Homework Set Twelve

Due Thursday, July 21.
Question 1. We say that $n \in \mathbb{N}$ is congruent if there exists $(a, b, c) \in \mathbb{Q}^{3}$ such that

$$
a^{2}+b^{2}=c^{2} \quad \text { and } \quad n=\frac{a b}{2} .
$$

In other words, there exists a right triangle with rational sides whose area equals n.
Recall that Fermat's Last Theorem states that if $n \geq 3$ then $a^{n}+b^{n}=c^{n}$ has no solution $(a, b, c) \in \mathbb{Q}^{3}$ with $a b c \neq 0$.
(a) Suppose there are nonzero integers x, y, z such that $x^{4}-y^{4}=z^{2}$.
(i) Find $(a, b, c) \in \mathbb{N}^{3}$ in terms of x and y such that $a^{2}+b^{2}=c^{2}$ and $\frac{a b}{2}=(x y z)^{2}$. (Hint: take $u=x^{2}$ and $v=y^{2}$ and recall what you've learned when working with primitive pythagorean triples.)
(ii) Find $(A, B, C) \in \mathbb{Q}^{3}$ such that $A^{2}+B^{2}=C^{2}$ and $\frac{1}{2} A B=1$. (Hint: These should be in terms of combinations of a, b, c, x, y, z.) Use this to deduce that if 1 is congruent there exists $(r, s, t) \in \mathbb{Q}^{2}$ such that $x y z \neq 0$ and $x^{4}-y^{4}=z^{2}$ has a integers x, y, z such that $x y z \neq 0$.
(b) (BONUS) Suppose that $x^{4}-y^{4}=z^{2}$ has no solutions $(x, y) \in \mathbb{Q}^{2}$. Use this to prove that the number 1 is not congruent.
(c) (BONUS) Fermat proved that $x^{4}-y^{4}=z^{2}$ has no nontrivial solutions thus establishing, by the above, that 1 is not congruent. Show that this also implies Fermat's Last Theorem in the case of $n=4$.

Answer.

(a) Set $u=x^{2}$ and $v=y^{2}$. Take $a=u^{2}-v^{2}, b=2 u v$, and $c=u^{2}+v^{2}$. Then $a^{2}+b^{2}=c^{2}$ and

$$
\frac{1}{2} a b=\left(u^{2}-v^{2}\right) u v=\left(x^{4}-y^{4}\right) x^{2} y^{2}=x^{2} y^{2} z^{2}
$$

where we used that $x^{4}-y^{4}=z^{2}$. This proves (i).
Now set $\lambda=x y z$ (which is nonzero since x, y, z are nonzero). Take $A=a / \lambda$, $B=b / \lambda$, and $C=c / \lambda$. Then (A, B, C) satisfies the required conditions.
(b) We prove the contrapositive. That is, we will show that if 1 is congruent then there exists $x, y, z \in \mathbb{Z}$ with $x y z \neq 0$ and $x^{4}-y^{4}=z^{2}$. Assuming that 1 is congruent, let $(a, b, c) \in \mathbb{Q}$ be such that

$$
a^{2}+b^{2}=c^{2} \quad \text { and } \quad \frac{a b}{2}=1
$$

Now let $\lambda \in \mathbb{Z}$ be such that $(A, B, C)=(a \lambda, b \lambda, c \lambda)$ is a primitive pythagorean triple. Note that $A B=a b \lambda^{2}=2 \lambda^{2}$. Now set

$$
x=A+B, \quad \text { and } \quad y=A-B
$$

Notice that x and y are both nonzero since $A \neq B$. We calculate directly that

$$
\begin{aligned}
x^{4}-y^{4} & =(A+B)^{4}-(A-B)^{3} \\
& =8 A^{3} B+8 A B^{3} \\
& =8 A B\left(A^{2}+B^{2}\right) \\
& =16 \lambda^{2} C^{2}=(4 \lambda C)^{2} .
\end{aligned}
$$

Thus, setting $z=4 \lambda C$ gives the desired solution.
(c) Suppose that a counterexample to Fermat's Last Theorem for $n=4$ exists, meaning there exist nonzero integers a, b, c such that $a^{4}+b^{4}=c^{4}$. Now set $x=c, z=b^{2}$ and $y=a$. This gives

$$
x^{4}-y^{4}=c^{4}-a^{4}=b^{4}=\left(b^{2}\right)^{2}=z^{2} .
$$

Since x, y, z are nonzero this contradicts Fermat's result. Hence no such counterexample exists.

