Variance bounds for estimators in autoregressive models with constraints

> Wolfgang Wefelmeyer (University of Cologne)
based on joint work with
Anton Schick (Binghamton University) Ursula U. Müller (Texas A \& M University)
mailto:wefelm@math.uni-koeln.de http://www.mi.uni-koeln.de/~wefelm/

Let X_{1-p}, \ldots, X_{n} be observations of a Markov chain of order p, with a parametric model for the conditional mean,

$$
E\left(X_{i} \mid \mathbf{X}_{i-1}\right)=r_{\vartheta}\left(\mathbf{X}_{i-1}\right),
$$

where $\mathbf{X}_{i-1}=\left(X_{i-p}, \ldots, X_{i-1}\right)$ and ϑ is an unknown d-dimensional parameter. An efficient estimator for ϑ in this model is a randomly weighted least squares estimator that solves the estimating equation

$$
\sum_{i=1}^{n} \tilde{\sigma}^{-2}\left(\mathbf{X}_{i-1}\right) \dot{r}_{\vartheta}\left(\mathbf{X}_{i-1}\right)\left(X_{i}-r_{\vartheta}\left(\mathbf{X}_{i-1}\right)\right)=0
$$

where \dot{r}_{ϑ} is the vector of partial derivatives of r_{ϑ} with respect to ϑ, and $\tilde{\sigma}^{2}\left(\mathbf{X}_{i-1}\right)$ estimates the conditional variance

$$
\sigma^{2}\left(\mathbf{X}_{i-1}\right)=E\left(\left(X_{i}-r_{\vartheta}\left(\mathbf{X}_{i-1}\right)\right)^{2} \mid \mathbf{X}_{i-1}\right) .
$$

Aside: The optimal weights are never parametric functions; we always need nonparametric estimators. Wef 1996 AS.

The autoregressive model $E\left(X_{i} \mid \mathbf{X}_{i-1}\right)=r_{\vartheta}\left(\mathbf{X}_{i-1}\right)$ can be described through its transition distribution

$$
A(\mathrm{x}, d y)=T\left(\mathrm{x}, d y-r_{\vartheta}(\mathrm{x})\right)
$$

with $\int T(\mathrm{x}, d y) y=0$ for $\mathrm{x}=\left(x_{1}, \ldots, x_{p}\right)$.
It can also be written as a nonlinear autoregressive model

$$
X_{i}=r_{\vartheta}\left(\mathbf{X}_{i-1}\right)+\varepsilon_{i}
$$

with ε_{i} a martingale increment: depends on the past through \mathbf{X}_{i-1} only and has conditional distribution $T(\mathrm{x}, d y)$ with $\int T(\mathrm{x}, d y) y=0$.

We now assume that we know something about the form of T. Then it is useful to describe the model through its transition distribution. Optimal estimators not as weighted least squares but as one-step (Newton-Raphson) estimators.
(Possible other approaches: constrained M-estimator, Rao/Wu 2009; empirical likelihood, Owen 2001.)

Our model has transition distribution $A(\mathbf{x}, d y)=T\left(\mathrm{x}, d y-r_{\vartheta}(\mathrm{x})\right)$ with $\int T(\mathrm{x}, d y) y=0$ and additional constraint
(1) T is partially independent of the past, i.e., $T(\mathbf{x}, d y)=T_{0}(B \mathbf{x}, d y)$ for a known function $B: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ with $0 \leq q \leq p$.
(2) T is invariant under transformation group $B_{j}: \mathbb{R}^{p+1} \rightarrow \mathbb{R}^{p+1}$, $j=1, \ldots, m$. (T has density t with $t(\mathbf{z})=t\left(B_{j} \mathbf{z}\right)$ for $\mathbf{z}=(\mathbf{x}, y)$.)

Optimal estimators for ϑ_{j} (and then jointly) are now constructed differently: First determine Cramér-Rao bound and influence function in the least favorable one-dimensional submodel; then construct one-step estimator with this influence function.

Perturb parameter as $\vartheta_{n u}=\vartheta+n^{-1 / 2} u$, and transition density as $t_{n v}(\mathrm{x}, y)=t(\mathrm{x}, y)\left(1+n^{-1 / 2} v(\mathrm{x}, y)\right)$. The log-likelihood ratio of the observations X_{d-1}, \ldots, X_{n} is locally asymptotically normal, i.e. approximated by

$$
n^{-1 / 2} \sum_{i=1}^{n} s_{u v}\left(\mathbf{X}_{i-1}, \varepsilon_{i}\right)-\frac{1}{2} E\left[s_{u v}^{2}(\mathbf{X}, \varepsilon)\right],
$$

where

$$
s_{u v}(\mathrm{x}, y)=u^{\top} \dot{r}(\mathrm{x}) \ell(\mathrm{x}, y)+v(\mathrm{x}, y)
$$

with $\ell=-t^{\prime} / t$ and $t^{\prime}(\mathrm{x}, y)=\partial_{y} t(\mathrm{x}, y)$, and $\dot{r}=\partial_{\vartheta} r_{\vartheta}$.
The influence function for ϑ_{j} in the least favorable submodel is the gradient of ϑ_{j}, determined as $s_{u^{*} v^{*}}$ such that

$$
n^{1 / 2}\left(\vartheta_{n u, j}-\vartheta_{j}\right)=u=E\left[s_{u^{*} v^{*}}(\mathbf{X}, \varepsilon) s_{u v}(\mathbf{X}, \varepsilon)\right], \quad \text { all } u, v .
$$

The variance bound is $\operatorname{Var} s_{u^{*} v^{*}}(\mathbf{X}, \varepsilon)$. Constraint on t also constrains the possible perturbations v, which leads to different u^{*} and v^{*}.

