−l(xl)) = %(x) + (q − 1)
1
n

n∑
j=1

%(Xj).

Using the representation (2.1) for Ȳ∗, we have

sup
x∈C

∣∣%̃(x)− %(x) + (ϑ̂− ϑ)>µ̃(x)− c̃(x)
∣∣ = op(n−1/2),

where

µ̃(x) = (1− q) 1
n

n∑
j=1

Uj +
q∑
l=1

1
n

n∑
j=1

µ(Xj,−l(xl)).

Since µ is continuous, we obtain

sup
x∈C
|µ̃(x)− µ∗(x)| = op(1).

Combining the above, we obtain (6.7).
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