Homework Set One

Question 1. Prove the following statements. (These may be useful for later problems.)

1. If n is an integer and n^{2} is odd, then n is odd. (Recall: n is odd if $2 \nmid n$.)
2. If n is an integer and n^{2} is even, then n is even. (Recall: n is even if $2 \mid n$.)
3. If an integer d divides integers m and n, then d divides $m+n$ and $m-n$.

Question 2. Recall that $(a, b, c) \in \mathbb{N}^{3}$ is a PPT if $a^{2}+b^{2}=c^{2}$, and $\operatorname{gcd}(a, b, c)=1$. Suppose (a, b, c) is a PPT. Prove the following statements.

1. The following two statements are equivalent:
(i) Only one of the integers a and b is odd.
(ii) The integer c is odd.
2. One of a and b is odd, while the other is even.

Question 3. Suppose (a, b, c) is a PPT with a odd, and note $a^{2}=(c-b)(c+b)$. Let d be an integer. Suppose that $d \in \mathbb{Z}, d \mid c+b$ and $d \mid c-b$. Suppose that $d \in \mathbb{Z}, d \mid c+b$ and $d \mid c-b$. Prove the following statements.

1. The integer d is odd.
2. The integer d satisfies $d \mid c$ and $d \mid b$.
3. In fact, $d= \pm 1$.
4. Explain why $c-b=s^{2}$ and $c+b=t^{2}$ for some odd numbers $s<t$ which share no common factors. (You may use that natural numbers have a unique factorization into primes.)
5. Prove the following theorem:

Theorem. Every primitive pythagorean triple (a, b, c) is of the form (assuming a is odd)

$$
a=s t, \quad b=\frac{t^{2}-s^{2}}{2}, \quad c=\frac{t^{2}+s^{2}}{2}
$$

for integers $t>s \geq 1$ such that s and t have no common factors.

Question 4. Let L be the line with slope m that passes through the point $(-1,0)$. Consider the circle $C: x^{2}+y^{2}=1$. Let $\left(x_{0}, y_{0}\right) \neq(-1,0)$ be the other point of intersection between C and L.

1. Using the equation of L, show that $x_{0}=\frac{1-m^{2}}{1+m^{2}}$.
2. Explain why $\left(x_{0}, y_{0}\right) \in \mathbb{Q}^{2}$ if and only if $m \in \mathbb{Q}$.
3. Suppose $\left(x_{0}, y_{0}\right)=\left(\frac{a}{c}, \frac{b}{c}\right) \in \mathbb{Q}^{2}$. Note that $\left(x_{0}, y_{0}\right) \in C$ if and only if $a^{2}+b^{2}=c^{2}$. Use this to prove:

Theorem. Every primitive pythagorean triple (a, b, c) can be obtained by choosing integers u and v with no common factors, and setting

$$
a=u^{2}-v^{2}, \quad b=2 u v, \quad c=u^{2}+v^{2} .
$$

