Density estimators for invertible linear processes

Wolfgang Wefelmeyer Mathematical Institute University of Cologne

jointly with Anton Schick (Binghamton University)

mailto:wefelm@math.uni-koeln.de http://www.mi.uni-koeln.de/~wefelm/ Let X_1, \ldots, X_n be observations of a linear process

$$X_j = \varepsilon_j + \sum_{s=1}^{\infty} \varphi_s \varepsilon_{j-s}.$$

Assume that the innovations ε_j have mean zero, finite variance, and density f, and that the coefficients φ_s are summable. An estimator for the density h of X_j at x is the kernel estimator

$$k_b(x) = \frac{1}{n} \sum_{j=1}^n k_b(x - X_j)$$
 with $k_b(x) = k(x/b)/b$.

The more coefficients φ_s are nonzero, the smoother is h. We exploit this by decomposing

$$X_j = Y_j + Z_j$$
 with $Z_j = \sum_{s=m}^{\infty} \varphi_s \varepsilon_{j-s}$.

With f_m denoting the density of $Y_j = \varepsilon_j + \sum_{s=1}^{m-1} \varphi_s \varepsilon_{j-s}$, we have

$$\hat{h} - h = \frac{1}{n} \sum_{j=1}^{n} \left(k_b (x - X_j) - k_b * f_m (x - Z_j) \right) + \frac{1}{n} \sum_{j=1}^{n} \left(f_m (x - Z_j) - k_b * h(x) \right) + k_b * h(x) - h(x).$$

(For m = 1 see Wu/Mielniczuk 2002.) If only finitely many φ_s are nonzero, the middle term vanishes for m large.

Result: Assume that at least N coefficients φ_s are nonzero. Let f have finite variation. Choose a kernel of order N + 1. Then

$$\|\hat{h} - h\|_1 = O_P(n^{-1/2}b^{-1/2}) + O(b^{N+1}).$$

Test for number of nonzero coefficients. Then choose optimal bandwidth and order of kernel. If many φ_s are nonzero, the rate of \hat{h} is close to $n^{-1/2}$. Suppose at least one φ_s is nonzero. A better estimator for h is given by a *convolution* of two density estimators, using $X_j = \varepsilon_j + Z_j$. Then h = f * g with h, f, g the densities of X_j , ε_j , Z_j .

To estimate ε_i , we assume that the linear process is invertible,

$$\varepsilon_j = X_j - \sum_{s=1}^{\infty} \varrho_s X_{j-s}.$$

Let $\hat{\varrho}_j$ be an estimator of ϱ_j . Let $p \to \infty$. Estimate ε_j and Z_j by

$$\hat{\varepsilon}_j = X_j - \sum_{s=1}^p \hat{\varrho}_s X_{j-s}$$
 and $\hat{Z}_j = X_j - \hat{\varepsilon}_j$.

Estimate the densities f of ε_i and g of Z_j by kernel estimators

$$\hat{f}(x) = \frac{1}{n-p} \sum_{j=p+1}^{n} k_b(x - \hat{\varepsilon}_j), \quad \hat{g}(x) = \frac{1}{n-p} \sum_{j=p+1}^{n} k_b(x - \hat{Z}_j).$$

Then estimate h = f * g by the convolution estimator $\hat{h} = \hat{f} * \hat{g}$.

Result: For appropriate choice of kernel and bandwidth, under (mild) conditions on the decay of φ_s and ϱ_s , if f has a moment > 3 and (essentially) finite variation, then $\hat{h} = \hat{f} * \hat{g}$ has the stochastic expansion

$$\left\|\widehat{h} - h - \mathbb{F} - \mathbb{G} + \sum_{s=1}^{p} (\widehat{\varrho}_s - \varrho_s) \nu'_s\right\|_1 = o_P(n^{-1/2})$$

with

$$\mathbb{F}(x) = \frac{1}{n-p} \sum_{\substack{j=p+1 \\ j=p+1}}^{n} \left(f(x-Z_j) - h(x) \right),$$
$$\mathbb{G}(x) = \frac{1}{n-p} \sum_{\substack{j=p+1 \\ j=p+1}}^{n} \left(g(x-\varepsilon_j) - h(x) \right),$$

and $\nu_s(x) = E[X_0 f(x - Z_s)].$

If $\hat{\varrho}_s$ are asymptotically linear (e.g. least squares estimators), then $n^{1/2}(\hat{h}-h)$ converges weakly in L_1 to a centered Gausian process.

The estimator $\hat{h} = \hat{f} * \hat{g}$ is approximated by a sum of two smoothed empirical estimators:

$$\hat{f} * \hat{g} - f * g = f * (\hat{g} - g) + g * (\hat{f} - f) + (\hat{f} - f) * (\hat{g} - g).$$

This explains the rate $n^{-1/2}$ if the bandwidth is e.g. $(n \log n)^{-1/4}$.

The estimator $\hat{f} * \hat{g}(x)$ is equivalent to a local U-statistic:

$$\frac{1}{n^2}\sum_{i=1}^n\sum_{j=1}^n K_b(x-\widehat{\varepsilon}_i-\widehat{Z}_j).$$

The estimator $\hat{f} * \hat{g}$ can be improved in several ways:

- Use efficient estimators for ρ_s .
- Use empirical likelihood weights on \hat{f} and \hat{g} to exploit $E[\varepsilon_j] = 0$,
- Use the convolution representation of $Z_j = X_j \varepsilon_j = \sum_{s=1}^{\infty} \varphi_s \varepsilon_{j-s}$
- to estimate h by an increasing number $q \rightarrow \infty$ of convolutions,

$$\widehat{h}(x) = \int \cdots \int \widehat{f}\left(x - \widehat{\varphi}_1 z_1 - \cdots - \widehat{\varphi}_q z_q\right) \widehat{f}(z_1) \cdots \widehat{f}(z_q) \, dz_1 \cdots dz_q.$$