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Abstract. Consider a nonparametric regression model Y = r(X) + ε with a

random covariate X that is independent of the error ε. Then the density of
the response Y is a convolution of the densities of ε and r(X). It can therefore

be estimated by a convolution of two kernel estimators for these densities, or

more generally by a local von Mises statistic. If the regression function has a
nowhere vanishing derivative, then these estimators are known to converge at

the root-n rate, and convergence holds uniformly. We show that convergence

also holds in weighted L1-norms, and under weaker smoothness assumptions on
the error density. It follows that the corresponding process obeys a functional

central limit theorem in the corresponding L1-space.

1. Introduction

We consider the nonparametric regression model Y = r(X) + ε with a one-
dimensional random covariate X that is independent of the unobservable error
variable ε. We impose the following assumptions:

(F) The error variable ε has mean zero, a finite variance σ2 and a density f
of the form

f(z) =
∫ z

−∞
f ′(x) dx, z ∈ R,

for some integrable function f ′ of bounded variation.
(G) The covariate X is quasi-uniform on the interval [0, 1] in the sense that

its density g is bounded and bounded away from zero on the interval and
vanishes outside. Furthermore, g is of bounded variation.

(R) The unknown regression function r is twice continuously differentiable on
[0, 1], and r′ is strictly positive on [0, 1].

We observe independent copies (X1, Y1), . . . , (Xn, Yn) of (X,Y ), and we are
interested in estimating the density h of the response Y . An obvious estimator is
the kernel estimator

h̃(y) =
1
n

n∑
j=1

Kb(y − Yj), y ∈ R,
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where Kb(t) = K(t/b)/b for some kernel K and some bandwidth b. Under the
above assumptions on f and g, the density h has a second derivative h′′ that is
L1-Lipschitz : For a constant L,∫

|h′′(y + t)− h′′(y)| dy ≤ L|t|, t ∈ R.

Thus, if the kernel is bounded, compactly supported and of order three, and the
bandwidth b is chosen proportional to n−1/7, then one can show that

‖h̃− h‖1 =
∫
|h̃(y)− h(y)| dy = Op((nb)−1/2 + b3) = Op(n−3/7).

The kernel estimator h̃ neglects the structure of the regression model. We shall
see that by exploiting this structure one can construct estimators that have the
faster (parametric) root-n rate of convergence in the L1-norm and obey a (func-
tional) central limit theorem in the space L1. For this we observe that the density
h is the convolution of the error density f and the density q of r(X). The latter
density is given by

q(z) =
g(r−1(z))
r′(r−1(z))

, z ∈ R.

By our assumptions on r and g, the density q is quasi-uniform on the interval
[r(0), r(1)], which is the image of [0, 1] under r. Furthermore, q is of bounded
variation.

The convolution representation h = f ∗ q suggests a plug-in estimator or con-
volution estimator ĥ = f̂ ∗ q̂ based on kernel estimators f̂ and q̂ of f and q,

f̂(x) =
1
n

n∑
j=1

kb(x− ε̂j) and q̂(x) =
1
n

n∑
j=1

kb(x− r̂(Xj)), x ∈ R,

with residuals ε̂j = Yj − r̂(Xj) and r̂ a nonparametric estimator of r. Setting
K = k ∗ k, the convolution estimator has the form of a local von Mises statistic,

ĥ(y) =
1
n2

n∑
i=1

n∑
j=1

Kb(y − ε̂i − r̂(Xj)), y ∈ R,

and is thus easy to calculate.
Assuming that f also has a finite moment of order higher than 8/3 and a

bounded integrable second derivative, Schick and Wefelmeyer (2011) have shown
that the estimator ĥ is root-n consistent in the sup-norm and obeys a functional
central limit theorem in the space C0(R) of all continuous functions on R that
vanish at plus and minus infinity. This result was obtained under mild assumptions
on the kernel k and the bandwidth b and with r̂ an under-smoothed local quadratic
smoother. We shall also work with such an estimator. As in their proof we rely
on two properties of this estimator of r: its bias is uniformly very small (of order
o(n−1/2)), and its precision is uniformly sufficiently good (considerably better than
n−1/4). These two criteria can be met by requiring sufficient smoothness on r and
working with higher-order local polynomial smoothers. For a twice continuously
differentiable r and a local quadratic smoother, the bias is of order o(c2), and the
precision of order (log n/(nc))1/2, where c is the chosen bandwidth. Choosing c
proportional to n−1/4 results in the required uniformly small bias and a uniform
precision of order log n1/2n−3/8.
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The local quadratic smoother is defined as follows. For a fixed x in [0, 1], the
estimator r̂(x) is the first coordinate β̂1(x) of the weighted least squares estimator

(1.1) β̂(x) = arg max
β

1
nc

n∑
j=1

w
(Xj − x

c

)(
Yj − β>ψ

(Xj − x
c

))2

where ψ(x) = (1, x, x2)>. We make the following assumptions on the weight func-
tion w and the bandwidth c.

