
Homework Set Twelve
Due Thursday, July 21.

Question 1. We say that n ∈ N is congruent if there exists (a, b, c) ∈ Q3 such that

a2 + b2 = c2 and n =
ab

2
.

In other words, there exists a right triangle with rational sides whose area equals n.
Recall that Fermat’s Last Theorem states that if n ≥ 3 then an + bn = cn has no solution
(a, b, c) ∈ Q3 with abc 6= 0.

(a) Suppose there are nonzero integers x, y, z such that x4 − y4 = z2.

(i) Find (a, b, c) ∈ N3 in terms of x and y such that a2 + b2 = c2 and ab
2

= (xyz)2.
(Hint: take u = x2 and v = y2 and recall what you’ve learned when working
with primitive pythagorean triples.)

(ii) Find (A,B,C) ∈ Q3 such that A2 + B2 = C2 and 1
2
AB = 1. (Hint: These

should be in terms of combinations of a, b, c, x, y, z.) Use this to deduce that
if 1 is congruent there exists (r, s, t) ∈ Q2 such that xyz 6= 0 and x4 − y4 = z2

has a integers x, y, z such that xyz 6= 0.

(b) (BONUS) Suppose that x4− y4 = z2 has no solutions (x, y) ∈ Q2. Use this to prove
that the number 1 is not congruent.

(c) (BONUS) Fermat proved that x4 − y4 = z2 has no nontrivial solutions thus estab-
lishing, by the above, that 1 is not congruent. Show that this also implies Fermat’s
Last Theorem in the case of n = 4.

Answer.

(a) Set u = x2 and v = y2. Take a = u2−v2, b = 2uv, and c = u2+v2. Then a2+b2 = c2

and
1

2
ab =

(
u2 − v2

)
uv =

(
x4 − y4

)
x2y2 = x2y2z2,

where we used that x4 − y4 = z2. This proves (i).

Now set λ = xyz (which is nonzero since x, y, z are nonzero). Take A = a/λ,
B = b/λ, and C = c/λ. Then (A,B,C) satisfies the required conditions.

(b) We prove the contrapositive. That is, we will show that if 1 is congruent then there
exists x, y, z ∈ Z with xyz 6= 0 and x4 − y4 = z2. Assuming that 1 is congruent, let
(a, b, c) ∈ Q be such that

a2 + b2 = c2 and
ab

2
= 1.

Now let λ ∈ Z be such that (A,B,C) = (aλ, bλ, cλ) is a primitive pythagorean
triple. Note that AB = abλ2 = 2λ2. Now set

x = A+B, and y = A−B.



Notice that x and y are both nonzero since A 6= B. We calculate directly that

x4 − y4 = (A+B)4 − (A−B)3

= 8A3B + 8AB3

= 8AB(A2 +B2)

= 16λ2C2 = (4λC)2.

Thus, setting z = 4λC gives the desired solution.

(c) Suppose that a counterexample to Fermat’s Last Theorem for n = 4 exists, meaning
there exist nonzero integers a, b, c such that a4 + b4 = c4. Now set x = c, z = b2 and
y = a. This gives

x4 − y4 = c4 − a4 = b4 = (b2)2 = z2.

Since x, y, z are nonzero this contradicts Fermat’s result. Hence no such counterex-
ample exists.

Question 2. A cubic curve E given by the equation

y2 = x3 + ax2 + bx+ c

defines an elliptic curve if and only if ∆(E) = −4a3c+a2b2 + 18abc− 4b3− 27c2 6= 0. (We
call ∆(E) the discriminant of E.)

(a) Let g(x) = x2+bx+c. Prove that if g(x) = (x−α1)(x−α2) then (α1−α2)
2 = b2−4c.

(This is called the discriminant of g.)

(b) (BONUS) Prove that if f(x) = x3 + ax2 + bx+ c = (x− α1)(x− α2)(x− α3) then

∆(E) = (α1 − α2)
2(α1 − α3)

2(α2 − α3)
2.