An efficient estimator $\widehat{\vartheta}$ of ϑ is asymptotically linear with influence function equal to the gradient $s_{u^{*} v^{*}}$,

$$
\widehat{\vartheta}=\vartheta+\frac{1}{n} \sum_{i=1}^{n} s_{u^{*} v^{*}}\left(\mathbf{X}_{i-1}, \varepsilon_{i}\right)+o_{P_{n}}\left(n^{-1 / 2}\right)
$$

A one-step (Newton-Raphson) improvement $\hat{\vartheta}$ of an initial estimator $\tilde{\vartheta}$ is of the form

$$
\widehat{\vartheta}=\widetilde{\vartheta}+\frac{1}{n} \sum_{i=1}^{n} \tilde{s}_{u^{*} v^{*}}\left(\mathbf{X}_{i-1}, \tilde{\varepsilon}_{i}\right)+o_{P_{n}}\left(n^{-1 / 2}\right)
$$

with $\tilde{\varepsilon}_{i}=X_{i}-r_{\tilde{\vartheta}}\left(\mathbf{X}_{i-1}\right)$.
(1) Our model has transition density $a(\mathbf{x}, y)=t\left(\mathbf{x}, y-r_{\vartheta}(\mathbf{x})\right)$ with $\int y t(\mathbf{x}, d y) d y=0$ that is partially independent of the past: $t(\mathbf{x}, y)=t_{0}(B \mathbf{x}, y)$ for a (known) function $B: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ with $0 \leq q \leq p$.

The efficient influence function for ϑ is $\wedge^{-1} \tau(\mathrm{x}, y)$ with score vector

$$
\tau(\mathbf{X}, \varepsilon)=(\dot{r}(\mathbf{X})-\varrho(B \mathbf{X})) \ell_{0}(B \mathbf{X}, \varepsilon)+\varrho(B \mathbf{X}) \sigma_{0}^{-2}(B \mathbf{X}) \varepsilon
$$

and information matrix $\wedge=E\left[\tau(\mathbf{X}, \varepsilon) \tau^{\top}(\mathbf{X}, \varepsilon)\right]$.
Here $\dot{r}=\partial_{\vartheta} r_{\vartheta}, \ell_{0}=-t_{0}^{\prime} / t_{0}$ with $t_{0}^{\prime}(\mathbf{x}, y)=\partial_{y} t_{0}(\mathbf{x}, y)$,

$$
\begin{aligned}
\varrho(\mathbf{b}) & =E(\dot{r}(\mathbf{X}) \mid B \mathbf{X}=\mathbf{b})=\frac{\int_{B \mathbf{x}=\mathbf{b}} \dot{r}_{\vartheta}(\mathbf{x}) g(\mathbf{x}) d \mathbf{x}}{\int_{B \mathbf{x}=\mathbf{b}} g(\mathbf{x}) d \mathbf{x}} \\
\sigma_{0}^{2}(\mathbf{b}) & =E\left(\varepsilon^{2} \mid B \mathbf{X}=b\right)=\frac{\int y^{2} h_{0}(\mathbf{b}, y) d y}{\int h_{0}(\mathbf{b}, y) d y}
\end{aligned}
$$

with g and h_{0} densities of \mathbf{X} and $(B \mathbf{X}, \varepsilon)$. To estimate ϑ efficiently, we therefore need estimators for the efficient score function, i.e. ($p+1$)-dimensional density estimators and (generalized) NadarayaWatson estimators. No gain if $t_{0}(\mathbf{b}, \cdot)$ are normal densities.
(2) Our model has transition density $a(\mathrm{x}, y)=t\left(\mathrm{x}, y-r_{\vartheta}(\mathrm{x})\right)$ with $\int y t(\mathbf{x}, d y) d y=0$ that is invariant under a group of transformations:
$t(\mathrm{z})=t\left(B_{j} \mathbf{z}\right)$ for $\mathrm{z}=(\mathrm{x}, y)$ and transformations $B_{j}: \mathbb{R}^{p+1} \rightarrow \mathbb{R}^{p+1}$, $j=1, \ldots, m$.

The efficient influence function for ϑ is $\Lambda^{-1} \tau(\mathrm{x}, y)$ with score vector $\tau=\lambda-\lambda_{0}+\mu_{0}$ and information matrix $\Lambda=E\left[\tau(\mathbf{X}, \varepsilon) \tau^{\top}(\mathbf{X}, \varepsilon)\right]$, with symmetrizations

$$
\lambda_{0}(\mathbf{z})=\frac{1}{m} \sum_{j=1}^{m} \lambda\left(B_{j} \mathbf{z}\right), \quad \mu_{0}(\mathbf{z})=\frac{1}{m} \sum_{j=1}^{m} \mu\left(B_{j} \mathbf{z}\right)
$$

of

$$
\lambda(\mathrm{x}, y)=\dot{r}(\mathrm{x}) \ell(\mathrm{x}, y), \quad \mu(\mathrm{x}, y)=\dot{r}(\mathrm{x}) \sigma^{-2}(\mathrm{x}) y
$$

where $\dot{r}=\partial_{\vartheta} r_{\vartheta}$ and $\ell=-t^{\prime} / t$ with $t^{\prime}(\mathrm{x}, y)=\partial_{y} t(\mathrm{x}, y)$, and $\sigma^{2}(\mathrm{x})=$ $E\left(\varepsilon^{2} \mid \mathbf{X}=\mathbf{x}\right)$. To estimate ϑ efficiently, we need estimators for these expressions. No gain if $t(\mathbf{b}, \cdot)$ are normal densities.