(W) The weight function w is a continuously differentiable symmetric density
with compact support [−1, 1].

(C) The bandwidth c is proportional to n−1/4.
Here we do not require w to be three times continuously differentiable as was

assumed in Schick and Wefelmeyer (2011). This additional smoothness assumption
was used there to show that a modification of r̂ belongs to some Hölder space of
appropriate order. We shall not need this property here. As we assumed that r is
two times continuously differentiable, a bandwidth c proportional to n−1/5 would
yield optimal rates of convergence. Here we undersmooth to obtain the expansion
(1.5) below. This comes at the expense of slower rates of convergence. More
precisely, as in Schick and Wefelmeyer (2011), our undersmoothed local quadratic
estimator possesses the following properties.

Lemma 1. Suppose (F), (G), (R), (W) and (C) hold and ε has a finite moment
of order greater than 8/3. Then, with â = r̂ − r, we have the following rates of
convergence

sup
0≤x≤1

|â(x)| = Op

(( log n
nc

)1/2)
,(1.2)

1
n

n∑
j=1

â2(Xj) = Op

( 1
nc

)
,(1.3) ∫

â2(x)g(x) dx = Op

( 1
nc

)
,(1.4)

and the stochastic expansion

(1.5)
∫
â(x)g(x) dx =

1
n

n∑
j=1

εj + op(n−1/2).

We are now ready to state the root-n consistency of the local von Mises statistic
ĥ in the L1-norm. For this we set

H1(y) =
1
n

n∑
j=1

(
q(y − εj)− h(y) + εjh

′(y)
)
, y ∈ R,

H2(y) =
1
n

n∑
j=1

(
f(y − r(Xj))− h(y)− εjf ′(y − r(Xj))

)
, y ∈ R,

and introduce the following assumptions on the kernel k and the bandwidth b.
(K) The kernel k has compact support, is twice continuously differentiable and

of order three.
(B) The bandwidth b satisfies nb6 → 0 and nb4/ log4 n→∞.
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Theorem 1. Assume that (F), (G), (R), (W), (C), (K) and (B) hold. Let ε
have a finite moment of order greater than 8/3, and let the integral∫ (

1 + log(1 + |x|)
)2(1 + |x|)(f ′(x))2 dx

be finite. Let r̂ be the local quadratic smoother defined in (1.1). Set H = H1 +H2.
Then the stochastic expansion

(1.6) ‖ĥ− h−H‖1 = op(n−1/2)

holds, and n1/2H converges in distribution in the space L1 to a centered Gaussian
process.

We obtain this theorem as a special case of a more general result for weighted
L1-spaces. By weighted L1-spaces we mean L1-spaces for measures which have a
density V with respect to the Lebesgue measure. As in Schick and Wefelmeyer
(2007a) we treat continuous V with special properties; see (2.1)–(2.3) below.

Our main result, Theorem 3, is presented and proved in Section 2. This result
states that our convolution estimator is root-n consistency in weighted L1-spaces
and obeys a central limit theorem in these spaces. More precisely, it gives the
analogue of the stochastic expansion (1.6) for the weighted L1-norm and the con-
vergence in distribution of n1/2H in the corresponding space. For the latter we
utilize the central limit theorem for general L1-spaces for σ-finite measures. We
give a simple sufficient condition for the central limit theorem to hold in these
spaces, see Corollary 1, and use it to derive in Lemma 2 the limiting distribution of
n1/2H. The proof of the analogue of (1.6) reduces the desired result to expansions
for the density estimators f̂ and q̂. These expansions are proved in Sections 4 to
6. Their proofs rely on additional properties of the local quadratic smoother which
are presented in Section 3.

