Homework Set Eleven

Due Thursday, July 14.

Question 1. Suppose α is irrational quadratic (that is, $\alpha=\frac{a+\sqrt{b}}{c}$ with $b>0$ not a square). Let $\alpha=\left[a_{0}, a_{1}, \ldots\right]$ be its continued fraction expansion. Let ${ }^{c} \alpha_{0}=\alpha$ and $\alpha_{n+1}=\frac{1}{\alpha_{n}-a_{n}}$ for $n \geq 0$, where $a_{n}=\left\lfloor\alpha_{n}\right\rfloor$ as usual. Let α_{n}^{\prime} denote the conjugate of α_{n} (for example, with the notation above, $\alpha^{\prime}=\frac{a-\sqrt{b}}{c}$). Finally, assume that $\alpha>1$ and $-1<\alpha^{\prime}<0$.
(a) Prove that $\alpha_{n}>1$ and $-1<\alpha_{n}^{\prime}<0$ for any $n \in \mathbb{N}$. (Hint: note that $\alpha_{n+1}^{\prime}=\frac{1}{\alpha_{n}^{\prime}-a_{n}}$.)
(b) Prove that $a_{n}=\left\lfloor-\frac{1}{\alpha_{n+1}^{\prime}}\right\rfloor$ for any $n \in \mathbb{N}$.
(c) Suppose that $\alpha_{\ell}^{\prime}=\alpha_{m}^{\prime}$ for some $0<m<\ell$. Prove that $\alpha_{m-1}^{\prime}=\alpha_{\ell-1}^{\prime}$.
(d) Prove that α has a purely periodic continued fraction expansion.

Question 2. Suppose $\alpha=\left[\overline{a_{0}, a_{1}, \ldots, a_{\ell-1}}\right]$ is purely periodic.
(a) Let $\frac{p_{n}}{q_{n}}=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$. Prove that $1 \leq p_{0}<\cdots<p_{n}$ and $1=q_{0}<\cdots<q_{n}$, so in particular, $\alpha \geq 1$.
(b) Prove that α and α^{\prime} are roots of the same quadratic polynomial $f(x)=A x^{2}+B x+$ $C \in \mathbb{Z}[x]$ with $A>0, C<0$. Provide your polynomial $f(x)$ (there are some minor choices one can make).
(c) Show that $f(0)<0$ and $f(-1)>0$. Use this to conclude that $-1<\alpha^{\prime}<0$.

Question 3. A number $\alpha \in \mathbb{R}$ is called algebraic if there exists $f \in \mathbb{Z}[x], f \neq 0$ such that $f(\alpha)=0$. The integer

$$
n=\min \{\operatorname{deg} f \mid f \neq 0, f(\alpha)=0\}
$$

is called the degree of α. If $\alpha \in \mathbb{R}$ is not algebraic, it is called transcendental.
The following is a result of Liouville.
Theorem. Let $\alpha \in \mathbb{R}$ be algebraic of degree k. Then there exists $c>0$ such that

$$
\left|\alpha-\frac{p}{q}\right| \geq \frac{c}{q^{k}}
$$

for all $p, q \in \mathbb{Z}, q>0$.
As a corollary, Liouville also proved the following.
Corollary. Suppose that $\left\{\left.\frac{p_{n}}{q_{n}} \right\rvert\, n \in \mathbb{N}\right\}$ is a sequence of rational numbers with $q_{n}>0$ for all n and λ_{n} is a sequence of numbers such that

$$
0<\left|\alpha-\frac{p_{n}}{q_{n}}\right|<\frac{c}{q_{n}^{\lambda_{n}}}
$$

for some $c>0$. If $\lim _{n \rightarrow \infty} \lambda_{n}=\infty$ then α is transcendental.
(a) Use the corollary to prove that $\alpha=\sum_{k=0}^{\infty} \frac{1}{2^{k!}}$ is transcendental.
(b) (BONUS) Use Liouville's theorem to prove the corollary.

