Homework Set Ten

Due Thursday, July 7.

Question 1. Suppose that $x \in \mathbb{R}$ has the decimal expansion

$$
x=n+\sum_{j=1}^{\infty} \frac{a_{j}}{10^{j}} \quad \text { with } \quad n \in \mathbb{Z}, \text { and } 0 \leq a_{j} \leq 9 .
$$

If there exists $m, \ell \in \mathbb{N}$ such that $a_{k+\ell}=a_{k}$ for all $k>m$ we say that the decimal expansion of x is periodic. If x is periodic with m and ℓ as above, we write

$$
x=n \cdot a_{1} \cdots a_{m} \overline{a_{m+1} \cdots a_{m+\ell}} .
$$

(a) Find integers a, b with $\operatorname{gcd}(a, b)=1$ such that $\frac{a}{b}=1.234 \overline{56789}$.
(b) Suppose that $0<c, d \leq 9$. Find integers a, b such that $\frac{a}{b}=0 . c \bar{d}$.
(c) Find integers a, b with $\operatorname{gcd}(a, b)=1$ such that $\frac{a}{b}=0 . \overline{9}$.
(d) (BONUS) Prove that if $x \in \mathbb{R}$ is periodic then $x \in \mathbb{Q}$.

Question 2. Find the value for each of the following periodic continued fractions and express this value in the form $\frac{a+b \sqrt{D}}{c}$, where $a, b, c, D \in \mathbb{Z}$.
(a) $[1,2,3, \overline{4,5}]$
(b) $[1,1, \overline{2,3}]$
(c) $[3,2, \overline{1,2}]$
(d) $[a, b, b, \ldots]$ for $a, b \in \mathbb{N}$.

Question 3. For each of the following numbers, find the periodic continued fraction and state the period. Be sure your solution proves that your answer is correct.
(a) $\frac{2+\sqrt{3}}{5}$
(b) $\frac{1+2 \sqrt{5}}{7}$

Question 4. Using continued fractions, find a (nontrivial) solution to the equation $x^{2}-D y^{2}=1$ for the following D :
(a) $D=19$
(b) $D=41$
(c) $D=a^{2}+1$, for $a \in \mathbb{N}$.
(d) (BONUS) $D=a^{2}-1$, for $a \in \mathbb{N}, a>1$
(e) (BONUS) $D=a(a+1)$, for $a \in \mathbb{N}$