(c) A theorem of Nagell-Lutz says that if (x0, y0) ∈ E(Q) is a point of finite order then
x0, y0 ∈ Z and either y0 = 0 or y20 | ∆(E). Use this to find all points of finite order
for each of the following elliptic curves.

(i) y2 = x3 − 2

(ii) y2 = x3 + 8

(iii) y2 = x3 + 4

(iv) y2 = x3 − 43x+ 166.

Answer.

(a) If
x2 + bx+ c = (x− α1)(x− α2) = x2 − (α1 + α2)x+ α1α2,

it follows that b = −(α1 + α2) and c = α1α2. Therefore,

b2 − 4c = (α1 + α2)
2 − 4α1α2 = (α1 − α2)

2

as desired.



(b) We see similarly to part (a) that if

x3 + ax2 + bx+ c = (x− α1)(x− α2)(x− α3)

= x3 − (α1 + α2 + α3)x
2 + (α1α2 + α1α3 + α2α3)x− α1α2α3

then
a = −α1 − α2 − α3, b = α1α2 + α1α3 + α2α3, c = −α1α2α3.

A lengthy calculation gives the desired formula.

(c) In Table 1, for each possibility of E, we give the possible nonzero values of y0, where
(x0, y0) is a point of finite order on E(Q).

E y2 = x3 − 2 y2 = x3 + 8 y2 = x3 + 4 y2 = x3 − 43x+ 166
∆(E) −3(2 · 3)2 −3(3 · 2 · 2 · 2) −3(3 · 2 · 2)2 − · 2 · 13(27)2

±y0 2, 3, 6 2, 3, 4, 6, 8, 12, 24 2, 3, 4, 6, 12 2, 22, . . . , 27

Table 1: Possible nonzero y0-values for points of finite order on E

Plugging these values into each of the corresponding equations, we find that for (i)
(besides the identity element), there are no finite order points, for (ii) the points

(−2, 0), (−1,±3), (2,±4)

all lie on the curve.

For (ii), we similarly find that the only possible points of finite order is (0, 2) and
(0,−2). It is easy to see that both points are inflection points, hence E(Q)tor '
Z/3Z.

For (iii), although (−2, 0), (1,±3) and (2,±4) are all integral points on the curve,
we claim that E(Q)tor = {O, (−2, 0)} ' Z/2Z. Clearly (−2, 0) is a point of order
two on E(Q). If either of the other 4 points were also of finite order, then the line
between any of them and (−2, 0) would interect E(Q) at another point of finite order.
However, the coordinates of all such points are readily checked to be nonintegral,
hence by the Nagel-Lutz Theorem, they are not of finite order. This proves the
claim.

Finally, for (iv), from the table we find the following possibilities of finite order
points:

(−5,±24), (3,±23), (11, 25).

In fact, one can show that for P = (−5, 16), Q = (3, 8) and R = (11, 32),

R + P = −P, Q+R = P, and 2R = Q.

From this it follows that

n 0 1 2 3 4 5 6
nR O R Q P −P −Q −R

In other words, E(Q)tor = {nR | 0 ≤ n ≤ 6} ' Z/7Z.
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Figure 1: Rational points of finite order on E : y2 = x3 − 43x+ 166

Question 3. Consider the elliptic curve E : y2 = x3 + 24 over the real numbers. Check
that P = (−2, 4) and Q = (1, 5) are on E and compute P +Q and P −Q.

Answer. We note that

42 = (−2)3 + 24 and 52 = 13 + 24,

showing that both points are on the curve.

(a) We first compute the line through P = (x1, y1) = (−2, 4) and Q = (x2, y2) = (1, 5).
For example, the slope of this line is m = 5−4

1−(−2) = 1
3
. Plugging in (1, 5) into

y = 1
3
x+ b gives b = 5− 1

3
= 14

3
, so that the line though P and Q is

` : y =
1

3
x+

14

3
=

1

3
(x+ 14).

Therefore, the points of intersection between ` and E are the solutions of the two
equations

y =
1

3
(x+ 14) (1)

y2 = x3 + 24. (2)

Substituting (1) into (2) we find(
1

3
(x+ 14)

)2

= x3 + 24 ⇐⇒ 1

9

(
x2 + 28x+ 196

)
= x3 + 24,

that is,

x3 − 1

9
x2 − 28

9
x− 20

9
= 0.

