Homework Set Two

Due Thursday, April 28.

Question 1. Find $g=\operatorname{gcd}(4340,918)$ and the values x and y such that $4340 x+918 y=g$.
Question 2. Let K be a field. Given two polynomials $f(x)$ and $g(x)$ in $K[x]$, we define the greatest common divisor of $f(x)$ and $g(x)$, denoted $\operatorname{gcd}(f(x), g(x))$, to be the unique monic polynomial of highest degree dividing both $f(x)$ and $g(x)$. Here, 'monic' means the leading coefficient is 1 .
(a) Find the greatest common divisor of $f(x)=2 x^{2}-\frac{1}{2}$ and $g(x)=2 x^{3}-x^{2}-2 x+1$.
(b) The analog of a prime number for polynomials is an irreducible polynomial. A polynomial $p(x)$ in $K[x]$ of degree at least 1 is irreducible if its only divisors are c and $c p(x)$ where c is a nonzero constant. Show that $x^{2}+1$ is irreducible in $\mathbb{Z}[x]$ but is reducible in $\mathbb{C}[x]$.
(c) Prove the following theorem (Euclid's Lemma):

Theorem. Let $p(x)$ in $K[x]$ be irreducible and consider two polynomials $f(x), g(x)$ in $K[x]$. If $f(x) g(x)$ is divisible by $p(x)$, then $p(x)$ divides $f(x)$ or $p(x)$ divides $g(x)$. (Hint: You may use that an analog of the Euclidean algorithm holds for $K[x]$.)

Question 3. The Gaussian integers is the set $\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$ with the usual addition and multiplication of \mathbb{C} (making it a ring). For $\alpha=a+b i \in \mathbb{Z}[i]$ the conjugate of α, denoted $\bar{\alpha}$ is $\bar{\alpha}=a-b i$ and the norm N on $\mathbb{Z}[i]$ is the map

$$
N: \mathbb{Z}[i] \rightarrow \mathbb{Z}, \quad(a+b i) \mapsto N(a+b i):=\alpha \bar{\alpha}=a^{2}+b^{2}
$$

(a) Show the norm is multiplicative. That is, show $N(\alpha \beta)=N(\alpha) N(\beta)$ for $\alpha, \beta \in \mathbb{Z}[i]$.
(b) Suppose $\alpha, \beta \in \mathbb{Z}[i]$. We say α divides β if there exists a $\gamma \in \mathbb{Z}[i]$ such that $\beta=\alpha \gamma$. An element $\alpha \in \mathbb{Z}[i]$ is a unit of $\mathbb{Z}[i]$ if their exists an element β in $\mathbb{Z}[i]$ such that $\alpha \beta=1=\beta \alpha$. Show the following are equivalent:
(i) $\alpha \in\{ \pm 1, \pm i\}$
(ii) α is a unit
(iii) $N(\alpha)=1$.
(c) A non-unit Gaussian integer $\alpha \neq 0$ is said to be reducible if there exist non-unit elements $\beta, \gamma \in \mathbb{Z}[i]$ such that $\alpha=\beta \gamma$. The element α is called irreducible if it is not reducible.
(i) Show that a prime $p \in \mathbb{Z}$ is reducible in $\mathbb{Z}[i]$ if and only if $p=a^{2}+b^{2}$ for some $a, b \in \mathbb{Z}$.
(ii) Show that if α divides β in $\mathbb{Z}[i]$, then $N(\alpha)$ divides $N(\beta)$ in \mathbb{Z}.
(iii) Show that $\alpha=4+i$ is a irreducible.
(iv) Show that $\alpha=2$ is not a irreducible.
(d) (Bonus.) Recall that the reason the Euclidean algorithm works is that given integers a and b with $b \neq 0$, we may write

$$
a=q b+r
$$

where q and r are integers and $0 \leq r<b$. Show that $\mathbb{Z}[i]$ has the analogous property that given $\alpha, \beta \in \mathbb{Z}[i]$ with $\beta \neq 0$, there exists $q, r \in \mathbb{Z}[i]$ such that

$$
\alpha=q \beta+r
$$

and $0 \leq N(r)<N(\beta)$. (Hint: Consider $\frac{\alpha}{\beta}$. This number is not necessarily in $\mathbb{Z}[i]$, but you can show that it is of the form $x+i y$ where x and y are rational numbers. Show that there is a Gaussian integer $a+b i$ such that $N\left(\frac{\alpha}{\beta}-(a+b i)\right) \leq \frac{1}{2}$. Now consider the Gaussian integer $r=\alpha-\beta(a+b i)$. For example, what is its norm?)

