Homework Set Twelve

Due Thursday, July 21.
Question 1. We say that $n \in \mathbb{N}$ is congruent if there exists $(a, b, c) \in \mathbb{Q}^{3}$ such that

$$
a^{2}+b^{2}=c^{2} \quad \text { and } \quad n=\frac{a b}{2}
$$

In other words, there exists a right triangle with rational sides whose area equals n.
Recall that Fermat's Last Theorem states that if $n \geq 3$ then $a^{n}+b^{n}=c^{n}$ has no solution $(a, b, c) \in \mathbb{Q}^{3}$ with $a b c \neq 0$.
(a) Suppose there are nonzero integers x, y, z such that $x^{4}-y^{4}=z^{2}$.
(i) Find $(a, b, c) \in \mathbb{N}^{3}$ in terms of x and y such that $a^{2}+b^{2}=c^{2}$ and $\frac{a b}{2}=(x y z)^{2}$. (Hint: take $u=x^{2}$ and $v=y^{2}$ and recall what you've learned when working with primitive pythagorean triples.)
(ii) Find $(A, B, C) \in \mathbb{Q}^{3}$ such that $A^{2}+B^{2}=C^{2}$ and $\frac{1}{2} A B=1$. (Hint: These should be in terms of combinations of a, b, c, x, y, z.) Use this to deduce that if 1 is congruent there exists $(r, s, t) \in \mathbb{Q}^{2}$ such that $x y z \neq 0$ and $x^{4}-y^{4}=z^{2}$ has a integers x, y, z such that $x y z \neq 0$.
(b) (BONUS) Suppose that $x^{4}-y^{4}=z^{2}$ has no solutions $(x, y, z) \in \mathbb{Z}^{2}$ with $x y z \neq 0$. Use this to prove that the number 1 is not congruent.
(c) (BONUS) Fermat proved that $x^{4}-y^{4}=z^{2}$ has no nontrivial solutions thus establishing, by the above, that 1 is not congruent. Show that this also implies Fermat's Last Theorem in the case of $n=4$.

Question 2. A cubic curve E given by the equation

$$
y^{2}=x^{3}+a x^{2}+b x+c
$$

defines an elliptic curve if and only if $\Delta(E)=-4 a^{3} c+a^{2} b^{2}+18 a b c-4 b^{3}-27 c^{2} \neq 0$. (We call $\Delta(E)$ the discriminant of E.)
(a) Let $g(x)=x^{2}+b x+c$. Prove that if $g(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)$ then $\left(\alpha_{1}-\alpha_{2}\right)^{2}=b^{2}-4 c$. (This is called the discriminant of g.)
(b) (BONUS) Prove that if $f(x)=x^{3}+a x^{2}+b x+c=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)$ then

$$
\Delta(E)=\left(\alpha_{1}-\alpha_{2}\right)^{2}\left(\alpha_{1}-\alpha_{3}\right)^{2}\left(\alpha_{2}-\alpha_{3}\right)^{2} .
$$

(c) A theorem of Nagell-Lutz says that if $\left(x_{0}, y_{0}\right) \in E(\mathbb{Q})$ is a point of finite order then $x_{0}, y_{0} \in \mathbb{Z}$ and either $y_{0}=0$ or $y_{0}^{2} \mid \Delta(E)$. Use this to find all points of finite order for each of the following elliptic curves.
(i) $y^{2}=x^{3}-2$
(ii) $y^{2}=x^{3}+8$
(iii) $y^{2}=x^{3}+4$
(iv) (BONUS) $y^{2}=x^{3}-43 x+166$.

Question 3. Consider the elliptic curve $E: y^{2}=x^{3}+24$ over the real numbers. Check that $P=(-2,4)$ and $Q=(1,5)$ are on E and compute $P+Q$ and $P-Q$.

Question 4. Suppose p is a prime and $p \equiv 2(\bmod 3)$.
(a) Show there exists an integer m such that $3 m \equiv 1(\bmod p-1)$.
(b) Use the previous part to show that every integer modulo p has a unique cube root. That is, show that for every $a \in \mathbb{Z}$ there exists $b \in \mathbb{Z}$ such that $a \equiv b^{3}(\bmod p)$.
(c) Consider the elliptic curve $E: y^{2} \equiv x^{3}+1$. Use the previous information to prove that $\# E\left(\mathbb{F}_{p}\right)=p+1$.

Question 5. We associate to any $F(x, y) \in \mathbb{C}[x]$ the curve

$$
C_{F}=C:=\left\{(x, y) \in \mathbb{C}^{2} \mid F(x, y)=0\right\} .
$$

Definition. The curve C is is said to be nonsingular at $P_{0}=\left(x_{0}, y_{0}\right)$ if $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial y}$ do not vanish simultaneously at $\left(x_{0}, y_{0}\right)$. The curve is called nonsingular if it is nonsingular at every point.

Suppose that $f(x)=x^{3}+a x^{2}+b x+c$ for some $a, b, c \in \mathbb{C}$.
(a) (BONUS) Recall that a cubic curve $C: y^{2}=f(x)$ (defined as above for $F(x, y)=$ $\left.y^{2}-f(x)\right)$ is an elliptic curve if f has no repeated roots. Prove that every such elliptic curve is nonsingular.
(b) (BONUS) Suppose that the curve C defined by $F(x, y)=y^{2}-f(x)$ is nonsingular. Prove that C is an elliptic curve.

Question 6. Let k be a field. Let $\mathbb{P}_{k}^{2}=\left\{(a, b, c) \in k^{2} \mid(a, b, c) \neq(0,0,0)\right\}$, and recall that a line in \mathbb{P}_{k}^{2} is defined to be the set of solutions to an equation of the form

$$
\alpha X+\beta Y+\gamma Z=0
$$

with $\alpha, \beta, \gamma \in k$ not all zero.
(a) (BONUS) Prove directly from this definition that two distinct points in \mathbb{P}_{k}^{2} are contained in a unique line.
(b) (BONUS) Similarly, prove that any two distinct lines in \mathbb{P}_{k}^{2} intersect in a unique point.

