Homework Set Ten

Due Thursday, July 7.

Question 1. Suppose that $x \in \mathbb{R}$ has the decimal expansion

$$x = n + \sum_{j=1}^{\infty} \frac{a_j}{10^j}$$
 with $n \in \mathbb{Z}$, and $0 \le a_j \le 9$.

If there exists $m, \ell \in \mathbb{N}$ such that $a_{k+\ell} = a_k$ for all k > m we say that the decimal expansion of x is *periodic*. If x is periodic with m and ℓ as above, we write

$$x = n.a_1 \cdots a_m \overline{a_{m+1} \cdots a_{m+\ell}}$$

- (a) Find integers a, b with gcd(a, b) = 1 such that $\frac{a}{b} = 1.234\overline{56789}$.
- (b) Suppose that $0 < c, d \le 9$. Find integers a, b such that $\frac{a}{b} = 0.c\overline{d}$.
- (c) Find integers a, b with gcd(a, b) = 1 such that $\frac{a}{b} = 0.\overline{9}$.
- (d) (BONUS) Prove that if $x \in \mathbb{R}$ is periodic then $x \in \mathbb{Q}$.

Question 2. Find the value for each of the following periodic continued fractions and express this value in the form $\frac{a+b\sqrt{D}}{c}$, where $a, b, c, D \in \mathbb{Z}$.

- (a) $[1, 2, 3, \overline{4, 5}]$
- (b) $[1, 1, \overline{2, 3}]$
- (c) $[3, 2, \overline{1, 2}]$
- (d) $[a, b, b, \ldots]$ for $a, b \in \mathbb{N}$.

Question 3. For each of the following numbers, find the periodic continued fraction and state the period. Be sure your solution proves that your answer is correct.

(a)
$$\frac{2+\sqrt{3}}{5}$$

(b) $\frac{1+2\sqrt{5}}{7}$

Question 4. Using continued fractions, find a (nontrivial) solution to the equation $x^2 - Dy^2 = 1$ for the following D:

- (a) D = 19
- (b) D = 41
- (c) $D = a^2 + 1$, for $a \in \mathbb{N}$.
- (d) (BONUS) $D = a^2 1$, for $a \in \mathbb{N}, a > 1$
- (e) (BONUS) D = a(a+1), for $a \in \mathbb{N}$