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Direct approach

Consider the nonparametric regression model

Y = r(X) + ε.

Let Y have density h. We want to estimate h at a point y.

The direct approach uses the responses only, say a kernel estimator

ĥ(y) =
1

n

n∑
i=1

Kb(y − Yi) with Kb(y) =
1

b
K

(
y

b

)
.

If K is bounded with bounded support,

nbVar ĥ(y)→ h(y)
∫

K2(u) du for nb→∞.

If h is s times differentiable at y and K is of order s,

b−s
(
Eĥ(y)− h(y)

)
→ h(s)(y)

(−1)s

s!

∫
usK(u) du for b→ 0.



If h is s times differentiable at y and K is of order s, then the optimal

rate of the bandwidth is b = n−1/(2s+1), and the optimal rate of the

kernel estimator is n−s/(2s+1).

For this bandwidth, ns/(2s+1)(ĥ(y) − h(y)) is asymptotically normal

with mean

h(s)(y)
(−1)s

s!

∫
usK(u) du

and variance

h(y)
∫

K2(u) du.



Local von Mises statistic

Let Y = r(X) + ε with X, ε independent. A better estimator for the

response density h than the direct ĥ is a local von Mises statistic

1

n2

n∑
i=1

n∑
j=1

Kb(y − r̂(Xi)− ε̂j)

with residuals ε̂j = Yj − r̂(Xj) and a local polynomial smoother r̂.

Several cases can be distinguished.

If both r(X) and ε have densities, say f and e, and f(X) and e(ε)

have finite second moments, then the local von Mises statistic has

rate n−1/2, see Schick/W. 2012, 2013 and Giné/Mason 2007.

If r(X) or ε are discrete, then the convolution h is just a linear

combination of densities, and the local von Mises statistic is not

faster than the kernel estimator based on the responses (even though

discrete distributions can be estimated at faster rates than densities).

For discrete r(X) see Müller/Schick/W. 2015.



Regression with discrete errors

Let Y = r(X) + ε with X, ε independent and r increasing.

Let ε have support t1 < · · · < tm with P (ε = tk) = pk > 0.

Let r(X) have density f . Then Y has convolution density

h(y) =
m∑

k=1

f(y − tk)pk.

Let X have density g with r′(r−1(z)) 6= 0. Then

f(z) =
g(r−1(z))

r′(r−1(z))
.

Hence h is s times differentiable at y if (and only if) g is s times

differentiable and r is s + 1 times differentiable at r−1(y − tk) for

k = 1, . . . ,m.

We estimate h(y) by a plug-in-estimator of the form

ˆ̂h(y) =
m∑

k=1

f̂(y − t̂k)p̂k.



First estimator of f(z) = g(r−1(z))/r′(r−1(z))

Estimate f(z) by the plug-in-estimator

f̂(z) =
ĝ(r̂−1(z))

r̂′(r̂−1(z))
.

Assume that g is s times and r is s+1 times differentiable at r−1(z).

Then g can be estimated at the same rate n−s/(2s+1) as h,

and r at the faster rate n−(s+1)/(2(s+1)+1),

but r′ only at the slower rate n−s/(2(s+1)+1).

It follows that f̂(z) has the slower rate n−s/(2(s+1)+1).

The corresponding estimator ˆ̂h(y) =
∑m

k=1 f̂(y− t̂k)p̂k of the response

density also has this rate and is slower than the kernel estimator ĥ(y).



Second estimator of f(z) = g(r−1(z))/r′(r−1(z))

Estimate f(z) by the kernel estimator

f̂(z) =
1

n

n∑
i=1

Kb(z − r̂(Xi)).

We assume that g is s times and r is s + 1 times differentiable at z.

Then r can be estimated at the rate n−(s+1)/(2(s+1)+1).

The density f(z) of r(X) is s times differentiable.

Take K of order s and b = n−1/(2s+1).

Then the r̂(Xi) enter f̂(z) asymptotically like the true r(Xi).

Hence ns/(2s+1)(f̂(z)− f(z)) is asymptotically normal with

mean f(s)(z)
(−1)s

s!

∫
usK(u) du and variance f(z)

∫
K2(u) du.