Now, the sum of the x-values of the three solutions must equal −h, where h is
the coefficient of the x2 term. That is, letting P + Q = (x3, y3) we must have
(−2) + 1 + x3 = 1

9
and we find x3 = 10

9
. Plugging this into (1) gives y = 136

9
.

However, we actually want the negative value of this. That is, (x3, y3) = (10
9
,−136

9
).



An alternative approach is to use the formula (which amounts to the same thing
that we just did)

x3 = m2 − x1 − x2, y3 = m (x1 − x3)− y1. (3)

We will use the formulas to now compute P − Q. Let P − Q = (x4, y4). Since
−Q = (x2,−y2) = (1,−5) and P −Q = P + (−Q) we find the slope is

m =
−5− 4

1− (−2)
= −3.

Therefore, using (3) we find

x4 = m2 − x1 − x2 = 9− (−2)− 1 = 10 and

y4 = m (x1 − x4)− y1 = −3(−2− 10)− 4 = 32.

Thus, P −Q = (10, 32).

(b) Let ` be the tangent line to the point P . Using implicit differentiation we find

2ydy = 3x2dx.

Substituting P = (−2, 4), we find the slope of ` is

dy

dx
=

3x2

2y
=

12

8
=

3

2
.

Therefore, the equation of ` is ` : y = 3
2
x + 7

2
(where we also found the 7

2
however

we like). The points of intersection are now solutions to the equations

y =
1

2
(3x+ 7) (4)

y2 = x3 + 24. (5)

Substituting (4) into (5) we find(
1

2
(3x+ 7)

)2

= x3 + 24 ⇐⇒ 1

4

(
9x2 + 42x+ 49

)
= x3 + 24,

or

x3 − 9

4
x2 − 21

2
x− 49

4
= 0.

Again, the x-values of the solutions must sum to 9
4
. Setting 2P = (x5, y5) this means

(−2) + (−2) + x5 = 9
4
, or x5 = 25

4
. Plugging this into (4) gives the y-value of 103

8
, of

which we want the negative. Thus, 2P = (x5, y5) = (25
4
,−103

8
). Again, the formulas

from part (a) could have been used.

Question 4. Suppose p is a prime and p ≡ 2 (mod 3).

(a) Show there exists an integer m such that 3m ≡ 1 (mod p− 1).



(b) Use the previous part to show that every integer modulo p has a unique cube root.
That is, show that for every a ∈ Z there exists b ∈ Z such that a ≡ b3 (mod p).

(c) Consider the elliptic curve E : y2 ≡ x3 + 1. Use the previous information to prove
that #E(Fp) = p+ 1.

Answer.

(a) We have p ≡ 2 (mod 3) implies p − 1 ≡ 1 (mod 3). That is, p − 1 6≡ 0 (mod 3),
which means 3 - (p − 1). Moreover, since 2 - 3, we must have gcd(3, p − 1) = 1.
Therefore, there exists m,n ∈ Z such that 3m+ (p− 1)n = 1. That is, there exists
an m ∈ Z such that 3m ≡ 1 (mod p− 1).

(b) By part (a) there is an ` ∈ Z such that 3m = 1 + (p− 1)` (in fact, ` = −n for the n
in the previous solution). Suppose a3 ≡ b (mod p). Then bm ≡ a3m ≡ aa(p−1)` ≡ a
(mod p) since ap−1 ≡ 1 (mod p). Meanwhile, if we assume a ≡ bm (mod p), then
a3 ≡ b3m ≡ bb(p−1)` ≡ b (mod p).

(c) The previous parts imply that for each y there is a unique x with x3 ≡ y2 − 1
(mod p). (For example, x3 ≡ y2 − 1 (mod p) ⇐⇒ (y2 − 1)3 ≡ x (mod p) ⇐⇒
x ≡ (y2− 1)3 (mod p), so each y gives a unique x. If there was an x2 term we could
not state this.) Since 0 ≤ y ≤ p − 1, there are p many choices for y. Adding the
point at infinity gives p+ 1 many points.