Local von Mises statistics go back to Frees (1994). He observed that densi-
ties of certain (known) transformations T (X1, . . . , Xm) of m ≥ 2 independent and
identically distributed random variables X1, . . . , Xm can be estimated pointwise at
the parametric rate by a local U-statistic. Saavedra and Cao (2000) consider the
transformation T (X1, X2) = X1 +ϕX2 with ϕ 6= 0. Schick and Wefelmeyer (2004b)
and (2007a) obtain this rate in the sup-norm and in L1-norms for transformations
of the form T (X1, . . . , Xm) = T1(X1) + · · · + Tm(Xm) and T (X1, X2) = X1 + X2.
Giné and Mason (2007) obtain such functional results in Lp-norms for 1 ≤ p ≤ ∞
and general transformations T (X1, . . . , Xm). The results of Nickl (2007) and (2009)
are also applicable in this context.

The same convergence rates have been obtained for local von Mises statistics or
convolution estimators of the stationary density of linear processes. Saavedra and
Cao (1999) treat pointwise convergence for a first-order moving average process.
Schick and Wefelmeyer (2004a) and (2004c) consider higher-order moving average
processes and convergence in L1, and Schick and Wefelmeyer (2007b), (2008a) and
(2009a) obtain parametric rates in the sup-norm and in L1 for estimators of the
stationary density of invertible linear processes. Analogous pointwise convergence
results for response density estimators in nonlinear regression (with responses miss-
ing at random) and in nonparametric regression are in Müller (2010) and Støve and
Tjøstheim (2010), respectively. Escanciano and Jacho-Chávez (2011) consider the
nonparametric regression model and show uniform convergence on compact sets
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of their local U-statistic. Their results allow for a multivariate covariate X, but
require the density of r(X) to be bounded and Lipschitz.

In the above applications to regression models and time series, and also in the
present paper, the (auto-)regression function is assumed to have a nonvanishing
derivative. This assumption is essential. Suppose there is a point x at which the
regression function behaves like r(y) = r(x) + c(y − x)ν + o(|y − x|ν), for y to
the left or right of x, with ν ≥ 2. Then the density q of r(X) has a strong peak
at r(x). This slows down the rate of the convolution density estimator or local
von Mises statistic for h = f ∗ q. For densities of transformations T (X1, X2) =
|X1|ν+|X2|ν of independent and identically distributed random variables, see Schick
and Wefelmeyer (2008b) and (2009b) and the review paper by Müller et al. (2010).

Our estimator is generally not efficient as its influence function

Iy(X,Y ) = q(y − ε)− h(y) + f(y − r(X))− h(y)− ε
(
f ′(y − r(X))− h′(y)

)
at y does not always belong to the tangent space for our nonparametric regression
model. The tangent space consists of functions

a(X) + b(ε) + c(X)`(ε)

where the function a satisfies
∫
a(x)g(x) dx = 0 and

∫
a2(x)g(x) dx < ∞, the

function b satisfies
∫
b(y)f(y) dy = 0 =

∫
yb(y)f(y) dy and

∫
b2(y)f(y) dy < ∞,

and the function c satisfies
∫
c2(x)g(x) dx <∞; see Schick (1993) for details. The

projection of the influence function at y into the tangent space is

I∗y (X,Y ) = f(y − r(X))− h(y) + q(y − ε)− h(y)− `(ε)
(
f ′(y − r(X))− h′(y)

)
/J

= [f(y − r(X))− h(y)] + [q(y − ε)− h(y)− d(y)`(ε)]

+ [d(y)−
(
f ′(y − r(X))− h′(y)

)
/J ]`(ε).

Here ` = −f/f denotes the score function for location, J is the Fisher information
which needs to be finite for efficiency considerations, and d(y) is the expectation
E[q(y − ε)ε]. Thus Iy(X,Y ) = I∗y (X,Y ) holds if and only if `(ε)/J = ε, which
in turn holds if and only if f is a mean zero normal density. Consequently, our
estimator is efficient for normal errors, but not for other errors.

We expect our result to carry over to estimation of the stationary density of
the time series Xn = r(Xn−1) + εn. This generalization, however, will be non-
trivial. In the autoregressive setup we can no longer assume that the support of
the variables is compact. This makes the estimation of the function r much more
complicated. Some of these difficulties were already encountered by Müller, Schick
and Wefelmeyer (2009) when estimating the innovation distribution in such models.