Estimator of the regression function

We may take a local polynomial smoother r̂(x) of order s + 1.

Take (r̂(x), . . . , r̂(s+1)(x)) = (ϑ0, . . . , (s + 1)!ϑs+1) minimizing

n∑
i=1

(
Yi −

s+1∑
j=0

ϑj(Xi − x)j
)2

wb(Xi − x).

Her wb(x) = w(x/b)/b and w is a density.



Estimator of the response density

We estimate h(y) by the plug-in-estimator

ˆ̂h(y) =
m∑

k=1

f̂(y − t̂k)p̂k,

where

f̂(z) =
1

n

n∑
i=1

Kb(z − r̂(Xi))

with kernel K of order s and bandwidth b = n−1/(2s+1).

We will show that tk and pk can be estimated at faster rates than f .

Hence these estimators will not influence the asymptotic distribution

of ˆ̂h(y).



t̂k, p̂k enter like tk, pk

Let ε̂i = Yi − r̂(Xi) denote the residuals. The residual-based distri-

bution function is F̂ (z) = 1
n

∑n
i=1 1(ε̂i ≤ z). With t = (t1, . . . , tm) and

p = (p1, . . . , pm), the distribution function of the error ε is

Ftp(z) =
m∑

k=1

pk1(tk ≤ z).

The least squares estimator t̂, p̂ of t, p minimizes∫ (
F̂ (z)− Ftp(z)

)2
dz.

Then t̂ has rate n−1 and p̂ has rate n−1/2. (This is similar to

estimating regression functions with jumps; see Koul/Qian/Surgailis

2003 and Ciuperca 2009.) We obtain

ns/(2s+1)(ˆ̂h(y)− h(y)) =
m∑

k=1

ns/(2s+1)(f̂ − f)(y − tk)pk + op(1).



Main result

We estimate the response density by

ˆ̂h(y) =
m∑

k=1

f̂(y − t̂k)p̂k with f̂(z) =
1

n

n∑
i=1

Kb(z − r̂(Xi)),

where K is of order s and b = n−1/(2s+1). We write

f̃(z) =
1

n

n∑
i=1

Kb(z − r(Xi))

and obtain

ns/(2s+1)(ˆ̂h(y)− h(y)) =
m∑

k=1

ns/(2s+1)(f̃ − f)(y − tk)pk + op(1).



Hence ns/(2s+1)(ˆ̂h(y)− h(y)) is asymptotically normal with mean

m∑
k=1

f(s)(y − tk)pk
(−1)s

s!

∫
usK(s) ds = h(s)(y)

(−1)s

s!

∫
usK(s) ds

and variance
m∑

k=1

f(y − tk)p2
k

∫
K2(u) du.

The mean is the same as for the kernel estimator ĥ(y), but the

variance now has p2
k in place of pk. This is a (considerable) reduction.



A fast estimator of the regression function

Decompose the real line into intervals Î1, . . . , Îm that contain t̂1, . . . , t̂m

in their interiors, using midpoints of t̂1, . . . , t̂m. Define

r(Xi) = Yi − tk if r̂(Xi) ∈ Îk.

Then r(Xi) = r(Xi) + Op(n−1).

Hence r and r′ converge faster than n−1/2.



First estimator of f(z) = g(r−1(z))/r′(r−1(z)), again

Estimate f(z) by the plug-in-estimator

f̂(z) =
ĝ(r−1(z))

r′(r−1(z))
with ĝ(x) =

1

n

n∑
i=1

Kb(x−Xi).

We assume that g is s times and r is s + 1 times differentiable at z.

Take K of order s and b = n−1/(2s+1). Then

ns/(2s+1)(f̂(z)− f(z)) =
1

r′(r−1(z))
ns/(2s+1)(ĝ(z)− g(z)) + op(1).

Estimate h(y) by

ˆ̂h(y) =
m∑

k=1

ĝ(y − t̂k))
p̂k

r′(r−1(y − t̂k))
.

This is not always better than the kernel ĥ(y):

ns/(2s+1)(ˆ̂h(y)− h(y))

=
m∑

k=1

ns/(2s+1)
(
ĝ − g)(y − tk)

pk
r′(r−1(y − tk))

+ op(1).


