Density estimators for invertible linear processes

> Wolfgang Wefelmeyer Mathematical Institute University of Cologne

jointly with
Anton Schick (Binghamton University)

mailto:wefelm@math.uni-koeln.de http://www.mi.uni-koeln.de/~wefelm/

Let X_{1}, \ldots, X_{n} be observations of a linear process

$$
X_{j}=\varepsilon_{j}+\sum_{s=1}^{\infty} \varphi_{s} \varepsilon_{j-s}
$$

Assume that the innovations ε_{j} have mean zero, finite variance, and density f, and that the coefficients φ_{s} are summable.
An estimator for the density h of X_{j} at x is the kernel estimator

$$
k_{b}(x)=\frac{1}{n} \sum_{j=1}^{n} k_{b}\left(x-X_{j}\right) \quad \text { with } \quad k_{b}(x)=k(x / b) / b .
$$

The more coefficients φ_{s} are nonzero, the smoother is h. We exploit this by decomposing

$$
X_{j}=Y_{j}+Z_{j} \quad \text { with } \quad Z_{j}=\sum_{s=m}^{\infty} \varphi_{s} \varepsilon_{j-s}
$$

With f_{m} denoting the density of $Y_{j}=\varepsilon_{j}+\sum_{s=1}^{m-1} \varphi_{s} \varepsilon_{j-s}$, we have

$$
\begin{aligned}
\widehat{h}-h= & \frac{1}{n} \sum_{j=1}^{n}\left(k_{b}\left(x-X_{j}\right)-k_{b} * f_{m}\left(x-Z_{j}\right)\right) \\
& +\frac{1}{n} \sum_{j=1}^{n}\left(f_{m}\left(x-Z_{j}\right)-k_{b} * h(x)\right)+k_{b} * h(x)-h(x) .
\end{aligned}
$$

(For $m=1$ see Wu /Mielniczuk 2002.)
If only finitely many φ_{s} are nonzero, the middle term vanishes for m large.

Result: Assume that at least N coefficients φ_{s} are nonzero. Let f have finite variation. Choose a kernel of order $N+1$. Then

$$
\|\widehat{h}-h\|_{1}=O_{P}\left(n^{-1 / 2} b^{-1 / 2}\right)+O\left(b^{N+1}\right) .
$$

Test for number of nonzero coefficients.
Then choose optimal bandwidth and order of kernel. If many φ_{s} are nonzero, the rate of \hat{h} is close to $n^{-1 / 2}$.

Suppose at least one φ_{s} is nonzero. A better estimator for h is given by a convolution of two density estimators, using $X_{j}=\varepsilon_{j}+Z_{j}$.
Then $h=f * g$ with h, f, g the densities of $X_{j}, \varepsilon_{j}, Z_{j}$.

To estimate ε_{j}, we assume that the linear process is invertible,

$$
\varepsilon_{j}=X_{j}-\sum_{s=1}^{\infty} \varrho_{s} X_{j-s}
$$

Let ϱ_{j} be an estimator of ϱ_{j}. Let $p \rightarrow \infty$. Estimate ε_{j} and Z_{j} by

$$
\widehat{\varepsilon}_{j}=X_{j}-\sum_{s=1}^{p} \widehat{\varrho}_{s} X_{j-s} \quad \text { and } \quad \hat{z}_{j}=X_{j}-\widehat{\varepsilon}_{j} .
$$

Estimate the densities f of ε_{j} and g of Z_{j} by kernel estimators

$$
\widehat{f}(x)=\frac{1}{n-p} \sum_{j=p+1}^{n} k_{b}\left(x-\widehat{\varepsilon}_{j}\right), \quad \widehat{g}(x)=\frac{1}{n-p} \sum_{j=p+1}^{n} k_{b}\left(x-\widehat{Z}_{j}\right) .
$$

Then estimate $h=f * g$ by the convolution estimator $\widehat{h}=\widehat{f} * \widehat{g}$.

Result: For appropriate choice of kernel and bandwidth, under (mild) conditions on the decay of φ_{s} and ϱ_{s}, if f has a moment >3 and (essentially) finite variation, then $\hat{h}=\hat{f} * \hat{g}$ has the stochastic expansion

$$
\left\|\widehat{h}-h-\mathbb{F}-\mathbb{G}+\sum_{s=1}^{p}\left(\widehat{\varrho}_{s}-\varrho_{s}\right) \nu_{s}^{\prime}\right\|_{1}=o_{P}\left(n^{-1 / 2}\right)
$$

with

$$
\begin{aligned}
& \mathbb{F}(x)=\frac{1}{n-p} \sum_{j=p+1}^{n}\left(f\left(x-Z_{j}\right)-h(x)\right), \\
& \mathbb{G}(x)=\frac{1}{n-p} \sum_{j=p+1}^{n}\left(g\left(x-\varepsilon_{j}\right)-h(x)\right),
\end{aligned}
$$

and $\nu_{s}(x)=E\left[X_{0} f\left(x-Z_{s}\right)\right]$.

If $\widehat{\varrho}_{s}$ are asymptotically linear (e.g. least squares estimators), then $n^{1 / 2}(\widehat{h}-h)$ converges weakly in L_{1} to a centered Gausian process.

The estimator $\hat{h}=\hat{f} * \hat{g}$ is approximated by a sum of two smoothed empirical estimators:

$$
\widehat{f} * \widehat{g}-f * g=f *(\widehat{g}-g)+g *(\widehat{f}-f)+(\widehat{f}-f) *(\hat{g}-g) .
$$

This explains the rate $n^{-1 / 2}$ if the bandwidth is e.g. $(n \log n)^{-1 / 4}$.
The estimator $\hat{f} * \hat{g}(x)$ is equivalent to a local U-statistic:

$$
\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} K_{b}\left(x-\widehat{\varepsilon}_{i}-\widehat{Z}_{j}\right)
$$

The estimator $\hat{f} * \hat{g}$ can be improved in several ways:

- Use efficient estimators for ϱ_{s}.
- Use empirical likelihood weights on \widehat{f} and \hat{g} to exploit $E\left[\varepsilon_{j}\right]=0$,
- Use the convolution representation of $Z_{j}=X_{j}-\varepsilon_{j}=\sum_{s=1}^{\infty} \varphi_{s} \varepsilon_{j-s}$
to estimate h by an increasing number $q \rightarrow \infty$ of convolutions,

$$
\widehat{h}(x)=\int \cdots \int \hat{f}\left(x-\hat{\varphi}_{1} z_{1}-\cdots-\hat{\varphi}_{q} z_{q}\right) \widehat{f}\left(z_{1}\right) \cdots \widehat{f}\left(z_{q}\right) d z_{1} \cdots d z_{q} .
$$