2. The main result

Let V be a continuous function with the following properties:

V (0) = 1,(2.1)
V (x+ y) ≤ V (x)V (y), x, y ∈ R,(2.2)
V (x) = sup|s|≤1 V (sx), x ∈ R.(2.3)

For a measurable function u, we introduce the V -norm defined by

‖u‖V =
∫
|u(x)|V (x) dx.
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We let LV denote the collection of (equivalent classes of) measurable functions
with finite V -norm. In other words, LV equals L1(µ) where µ(dx) = V (x) dx. The
following are easy consequences of the property (2.2) of the function V :

‖u(· − t)‖V ≤ V (t)‖u‖V , t ∈ R, u ∈ LV ,(2.4)
‖u ∗ v‖V ≤ ‖u‖V ‖v‖V , u, v ∈ LV .(2.5)

We say a measurable function u is LV -Lipschitz if

‖u(· − t)− u‖V ≤ L|t|V (t), t ∈ R,
holds for a constant L.

Let
W (x) =

(
1 + log(1 + |x|)

)2(1 + |x|)V 2(x), x ∈ R.
This function shares the properties (2.1)–(2.3) with V . An application of the
Cauchy–Schwarz inequality and the identity∫

1(
1 + log(1 + |x|)

)2(1 + |x|)
dx = 2

yield the inequality

(2.6) ‖u‖2V ≤ 2‖u2‖W ,
valid for all measurable u.

We are interested in a generalization of Theorem 1 to the space LV . Toward this
goal we first derive a central limit theorem for the process n1/2H = n1/2(H1 +H2)
in the space LV . For this we rely on the central limit theorem in L1-spaces; see
Ledoux and Talagrand (1991, Theorem 10.10) or van der Vaart and Wellner (1996,
page 92).

Theorem 2. Let µ be a σ-finite measure on the Borel-σ-field on R. Let
Z1, Z2, . . . be independent and identically distributed zero-mean random elements
in L1(µ). Then the sequence n−1/2

∑n
i=1 Zi converges in distribution in L1(µ) to a

centered Gaussian process if and only if

lim
t→∞

t2P
(∫
|Z1(x)|µ(dx) > t

)
= 0 and

∫ (
E[Z2

1 (x)]
)1/2

µ(dx) <∞.

We have the following corollary to this theorem.

Corollary 1. Let Z1, Z2, . . . be independent and identically distributed zero-
mean random elements in LV . Then the sequence n−1/2

∑n
i=1 Zi converges in dis-

tribution in LV to a centered Gaussian process if

(2.7) ‖E[Z2
1 ]‖W =

∫
W (y)E[Z2

1 (y)] dy <∞.

Proof. We apply the previous theorem with µ(dx) = V (x) dx. Using (2.6) we
obtain the bounds

‖(E[Z2
1 ])1/2‖2V ≤ 2‖E[Z2

1 ]‖W <∞
and

E[‖Z1‖2V ] ≤ 2E[‖Z2
1‖W ] <∞.

The Markov inequality and the Lebesgue dominated convergence then imply

lim
t→∞

t2P
(
‖Z1‖V > t

)
≤ lim
t→∞

E
[
‖Z1‖2V 1[‖Z1‖V > t]

]
= 0.

Thus Theorem 2 yields the desired result. �
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We can write H = (1/n)
∑n
j=1 Zj , where

Zj(y) = q(y− εj)−h(y) + f(y− r(Xj))−h(y)− εj(f ′(y− r(Xj))−h′(y)), y ∈ R.

We have
E[Z2

1 ] = q2 ∗ f − h2 + f2 ∗ q − h2 + σ2((f ′)2 ∗ q − (h′)2)

≤ q2 ∗ f + f2 ∗ q + σ2(f ′)2 ∗ q
and thus

‖E[Z2
1 ]‖W ≤ ‖q2‖W ‖f‖W + ‖f2‖W ‖q‖W + σ2‖(f ′)2‖W ‖q‖W .

Note that f is bounded by assumption (F) and that q is bounded with compact
support by assumptions (G) and (R). Therefore q and q2 have finite W -norms, and
f2 has finite W -norm if f does. This shows that ‖E[Z2

1 ]‖W is finite if f and (f ′)2

have finite W -norms. Thus we have the following result, with the second statement
following from Remark 5 of Schick and Wefelmeyer (2007a).