Question 5. We associate to any F (x, y) ∈ C[x] the curve

CF = C := {(x, y) ∈ C2 | F (x, y) = 0}.

Definition. The curve C is is said to be nonsingular at P0 = (x0, y0) if ∂F
∂x

and ∂F
∂y

do not

vanish simultaneously at (x0, y0). The curve is called nonsingular if it is nonsingular at
every point.

Suppose that f(x) = x3 + ax2 + bx+ c for some a, b, c ∈ C.

(a) (BONUS) Recall that a cubic curve C : y2 = f(x) (defined as above for F (x, y) =
y2 − f(x)) is an elliptic curve if f has no repeated roots. Prove that every such
elliptic curve is nonsingular.

(b) (BONUS) Suppose that the curve C defined by F (x, y) = y2 − f(x) is nonsingular.
Prove that C is an elliptic curve.

Answer.

(a) We prove the contrapositive. To do so, assume that C has a singular point. This
means that both ∂F

∂x
and ∂F

∂y
simultaneously vanish at some point (x0, y0) on C.

Since ∂F
∂y

= 2y = 0 at y0, we must have y0 = 0. Meanwhile, since ∂F
∂x

= f ′(x) = 0

at x = x0, we have f ′(x0) = 0. Finally, since (x0, y0) is on C, we have that
0 = y20 − f(x0) = −f(x0) so that f(x0) = 0. Since f(x0) = f ′(x0) = 0 it must be
that f has a multiple root at x0. That is, C is not an elliptic curve.

(b) Again, we prove the contrapositive. Supppose that f(x) has a multiple root at some
point α. That is, (α, 0) is a point on C. On one hand, this implies that f ′(α) = 0



so that ∂F
∂x

vanishes at (α, 0). On the other hand, since ∂F
∂y

= 2y also vanishes at

this point. Thus, C is singular (i.e. not nonsingular).

Question 6. Let k be a field. Let P2
k = {(a, b, c) ∈ k2 | (a, b, c) 6= (0, 0, 0)}, and recall

that a line in P2
k is defined to be the set of solutions to an equation of the form

αX + βY + γZ = 0

with α, β, γ ∈ k not all zero.

(a) (BONUS) Prove directly from this definition that two distinct points in P2
k are

contained in a unique line.

(b) (BONUS) Similarly, prove that any two distinct lines in P2
k intersect in a unique

point.

Answer. Suppose that u and v are nonzero vectors in 3-space. We recall the following
facts.

• The cross product u × v is a vector which is perpendicular to both u and v. It is
the zero vector if and only if u = tv for some nonzero t. (In other words, u×v = 0
if and only if u and v are colinear.)

• The vectors u and v are perpendicular to each other if and only if their dot product
u · u = 0.

• If P,Q,R ∈ k3 are not colinear, there is a uniqe plane containing them.

Note that the projective line P2
k can be identified with the set of lines in k3 passing through

the origin. In other words, points in P2
k are given by {tu | t ∈ k} for some nonzero vector

u ∈ k3.
(a) Let [a : b : c] and [d : e : f ] be unique points in P2

k. Then the points (a, b, c), (d, e, f)
and (0, 0, 0) in k3 are not colinear so by the third point above, there is a unique plane
in k3 containing the three points. Any equation for this plane αX + βY + γZ = 0
defines a line in P2

k.

(b) A line L = Lα,β,γ in P2
k is given by an equation of the form αX +βY + γZ = 0 with

α, β, γ not all zero. So, by the second bullet point above, the point {tu | t ∈ k}
lies on Lα,β,γ if and only if (α, β, γ) is perpendicular to u. Let Lα′,β′,γ′ be another
(different) line in P2

k. That means (α, β, γ) and (α′, β′, γ′) are noncolinear nonzero
vectors. Let

u = (α, β, γ)× (α′, β′, γ′).

By the first bullet point, u lies on both lines. On the other hand, again applying
the first bullet point, v lies on both lines only if it is a nonzero multiple of u. Hence
there is a unique point in P2

k on both lines.