Question 2. A cubic curve E given by the equation

$$
y^{2}=x^{3}+a x^{2}+b x+c
$$

defines an elliptic curve if and only if $\Delta(E)=-4 a^{3} c+a^{2} b^{2}+18 a b c-4 b^{3}-27 c^{2} \neq 0$. (We call $\Delta(E)$ the discriminant of E.)
(a) Let $g(x)=x^{2}+b x+c$. Prove that if $g(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)$ then $\left(\alpha_{1}-\alpha_{2}\right)^{2}=b^{2}-4 c$. (This is called the discriminant of g.)
(b) (BONUS) Prove that if $f(x)=x^{3}+a x^{2}+b x+c=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)$ then

$$
\Delta(E)=\left(\alpha_{1}-\alpha_{2}\right)^{2}\left(\alpha_{1}-\alpha_{3}\right)^{2}\left(\alpha_{2}-\alpha_{3}\right)^{2}
$$

(c) A theorem of Nagell-Lutz says that if $\left(x_{0}, y_{0}\right) \in E(\mathbb{Q})$ is a point of finite order then $x_{0}, y_{0} \in \mathbb{Z}$ and either $y_{0}=0$ or $y_{0}^{2} \mid \Delta(E)$. Use this to find all points of finite order for each of the following elliptic curves.
(i) $y^{2}=x^{3}-2$
(ii) $y^{2}=x^{3}+8$
(iii) $y^{2}=x^{3}+4$
(iv) $y^{2}=x^{3}-43 x+166$.

Answer.

(a) If

$$
x^{2}+b x+c=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)=x^{2}-\left(\alpha_{1}+\alpha_{2}\right) x+\alpha_{1} \alpha_{2},
$$

it follows that $b=-\left(\alpha_{1}+\alpha_{2}\right)$ and $c=\alpha_{1} \alpha_{2}$. Therefore,

$$
b^{2}-4 c=\left(\alpha_{1}+\alpha_{2}\right)^{2}-4 \alpha_{1} \alpha_{2}=\left(\alpha_{1}-\alpha_{2}\right)^{2}
$$

as desired.
(b) We see similarly to part (a) that if

$$
\begin{aligned}
x^{3}+a x^{2}+b x+c & =\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right) \\
& =x^{3}-\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) x^{2}+\left(\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3}\right) x-\alpha_{1} \alpha_{2} \alpha_{3}
\end{aligned}
$$

then

$$
a=-\alpha_{1}-\alpha_{2}-\alpha_{3}, \quad b=\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3}, \quad c=-\alpha_{1} \alpha_{2} \alpha_{3} .
$$

A lengthy calculation gives the desired formula.
(c) In Table 1 , for each possibility of E, we give the possible nonzero values of y_{0}, where $\left(x_{0}, y_{0}\right)$ is a point of finite order on $E(\mathbb{Q})$.

E	$y^{2}=x^{3}-2$	$y^{2}=x^{3}+8$	$y^{2}=x^{3}+4$	$y^{2}=x^{3}-43 x+166$
$\Delta(E)$	$-3(2 \cdot 3)^{2}$	$-3(3 \cdot 2 \cdot 2 \cdot 2)$	$-3(3 \cdot 2 \cdot 2)^{2}$	$-\cdot 2 \cdot 13\left(2^{7}\right)^{2}$
$\pm y_{0}$	$2,3,6$	$2,3,4,6,8,12,24$	$2,3,4,6,12$	$2,2^{2}, \ldots, 2^{7}$

Table 1: Possible nonzero y_{0}-values for points of finite order on E
Plugging these values into each of the corresponding equations, we find that for (i) (besides the identity element), there are no finite order points, for (ii) the points

$$
(-2,0),(-1, \pm 3),(2, \pm 4)
$$

all lie on the curve.
For (ii), we similarly find that the only possible points of finite order is $(0,2)$ and $(0,-2)$. It is easy to see that both points are inflection points, hence $E(\mathbb{Q})_{\text {tor }} \simeq$ $\mathbb{Z} / 3 \mathbb{Z}$.
For (iii), although $(-2,0),(1, \pm 3)$ and $(2, \pm 4)$ are all integral points on the curve, we claim that $E(\mathbb{Q})_{\text {tor }}=\{\mathcal{O},(-2,0)\} \simeq \mathbb{Z} / 2 \mathbb{Z}$. Clearly $(-2,0)$ is a point of order two on $E(\mathbb{Q})$. If either of the other 4 points were also of finite order, then the line between any of them and $(-2,0)$ would interect $E(\mathbb{Q})$ at another point of finite order. However, the coordinates of all such points are readily checked to be nonintegral, hence by the Nagel-Lutz Theorem, they are not of finite order. This proves the claim.
Finally, for (iv), from the table we find the following possibilities of finite order points:

$$
\left(-5, \pm 2^{4}\right), \quad\left(3, \pm 2^{3}\right), \quad\left(11,2^{5}\right)
$$