Lemma 2. Suppose (F), (G) and (R) hold and ‖f‖W and ‖(f ′)2‖W are finite.
Then

√
nH converges in distribution in the space LV to a centered Gaussian process.

Moreover, ‖n1/2(H ∗Kb −H)‖V = op(n−1/2) if K has finite V -norm.

We are now ready to formulate our main result.

Theorem 3. Suppose (F), (G), (R), (W), (C), (K) and (B) hold. Let r̂ be the
local quadratic smoother defined in (1.1). Let ‖f‖W and ‖(f ′)2‖W be finite, and let
f ′ be LV -Lipschitz. Then the stochastic expansion

‖ĥ− h−H‖V = op(n−1/2)

holds, and n1/2H converges in distribution in the space LV to a centered Gaussian
process.

Note that Theorem 1 is a direct consequence of Theorem 3 and the observation
that functions of bounded variation are L1-Lipschitz. For the latter result see
Lemma 8 in Schick and Wefelmeyer (2007a).

Proof. Set fb = kb ∗ f and qb = kb ∗ q. We have the decomposition

f̂ ∗ q̂ = fb ∗ qb + fb ∗ (q̂ − qb) + qb ∗ (f̂ − fb) + (f̂ − fb) ∗ (q̂ − qb).

Note that
fb ∗ qb = f ∗ q ∗ kb ∗ kb = h ∗Kb.

Let us introduce the notation

ε̄ =
1
n

n∑
j=1

εj

and

R(y) =
1
n

n∑
j=1

(
f(y − r̂(Xj))− f(y − r(Xj)) + εjf

′(y − r(Xj))
)
, y ∈ R,

and the kernel estimators

f̃(y) =
1
n

n∑
j=1

kb(y − εj), y ∈ R,
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and

q̃(z) =
1
n

n∑
j=1

kb(z − r(Xj)), z ∈ R.

Then we can write

qb ∗ (f̂ − fb) = qb ∗ (f̃ − fb + ε̄f ′b) + qb ∗ (f̂ − f̃ − ε̄f ′b)

= H1 ∗Kb + qb ∗ (f̂ − f̃ − ε̄f ′b)

and
fb ∗ (q̂ − qb) = fb ∗ (q̃ − qb) + fb ∗ (q̂ − q̃)

= H2 ∗Kb +R ∗Kb.

The above identities show that

ĥ−h−H = h∗Kb−h+H ∗Kb−H+R∗Kb+qb ∗ (f̂ − f̃ − ε̄f ′b)+(f̂ −fb)∗ (q̂−qb).

Since q is of bounded variation and quasi-uniform on [r(0), r(1)], we may and
do assume that q is of the form

q(x) =
∫
u≤x

φ(u) ν(du), x ∈ R,

where ν is a finite measure with ν(R − [r(0), r(1)]) = 0, and φ is a measurable
function such that |φ| ≤ 1. As shown in Schick and Wefelmeyer (2011), this allows
us to write

h(y) =
∫
f(y − x)q(x) dx =

∫
F (y − u)φ(u) ν(du),

where F is the distribution function corresponding to the error density f . The
properties of f now yield that h is two times differentiable with bounded derivatives

(2.8) h′(y) =
∫
f(y − u)φ(u) ν(du), y ∈ R,

(2.9) h′′(y) =
∫
f ′(y − u)φ(u) ν(du), y ∈ R.

Since f ′ is LV -Lipschitz, so is h′′; see Lemma 6.1(2) in Schick and Wefelmeyer
(2008c). As k is of order three, so is K. Thus it follows from a standard argument
that

‖h ∗Kb − h‖V = O(b3).

In Sections 4–6 we shall verify the following statements:

‖f̂ − f̃ − ε̄f ′b‖V = op(n−1/2),(2.10)

‖R‖V = op(n−1/2),(2.11)

‖f̂ − fb‖V = Op((nb)−1/2),(2.12)

‖q̂ − qb‖V = op(b−1(nc)−1/2).(2.13)

Using these results we derive

‖ĥ− h−H‖V ≤ ‖h ∗Kb − h‖V + ‖H ∗Kb −H‖V + ‖R‖V ‖Kb‖V
+ ‖qb‖V ‖f̂ − f̃ − ε̄f ′b‖V + ‖f̂ − fb‖V ‖q̂ − qb‖V

