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Let X1−p, . . . , Xn be observations of a Markov chain of order p, with

a parametric model for the conditional mean,

E(Xi|Xi−1) = rϑ(Xi−1),

where Xi−1 = (Xi−p, . . . , Xi−1) and ϑ is an unknown d-dimensional

parameter. An efficient estimator for ϑ in this model is a randomly

weighted least squares estimator that solves the estimating equation

n∑
i=1

σ̃−2(Xi−1)ṙϑ(Xi−1)
(
Xi − rϑ(Xi−1)

)
= 0,

where ṙϑ is the vector of partial derivatives of rϑ with respect to ϑ,

and σ̃2(Xi−1) estimates the conditional variance

σ2(Xi−1) = E((Xi − rϑ(Xi−1))
2|Xi−1).

Aside: The optimal weights are never parametric functions; we al-

ways need nonparametric estimators. Wef 1996 AS.



The autoregressive model E(Xi|Xi−1) = rϑ(Xi−1) can be described

through its transition distribution

A(x, dy) = T (x, dy − rϑ(x))

with
∫

T (x, dy)y = 0 for x = (x1, . . . , xp).

It can also be written as a nonlinear autoregressive model

Xi = rϑ(Xi−1) + εi

with εi a martingale increment: depends on the past through Xi−1

only and has conditional distribution T (x, dy) with
∫

T (x, dy)y = 0.

We now assume that we know something about the form of T . Then

it is useful to describe the model through its transition distribution.

Optimal estimators not as weighted least squares but as one-step

(Newton–Raphson) estimators.

(Possible other approaches: constrained M-estimator, Rao/Wu 2009;

empirical likelihood, Owen 2001.)



Our model has transition distribution A(x, dy) = T (x, dy−rϑ(x)) with∫
T (x, dy)y = 0 and additional constraint

(1) T is partially independent of the past, i.e., T (x, dy) = T0(Bx, dy)

for a known function B : Rp → Rq with 0 ≤ q ≤ p.

(2) T is invariant under transformation group Bj : Rp+1 → Rp+1,

j = 1, . . . , m. (T has density t with t(z) = t(Bjz) for z = (x, y).)

Optimal estimators for ϑj (and then jointly) are now constructed

differently : First determine Cramér–Rao bound and influence func-

tion in the least favorable one-dimensional submodel; then construct

one-step estimator with this influence function.



Perturb parameter as ϑnu = ϑ + n−1/2u, and transition density as

tnv(x, y) = t(x, y)(1 + n−1/2v(x, y)). The log-likelihood ratio of the

observations Xd−1, . . . , Xn is locally asymptotically normal, i.e. ap-

proximated by

n−1/2
n∑

i=1

suv(Xi−1, εi)−
1

2
E[s2uv(X, ε)],

where

suv(x, y) = u>ṙ(x)`(x, y) + v(x, y)

with ` = −t′/t and t′(x, y) = ∂yt(x, y), and ṙ = ∂ϑrϑ.

The influence function for ϑj in the least favorable submodel is the

gradient of ϑj, determined as su∗v∗ such that

n1/2(ϑnu,j − ϑj) = u = E[su∗v∗(X, ε)suv(X, ε)], all u, v.

The variance bound is Var su∗v∗(X, ε). Constraint on t also constrains

the possible perturbations v, which leads to different u∗ and v∗.



An efficient estimator ϑ̂ of ϑ is asymptotically linear with influence

function equal to the gradient su∗v∗,

ϑ̂ = ϑ +
1

n

n∑
i=1

su∗v∗(Xi−1, εi) + oPn(n
−1/2).

A one-step (Newton–Raphson) improvement ϑ̂ of an initial estimator

ϑ̃ is of the form

ϑ̂ = ϑ̃ +
1

n

n∑
i=1

s̃u∗v∗(Xi−1, ε̃i) + oPn(n
−1/2)

with ε̃i = Xi − rϑ̃(Xi−1).



(1) Our model has transition density a(x, y) = t(x, y − rϑ(x)) with∫
yt(x, dy) dy = 0 that is partially independent of the past:

t(x, y) = t0(Bx, y) for a (known) function B : Rp → Rq with 0 ≤ q ≤ p.

The efficient influence function for ϑ is Λ−1τ(x, y) with score vector

τ(X, ε) = (ṙ(X)− %(BX))`0(BX, ε) + %(BX)σ−2
0 (BX)ε.

and information matrix Λ = E[τ(X, ε)τ>(X, ε)].

Here ṙ = ∂ϑrϑ, `0 = −t′0/t0 with t′0(x, y) = ∂yt0(x, y),

%(b) = E(ṙ(X)|BX = b) =

∫
Bx=b ṙϑ(x)g(x) dx∫

Bx=b g(x) dx
,

σ2
0(b) = E(ε2|BX = b) =

∫
y2h0(b, y) dy∫
h0(b, y) dy

,

with g and h0 densities of X and (BX, ε). To estimate ϑ efficiently,

we therefore need estimators for the efficient score function, i.e.

(p + 1)-dimensional density estimators and (generalized) Nadaraya–

Watson estimators. No gain if t0(b, ·) are normal densities.



(2) Our model has transition density a(x, y) = t(x, y − rϑ(x)) with∫
yt(x, dy) dy = 0 that is invariant under a group of transformations:

t(z) = t(Bjz) for z = (x, y) and transformations Bj : Rp+1 → Rp+1,

j = 1, . . . , m.

The efficient influence function for ϑ is Λ−1τ(x, y) with score vector

τ = λ− λ0 + µ0 and information matrix Λ = E[τ(X, ε)τ>(X, ε)], with

symmetrizations

λ0(z) =
1

m

m∑
j=1

λ(Bjz), µ0(z) =
1

m

m∑
j=1

µ(Bjz)

of

λ(x, y) = ṙ(x)`(x, y), µ(x, y) = ṙ(x)σ−2(x)y,

where ṙ = ∂ϑrϑ and ` = −t′/t with t′(x, y) = ∂yt(x, y), and σ2(x) =

E(ε2|X = x). To estimate ϑ efficiently, we need estimators for these

expressions. No gain if t(b, ·) are normal densities.