In fact, one can show that for $P=(-5,16), Q=(3,8)$ and $R=(11,32)$,

$$
R+P=-P, \quad Q+R=P, \quad \text { and } \quad 2 R=Q
$$

From this it follows that

n	0	1	2	3	4	5	6
$n R$	\mathcal{O}	R	Q	P	$-P$	$-Q$	$-R$

In other words, $E(\mathbb{Q})_{\text {tor }}=\{n R \mid 0 \leq n \leq 6\} \simeq \mathbb{Z} / 7 \mathbb{Z}$.

Figure 1: Rational points of finite order on $E: y^{2}=x^{3}-43 x+166$

Question 3. Consider the elliptic curve $E: y^{2}=x^{3}+24$ over the real numbers. Check that $P=(-2,4)$ and $Q=(1,5)$ are on E and compute $P+Q$ and $P-Q$.

Answer. We note that

$$
4^{2}=(-2)^{3}+24 \quad \text { and } \quad 5^{2}=1^{3}+24
$$

showing that both points are on the curve.
(a) We first compute the line through $P=\left(x_{1}, y_{1}\right)=(-2,4)$ and $Q=\left(x_{2}, y_{2}\right)=(1,5)$. For example, the slope of this line is $m=\frac{5-4}{1-(-2)}=\frac{1}{3}$. Plugging in $(1,5)$ into $y=\frac{1}{3} x+b$ gives $b=5-\frac{1}{3}=\frac{14}{3}$, so that the line though P and Q is

$$
\ell: y=\frac{1}{3} x+\frac{14}{3}=\frac{1}{3}(x+14) .
$$

Therefore, the points of intersection between ℓ and E are the solutions of the two equations

$$
\begin{align*}
y & =\frac{1}{3}(x+14) \tag{1}\\
y^{2} & =x^{3}+24 \tag{2}
\end{align*}
$$

Substituting (1) into (2) we find

$$
\left(\frac{1}{3}(x+14)\right)^{2}=x^{3}+24 \Longleftrightarrow \frac{1}{9}\left(x^{2}+28 x+196\right)=x^{3}+24,
$$

that is,

$$
x^{3}-\frac{1}{9} x^{2}-\frac{28}{9} x-\frac{20}{9}=0 .
$$

Now, the sum of the x-values of the three solutions must equal $-h$, where h is the coefficient of the x^{2} term. That is, letting $P+Q=\left(x_{3}, y_{3}\right)$ we must have $(-2)+1+x_{3}=\frac{1}{9}$ and we find $x_{3}=\frac{10}{9}$. Plugging this into (1) gives $y=\frac{136}{9}$. However, we actually want the negative value of this. That is, $\left(x_{3}, y_{3}\right)=\left(\frac{10}{9},-\frac{136}{9}\right)$.

An alternative approach is to use the formula (which amounts to the same thing that we just did)

$$
\begin{equation*}
x_{3}=m^{2}-x_{1}-x_{2}, \quad y_{3}=m\left(x_{1}-x_{3}\right)-y_{1} . \tag{3}
\end{equation*}
$$

We will use the formulas to now compute $P-Q$. Let $P-Q=\left(x_{4}, y_{4}\right)$. Since $-Q=\left(x_{2},-y_{2}\right)=(1,-5)$ and $P-Q=P+(-Q)$ we find the slope is

$$
m=\frac{-5-4}{1-(-2)}=-3
$$

Therefore, using (3) we find

$$
\begin{aligned}
& x_{4}=m^{2}-x_{1}-x_{2}=9-(-2)-1=10 \quad \text { and } \\
& y_{4}=m\left(x_{1}-x_{4}\right)-y_{1}=-3(-2-10)-4=32 .
\end{aligned}
$$

Thus, $P-Q=(10,32)$.
(b) Let ℓ be the tangent line to the point P. Using implicit differentiation we find

$$
2 y d y=3 x^{2} d x
$$

Substituting $P=(-2,4)$, we find the slope of ℓ is

$$
\frac{d y}{d x}=\frac{3 x^{2}}{2 y}=\frac{12}{8}=\frac{3}{2}
$$

Therefore, the equation of ℓ is $\ell: y=\frac{3}{2} x+\frac{7}{2}$ (where we also found the $\frac{7}{2}$ however we like). The points of intersection are now solutions to the equations

$$
\begin{align*}
y & =\frac{1}{2}(3 x+7) \tag{4}\\
y^{2} & =x^{3}+24 \tag{5}
\end{align*}
$$