= O(b3) + op(n−1/2) +Op(n−1b−3/2c−1/2) = op(n−1/2)
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by the choice of the bandwidths b and c. Here we also used Lemma 2 and the
inequalities ‖qb‖V ≤ ‖Kb‖V ‖q‖V and ‖Kb‖V ≤ ‖k‖2V , valid for b ≤ 1 in view of
(2.3). �

3. More properties of the local quadratic smoother

In this section we collect additional properties of the local quadratic smoother
r̂ that will be needed in our proofs. For proofs of these properties we refer the
reader to Schick and Wefelmeyer (2011). To simplify notation we set

â = r̂ − r.

For a function u defined on [0, 1], we write

‖u‖ = sup
0≤x≤1

|u(x)|.

For x ∈ [0, 1], let Uc(x) denote the matrix defined by

Uc(x) =
∫
g(x+ cu)ψ(u)ψ>(u)w(u) du.

This matrix is invertible for c < 1/2. We write Dc(x) for the first row of its inverse.
For later use we mention the bound

(3.1) sup
0≤c<1/2

sup
0≤x≤1

|Dc(x)| <∞.

Let us now set

∆̂(x) =
1
nc

n∑
j=1

w
(Xj − x

c

)
εjDc(x)ψ

(Xj − x
c

)
.

Then we have the stochastic expansion

(3.2) ‖â− ∆̂‖ = op(n−1/2).

Finally, we need some results that address the dependence of r̂ on the pairs
(Xj , εj). To describe these results we define, for a subset C of {1, . . . , n},

âC(x) =
1
nc

n∑
j=1

w
(Xj − x

c

)
1[j 6∈ C]

(
εj +R(Xj , x)

)
D(x)ψ

(Xj − x
c

)
with

R(Xj , x) = r(Xj)− r(x)− r′(x)(Xj − x)− 1
2
r′′(x)(Xj − x)2.

We abbreviate â{i} by âi and â{i,j} by âi,j . Then we have

max
1≤j≤n

‖â− âj‖ = op(1),(3.3)

1
n

n∑
j=1

(
â(Xj)− âj(Xj)

)2 = Op

( log2 n

n2c2

)
,(3.4)

1
n

n∑
j=1

∫ (
â(x)− âj(x)

)2
g(x) dx = Op

( log2 n

n2c2

)
,(3.5)

E
[(
â1(X1)− â1,2(X1)

)2] = Op

( 1
n2c

)
.(3.6)
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4. Proof of (2.10)

Without loss of generality we assume that c < 1/2. Let us again set â = r̂− r.
For a continuous function a, we set

µa,b(z) =
∫∫ (

kb(z − y + a(x))− kb(z − y)
)
f(y)g(x) dy dx

=
∫
fb(z + a(x))g(x) dx− fb(z), z ∈ R.

A Taylor expansion yields

µâ,b(z) = f ′b(z)
∫
â(x)g(x) dx+

∫ ∫ 1

0

(1− s)f ′′b (z + sâ(x))â2(x) ds g(x) dx.

As (f ′)2 has finite W -norm, the inequality (2.6) yields that f ′ has finite V -norm.
Using this and the fact that k and k′ are bounded with compact support, we derive
the bounds

‖f ′b‖V = ‖f ′ ∗ kb‖V ≤ ‖f ′‖V ‖kb‖V = O(1)

and
‖f ′′b ‖V = ‖f ′ ∗ k′b‖V ≤ ‖f ′‖V ‖k′b‖V = O(b−1).

Using these bounds, relations (1.2), (1.4), (1.5), and b2nc2 → ∞, we obtain the
rate

‖µâ,b − f ′bε̄‖V ≤ ‖f ′b‖V
∣∣∣ ∫ â(x)g(x) dx− ε̄

∣∣∣
+ ‖f ′′b ‖V V (‖â‖)

∫
â2(x)g(x) dx = op(n−1/2).

The desired result (2.10) follows from this if we show

(4.1) ‖f̂ − f̃ − µâ,b‖V = op(n−1/2).

To this end we introduce

T̄ (z) =
1
n

n∑
j=1

Tj(z, τ(â)) and T̄∗(z) =
1
n

n∑
j=1

Tj(z, τ(âj)), z ∈ R,

where
Tj(z, a) = kb(z − εj + a(Xj))− kb(z − εj)− µa,b(z),

and where τ is the function defined by

τ(x) = −1[x < −1] + x1[|x| ≤ 1] + 1[x > 1].