Substituting (4) into (5) we find

$$
\left(\frac{1}{2}(3 x+7)\right)^{2}=x^{3}+24 \Longleftrightarrow \frac{1}{4}\left(9 x^{2}+42 x+49\right)=x^{3}+24,
$$

or

$$
x^{3}-\frac{9}{4} x^{2}-\frac{21}{2} x-\frac{49}{4}=0 .
$$

Again, the x-values of the solutions must sum to $\frac{9}{4}$. Setting $2 P=\left(x_{5}, y_{5}\right)$ this means $(-2)+(-2)+x_{5}=\frac{9}{4}$, or $x_{5}=\frac{25}{4}$. Plugging this into (4) gives the y-value of $\frac{103}{8}$, of which we want the negative. Thus, $2 P=\left(x_{5}, y_{5}\right)=\left(\frac{25}{4},-\frac{103}{8}\right)$. Again, the formulas from part (a) could have been used.

Question 4. Suppose p is a prime and $p \equiv 2(\bmod 3)$.
(a) Show there exists an integer m such that $3 m \equiv 1(\bmod p-1)$.
(b) Use the previous part to show that every integer modulo p has a unique cube root. That is, show that for every $a \in \mathbb{Z}$ there exists $b \in \mathbb{Z}$ such that $a \equiv b^{3}(\bmod p)$.
(c) Consider the elliptic curve $E: y^{2} \equiv x^{3}+1$. Use the previous information to prove that $\# E\left(\mathbb{F}_{p}\right)=p+1$.

Answer.

(a) We have $p \equiv 2(\bmod 3)$ implies $p-1 \equiv 1(\bmod 3)$. That is, $p-1 \not \equiv 0(\bmod 3)$, which means $3 \nmid(p-1)$. Moreover, since $2 \nmid 3$, we must have $\operatorname{gcd}(3, p-1)=1$. Therefore, there exists $m, n \in \mathbb{Z}$ such that $3 m+(p-1) n=1$. That is, there exists an $m \in \mathbb{Z}$ such that $3 m \equiv 1(\bmod p-1)$.
(b) By part (a) there is an $\ell \in \mathbb{Z}$ such that $3 m=1+(p-1) \ell$ (in fact, $\ell=-n$ for the n in the previous solution). Suppose $a^{3} \equiv b(\bmod p)$. Then $b^{m} \equiv a^{3 m} \equiv a a^{(p-1) \ell} \equiv a$ $(\bmod p)$ since $a^{p-1} \equiv 1(\bmod p)$. Meanwhile, if we assume $a \equiv b^{m}(\bmod p)$, then $a^{3} \equiv b^{3 m} \equiv b b^{(p-1) \ell} \equiv b(\bmod p)$.
(c) The previous parts imply that for each y there is a unique x with $x^{3} \equiv y^{2}-1$ $(\bmod p)$. (For example, $x^{3} \equiv y^{2}-1(\bmod p) \Longleftrightarrow\left(y^{2}-1\right)^{3} \equiv x(\bmod p) \Longleftrightarrow$ $x \equiv\left(y^{2}-1\right)^{3}(\bmod p)$, so each y gives a unique x. If there was an x^{2} term we could not state this.) Since $0 \leq y \leq p-1$, there are p many choices for y. Adding the point at infinity gives $p+1$ many points.

Question 5. We associate to any $F(x, y) \in \mathbb{C}[x]$ the curve

$$
C_{F}=C:=\left\{(x, y) \in \mathbb{C}^{2} \mid F(x, y)=0\right\}
$$

Definition. The curve C is is said to be nonsingular at $P_{0}=\left(x_{0}, y_{0}\right)$ if $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial y}$ do not vanish simultaneously at $\left(x_{0}, y_{0}\right)$. The curve is called nonsingular if it is nonsingular at every point.
Suppose that $f(x)=x^{3}+a x^{2}+b x+c$ for some $a, b, c \in \mathbb{C}$.
(a) (BONUS) Recall that a cubic curve $C: y^{2}=f(x)$ (defined as above for $F(x, y)=$ $\left.y^{2}-f(x)\right)$ is an elliptic curve if f has no repeated roots. Prove that every such elliptic curve is nonsingular.
(b) (BONUS) Suppose that the curve C defined by $F(x, y)=y^{2}-f(x)$ is nonsingular. Prove that C is an elliptic curve.