Note that τ is bounded by 1 and satisfies |τ(x)− τ(y)| ≤ |x− y|.
The probability of the event {‖â‖ > 1} tends to zero. On its complement we

have the identity τ(â) = â and thus T̄ = f̂ − f̃ −µâ,b. In view of this, relation (4.1)
follows if we show

(4.2) ‖T̄ − T̄∗‖V = op(n−1/2)

and

(4.3) ‖T̄∗‖V = op(n−1/2).
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For real numbers x1, . . . , xm and y1, . . . , ym, the function χb defined by

χb(z) =
1
m

m∑
i=1

(
kb(z − xi − yi)− kb(z − xi)

)
= − 1

m

m∑
i=1

∫ 1

0

yik
′
b(z − xi − syi) ds, z ∈ R,

satisfies the inequalities

(4.4) ‖χb‖V ≤ ‖k′b‖V
1
m

m∑
i=1

V (xi)V (yi)|yi|

and

(4.5) ‖χ2
b‖W ≤ ‖(k′b)2‖W

1
m

m∑
i=1

W (xi)W (yi)y2
i .

Note also that ‖k′b‖V = O(b−1) and ‖(k′b)2‖W = O(b−3). The inequality (4.4) and
the statements (1.2), (3.3), (3.4) and (3.5) yield the rate

‖T̄ − T̄∗‖V = Op

( log n
bnc

)
= op(n−1/2).

The last step used the fact that nc2b2/ log2 n = n1/2b2/ log2 n → ∞. This proves
(4.2). To prove (4.3), we write

nE[T̄ 2
∗ (z)] = E[T 2

1 (z, τ(â1))] + (n− 1)E[T1(z, τ(â1))T2(z, τ(â2))].

Conditioning on ξ = (ε2, X2, . . . , εn, Xn), we see that the first expectation on the
right-hand side is bounded by

Ξ1,b(z) = E
[(
kb(z − ε1 + τ(â1(X1)))− kb(z − ε1)

)2]
.

Moreover, we calculate

E[T1(z, τ(â1))T2(z, τ(â1,2))] = E[T2(z, τ(â1,2))E(T1(z, τ(â1))|ξ)] = 0.

Similarly one verifies

E[T1(z, τ(â1,2))T2(z, τ(â2))] = 0 and E[T1(z, τ(â1,2))T2(z, τ(â1,2))] = 0.

Thus the expectation e(z) = E[T1(z, τ(â1))T2(z, τ(â2))] equals

E
[(
T1(z, τ(â1))− T1(z, τ(â1,2))

)(
T2(z, τ(â2))− T2(z, τ(â1,2))

)]
.

An application of the Cauchy–Schwarz inequality shows that e(z) is bounded by
E
[(
T1(z, τ(â1))− T1(z, τ(â1,2))

)2] which in turn is bounded by

Ξ2,b(z) = E
[(
kb(z − ε1 − τ(â1(X1)))− kb(z − ε1 − τ(â1,2(X1)))

)2]
.

With the help of (3.6) and (4.5) we obtain the bounds

‖Ξ2,b‖W ≤ ‖(k′b)2‖WW (1)E[W (ε1)]E[(â1(X1)− â1,2(X1))2] = O
( 1
n2b3c

)
and

‖Ξ1,b‖W ≤ ‖(k′b)2‖WE[W (ε1)]E[(â1(X1))2] = O
( 1
nb3c

)
.

The above bounds show that ‖(T̄∗)2‖W = Op(n−2b−3c−1) = op(n−1), which implies
relation (4.3).
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5. Proof of (2.11)

We set

J(y) =
1
n

n∑
j=1

εjf
′(y − r(Xj)), y ∈ R,

and, for a continuous function a,

Sa(y) =
1
n

n∑
j=1

f(y − r(Xj)− a(Xj)), y ∈ R,

νa(y) =
∫
f(y − r(x)− a(x))g(x) dx, y ∈ R,

ν̇a(y) =
∫
a(x)f ′(y − r(x))g(x) dx, y ∈ R.

Then, with â = r̂ − r, we can express R as the sum

(Sâ − S0 − νâ + ν0) + (νâ − ν0 + ν̇â)− (ν̇â − J).