Answer.

(a) We prove the contrapositive. To do so, assume that C has a singular point. This means that both $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial y}$ simultaneously vanish at some point $\left(x_{0}, y_{0}\right)$ on C. Since $\frac{\partial F}{\partial y}=2 y=0$ at y_{0}, we must have $y_{0}=0$. Meanwhile, since $\frac{\partial F}{\partial x}=f^{\prime}(x)=0$ at $x=x_{0}$, we have $f^{\prime}\left(x_{0}\right)=0$. Finally, since $\left(x_{0}, y_{0}\right)$ is on C, we have that $0=y_{0}^{2}-f\left(x_{0}\right)=-f\left(x_{0}\right)$ so that $f\left(x_{0}\right)=0$. Since $f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)=0$ it must be that f has a multiple root at x_{0}. That is, C is not an elliptic curve.
(b) Again, we prove the contrapositive. Supppose that $f(x)$ has a multiple root at some point α. That is, $(\alpha, 0)$ is a point on C. On one hand, this implies that $f^{\prime}(\alpha)=0$
so that $\frac{\partial F}{\partial x}$ vanishes at $(\alpha, 0)$. On the other hand, since $\frac{\partial F}{\partial y}=2 y$ also vanishes at this point. Thus, C is singular (i.e. not nonsingular).

Question 6. Let k be a field. Let $\mathbb{P}_{k}^{2}=\left\{(a, b, c) \in k^{2} \mid(a, b, c) \neq(0,0,0)\right\}$, and recall that a line in \mathbb{P}_{k}^{2} is defined to be the set of solutions to an equation of the form

$$
\alpha X+\beta Y+\gamma Z=0
$$

with $\alpha, \beta, \gamma \in k$ not all zero.
(a) (BONUS) Prove directly from this definition that two distinct points in \mathbb{P}_{k}^{2} are contained in a unique line.
(b) (BONUS) Similarly, prove that any two distinct lines in \mathbb{P}_{k}^{2} intersect in a unique point.

Answer. Suppose that \mathbf{u} and \mathbf{v} are nonzero vectors in 3-space. We recall the following facts.

- The cross product $\mathbf{u} \times \mathbf{v}$ is a vector which is perpendicular to both \mathbf{u} and \mathbf{v}. It is the zero vector if and only if $\mathbf{u}=t \mathbf{v}$ for some nonzero t. (In other words, $\mathbf{u} \times \mathbf{v}=\mathbf{0}$ if and only if \mathbf{u} and \mathbf{v} are colinear.)
- The vectors \mathbf{u} and \mathbf{v} are perpendicular to each other if and only if their dot product $\mathbf{u} \cdot \mathbf{u}=0$.
- If $P, Q, R \in k^{3}$ are not colinear, there is a uniqe plane containing them.

Note that the projective line \mathbb{P}_{k}^{2} can be identified with the set of lines in k^{3} passing through the origin. In other words, points in \mathbb{P}_{k}^{2} are given by $\{t \mathbf{u} \mid t \in k\}$ for some nonzero vector $\mathbf{u} \in k^{3}$.
(a) Let $[a: b: c]$ and $[d: e: f]$ be unique points in \mathbb{P}_{k}^{2}. Then the points $(a, b, c),(d, e, f)$ and $(0,0,0)$ in k^{3} are not colinear so by the third point above, there is a unique plane in k^{3} containing the three points. Any equation for this plane $\alpha X+\beta Y+\gamma Z=0$ defines a line in \mathbb{P}_{k}^{2}.
(b) A line $L=L_{\alpha, \beta, \gamma}$ in \mathbb{P}_{k}^{2} is given by an equation of the form $\alpha X+\beta Y+\gamma Z=0$ with α, β, γ not all zero. So, by the second bullet point above, the point $\{t \mathbf{u} \mid t \in k\}$ lies on $L_{\alpha, \beta, \gamma}$ if and only if (α, β, γ) is perpendicular to \mathbf{u}. Let $L_{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}}$ be another (different) line in \mathbb{P}_{k}^{2}. That means (α, β, γ) and $\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$ are noncolinear nonzero vectors. Let

$$
\mathbf{u}=(\alpha, \beta, \gamma) \times\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)
$$

By the first bullet point, \mathbf{u} lies on both lines. On the other hand, again applying the first bullet point, \mathbf{v} lies on both lines only if it is a nonzero multiple of \mathbf{u}. Hence there is a unique point in \mathbb{P}_{k}^{2} on both lines.