Therefore the desired result (2.11) is implied by the statements

‖Sâ − S0 − νâ + ν0‖V = op(n−1/2),(5.1)

‖νâ − ν0 + ν̇â‖V = op(n−1/2),(5.2)

‖ν̇â − J‖V = op(n−1/2).(5.3)

The first statement, (5.1), is verified by arguing as in the proof of (4.1); we skip
the details. The identity

νâ(y)− ν0(y) + ν̇â(y)

= − 1
n

n∑
j=1

∫
â(x)

∫ 1

0

(
f ′(y − r(x)− sâ(x))− f ′(y − r(x))

)
ds g(x) dx,

the inequality (2.4), and the LV -Lipschitz property of f ′ let us bound the left-hand
side of (5.2) by a constant times∫

V (r(x))V (â(x))â2(x)g(x) dx.

The second statement, (5.2), now follows from (1.2) and (1.4). It remains to prove
the third statement, (5.3). Relation (3.2) implies

‖ν̇â − ν̇∆̂‖V = op(n−1/2).

We can write

ν̇∆̂(y) =
1
n

n∑
j=1

εj

∫
D(x)ψ

(Xj − x
c

)1
c
w
(Xj − x

c

)
f ′(y − r(x))g(x) dx

=
1
n

n∑
j=1

εj

∫
D(Xj − cu)ψ(u)w(u)f ′(y − r(Xj − cu))g(Xj − cu) du

= J(y) +R1y) +R2(y),

where

R1(y) =
1
n

n∑
j=1

εjf
′(y − r(Xj))(tc(Xj)− 1)
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and

R2(y) =
1
n

n∑
j=1

εj

∫ (
f ′(y − r(Xj − cu))− f ′(y − r(Xj))

)
φc(X,u) du

with
φc(x, u) = g(x− cu)D(x− cu)ψ(u)w(u)

and
tc(x) =

∫
φc(x, u) du.

It was shown in Schick and Wefelmeyer (2011) that

E[(tc(X)− 1)2]→ 0.

We have
nE[R2

1(y)] = σ2E
[(
f ′(y − r(X))(tc(X)− 1)

)2]
and

nE[R2
2(y)] ≤ σ2E

[ ∫
φ2
c(X,u) du

∫ (
f ′(y − r(X − cu))− f ′(y − r(X))

)2
du
]
.

Since (f ′)2 has finite W -norm, we have

m(c) = sup
|s|≤c

∫
W (y)

(
f ′(y − s)− f ′(y)

)2
dy → 0.

With
B = sup

0<c<1/2

sup
0≤x≤1

sup
|u|≤1

|φc(x, u)| <∞

we find that

nE[‖R2
1‖W ] = n

∫
W (y)E[R2

1(y)] dy ≤ σ2‖(f ′)2‖WW (‖r‖)E[(tc(X)− 1)2]→ 0

and
nE[‖R2

2‖W ] = n

∫
W (y)E[R2

2(y)] dy ≤ σ2W (‖r‖)Bm(c)→ 0.

This proves the third statement, (5.3), and we are done.

6. Proofs of (2.12) and (2.13)

The statement (2.12) follows from (2.10), the property ‖ε̄f ′‖V = Op(n−1/2),
and the property

‖f̃ − fb‖V = Op((nb)−1/2).
The latter follows in turn from the inequality (2.6) and the fact that

nbE[‖f̃ − fb‖2W ] ≤
∫
W (x)

∫
bk2
b (x− y)f(y) dy dx ≤ ‖bk2

b‖W ‖f‖W = O(1).

Similarly, one verifies
‖q̃ − qb‖V = O((nb)−1/2).

Thus (2.13) follows from

(6.1) ‖q̂ − q̃‖V = op(b−1(nc)−1/2).

Let â = r̂ − r. In view of the identity

q̂(z)− q̃(z) = − 1
n

n∑
j=1

∫ 1

0

k′b
(
z − r(Xj)− sâ(Xj)

)
â(Xj) ds
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we have

‖q̂ − q̃‖V ≤ ‖k′b‖V V (Mn)
1
n

n∑
j=1

|â(Xj)|

with
Mn = max

1≤j≤n

(
|r(Xj)|+ |â(Xj)|

)
= Op(1).

We have ‖k′b‖V = O(b−1), and the desired (6.1) follows from (1.3).
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